National Library of Energy BETA

Sample records for vehicle infrastructure training

  1. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  2. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  3. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen (PDF 257 KB), Dean Fry, BP Panel Session III: Innovation and Coordination Moderator: Stefan ...

  4. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  5. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  6. Hydrogen Vehicle and Infrastructure Demonstration and Validation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_05_sell.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers HYDROGEN TO THE HIGHWAYS Lean Gasoline System Development

  7. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's ...

  8. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

  9. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  10. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  11. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011...

  12. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012...

  13. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  14. Hydrogen Vehicle and Infrastructure Codes and Standards Citations

    Broader source: Energy.gov [DOE]

    This document lists codes and standards typically used for US hydrogen vehicle and infrastructure projects.

  15. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  16. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  17. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  18. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  19. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

  20. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  1. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect (OSTI)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  2. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Infrastructure and Fuel Cell Electric Vehicle Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to

  3. Policy Option for Hydrogen Vehicles and Infrastructure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Policy Option for Hydrogen Vehicles and Infrastructure Policy Option for Hydrogen Vehicles and Infrastructure Presentation by Stefan Unnasch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon scenario_analysis_unnasch_0_07.pdf More Documents & Publications Scenario Analysis Meeting Hydrogen Policy and Analyzing the Transition Asia/ITS

  4. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis | Department of Energy HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon welch_hydive.pdf More Documents & Publications Discrete Choice Analysis: Hydrogen FCV Demand Potential Technical Workshop:

  5. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Hydrogen | Department of Energy Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Agenda for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon agenda_3-19-2008.pdf More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of

  6. Vehicle and Infrastructure Cash-Flow Evaluation (VICE) | Open...

    Open Energy Info (EERE)

    Toolkit Region(s): Australia & North America UN Region: Northern America Language: English Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Screenshot Related Tools...

  7. AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

  8. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  9. Electric Drive Vehicle Infrastructure Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt073_vss_carleson_2011_o.pdf More Documents & Publications ChargePoint America ChargePoint America Grid Connectivity Research, Development & Demonstration Projects

  10. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April 2-3, 2008, participants from industry, government agencies, universities, and national laboratories participated in a workshop to review lessons learned from efforts to commercialize alternative fuel vehicles and to discuss how those lessons apply to the commercialization of hydrogen

  11. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. PDF icon csd_workshop_2_elrick.pdf More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  12. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ti001_scarpino_2010_o.pdf More Documents & Publications Clean Cities 2009 Petroleum Displacement Awards EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council

  13. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  14. Nevada Strengthens Electric Vehicle Infrastructure on Major U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governors Office of Energy, announces the new...

  15. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. PDF icon 43669.pdf More Documents & Publications IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen

  16. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    Open Energy Info (EERE)

    Municipal Fleets ... further results Find Another Tool FIND TRANSPORTATION TOOLS A major component of winning public acceptance for plug-in vehicles is the streamlining of the...

  17. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  18. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  20. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    SciTech Connect (OSTI)

    TREMEL, CHARLES L

    2007-06-28

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  1. Hydrogen Vehicles and Refueling Infrastructure in India | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Refueling Infrastructure in India Hydrogen Vehicles and Refueling Infrastructure in India Presentation given by L.M. Das of the India Institute of Technology at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 PDF icon cng_h2_workshop_11_das.pdf More Documents & Publications Successful Adoption of CNG and Energing CNG-Hydrogen Program in India Overview of Indian Hydrogen Program and Key Safety Issues of Hydrogen Fuel

  2. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  3. EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure on

    Office of Environmental Management (EM)

    Major U.S. Highway | Department of Energy Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governor’s Office of Energy, announces the new Nevada Electric Highway Joint Initiative in Carson City, Nevada. He was joined at the event by Carson City Mayor Bob Crowell, left, NV Energy CEO Paul Caudill, and

  4. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066_vss_karner_2012

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066_vss_karner_2011

  6. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066_karner_2010_p

  7. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  8. Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2008-10-13

    Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

  9. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  10. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  11. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage

  12. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  13. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  14. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  15. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect (OSTI)

    Markel, T.

    2010-04-01

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  16. Electric Vehicle Service Personnel Training Program

    SciTech Connect (OSTI)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in todays market. Faculty training is widely available and can be relatively quickly achieved. Equipment availability (vehicles, specialized tools, diagnostic software and computers) is a bigger challenge for funding-constrained colleges. A computer-based emulation system that would replicate vehicle and diagnostic software in one package is a training aid that would have widespread benefit, but does not appear to exist. This need is further described at the end of Section 6.5. The benefits of this project are unique to each of the three target audiences. Students have learned skills they will use for the remainder of their careers; independent technicians can now accept customers who they previously needed to turn away due to lack of familiarity with hybrid systems; and fleet maintenance personnel are able to lower costs by undertaking work in-house that they previously needed to outsource. The direct job impact is estimated at 0.75 FTE continuously over the 3 -year duration of the grant.

  17. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Proceedings NREL/BK-560-43669 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina

  18. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  19. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Electric Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  20. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  1. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  2. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at

  3. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  4. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  5. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure

    Office of Environmental Management (EM)

    Workshop | Department of Energy Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a

  6. Vehicle Infrastructure Cash-Flow Estimation--VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Mitchell, G.

    2015-04-02

    This presentation discusses the differences between the original Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Model and the revamped version, VICE 2.0. The enhanced tool can now help assess projects to acquire vehicles and infrastructure, or to acquire vehicles only.

  7. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  8. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Outreach Program | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt034_ferdowsi_2010_o.pdf More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program 2010 DOE EERE Vehicle Technologies Program Merit Review

  9. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  10. Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governor’s Office of Energy, announces the new Nevada Electric Highway Joint Initiative in Carson City, Nevada. He was joined at the event by Carson City Mayor Bob Crowell, left, NV Energy CEO Paul Caudill, and Nevada Governor Brian Sandoval. The

  11. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  12. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  13. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations:

  14. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Outreach Program | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt034_ti_ferdowsi_2012_o.pdf More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program US-India S&T Agreement

  15. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Outreach Program | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt034_ti_ferdowsi_2011_p.pdf More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program EcoCAR 2 Plugging into the Future

  16. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The facility houses equipment such as glove box, fume hoods, oxygen-free nanopure water system and ultrasonic processors. Schlenk-type techniques are routinely used...

  17. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  18. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  19. Electric Vehicle Safety Training for Emergency Responders

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Electric Vehicle Safety Training for Emergency Responders

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40-47951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive

  2. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive

  3. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  4. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect (OSTI)

    Schey, Steve; Francfort, Jim

    2015-07-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicles mission. The Task 3 Vehicle Utilization report provided the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.

  5. Steering system for a train of rail-less vehicles

    DOE Patents [OSTI]

    Voight, Edward T. (Worthington, OH)

    1983-01-01

    A steering system for use with a multiple vehicle train permits tracking without rails of one vehicle after another. This system is particularly useful for moving conveyor systems into and out of curved paths of room and pillar underground mine installations. The steering system features an elongated steering bar pivotally connected to each of adjacent vehicles at end portions of the bar permitting angular orientation of each vehicle in respect to the steering bar and other vehicles. Each end portion of the steering bar is linked to the near pair of vehicle wheels through wheel yoke pivot arms about king pin type pivots. Movement of the steering bar about its pivotal connection provides proportional turning of the wheels to effect steering and tracking of one vehicle following another in both forward and reverse directions.

  6. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2011-01-01

    Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

  7. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure (D2SA) Co-Chairs: Christopher Beggio, Sandia National Laboratories Robin Goldstone, Lawrence Livermore National Laboratories 1 Contributors * Bill Allcock, Argonne Leadership Computing Facility * Chris Beggio, Sandia National Laboratories * Clay England, Oak Ridge Leadership Computing Facility * Doug Fuller, Oak Ridge Leadership Computing Facility * Robin Goldstone, Lawrence Livermore National Laboratory * Jason Hick, National Energy Research Scientific Computing Center * Kyle

  8. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  9. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    SciTech Connect (OSTI)

    Hank Seiff

    2008-12-31

    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

  10. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2010-11-01

    This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

  11. Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31, 2007

    Broader source: Energy.gov [DOE]

    This list describes the participants at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  12. Convergence of Vehicle and Infrastructure Data for Traffic and Demand Management

    SciTech Connect (OSTI)

    Young, Stanley E.

    2015-11-16

    The increasing availability of highly granular, vehicle trajectory data combined with ever increasing stores of roadway sensor data has provided unparalleled observability into the operation of our urban roadway networks. These data sources are quickly moving from research and prototype environments into full-scale commercial deployment and data offerings. The observability gained allows for increased control opportunities to enhance transportation mobility, safety and energy efficiency. The National Renewable Energy Laboratory (NREL) is involved in three initiatives to leverage these data for positive outcomes: 1) In 2015 NREL, in cooperation with industry and university partners, was awarded an ARPA-E research grant to research a control architecture to incentivize individual travelers toward more sustainable travel behavior. Based on real-time data on the traveler's destination and state of the system, the traveler is presented with route and/or mode choices and offered incentives to accept sustainable alternatives over less-sustainable ones. The project tests the extent to which small incentives can influence, or tip the balance toward more sustainable travel behavior. 2) Although commercial sources of travel time and speed have emerged in recent years based on vehicle probe data, volume estimates continue to rely primarily on historical count data factored for the time of day, day of week, and season of year. Real-time volume flows would enable better tools, simulation in the loop, and ultimately more effective control outcomes. NREL in cooperation with the University of Maryland and industry traffic data providers (INRIX, HERE and TomTom), are attempting to accelerate the timeframe to a viable real-time vehicle volume data feed based on probe data. 3) Signal control on urban arterials for years has had to rely on models rather than measured data to assess performance. High-resolution controller data and low-cost re-identification data now allows for direct measurement of the quality of progression along a corridor. Though still requiring an investment in equipment and communications, these data sources are transforming traffic signal management to a data driven, performance management basis. Ever increasing availability of granular GPS trace data from automobiles may allow for assessment of traffic signal performance, allowing for signal optimization while minimizing the investment in additional sensors and communication infrastructure.

  13. Energy Assurance Technical Training and Awareness Program/Energy Infrastructure Training and Analysis Center

    SciTech Connect (OSTI)

    Barbara McCabe

    2005-11-15

    This report covers the work completed during Year One (Year One has a 16 month project period) of a five- year Cooperative Agreement (DE-FC26-03NT41895) between the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) and the U. S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). This final technical report is being submitted, as required by the Cooperative Agreement, within 90 (calendar) days after the project period ends (December 31, 2004). The resources allocated to Year One of the Cooperative Agreement were adequate for the completion of the required deliverables. All deliverables have been completed and sent to AAD Document Control as directed in the cooperative agreement. The allocation for Year One required 20-25 trainers to be trained in each of five Train-the-Trainer courses and a total of 6,000 workers trained throughout the country. Through cost savings employed for the scheduling and conduct of Train-the-Trainer, instructor refreshers, and direct training classes, 3171 workers have been trained to date. This total incorporates 159 trainers and members from management, local, county, state and federal organizations identified in the Strategic Plan. The largest percentage of personnel trained is heavy equipment operators, and building engineers, which is the largest targeted population identified under this cooperative agreement. The OENHP, using existing curriculum as appropriate, has modified and developed new training modules that have been used to establish four different levels of training courses. The four courses are: (1) EA 500 Energy Assurance Train-the-Trainer, (2) EA 400 Energy Assurance Instructor Refresher, (3) EA 300 Energy Assurance, and (4) EA 100 Energy Assurance Awareness. Training modules cover topics, such as, but not limited to, facility vulnerability and vulnerability assessment, physical security- heating, ventilation, air conditioning, terrorism awareness, weapons of mass destruction, respiratory protection, and decontamination. All of the courses and training modules are described in detail in the ''Training Course and Module Description Catalog'', April 2004. The OENHP has developed a Compendium of reference materials, training demonstration/hands-on models, and is revising its student manual. Course and instructor evaluations and the input of a general Advisory Board and an Advisory Board made up of Stationary (Building) Engineers has provided direction for modification and improvement of the Energy Security (Assurance) Training Program. The OENHP has identified the target training population, IUOE Stationary (Building) Engineers as being the primary population and IUOE heavy equipment operators as also being a targeted population. The OENHP however, has also identified several applicable populations outside of its membership, such as the Transport Workers Union and special populations within its membership, such as IUOE Local Union 25 Maritime Division. During Year One, a redesigned web site and brochures have been developed to assist in promotion of the energy security (assurance) program and the benefits of its training courses.

  14. Center for Energy Research and Training (CERT) infrastructure support under USDOE/MEIAP. Final report

    SciTech Connect (OSTI)

    Mallik, A.K.; Rojeski, P. Jr.

    1993-10-01

    As one of the several institutions of higher education, North Carolina Agricultural and Technical State University at Greensboro has received support from the office of Minority Education Institution Assistance Program (MEIAP) of the US Department of Energy primarily to provide infrastructure support to promote and enhance interdisciplinary energy-related research. In this effort, the university was authorized to prepare a plan to create a Center for Energy Research and Training (CERT), which was initiated on September 30, 1987. The goals and objectives for CERT are as specified below: (1) To encourage research by the faculty in many academic disciplines and to enhance their success in finding and obtaining funds for interdisciplinary and multi-school research. (2) To enhance students` energy education with increased opportunities for: theoretical and practical contact with energy issues and technologies; new courses and improved course content; internships and graduate funding; and ability and desire to pursue careers in energy field. (3) To establish training and service programs for off-campus constituents in energy issues, use, and management. (4) To develop cooperative relationships with industry, businesses, universities, and other private and professional organizations and with the State Energy Office. (5) To cooperate in establishing communications and collaborative research projects with various national research laboratories and other federal agencies. (6) To develop a permanent university infrastructure for energy research, training, and community service. Summaries of activities from September, 1992 to September, 1993 are presented.

  15. Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure June 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions (C2ES) and the National Association of State Energy Officials (NASEO) would like to thank the U.S. Department of Energy for providing financial support for this report. C2ES would also like to thank the following for their substantial input: Jay Albert, Ken Berlin, Linda Bluestein, Ken Brown, William

  16. Vehicle Technologies Office Merit Review 2014: Unlocking Private Sector Financing for Alternative Fuel Vehicles and Fueling Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation given by National Association of State Energy Officials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  17. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen resources necessary to support the committee's hydrogen vehicle penetration scenario, or another similar demand scenario (NAS, 2004, p. 4).' Each of the scenarios was extensively discussed at the stakeholder meetings and each received support from industry. Although there was no consensus on a particular vehicle penetration rate, it was agreed that this set of scenarios is inclusive of industry expectations and could provide a basis to interpolate or extrapolate the results to other cases. The purpose of the DOE study was not to select any one scenario but to assess the costs and impacts of achieving each.

  18. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  19. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  20. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  1. vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  2. LNG vehicle markets and infrastructure. Final report, October 1994-October 1995

    SciTech Connect (OSTI)

    Nimocks, R.

    1995-09-01

    A comprehensive primary research of the LNG-powered vehicle market was conducted, including: the status of the LNG vehicle programs and their critical constraints and development needs; estimation of the U.S. LNG liquefaction and delivery capacity; profiling of LNG vehicle products and services vendors; identification and evaluation of key market drivers for specific transportation sector; description of the critical issues that determine the size of market demand for LNG as a transportation fuel; and forecasting the demand for LNG fuel and equipment.

  3. Materials used in new generation vehicles: supplies, shifts, and supporting infrastructure

    SciTech Connect (OSTI)

    Das, S.; Curlee, T.R.; Schexnayder, S.M.

    1997-08-01

    The Partnership for a New Generation of Vehicles (PNGV) program intends to develop new designs for automobiles that will reduce fuel consumption by two thirds but otherwise have price, comfort, safety, and other measures of performance similar to the typical automobile now on the market. PNGV vehicle designs are expected to substitute lightweight materials, such as aluminum, magnesium, carbon-reinforced polymer composites, glass-reinforced polymer composites, and ultra- light steel, for heavier materials such as steel and iron in automobile components. The target mass of a PNGV vehicle is 1,960 pounds, as compared to the average current vehicle that weights 3,240 pounds. Other changes could include the use of different ferrous alloys, engineering changes, or incorporation of advanced ceramic components. Widespread adoption of these vehicle designs would affect materials markets and require concurrent development and adoption of supporting technologies to supply the materials and to use and maintain them in automobiles. This report identifies what would be required to bring about these changes and developments in materials substitution; identifies reasons that might make these substitutions difficult to accomplish within the overall objectives and timetable of the PNGV program; and identifies any issues arising from the substitution that could prompt consideration of policies to deal with them. The analysis in this paper uses scenarios that assume the production of new generation vehicles will begin in 2007 and that their market share will increase gradually over the following 25 years. The scenarios on which the analysis is based assume a maximum substitution of each potential replacement material considered. This maximum substitution of individual materials (i.e., the amount of replacement material by weight that would be added to the baseline vehicle`s composition) is as follows: ULSAB (high strength steel), 298 lbs.; glass-reinforced composites, 653 lbs.; carbon-reinforced composites, 379 lbs.; aluminum, 926 lbs.; and magnesium, 216 lbs. The substitutions (and the steel and iron they replace) are multiplied by the number of new generation vehicles produced on an annual basis out to 2030 to determine the total quantity of material used in new generation vehicles and the quantity of steel that would be displaced. We identified six stages in the life cycle of materials--mining or extraction of resources; smelting or other processing to produce the material from the resource; producing components from the material; assembling the components into vehicles, using, maintaining, and repairing vehicles; and disposing of the vehicle, including any recycling of materials for automotive or other use--and identified what might be required to supply and use the substitute materials at different life cycle stages. The variables considered are the mineral or material supply, the capital and equipment (including necessary capacity, technical changes, cost, and location), labor and employment, energy, material complements, and environmental emissions and impacts. The analysis shows that raw materials to produce each of the replacement materials are sufficiently available, and adequate mining or extraction capacity exists for each. However, challenges are possible at the material production stage for three of the four materials. For aluminum and magnesium the difficulties are associated with requirements for significant new production capacity, necessary for aluminum because new production equipment will be needed to produce the material in a cost-effective manner and for magnesium because current production capacity is inadequate. The required capacity investment for magnesium to meet demand in 2030 is $13.1 billion. Both materials also would sharply increase energy requirements, and both industries would likely develop mostly--if not entirely--outside the United States. To produce the carbon-based fiber to meet PNGV demand in 2015, an entire new industry must be developed--a $4.6 billion investment. Significant environmental concerns

  4. Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dispensing Infrastructure NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. CONTROLLING AUTHORITIES: State and Federal Energy Regulatory Commissions CONTROLLING AUTHORITIES: Local Building and Fire Departments CONTROLLING AUTHORITIES: DOT/NHTS Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel

  5. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  6. Electric Vehicle Service Personnel Training Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt040_ti_bernstein_2012_o

  7. Electric Vehicle Service Personnel Training Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt040_ti_bernstein_2011_p

  8. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    pipeline safety) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and

  9. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    pipeline safety) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed to prepare for the commercialization of alternative fuel vehicle technologies. This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen. National Template: Hydrogen

  10. Indiana Advanced Electric Vehicle Training and Education Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (I-AEVtec) | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt032_ti_caruthers_2011_p

  11. Indiana Advanced Electric Vehicle Training and Education Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (I-AEVtec) | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt032_caruthers_2010

  12. Indiana Advanced Electric Vehicle Training and Education Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (I-AEVtec) | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt032_ti_caruthers_2012

  13. Electric Vehicle Service Personnel Training Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt040_bernstein_2010_o

  14. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720 Hydrogen as a Vehicle Fuel into September 2005 the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates Santa Monica, California

  15. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  16. Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    s more and more AFVs find their places in the transporta- tion industry, the need for qualified technicians to service these vehicles continues to grow. To help meet this need, transportation indus- try and education experts are working together to develop standards for AFV technician training, standards that will serve as a valuable tool for AFV technician training programs now and in the future. Background Section 411 of the Energy Policy Act of 1992 (EPAct) requires that the U.S. Department

  17. Transportation Infrastructure

    Office of Environmental Management (EM)

    Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery & receipt locations * Advances in physical & tracking technologies need to be factored in * Cost-benefit analysis of new technology Training & Dry Runs * Begin as soon as possible * Suggested order: #1-demonstrations, #2-training, #3-dry-runs * Don't re-invent the wheel- look at international programs *

  18. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    Fuel Cell Technologies Publication and Product Library (EERE)

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and

  19. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  20. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnash, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-14

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself.

  1. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a “real-world” retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation’s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products’ Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user’s fueling experience.

  2. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    SciTech Connect (OSTI)

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  3. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  4. Method and system for determining the torque required to launch a vehicle having a hybrid drive-train

    DOE Patents [OSTI]

    Hughes, Douglas A.

    2006-04-04

    A method and system are provided for determining the torque required to launch a vehicle having a hybrid drive-train that includes at least two independently operable prime movers. The method includes the steps of determining the value of at least one control parameter indicative of a vehicle operating condition, determining the torque required to launch the vehicle from the at least one determined control parameter, comparing the torque available from the prime movers to the torque required to launch the vehicle, and controlling operation of the prime movers to launch the vehicle in response to the comparing step. The system of the present invention includes a control unit configured to perform the steps of the method outlined above.

  5. Automated-In-Motion Vehicle Evaluation Environment (AIMVEE) Weigh-In Motion (WIM) User Training and Testing

    Energy Science and Technology Software Center (OSTI)

    2006-05-04

    The AIMVEE/WIM system electronically retrieves deployment information, identifies vehicle automatically, and determines total weight, individual wheel weight, individual axle weights, axle spacing, and center-of-balance for any wheeled vehicle in motion. The AIMVEE/WIM system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE/WIM system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information ismore » stored, it electronically links to data collection and dissemination systems to provide “actual” weight and measurement information for planning, deployment, and in-transit visibility. The Static Scale Conversion (SSC) system is an unique enhancement to the AIMVEE/WIM system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale and is included in the AIMVEE computer code base. The material to be copyrighted is the Automated-In-Motion Vehicle Evaluation Environment (AIMVEE)/Weigh-In-Motion User Training and Testing material. It includes instructional material in the set-up, operation and tear-down of the AIMVEE/WIM system. It also includes a final exam associated with the training.« less

  6. Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development

    Broader source: Energy.gov [DOE]

    Washington, D.C. - U.S. Energy Secretary Steven Chu today announced 16 projects supporting activities in 24 states and the District of Columbia to accelerate the adoption of electric vehicles (EVs)...

  7. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon...

  8. Sandia Energy - Education and Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education and Training Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National...

  9. Sandia Energy - SCADA Training Courses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Courses Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National Supervisory...

  10. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  11. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on ...

  12. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling...

  13. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon...

  14. U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  16. Lessons and Challenges for Early Hydrogen Refueling Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Challenges for Early Hydrogen Refueling Infrastructure Lessons and Challenges for Early Hydrogen Refueling Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon lessons_melaina_final.pdf More Documents & Publications Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Hydrogen Infrastructure Strategies Technical

  17. Transportation Infrastructure Requirement Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Requirement Resources Transportation Infrastructure Requirement Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum reduction path as an alternative to the mandate. Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National

  18. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing

  19. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  20. Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  1. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Vehicles Watch this video to learn about the benefits of electric vehicles -- including improved fuel efficiency, reduced emissions and lower maintenance costs. Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy, moving people and goods across the country. From funding research into technologies that will save Americans money at the pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the development

  2. Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353

    SciTech Connect (OSTI)

    Neubauer, J.

    2013-05-01

    Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

  3. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10 educational and workforce ...

  4. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  5. Alternative Fuels Data Center: States Enact Natural Gas Vehicle and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Incentives States Enact Natural Gas Vehicle and Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center:

  6. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell

    Office of Environmental Management (EM)

    Electric Vehicle | Department of Energy Hydrogen Infrastructure and Fuel Cell Electric Vehicle EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote

  7. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Paper Analysis of the Hydrogen NRELCP-540-37903 Infrastructure Needed to March 2005 Enable Commercial Introduction of Hydrogen- Fueled Vehicles Preprint M. Melendez and...

  8. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles (FCEVs) by conducting coordinated technical and market analysis, and evaluating alternative fueling infrastructure that can enable cost reductions and economies of scale. ...

  9. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C....

  10. Geographically Based Hydrogen Demand and Infrastructure Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon melendez_geo_h2_demand.pdf More Documents & Publications 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - 10, 2006 Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

  11. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision Important applications of these capabilities include performing assessment of facility vulnerabilities and resultant consequences of a range of attack scenarios related to nuclear facilities after 9/11. these comprehensive analyses were able to realistically represent the actual attack, the response of the facility to the

  13. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision the capability set needed to address safe and secure management of these radioactive materials includes a broad set of engineering and scientific disciplines such as physics; nuclear, mechanical, civil, and systems engineering; and chemistry. In addition, Sandia has a tool set that enhances the ability to perform high level

  14. Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  15. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. GIS-Based Infrastructure Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GIS-Based Infrastructure Modeling GIS-Based Infrastructure Modeling Presentation by NREL's Keith Parks at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon parks_gis_infrastructure_modeling.pdf More Documents & Publications DOE Hydrogen Transition Analysis Workshop Geographically-Based Infrastructure Analysis for California Hydrogen and FCV Implementation Scenarios, 2010 - 2025

  17. Geographically-Based Infrastructure Analysis for California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Geographically-Based Infrastructure Analysis for California Geographically-Based Infrastructure Analysis for California Presentation by Joan Ogden of the University of California at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon ogden_geo_infrastructure_analysis.pdf More Documents & Publications Hydrogen Infrastructure Strategies EIS-0105: Draft Environmental Impact Statement Natural

  18. Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discerns Threatening Liquids Scientists Train Honeybees to Detect Explosives LANL Guns Los Alamos Team Demonstrates Bottle Scanner Technology Los Alamos tests of conventional...

  19. Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2006-10-01

    In FY 2004 and 2005, NREL developed a proposed minimal infrastructure to support nationwide deployment of hydrogen vehicles by offering infrastructure scenarios that facilitated interstate travel. This report identifies key metropolitan areas and regions on which to focus infrastructure efforts during the early hydrogen transition.

  20. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon yborra.pdf More Documents & Publications asdfadfasfd The Compelling Case for Natural Gas Vehicles QER - Comment of American Gas

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  2. Geographically-Based Infrastructure Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Previous and Ongoing * HYDS ME - Evaluates best infrastructure options * Interstate Infrastructure Analysis - Minimal infrastructure to facilitate interstate travel during ...

  3. California Low Carbon Fuels Infrastructure Investment Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt082_ti_bowen_2012_o.pdf More Documents & Publications The Future of Home Heating StateActivity.pdf Hydrogen & Fuel Cells Program Overview

  4. Hydrogen Vehicles and Fueling Infrastructure in China

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Jinyang Zheng of Zhejiang University at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

  5. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of Tulare Renewable Biogas Fuel Cell Project Microsoft Word - AL2003-04.doc

  6. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers Lean Gasoline System Development for Fuel Efficient Small Car HYDROGEN TO THE HIGHWAYS...

  7. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  8. DOE Announces Webinars on Compressed Natural Gas Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    estimate the cost to install fueling infrastructure for vehicles that run on propane. Curtis Donaldson from CleanFUEL USA discusses key components of a propane station, how a...

  9. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). These standard procedures and test specifications are used to test and collect data from vehicles on dynamometers, closed test tracks and on-the-road testing for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs), neighborhood electric vehicles (NEVs), diesel vehicles and compressed natural gas (CNG) vehicles. In addition, it also tests components such as batteries and charging infrastructure.

  10. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  11. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  12. Materials Informatics for the ICME CyberInfrastructure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Informatics for the ICME CyberInfrastructure Materials Informatics for the ICME CyberInfrastructure 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm038_paxton_2011_o.pdf More Documents & Publications Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project (Part 1) Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report Integrated

  13. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Showcase | Department of Energy Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tvp_04_hitchcock.pdf More Documents & Publications Hydrogen Education in Texas DOE Vehicle Technologies Program 2009

  14. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure | Department of Energy Systems Analysis » 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Introducing hydrogen as an energy carrier would involve major changes in the country's energy and vehicle fleet infrastructure. Technical challenges, costs, and risk will be highest in the near-term, when markets are very small and the technology and infrastructure are immature.

  15. Controlled Hydrogen Fleet & Infrastructure Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Infrastructure Analysis Controlled Hydrogen Fleet & Infrastructure Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_01_wipke.pdf More Documents & Publications Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning Demonstration Status

  16. State Experience in Hydrogen Infrastructure in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Experience in Hydrogen Infrastructure in California State Experience in Hydrogen Infrastructure in California Presentation by Gerhard Achtelik, California Air Resources Board, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. PDF icon wkshp_market_readiness_achtelik.pdf More Documents & Publications Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) FCEVs and Hydrogen in California Fuel Cell Electric

  17. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Office of Environmental Management (EM)

    Project | Department of Energy Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_03_veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE

  18. Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure in the Midwest Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Facebook Tweet about Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Twitter Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

  19. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  20. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Data | Department of Energy Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office (VTO) accelerated the electrification of the nation's vehicle fleet. VTO invested $400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10

  1. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Connected and Automated Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connected and Automated Vehicles Chapter 8: Technology Assessments Introduction to Connected and Automated Vehicles Summary Connected vehicles are able to communicate with other vehicles and infrastructure automatically to improve transportation system function. Vehicle automation refers to the ability of a vehicle to operate with reduced or without direct human operation. Using a combination of advanced sensors and controls, sophisticated learning algorithms, and GPS and mapping technologies,

  2. Interdependence of Electricity System Infrastructure and Natural...

    Energy Savers [EERE]

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

  3. Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Training Training

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy 2_casey.pdf More Documents & Publications Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen National Fuel Cell Electric Vehicle Learning Demonstration Final Report

  5. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  6. Transmission Infrastructure Program

    Energy Savers [EERE]

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent

  7. Model curriculum outline for Alternatively Fueled Vehicle (AFV) automotive technician training in light and medium duty CNG and LPG

    SciTech Connect (OSTI)

    1997-04-01

    This model curriculum outline was developed using a turbo-DACUM (Developing a Curriculum) process which utilizes practicing experts to undertake a comprehensive job and task analysis. The job and task analysis serves to establish current baseline data accurately and to improve both the process and the product of the job through constant and continuous improvement of training. The DACUM process is based on the following assumptions: (1) Expert workers are the best source for task analysis. (2) Any occupation can be described effectively in terms of tasks. (3) All tasks imply knowledge, skills, and attitudes/values. A DACUM panel, comprised of six experienced and knowledgeable technicians who are presently working in the field, was given an orientation to the DACUM process. The panel then identified, verified, and sequenced all the necessary job duty areas and tasks. The broad duty categories were rated according to relative importance and assigned percentage ratings in priority order. The panel then rated every task for each of the duties on a scale of 1 to 3. A rating of 3 indicates an {open_quotes}essential{close_quotes} task, a rating of 2 indicates an {open_quotes}important{close_quotes} task, and a rating of 1 indicates a {open_quotes}desirable{close_quotes} task.

  8. Ford's CNG vehicle research

    SciTech Connect (OSTI)

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  9. Infrastructure Institutional Change Principle

    Broader source: Energy.gov [DOE]

    Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior.

  10. CU-ICAR Hydrogen Infrastructure Final Report

    SciTech Connect (OSTI)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  11. ANSI Electric Vehicle Standards Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap ANSI Electric Vehicle Standards Roadmap 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss093_mccabe_2012_o.pdf More Documents & Publications ANSI Electric Vehicle Standards Roadmap v2.0 Codes and Standards to Support Vehicle Electrification EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group D Breakout Report

  12. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Final List of Attendees | Department of Energy Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees PDF icon scenario_analysis_attendees.pdf More Documents & Publications Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31,

  13. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  14. Advanced Electric Drive Vehicles … A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program US-India S&T Agreement

  15. Modernizing Infrastructure Permitting

    Broader source: Energy.gov [DOE]

    On May 14, 2014, the Obama Administration released a comprehensive plan to accelerate and expand Federal infrastructure permitting reform government-wide. The Office of Electricity Delivery and Energy Reliability is actively engaged in this process for transmission development.

  16. IPHE Infrastructure Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

  17. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (OSTI)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  18. IPHE Infrastructure Workshop Proceedings

    SciTech Connect (OSTI)

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  19. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    Electricity Infrastructure Operations Center Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center...

  20. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    PNNL Electricity Infrastructure Operations Center (Redirected from Electricity Infrastructure Operations Center) Jump to: navigation, search Logo: Electricity Infrastructure...

  1. Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. Infrastructure Improvements - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Improvements As the designated Community Reuse Organization for the Department of Energy's (DOE) Savannah River Site (SRS), our 22-member citizen-led Board of Directors has undertaken a study to point out the critical need for improving the deteriorating infrastructure at SRS. Priority attention needs to be made now to maximize SRS contributions and potential in the years ahead. SRS has all the assets required in people, land, expertise and community support to continue to play a

  3. Location and Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facts, Figures » Location and Infrastructure Location and Infrastructure The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 Aerial View of Los Alamos National Laboratory The central LANL technical area is featured in this aerial view. Boundary Peak, separating the Santa Fe National Forest and

  4. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Projects June 3, 2010 What do you think of the TEDF? How about the UIM project? What would have happened if we had not got the ARRA funding for the NP GPP projects last year? Gobbledegook!? Acronymia? Certainly different from the usual PREx, or QWeak, or DVCS that we hear from the physics side of the house! TEDF, UIM and the others are acronyms used by the facilities people, those trying to build, modernize and maintain our infrastructure. TEDF (Technology and Engineering

  5. National Infrastructure Protection Plan

    Office of Environmental Management (EM)

    Infrastructure Protection Plan 2006 Preface Preface i The ability to protect the critical infrastructure and key resources (CI/KR) of the United States is vital to our national security, public health and safety, economic vitality, and way of life. U.S. policy focuses on the importance of enhancing CI/KR protection to ensure that essential governmental missions, public services, and economic functions are maintained in the event of a terrorist attack, natural disaster, or other type of

  6. U.S. First Responder Safety Training for Advanced Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Responder Safety Training for Advanced Electric Drive Vehicle Presentation U.S. First Responder Safety Training for Advanced Electric Drive Vehicle Presentation 2010 DOE...

  7. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach Activities Vehicle Technologies ...

  8. California Hydrogen Infrastructure Project

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  9. California Statewide PEV Infrastructure Assessment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Eichman, Joshua

    2015-06-10

    This presentation discusses how the California Statewide Plug-In Electric Vehicle (PEV) Infrastructure Assessment provides a framework for understanding the potential energy (kWh) and demand (MW) impacts of PEV market growth; how PEV travel simulations can inform the role of public infrastructure in future market growth; and how ongoing assessment updates and Alternative Fuels Data Center outreach can help coordinate stakeholder planning and decision making and reduce uncertainties.

  10. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  11. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  12. Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis | Department of Energy Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon scenario_analysis_melendez1_07.pdf More Documents & Publications Hydrogen Policy and Analyzing the Transition Hydrogen Transition Study Lessons and Challenges for Early Hydrogen Refueling

  13. Midstream Infrastructure Improvements Key to Realizing Full Potential of

    Office of Environmental Management (EM)

    Domestic Natural Gas | Department of Energy Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas October 30, 2014 - 9:20am Addthis Natural gas provides numerous benefits to millions of Americans daily, whether it's being used to heat or air condition homes and businesses, cook meals, or power vehicles. But most people who take advantage of this versatile and

  14. Alternative Fuel Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle & Fueling Infrastructure Deployment Barriers & the Potential Role of Private Sector Financial Solutions April 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions (C2ES) and the National Association of State Energy Officials (NASEO) would like to thank the U.S. Department of Energy for providing financial support for this report. C2ES would also like to thank the following for their substantial input: Jay Albert, Ken Berlin, Ken Brown, David Charron,

  15. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  16. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  17. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  18. Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program Deploying Alternative Fuel Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E-mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program on Facebook Tweet about Alternative

  19. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia National Laboratories will support H2USA, a public-private partnership co-launched by industry and the Energy Department, and will work to ensure that hydrogen fuel cell vehicle owners have a positive fueling experience as fuel cell electric vehicles are introduced starting in 2014-2015. By tackling the

  20. NREL Acquires Fuel Cell Hybrid Vehicles from Toyota to Support Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure, Production, and Vehicle Performance Studies - News Releases | NREL Acquires Fuel Cell Hybrid Vehicles from Toyota to Support Hydrogen Infrastructure, Production, and Vehicle Performance Studies January 28, 2013 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) recently received four fuel cell hybrid vehicles - advanced (FCHV-adv) on loan from Toyota through a two-year Cooperative Research and Development Agreement. These vehicles will help

  1. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the establishment of an ad hoc NGV Infrastructure Working Group (NGV-I WG) to address the most critical technical barriers to NGV infrastructure development. This recommendation has been considered and approved by both the DOE and GRI and is the basis of continued collaboration in this area.

  2. HySA Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop, National Renewable Energy Laboratory, Golden, Colorado, Feb 27-28, 2014 Current Initiatives for Electrolytic H 2 Production at HySA Infrastructure Dmitri Bessarabov DST HySA Infrastructure Center of Competence, NWU/CSIR http://www.hysainfrastructure.org/ South African Energy Profile Coal 72.1% *CR&W 10.2% Gas 2.8% Nuclear 2.2% Oil 12.6% Hydro 0.1% Current South Africa Total Primary Energy Supply  Coal supplies ~75 % of South Africa's primary energy and 90 % of its electricity

  3. EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles April 18, 2013 - 12:00am Addthis The National Fuel Cell Electric Vehicle Learning Demonstration-funded and managed by EERE-has tested, demonstrated, and validated fuel cell electric vehicles and hydrogen infrastructure in real-world environments. The project found that these vehicles achieved more than twice the efficiency of

  4. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Environmental Management (EM)

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  5. National Hydrogen Safety Training Resource for Emergency Responders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H2 Refuel H-Prize Safety Guidance Webinar Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues What Can We Learn from Hydrogen Safety Event Databases?...

  6. Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2011-03-01

    Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

  7. Energy Department Launches Public-Private Partnership to Deploy Hydrogen Infrastructure

    Broader source: Energy.gov [DOE]

    The Energy Department launched H2USA -- a new public-private partnership focused on advancing hydrogen infrastructure to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles.

  8. Infrastructure Impacts | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACInfrastructure Impacts content top National Population, Economic, and Infrastructure Impacts of Pandemic Influenza with Strategic Recommendations Posted by Admin on Mar 2, 2012 in | Comments 0 comments Results of NISAC's two-year study on the potential impacts of pandemic influenza in the United States were published in October 2007 and released to the public in 2008. The summary report and supplemental analysis reports can be downloaded from the column to the right. Pandemic Influenza

  9. E15 and Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 and Infrastructure K. Moriarty National Renewable Energy Laboratory J. Yanowitz Ecoengineering, Inc. Produced under direction of Renewable Fuels Association by the National Renewable Energy Laboratory (NREL) under Technical Services Agreement No. TSA 14-665 and Task No. WTJZ.1000. Strategic Partnership Project Report NREL/TP-5400-64156 May 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for

  10. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  11. Green Infrastructure for Arid Communities

    Broader source: Energy.gov [DOE]

    On March 24, 2015, from 1:00pm – 2:30pm EDT, EPA's Green Infrastructure Program will launch our 2015 Webcast Series with the webinar Green Infrastructure for Arid Communities. This webinar aims to...

  12. Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    Find out if your plug-in electric vehicle, charging station, or other alternative fueling infrastructure qualify you for federal or state tax credits.

  13. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Broader source: Energy.gov (indexed) [DOE]

    Introducing hydrogen as an energy carrier would involve major changes in the country's energy and vehicle fleet infrastructure. Technical challenges, costs, and risk will be...

  14. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis...

  15. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis...

  16. E15 and Infrastructure

    SciTech Connect (OSTI)

    Moriarty, K.; Yanowitz, J.

    2015-05-27

    This report explores the compatibility of refueling station equipment with E15--a 15% ethanol and 85% gasoline blend intended for use in conventional gasoline light duty vehicles model year 2001 or newer. The report includes background information on E15, a literature review seeking to identify issues during the nationwide deployment of E10, a diagram of all station equipment and supporting data.

  17. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  18. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL; Chinthavali, Madhu Sudhan [ORNL

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  19. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  20. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle ...

  1. Nuclear hybrid energy infrastructure

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  2. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  3. Financing Tribal Energy Infrastructure & Energy Optimization Infrastructure

    Office of Environmental Management (EM)

    4 Kilpatrick Townsend Financing Tribal Energy Infrastructure & Energy Optimization Infrastructure (EOI) Matt Ferguson National Tribal Energy Summit: A Path to Economic Sovereignty September 2015 OPPORTUNITY Regulations and market influences have created an opportunity to provide service in ways that transcend business as usual Energy Optimization Infrastructure (EOI) www.projectseastar.org WHERE WHAT Tribe's role? * Entrepreneur * Investor * Government WHO Want's the money: * Private Entity

  4. Presidential Proclamation: Critical Infrastructure Security and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013 Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013 A ...

  5. Kerala Industrial Infrastructure Development Corporation Kinfra...

    Open Energy Info (EERE)

    Kerala Industrial Infrastructure Development Corporation Kinfra Jump to: navigation, search Name: Kerala Industrial Infrastructure Development Corporation (Kinfra) Place:...

  6. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities ...

  7. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  9. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming...

  10. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Energy Savers [EERE]

    Critical Infrastructure Protection Cyber Vulnerability Assessment Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment This document describes a customized...

  11. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicles mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  12. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and

    Office of Scientific and Technical Information (OSTI)

    Local Storage (Conference) | SciTech Connect Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage Citation Details In-Document Search Title: Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant

  13. Awards To Advanced Vehicle Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those

  14. Vehicle Technologies Office: U.S. DRIVE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: U.S. DRIVE Vehicle Technologies Office: U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related energy infrastructure technology research and development (R&D). Specifically, the Partnership is a

  15. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

  16. CHP Enabling Resilient Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Facilities * Provides context for CHP in critical infrastructure ... Employees were not even aware of the blackout at first because they saw no interruption in ...

  17. Resilient Infrastructure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presidential Policy Directive (PPD) 21 - Critical Infrastructure Security and Resilience. Its objective is to advance "a national unity of effort to strengthen and maintain...

  18. Innovative Financing for Green Infrastructure

    Broader source: Energy.gov [DOE]

    Topic OverviewFinancing green infrastructure is critical to taking projects from planning to implementation and beyond, including sustaining operations and maintenance. This 90-minute webcast will...

  19. AVTA: ARRA EV Project Residential Charging Infrastructure Maps

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of residential chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  20. AVTA: ARRA EV Project Public Charging Infrastructure Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of public chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  1. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  2. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  3. Evaluating the Safety of a Natural Gas Home Refueling Appliance (HRA); Natural Gas Infrastructure Evaluation (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and infrastructure R&D through its FreedomCAR and Vehicle Technologies Program to help the United States reduce its dependence on imported petroleum and to pave the way to a future transportation network based on hydrogen. Natural gas vehicles can also reduce emissions of regulated pollutants compared with vehicles powered by conventional fuels such as gasoline and diesel. The goal of this project was to evaluate the safety implications of refueling natural gas vehicles at home with a home

  4. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  5. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect (OSTI)

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  6. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal agencies, state agencies, hydrogen providers, energy companies, technology developers, national labs, academia, and other trade associations or non-profit organizations. ...

  7. California Statewide Plug-In Electric Vehicle Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... vii APPENDIX B: Technical Excursion - Demand Charge Management and Mitigation ...... 83 ... PEVs in the region by 2024 (51,000) are identified on the left side of the figure. ...

  8. Charging Infrastructure for Electric Vehicles (Smart Grid Project...

    Open Energy Info (EERE)

    level and remote onoff functionality. A onestopshop charging offer was tested on the market and further developed within the project. An internal development plan for charging...

  9. Distributed Data Integration Infrastructure

    SciTech Connect (OSTI)

    Critchlow, T; Ludaescher, B; Vouk, M; Pu, C

    2003-02-24

    The Internet is becoming the preferred method for disseminating scientific data from a variety of disciplines. This can result in information overload on the part of the scientists, who are unable to query all of the relevant sources, even if they knew where to find them, what they contained, how to interact with them, and how to interpret the results. A related issue is keeping up with current trends in information technology often taxes the end-user's expertise and time. Thus instead of benefiting from this information rich environment, scientists become experts on a small number of sources and technologies, use them almost exclusively, and develop a resistance to innovations that can enhance their productivity. Enabling information based scientific advances, in domains such as functional genomics, requires fully utilizing all available information and the latest technologies. In order to address this problem we are developing a end-user centric, domain-sensitive workflow-based infrastructure, shown in Figure 1, that will allow scientists to design complex scientific workflows that reflect the data manipulation required to perform their research without an undue burden. We are taking a three-tiered approach to designing this infrastructure utilizing (1) abstract workflow definition, construction, and automatic deployment, (2) complex agent-based workflow execution and (3) automatic wrapper generation. In order to construct a workflow, the scientist defines an abstract workflow (AWF) in terminology (semantics and context) that is familiar to him/her. This AWF includes all of the data transformations, selections, and analyses required by the scientist, but does not necessarily specify particular data sources. This abstract workflow is then compiled into an executable workflow (EWF, in our case XPDL) that is then evaluated and executed by the workflow engine. This EWF contains references to specific data source and interfaces capable of performing the desired actions. In order to provide access to the largest number of resources possible, our lowest level utilizes automatic wrapper generation techniques to create information and data wrappers capable of interacting with the complex interfaces typical in scientific analysis. The remainder of this document outlines our work in these three areas, the impact our work has made, and our plans for the future.

  10. economic hydrogen fuel cell vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  11. vehicles | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    vehicles | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  12. Cyber and physical infrastructure interdependencies.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  13. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crashworthiness Background While automakers and truck manufacturers are called upon to increase the levels of safety protection in their vehicles and reduce the number of injuries that occur in accidents, crash testing of vehicles as a means to optimize vehicle safety design is becoming increasingly expensive. Use of more sophisticated and more expensive occupant dummies ($120,000 per dummy) can almost double the current average price of $500,000 per test. In addition, the increasing diversity

  14. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  15. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  16. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    SciTech Connect (OSTI)

    Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

    2012-08-01

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  17. Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment Initiatives Selection Table | Department of Energy Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives Selection Table Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives Selection Table The Energy Department announced $6 million for 11 projects aimed at improving potential buyers' experiences with alternative fuel and plug-in electric vehicles, supporting training, and integrating alternative fuels into

  18. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect (OSTI)

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  19. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  20. Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at improving potential buyers' experiences with alternative fuel and plug-in electric vehicles, supporting training, and integrating alternative fuels into emergency planning. ...

  1. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Meeting Discussion Group 1 Summary Presentation | Department of Energy 1 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis Meeting Discussion Group 1 Summary Presentation PDF icon group_1_summary.pdf More Documents & Publications 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2

  2. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Meeting Discussion Group 2 Summary Presentation | Department of Energy 2 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis Meeting Discussion Group 2 Summary Presentation PDF icon group_2_summary.pdf More Documents & Publications 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1

  3. Alternative Fuel Driver Training Companion Manual

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    Training manual serves as a companion to alternative fuel training presentations on the fueling and use of vehicles that run on compressed natural gas, biodiesel, E85, and propane.

  4. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as ...

  5. Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration

    Office of Environmental Management (EM)

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy August 2011 OE/ISER Report 8/31/11 i For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about information in this report

  6. Task Force on Biofuels Infrastructure

    Broader source: Energy.gov [DOE]

    Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation’s transportation fuel supply. Specifically, the Task Force explored issues and developed recommendations for advancing the infrastructure investments needed to support timely and cost-effective implementation of the current biofuels mandate.

  7. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  8. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  9. 2014 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  10. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rush Robinett Energy &Infrastructure Future Group Sandia National Laboratories rdrobin@sandia.gov Energy & Infrastructure Future Overview 2 Sandia's Core Purpose "Helping our Nation Secure a Peaceful and Free World through Technology" * National Security Laboratory * Broad mission in developing science and technology applications to meet our rapidly changing, complex national security challenges * Safety, security and reliability of our nation's nuclear weapon stockpile 3

  11. infrastructure | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Infrastructure The Storage Infrastructure Technology Area research effort is carrying out regional characterization and small- and large-scale field projects to demonstrate that different storage types in various formation classes, distributed over different geographic regions, both onshore and offshore, have the capability to permanently store CO2 and provide the basis for commercial-scale CO2 projects. Research is needed to prove adequate injectivity, available storage resource, and

  12. Cyber Security for Electric Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Security for Electric Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  13. Electric Vehicle Preparedness: Task 2, Identification of Vehicles for Installation of Data Loggers for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-02-01

    In Task 1, a survey was completed of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization was used to select vehicles for further monitoring, which involves data logging of vehicle movements in order to identify the vehicles mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the list of vehicles selected by MCBCL and Intertek for further monitoring and fulfills the Task 2 requirements.

  14. Hydrogen Fueling Infrastructure Research and Station Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Webinar Slides Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides Download presentation slides from the...

  15. Report: Natural Gas Infrastructure Implications of Increased...

    Office of Environmental Management (EM)

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric...

  16. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

  17. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth...

  18. NISAC | National Infrastructure Simulation and Analysis Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interdependent national infrastructure, including process-based systems dynamics models, mathematical network optimization models, physics-based models of existing infrastructure,...

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Citation Details In-Document Search Title: Controlled Hydrogen Fleet and Infrastructure...

  20. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  1. Office of Infrastructure Planning & Analysis | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Office of Infrastructure Planning & Analysis Office of Infrastructure Planning & Analysis...

  2. Infrastructure and Operations | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies....

  3. Strategic plan for infrastructure optimization

    SciTech Connect (OSTI)

    Donley, C.D.

    1998-05-27

    This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructure and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.

  4. UC Davis Models: Geospatial Station Network Design Tool and Hydrogen Infrastructure Rollout Economic Analysis Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UC Davis Models Geospatial Station Network Design Tool & Hydrogen Infrastructure Rollout Economic Analysis Model (University of California-Davis) Objectives Analyze regional strategies for early rollout of hydrogen infrastructure in support of fuel cell vehicle commercialization. Estimate how many hydrogen fueling stations would be needed and how much it will cost to develop cost competitive hydrogen supply. Compare the cost of hydrogen from different types and sizes of hydrogen stations

  5. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    SciTech Connect (OSTI)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  10. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  11. Preparing for the Arrival of Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparing for the Arrival of Electric Vehicle Preparing for the Arrival of Electric Vehicle This webinar covers how to prepare for electric vehicles and elements of developing an EV infrastructure plan. PDF icon Presentation More Documents & Publications Effective O&M Policy in Public Buildings Quality Assurance for Residential Retrofit Programs Low-to-No Cost Strategy for Energy Efficiency in Public Buildings

  12. The Compelling Case for Natural Gas Vehicles | Department of Energy

    Energy Savers [EERE]

    The Compelling Case for Natural Gas Vehicles The Compelling Case for Natural Gas Vehicles Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the natural gas vehicle (NGV) market, the benefits of NGVs, the growing selection of NGVs, and more. PDF icon fupwg_spring12_yborra.pdf More Documents & Publications QER - Comment of American Gas Association 3 Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development asdfadfa

  13. Chapter VIII: Enhancing Employment and Workforce Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter VIII: Enhancing Employment and Workforce Training QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 9-1 Chapter IX This chapter is devoted to issues surrounding the siting and permitting of transmission, storage, and distribution (TS&D) infrastructure, building on the general identification of those issues in Chapter VII (Addressing Environmental Aspects of

  14. 2013 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary; Moore, Sheila A

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  15. Utilization Assessment of Target Electrification Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect (OSTI)

    Schey, Steve

    2015-05-01

    Several U.S. Department of Defense based studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicles mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report.

  16. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  17. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  18. Vulnerability and Mitigation Studies for Infrastructure

    SciTech Connect (OSTI)

    Glascoe, L; Noble, C; Morris, J

    2007-08-02

    The summary of this presentation is that: (1) We do end-to-end systems analysis for infrastructure protection; (2) LLNL brings interdisciplinary subject matter expertise to infrastructure and explosive analysis; (3) LLNL brings high-fidelity modeling capabilities to infrastructure analysis for use on high performance platforms; and (4) LLNL analysis of infrastructure provides information that customers and stakeholders act on.

  19. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  20. Chapter V: Improving Shared Transport Infrastructures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    38 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter V: Improving Shared Transport Infrastructures QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 6-1 Chapter VI This chapter takes a broader look at the current energy trade and the continuing integration of energy markets and infrastructure in the North American region. Its discussion includes cross-border infrastructure with Canada and Mexico, impacts of climate

  1. Advanced Metering Infrastructure Security Considerations | Department of

    Energy Savers [EERE]

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. PDF icon Advanced Metering Infrastructure Security

  2. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  3. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  4. Clean Energy Infrastructure Educational Initiative

    SciTech Connect (OSTI)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master’s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master’s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master’s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

  5. Wireless Power Transfer for Electric Vehicles

    SciTech Connect (OSTI)

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  6. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a ...

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  11. SCADA Training Courses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Courses - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  12. Education and Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education and Training - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  14. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ...

  15. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  16. Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability NREL analyzed data from 500,000 individual vehicle trips covering 3.6 million miles August 10, 2012 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) recently completed a seven-year project to demonstrate and evaluate hydrogen fuel cell electric vehicles (FCEVs) and hydrogen fueling infrastructure in real-world settings. The National Fuel Cell Electric Vehicle Learning

  17. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energys Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  18. AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

  19. The Future is Now for Advanced Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Now for Advanced Vehicles The Future is Now for Advanced Vehicles January 23, 2015 - 10:56am Addthis Moniz Delivers Keynote Remarks 1 of 10 Moniz Delivers Keynote Remarks Secretary Moniz touted the Department's investments in advanced vehicle technologies, infrastructure and manufacturing. Photo by Sarah Gerrity Date taken: 2015-01-22 04:33 Secretary Moniz Announces More than $55M in Fuel-Efficient Vehicle Funding 2 of 10 Secretary Moniz Announces More than $55M in Fuel-Efficient

  20. infrastructure

    National Nuclear Security Administration (NNSA)

    insulated roofs and more energy efficient HVAC systems. The cool roof has high solar reflectance, so it emits absorbed solar radiation back into the atmosphere, which...

  1. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significance Approach (cont.) Sandia National Laboratories Anthony Lentine, Jeff Nelson, Scott Kuszmaul, Sig Gonzales , Steven Goldsmith, Dave Schoenwald , Shannon Spires,...

  2. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  3. AVTA: ARRA EV Project Vehicle Placement Maps

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  4. infrastructure | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  5. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P.

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  6. Before the House Transportation and Infrastructure Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public ...

  7. Transmission Infrastructure Investment Projects (2009) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Transmission Infrastructure Investment Projects (2009) More Documents & Publications Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation...

  8. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Costs Hydrogen and Infrastructure Costs Presentation by Fred Joseck, U.S. Department of Energy Fuel Cell Technologies Program, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. PDF icon wkshp_market_readiness_joseck.pdf More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 H2A Delivery Models and Results Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout

  9. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: Energy.gov (indexed) [DOE]

    tv03veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

  10. Agent-based Infrastructure Interdependency Model

    Energy Science and Technology Software Center (OSTI)

    2003-10-01

    The software is used to analyze infrastructure interdependencies. Agent-based modeling is used for the analysis.

  11. Chapter V: Improving Shared Transport Infrastructures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure | April 2015 Chapter VI: Integrating ... including oil and refined products, gas, and electricity. ... The Energy Information Administration (EIA) reported ...

  12. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell...

  13. Energy Department, Arizona Utilities Announce Transmission Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Energization | Department of Energy Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February 12, 2015 - 2:30pm Addthis News Media Contact 202 586 4940 DOENews@hq.doe.gov Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization Transmission Line Increases Reliability, Access to Affordable Energy in Southwest States WASHINGTON

  14. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  15. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  16. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Boundy, Robert Gary; Diegel, Susan W

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  17. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    SciTech Connect (OSTI)

    Tolley, George S

    2010-06-29

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not large enough to noticeably affect sales penetration. A tax of $116 per metric ton makes centrally produced hydrogen profitable in the very first year but results in only 64% penetration by year 20 as opposed to the 60% penetration in the benchmark case. Provision of 15 seed stations publicly provided at the beginning of the simulation, in addition to the 15 existing stations in the benchmark case, gives sales penetration rates very close to the benchmark after 20 years, namely, 63% and 59% depending on where they are placed.

  18. Holiday Shopping and Electric Vehicles | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Research: Holiday Shopping & Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Infrastructure Research: Holiday Shopping & Electric Vehicles Jigar Shah 2014.12.03 With Thanksgiving behind us in the U.S., that can only mean one thing for all the bargain-hunters out there: deals

  19. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  20. Analyzing water/wastewater infrastructure interdependencies.

    SciTech Connect (OSTI)

    Gillette, J. L.; Fisher, R. E.; Peerenboom, J. P.; Whitfield, R. G.

    2002-03-26

    This paper describes four general categories of infrastructure interdependencies (physical, cyber, geographic, and logical) as they apply to the water/wastewater infrastructure, and provides an overview of one of the analytic approaches and tools used by Argonne National Laboratory to evaluate interdependencies. Also discussed are the dimensions of infrastructure interdependency that create spatial, temporal, and system representation complexities that make analyzing the water/wastewater infrastructure particularly challenging. An analytical model developed to incorporate the impacts of interdependencies on infrastructure repair times is briefly addressed.

  1. Cori Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Cori Training Intel OpenMP Training @ NERSC Key Actions for Optimizing KNL Performance Tuning and Functional Debugging for Xeon-Phi OpenMP and Vectorization Training IXPUG...

  2. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle...

  3. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  4. Cyber Threats to Nuclear Infrastructures

    SciTech Connect (OSTI)

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  5. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  6. Techno-Economic Analysis of BEVs with Fast Charging Infrastructure: Preprint

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage many potential purchasers. One proposed solution is to employ a subscription model under which a service provider assumes ownership of the battery while providing access to vast fast charging infrastructure. Thus, high upfront and subsequent battery replacement costs are replaced by a predictable monthly fee, and battery-limited range is replaced by a larger infrastructure-limited range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, and battery life. Herein the National Renewable Energy Laboratory applies its Battery Ownership Model to address these challenges and compare the economics and utility of a BEV fast charging service plan to a traditional direct ownership option. In single vehicle households, where such a service is most valuable, we find that operating a BEV under a fast charge service plan can be more cost-effective than direct ownership of a BEV, but it is rarely more cost-effective than direct ownership of a conventional vehicle.

  7. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  8. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  9. Resilient Infrastructure Publications | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Argonne National Laboratory researchers have published a wide range of resiliency-related reports, papers and articles, some of which are shown below. Analysis of Critical Infrastructure Dependencies and Interdependencies Petit, F., Verner, D., Brannegan, D., Buehring, W., Dickinson, D., Guziel, K., Haffenden, R., Phillips, J., Peerenboom, J., June 2015, Analysis of Critical Infrastructure Dependencies and Interdependencies. An Approach to Critical Infrastructure Resilience Petit,

  10. Pennsylvania Regional Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pennsylvania Regional Infrastructure Project Pennsylvania Regional Infrastructure Project Presentation by 11-Wang to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 11_wang_infra.pdf More Documents & Publications Hydrogen Regional Infrastructure Program in Pennsylvania Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop Pipeline and Pressure Vessel R&D under the Hydrogen Regional

  11. Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workshop: Preliminary Results Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results Preliminary results from the Hydrogen Infrastructure Market Readiness Workshop held February 16-17, 2011. This presentation was disseminated to workshop attendees to convey the aggregate and "raw" feedback collected during the workshop. PDF icon wkshp_market_readiness_preliminary_results.pdf More Documents & Publications Hydrogen Infrastructure Market

  12. DOE Extends Portsmouth Infrastructure Support Services Contract |

    Energy Savers [EERE]

    Department of Energy Portsmouth Infrastructure Support Services Contract DOE Extends Portsmouth Infrastructure Support Services Contract July 17, 2015 - 12:00pm Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today announced that it is extending its contract for Infrastructure Support Services at the Portsmouth Gaseous Diffusion Plant site for a period of six months. The contract period for the current

  13. National Infrastructure Protection Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Protection Plan National Infrastructure Protection Plan Protecting the critical infrastructure and key resources (CI/KR) of the United States is essential to the Nation's security, public health and safety, economic vitality, and way of life. Attacks on CI/KR could significantly disrupt the functioning of government and business alike and produce cascading effects far beyond the targeted sector and physical location of the incident. Direct terrorist attacks and natural, manmade,

  14. Addressing Deferred Maintenance, Infrastructure Costs, and Excess

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities at Portsmouth and Paducah | Department of Energy Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Presentation from the 2015 DOE National Cleanup Workshop by William E. Murphie, Manager, Portsmouth/Paducah Project Office (PPPO). PDF icon Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth

  15. Infrastructure Development - Building America Top Innovations | Department

    Office of Environmental Management (EM)

    of Energy Infrastructure Development - Building America Top Innovations Infrastructure Development - Building America Top Innovations August 25, 2014 - 11:23am Addthis Infrastructure Development - Building America Top Innovations Top Innovations in this category include research results that have influenced codes and standards and improvements in education and the transaction process. Educating Professionals Projects are underway in this category. Check back for profiles to be posted soon.

  16. Infrastructure and Logistics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Manufacturing & Supply Chain » Infrastructure and Logistics Infrastructure and Logistics The United States wind industry is progressing from a period of experimentation and development to a period of wide scale demonstration and actualization, which is leading to advancements in infrastructure. As the wind industry continues to grow, logistical constraints must be identified and resolved in order to prevent bottlenecking in the supply chain and

  17. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  18. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  19. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicles mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  20. Analyzing the Sensitivity of Hydrogen Vehicle Sales to Consumers' Preferences

    SciTech Connect (OSTI)

    Greene, David L; Lin, Zhenhong; Dong, Jing

    2013-01-01

    The success of hydrogen vehicles will depend on consumer behavior as well as technology, energy prices and public policy. This study examines the sensitivity of the future market shares of hydrogen-powered vehicles to alternative assumptions about consumers preferences. The Market Acceptance of Advanced Automotive Technologies model was used to project future market shares. The model has 1,458 market segments, differentiated by travel behavior, geography, and tolerance to risk, among other factors, and it estimates market shares for twenty advanced power-train technologies. The market potential of hydrogen vehicles is most sensitive to the improvement of drive train technology, especially cost reduction. The long-run market success of hydrogen vehicles is less sensitive to the price elasticity of vehicle choice, how consumers evaluate future fuel costs, the importance of fuel availability and limited driving range. The importance of these factors will likely be greater in the early years following initial commercialization of hydrogen vehicles.

  1. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  2. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupareportoutcaci.pdf More Documents & Publications EV Everywhere...

  3. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupcreportoutcaci.pdf More Documents & Publications EV Everywhere...

  4. International Symposium For Next Generation Infrastructure

    Broader source: Energy.gov [DOE]

    The International Symposium for Next Generation Infrastructure is designed to support the rapidly expanding international research community seeking to understand the interactions between...

  5. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  6. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  7. Green Infrastructure Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    allowing the Department of Business, Economic Development, and Tourism to issue Green Infrastructure Bonds to secture low-cost financing for clean energy installations,...

  8. CHP: Enabling Resilient Energy Infrastructure - Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: Enabling Resilient Energy Infrastructure - Presentations from April 2013 Webinar Recognizing the benefits of combined heat and power (CHP) and its current underutilization as ...

  9. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Presentation by Matt Most, Encana Natural Gas,...

  10. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  11. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  13. Alternative Ways of Financing Infrastructure Investment: Potential...

    Open Energy Info (EERE)

    Ways of Financing Infrastructure Investment: Potential for 'Novel' Financing Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Ways of Financing...

  14. Tarini Infrastructure Ltd | Open Energy Information

    Open Energy Info (EERE)

    Place: New Delhi, Delhi (NCT), India Zip: 110024 Sector: Hydro Product: New Delhi-based small hydro project developer. References: Tarini Infrastructure Ltd.1 This article is a...

  15. National Critical Infrastructure Security and Resilience Month...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power lines like these make up our nation's power grid -- a critical component of our national critical infrastructure. Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, ...

  16. Wyoming Infrastructure Authority | Open Energy Information

    Open Energy Info (EERE)

    Name: Wyoming Infrastructure Authority Abbreviation: WIA Address: 200 E. 17th Street, Unit B Place: Cheyenne, WY Zip: 82001 Year Founded: 2004 Phone Number: (307) 635-3573...

  17. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and ... U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY ...

  18. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report The Department of Energy's Hydrogen, Fuel Cells and ...

  19. Acquasol Infrastructure Limited | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Acquasol Infrastructure Limited Place: Adelaide, South Australia, Australia Zip: 5000 Sector: Solar Product: Adelaide based solar thermal project and...

  20. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  1. Consumer Acceptance and Public Policy Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    to enable widespread residentialMDU and workplace charging infrastructure * Include use case data collected to date and collect data not available * Work with DOT and planning...

  2. Infrastructure Institutional Change Principle | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Also, it planned to explore incorporating provisions for sustainable building design in grants and loans targeted for infrastructure improvements at academic institutions, and to ...

  3. Hydrogen Infrastructure Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geographically-Based Infrastructure Analysis for California H2FIRST Reference Station Design Task: Project Deliverable 2-2 Utah Clean Cities Transportation Sector Petroleum ...

  4. Infrastructure Development and Financial Analysis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Analysis Technological Feasibility & Cost Analysis Environmental Analysis Delivery Analysis Infrastructure Development & Financial Analysis Energy Market Analysis DOE H2A ...

  5. Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape...

    Open Energy Info (EERE)

    ARCGIS Shape File, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape File, all Countries...

  6. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    were to convene industry and other stakeholders to share current status and state-of-the-art technologies for natural gas and hydrogen infrastructure; identify key challenges, both...

  7. Final Report- Hydrogen Delivery Infrastructure Options Analysis

    Broader source: Energy.gov [DOE]

    This report provides in-depth analysis of various hydrogen delivery options to determine the most cost effective infrastructure and R&D efforts for the long term.

  8. Center for Infrastructure Research and Innovation (CIRI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  9. Offshore Infrastructure Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Infrastructure Associates Inc Region: Puerto Rico Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  10. Resilient Infrastructure Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Power Network Modeling (EPfast) EPfast is an electric power infrastructure modeling tool used to examine the impacts of power outages on large electric grid systems. ...

  11. New Fleet eTraining Available

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program has developed an eTraining course to help those with access to Federal fleet vehicles comply with the Energy Policy Act (EPAct) 2005 Section 701 requirement to use alternative fuel in dual-fuel vehicles.

  12. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    SciTech Connect (OSTI)

    National Research Council

    2011-04-22

    The United States has jurisdiction over 3.4 million square miles of ocean—an expanse greater than the land area of all fifty states combined. This vast marine area offers researchers opportunities to investigate the ocean’s role in an integrated Earth system, but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance our still-incomplete understanding of the ocean. The National Research Council (NRC)’s Ocean Studies Board was asked by the National Science and Technology Council’s Subcommittee on Ocean Science and Technology, comprised of 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; issues brought to the nation’s attention in 2004 by the U.S. Commission on Ocean Policy. A 15-member committee of experts identified four themes that encompass 32 future ocean research questions–enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions in the report (e.g., sea level rise, sustainable fisheries, the global water cycle) reflect challenging, multidisciplinary science questions that are clearly relevant today, and are likely to take decades of effort to solve. As such, U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations or autonomous monitoring at a broad range of spatial and temporal scales. Consequently, a coordinated national plan for making future strategic investments becomes an imperative to address societal needs. Such a plan should be based upon known priorities and should be reviewed every 5-10 years to optimize the federal investment. The committee examined the past 20 years of technological advances and ocean infrastructure investments (such as the rise in use of self-propelled, uncrewed, underwater autonomous vehicles), assessed infrastructure that would be required to address future ocean research questions, and characterized ocean infrastructure trends for 2030. One conclusion was that ships will continue to be essential, especially because they provide a platform for enabling other infrastructure – autonomous and remotely operated vehicles; samplers and sensors; moorings and cabled systems; and perhaps most importantly, the human assets of scientists, technical staff, and students. A comprehensive, long-term research fleet plan should be implemented in order to retain access to the sea. The current report also calls for continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. The committee also provided a framework for prioritizing future investment in ocean infrastructure. They recommend that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit, with particular consideration given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. These criteria are the foundation for prioritizing ocean research infrastructure investments by estimating the economic costs and benefits of each potential infrastructure investment, and funding those investments that collectively produce the largest expected net benefit over time. While this type of process is clearly subject to budget constraints, it could quantify the often informal evaluation of linkages between infrastructure, ocean research, the value of information produced, societal objectives, and economic benefits. Addressing the numerous complex science questions facing the entire ocean research enterprise in 2030–from government to academia, industry to nonprofits, local to global scale–represents a major challenge, requiring collaboration across the breadth of the ocean sciences community and nearly seamless coordination between ocean-related federal agencies.

  13. National Fuel Cell Vehicle Learning Demonstration: Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-04-22

    The objectives of this paper are: (1) validate H{sub 2} FC vehicles and infrastructure in parallel; (2) identify current status and evolution of the technology; (3) objectively assess progress toward technology readiness; and (4) provide feedback to H{sub 2} research and development.

  14. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Broader source: Energy.gov [DOE]

    This report discusses key analysis results based on data from early 2005 through September 2011 from the US DOE’s Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration.

  15. NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological

    National Nuclear Security Administration (NNSA)

    Materials | National Nuclear Security Administration Provides Tajikistan Specialized Vehicles to Transport Radiological Materials | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  16. NNSA's Nevada Field Office Transfers Two Armored Vehicles to FBI |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Nevada Field Office Transfers Two Armored Vehicles to FBI | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  17. NNSS Alternative Fuel Vehicle Management Program receives federal award |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Alternative Fuel Vehicle Management Program receives federal award | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  18. Vehicle Technologies Office: Parasitic Loss Reduction | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Parasitic Loss Reduction Vehicle Technologies Office: Parasitic Loss Reduction Heavy vehicles lose a tremendous amount of energy to wind resistance and drag, braking, and rolling resistance. Such non-engine losses can account for an approximate 45% decrease in efficiency. Other sources of energy loss include: friction and wear in the power train, thermal (heat) loads, operation of auxiliary loads (air conditioning,

  19. Electric Vehicle-Smart Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicle-Smart Grid Interoperability Ground Being Laid for EV-Grid Compatibility in the U.S. and E.U. 1 of 1 Ground Being Laid for EV-Grid Compatibility in the U.S. and E.U. Argonne will host one of two Electric Vehicle-Smart Grid Interoperability Centers being established by U.S. Department of Energy (DOE) and the European Commission's (EC) Joint Research Centre to facilitate transatlantic interoperability between electric vehicles (EVs) and the charging infrastructure. Ground Being

  20. 2011 Biomass Program Platform Peer Review: Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... I would like to see more data on consumption and better performance measures for the Program. If all new vehicles were flex-fuel vehicles and all pumps were blender pumps, the ...

  1. Forklift Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forklift Training Forklift Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! Forklift Training Overview Training reduces risk. Check controls before starting. Know how to handle situations. Wear proper equipment. Make sure you can see. Forklift training is required for all individuals who wish to use the forklift at CAMD. This manual is presented as a guide and may be used for retraining/re-certification only. Initial training in forklift safety requires an

  2. Training Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminars Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request...

  3. Workforce Training Case Study Workforce Training for the Electric Power Sector:

    Broader source: Energy.gov (indexed) [DOE]

    Workforce Training Case Study Workforce Training for the Electric Power Sector: Transforming the Nation's Electric Grid by Training Skilled Workers The deployment of a smart grid-modernizing the Nation's electric power infrastructure-is currently in the public eye with attention paid predominantly to deployment of advanced equipment, technologies and applications. A less prominent but equally vital factor to the smart grid's success is the need for a highly skilled electric power sector

  4. Interdependence of Electricity System Infrastructure and Natural Gas

    Energy Savers [EERE]

    Infrastructure - EAC 2011 | Department of Energy Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nation's electric infrastructure and natural gas infrastructure. PDF icon EAC - Interdependence of Electricity System

  5. NREL: Energy Systems Integration Facility - Research Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The foundation of the Energy Systems Integration Facility is its research infrastructure. In addition to extensive fixed equipment, the facility incorporates electrical, thermal, fuels, and data acquisition bus work throughout. These research buses tie individual laboratories together and allow interconnection of equipment between laboratories as well as rapid reconfiguration of systems under test. The Energy Systems Integration Facility offers the following research

  6. NNSA Completes Successful Facilities and Infrastructure Recapitalization

    National Nuclear Security Administration (NNSA)

    Program | National Nuclear Security Administration Successful Facilities and Infrastructure Recapitalization Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  7. Strategic Security Infrastructure Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Strategic Security Infrastructure Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  8. Site Support Program Plan Infrastructure Program

    SciTech Connect (OSTI)

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  9. Fluxnet Synthesis Dataset Collaboration Infrastructure

    SciTech Connect (OSTI)

    Agarwal, Deborah A.; Humphrey, Marty; van Ingen, Catharine; Beekwilder, Norm; Goode, Monte; Jackson, Keith; Rodriguez, Matt; Weber, Robin

    2008-02-06

    The Fluxnet synthesis dataset originally compiled for the La Thuile workshop contained approximately 600 site years. Since the workshop, several additional site years have been added and the dataset now contains over 920 site years from over 240 sites. A data refresh update is expected to increase those numbers in the next few months. The ancillary data describing the sites continues to evolve as well. There are on the order of 120 site contacts and 60proposals have been approved to use thedata. These proposals involve around 120 researchers. The size and complexity of the dataset and collaboration has led to a new approach to providing access to the data and collaboration support and the support team attended the workshop and worked closely with the attendees and the Fluxnet project office to define the requirements for the support infrastructure. As a result of this effort, a new website (http://www.fluxdata.org) has been created to provide access to the Fluxnet synthesis dataset. This new web site is based on a scientific data server which enables browsing of the data on-line, data download, and version tracking. We leverage database and data analysis tools such as OLAP data cubes and web reports to enable browser and Excel pivot table access to the data.

  10. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  11. Cori Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Cori Training Intel OpenMP Training @ NERSC Key Actions for Optimizing KNL Performance Tuning and Functional Debugging for Xeon-Phi OpenMP and Vectorization Training IXPUG ISC15 Documents Last edited: 2015-04-28 00:10:29

  12. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan ranging from governmental organizations, for-profit to and non-profit entities. All vehicles were equipped with a data acquisition system that automatically collected statistically relevant data for submission to National Renewable Energy Laboratory (NREL), which monitored the progress of the fuel cell vehicles against the DOE technology validation milestones. The Mercedes Team also provided data from Gen-II vehicles under the similar operations as Gen I vehicles to compare technology maturity during program duration.

  13. 2nd International Hydrogen Infrastructure Challenges Webinar Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy nd International Hydrogen Infrastructure Challenges Webinar Slides 2nd International Hydrogen Infrastructure Challenges Webinar Slides Presentation slides from the Fuel Cell Technologies Office webinar "2nd International Hydrogen Infrastructure Challenges Webinar" held on March 10, 2015. PDF icon 2nd International Hydrogen Infrastructure Challenges Webinar Slides More Documents & Publications International Hydrogen Infrastructure Challenges Workshop Summary

  14. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  15. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling

  16. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  17. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  18. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Broader source: Energy.gov (indexed) [DOE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry ... The standard procedures and test specifications are used to test and collect data from ...

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt072vssmackie2011

  20. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt072vssmackie2012

  1. MSDS Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Radiation Safety Training Cleanroom Safety Information Test Material Forklift Training Crane Operation Training Tests Radiation Safety Test Forklift Test Crane Operation Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices 6980 Jefferson Hwy., Baton Rouge, LA 70806 Telephone: 225-578-8887 * Fax: 225-578-6954 Copyright © 2012

  2. Purdue and Delphi Team Up for Training: Q&A with Dr. Oleg Wasynczuk

    Broader source: Energy.gov [DOE]

    An interview with Dr. Oleg Wasynczuk, the professor behind Purdue's EV101 Introduction to Electric Vehicle Systems course, which aims to re-train workers on the technologies needed to design and manufacture hybrid and electric vehicles.

  3. training | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    training | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  4. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  5. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon 2012vsstreport.pdf More Documents & Publications Vehicle Technologies...

  6. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon 2011vsstreport.pdf More Documents & Publications Vehicle Technologies...

  7. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies ... Wereszczak's work in ceramics and brittle materials supports vehicle OEMs and their ...

  8. Transforming the U.S. Energy Infrastructure

    SciTech Connect (OSTI)

    Larry Demick

    2010-07-01

    The U.S. energy infrastructure is among the most reliable, accessible and economic in the world. On the other hand, the U.S. energy infrastructure is excessively reliant on foreign sources of energy, experiences high volatility in energy prices, does not practice good stewardship of finite indigenous energy resources and emits significant quantities of greenhouse gases (GHG). This report presents a Technology Based Strategy to achieve a full transformation of the U.S. energy infrastructure that corrects these negative factors while retaining the positives.

  9. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  10. Voltage Vehicles | Open Energy Information

    Open Energy Info (EERE)

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  11. Agenda: Energy Infrastructure Finance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sullivan, CEODirector of Investments, Grand River Dam Authority * Humayun Tai, Director, McKinsey Company * Steven J. Zucchet, SVP, Borealis Infrastructure 12:00 p.m. - 1:00 p.m. ...

  12. 2011 Biomass Program Platform Peer Review. Infrastructure

    SciTech Connect (OSTI)

    Lindauer, Alicia

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Programs Infrastructure Platform Review meeting.

  13. Enforcement Letter, Parsons Infrastructure & Technology Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Parsons Infrastructure & Technology Group, Inc., related to a Form Wood Timber Fire at the Salt Waste Processing Facility at the Savannah River Site On July 13, 2009, the...

  14. Fuzzy architecture assessment for critical infrastructure resilience

    SciTech Connect (OSTI)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systems architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.

  15. IPHE Infrastructure Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPHE Infrastructure Workshop IPHE Infrastructure Workshop This interactive workshop, held February 25-26, 2010, in Sacramento, CA, focused on realistic, practical issues with the aim of producing information to help develop policies, technologies, and incentives that will contribute to the success of hydrogen fuel retailers. Organizers of the workshop include IPHE (International Partnership for Hydrogen and Fuel Cells in the Economy), the U.S. Department of Energy, California Fuel Cell

  16. "smart water" infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  17. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  18. Safety, Security & Resilience of Energy Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of Energy Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  19. Public Meeting In Chicago - Rail Infrastructure Presentation

    Energy Savers [EERE]

    QER August 8 th Public Meeting In Chicago - Rail Infrastructure Presentation Dave Wanner - Wisconsin Public Service Corporation ____________________________________________________________________________ Page 1 of 3 First of all, I would like to thank the Department of Energy for allowing me to speak today about the importance of the nation's rail infrastructure to my company and to all of our customers. My name is Dave Wanner. I am the Manager of Fuel Services for Wisconsin Public Service

  20. Natural Gas Infrastructure Modernization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Modernization Natural Gas Infrastructure Modernization A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. In order to help modernize the nation's natural gas

  1. Sustainable Buildings and Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure "A sustainable society is one which satisfies its needs without diminishing the prospects of future generations." - Lester R. Brown, Founder and President, Worldwatch Institute Department of Energy facilities managers have a significant role to play in achieving the goals of E.O. 13423, Strengthening Federal Environmental Energy and Transportation Management and E.O. 13514, Federal Leadership in

  2. Facilities and Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities and Infrastructure Facilities and Infrastructure Program Offices and Headquarters elements share the responsibility for management and overall stewardship of the Department's real property assets. Proper management and stewardship ensures real property assets are maintained in a manner that promotes operational readiness, safety, environmental protection, property preservation, and life-cycle cost-effectiveness while meeting the Department's missions. DOE Order 430.1B "Real

  3. Natural Gas Infrastructure Implications of Increased Demand from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector This...

  4. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  5. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at ...

  6. SLT Power Infrastructure Projects Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    SLT Power Infrastructure Projects Pvt Ltd Jump to: navigation, search Name: SLT Power & Infrastructure Projects Pvt Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500044 Sector:...

  7. 2011 Annual Planning Summary for NNSA, Infrastructure and Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA, Infrastructure and Environment (NA-50) 2011 Annual Planning Summary for NNSA, Infrastructure and Environment (NA-50) The ongoing and projected Environmental Assessments and ...

  8. FY 2014 Scientific Infrastructure Support for Consolidated Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The...

  9. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  10. Year-in-Review: 2012 Energy Infrastructure Events and Expansions...

    Energy Savers [EERE]

    2 Energy Infrastructure Events and Expansions (July 2013) Year-in-Review: 2012 Energy Infrastructure Events and Expansions (July 2013) The Year-in-Review (YIR): 2012 Energy...

  11. SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential ...

  12. Technical Innovation in Management and Infrastructure | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Innovation in Management and Infrastructure The MFRC administers a program (TIMI) that addresses the application of new technology to the infrastructure and management of...

  13. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern...

  14. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Office of Environmental Management (EM)

    of the National Infrastructure Protection Plan (NIPP) Base Plan, a comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and...

  15. Consumer Acceptance and Public Policy Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    moves fast Cloud computing * Many stakeholdersplayers that must come together * Millenials don't give a &@ about vehicles * Government incentives regulations laws *...

  16. Hydrogen Infrastructure Market Readiness Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    handling equipment (MHE), backup power, transit bus, and light duty vehicle markets. Cost reduction opportunities from focused research and development (R&D) areas and priorities. ...

  17. International Hydrogen Infrastructure Challenges Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - NOW, NEDO, and DOE Webinar Slides More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling...

  18. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. The U.S. Department of Energy (DOE) supports the development and

  1. Advanced Vehicles Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  2. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  3. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.

  4. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  5. Individualized Site Training | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Individualized Site Training | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  6. Customer Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Operating Committee Transmission Issues Policy Steering Committee Customer Training Interconnection Small Generator Interconnection Procedures (SGIP) Balancing Authority...

  7. Cleanroom Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanroom Safety Information Test Material NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! Cleanroom Training Overview This page has been prepared to describe those hazards which are associated with silicon wafer preparation and processing as well as other hazards connected with the cleanroom environment. It is intended as a guide only and not as a replacement for specific training in cleanroom activities. Why Safety Training? 6,000 fatal workplace injuries per year 50,000

  8. Earthquake warning system for infrastructures : a scoping analysis.

    SciTech Connect (OSTI)

    Brodsky, Nancy S.; O'Connor, Sharon L.; Stamber, Kevin Louis; Kelic, Andjelka; Fogleman, William E.; Vugrin, Eric D.; Corbet, Thomas Frank, Jr.; Brown, Theresa Jean

    2011-09-01

    This report provides the results of a scoping study evaluating the potential risk reduction value of a hypothetical, earthquake early-warning system. The study was based on an analysis of the actions that could be taken to reduce risks to population and infrastructures, how much time would be required to take each action and the potential consequences of false alarms given the nature of the action. The results of the scoping analysis indicate that risks could be reduced through improving existing event notification systems and individual responses to the notification; and production and utilization of more detailed risk maps for local planning. Detailed maps and training programs, based on existing knowledge of geologic conditions and processes, would reduce uncertainty in the consequence portion of the risk analysis. Uncertainties in the timing, magnitude and location of earthquakes and the potential impacts of false alarms will present major challenges to the value of an early-warning system.

  9. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  10. Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Howell Acting Director, Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting VEHICLE TECHNOLOGIES OFFICE June 8, 2015 2  Transportation is responsible for 69% of U.S. petroleum usage  28% of GHG emissions  On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles  16.4M LDVs sold in 2014  240 million light-duty vehicles on the road in the U.S.  10-15 years for annual sales penetration  10-15

  11. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost Calculator Vehicle 0 City 0 Hwy (mi/gal) 0 City 0 Hwy (kWh/100m) Gasoline Vehicle 0 City 0 Hwy (mi/gal) Normal Daily Use 30.5 Total miles/day City 55 % Hwy 45 % Other Trips 3484 Total miles/year City 20 % Hwy 80 % Fuel Cost Emissions Annual Fuel Cost $ $/gal Annual

  12. Reducing the environmental impact of road and rail vehicles

    SciTech Connect (OSTI)

    Mayer, R.M.; Poulikakos, L.D.; Lees, A.R.; Heutschi, K.; Kalivoda, M.T.

    2012-01-15

    Methods have been developed to measure in situ the dynamic impact of both road and rail vehicles on the infrastructure and the environment. The resulting data sets have been analysed to quantify the environmental impacts in a transparent manner across both modes. A primary concern is that a small number of vehicles are being operated outside safe or regulatory limits which can have a disproportionate large impact. The analysis enables the various impacts to be ranked across both modes so enabling one to discern the benefits of intermodal transport. The impact of various policy options is considered and how to identify vehicles which can be classified as environmentally friendly. This would require European agreement as many heavy goods vehicle operate across country borders.

  13. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Electrification | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt072_vss_mackie_2012

  14. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Electrification | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt072_vss_mackie_2011

  15. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Office of Environmental Management (EM)

    For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator. Idaho National Laboratory, supported by the Vehicle Technologies Office (VTO), ...

  16. NEUP Project Selections_September212011_IRP and Infrastructure Improvements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Projectsselections for NEUP 2011 under Integrated Research Projects and University Research Infrastructure Improvements.

  17. Hydrogen Regional Infrastructure Program in Pennsylvania | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania. Objectives: Capture data pertinent to H2 delivery in PA PDF icon hpwgw_pa_reginfra_klingenberg.pdf More Documents & Publications Pennsylvania Regional Infrastructure Project Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues New Materials for Hydrogen Pipelines

  18. Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment

    Energy Savers [EERE]

    | Department of Energy Critical Infrastructure Protection Cyber Vulnerability Assessment Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment This document describes a customized process for cyber vulnerability assessment in compliance with the Critical Infrastructure Protection standards adopted by the North American Electric Reliability Corporation in 2006. This guide covers the planning, execution, and reporting process. PDF icon Guide to Critical Infrastructure

  19. Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013

    Broader source: Energy.gov [DOE]

    A proclamation from President Barack Obama declaring November 2013 Critical Infrastructure Security and Resilience Month.

  20. PIA - EERE Infrastructure-EERE Reviewer Management System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EERE Infrastructure-EERE Reviewer Management System PIA - EERE Infrastructure-EERE Reviewer Management System PIA - EERE Infrastructure-EERE Reviewer Management System PDF icon PIA - EERE Infrastructure-EERE Reviewer Management System More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - HSPD-12 Physical and Logical Access System PIA - Bonneville Power Adminstration Ethics Helpline