Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Digg Find More places to share Alternative Fuels Data Center: Hybrid

2

Design diversity of HEVs with example vehicles from HEV competitions  

DOE Green Energy (OSTI)

Hybrid Electric Vehicles (HEVS) can be designed and operated to satisfy many different operational missions. The three most common HEV types differ with respect to component sizing and operational capabilities. However, HEV technology offers design opportunities beyond these three types. This paper presents a detailed HEV categorization process that can be used to describe unique HEV prototype designs entered in college and university-level HEV design competitions. We explored possible energy management strategies associated with designs that control the utilization of the two on- board energy sources and use the competition vehicles to illustrate various configurations and designs that affect the vehicle`s capabilities. Experimental data is used to help describe the details of the power control strategies which determine how the engine and electric motor of HEV designs work together to provide motive power to the wheels.

Duoba, M.; Larsen, R.; LeBlanc, N.

1996-12-31T23:59:59.000Z

3

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

4

Hybrid Electric Vehicles - HEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Modeling Background Because of time and cost constraints, designers cannot build and test each of the many possible powertrain configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a collaborative effort to further develop Autonomie in collaboration with General Motors. Autonomie is sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Program. Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

5

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on AddThis.com...

6

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid

7

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity Activity Maintenance Sheet for 2007 Saturn Vue VIN # 5GZCZ33Z07S838122 Date Mileage Description Cost 12/8/2006 5,055 Changed oil $33.95 1/9/2007 12,509 Changed oil $25.88 2/8/2007 17,916 Changed oil $42.78 2/15/2007 19,841 Installed Lojack antitheft system $625.00 4/17/2007 30,124 Changed oil $42.36 6/19/2007 45,307 Changed oil $40.70 6/20/2007 45,695 Replaced two tires $257.46 7/10/2007 50,522 Changed oil $38.94 8/15/2007 55,654 Changed oil $32.85 9/3/2007 Vehicle involved in motor vehicle accident - deer hit car windshield and car was under repair 9/12/2007 60,395 Changed oil and replaced air filter $73.48 10/4/2007 65,226 Changed oil and replaced oil filter $37.16 10/19/2007 65,278 Transaxle service and replaced faulty AC compressor $1,056.62 (paid deductible) $100.00

8

HEV dynamometer testing with state-of-charge corrections in the 1995 HEV challenge  

DOE Green Energy (OSTI)

In the 1995 HEV Challenge competition, 17 prototype Hybrid Electric Vehicles (HEVs) were tested by using special HEV test procedures. The contribution of the batteries during the test, as measured by changes in battery state-of-charge (SOC), were accounted for by applying SOC corrections to the test data acquired from the results of the HEV test. The details of SOC corrections are described and two different HEV test methods are explained. The results of the HEV test methods are explained. The results of the HEV tests and the effects on the test outcome of varying HEV designs and control strategies are examined. Although many teams had technical problems with their vehicles, a few vehicles demonstrated high fuel economy and low emissions. One vehicle had emissions lower than California`s ultra-low emission vehicle (ULEV) emissions rates, and two vehicles demonstrated higher fuel economy and better acceleration than their stock counterparts.

Duoba, M.; Larsen, R.

1996-03-01T23:59:59.000Z

9

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Early Market for Hybrid Electric Vehicles. ” TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyPower Assist Hybrid Electric Vehicles, and Plug-in Hybrid

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

10

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

DOE Green Energy (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

11

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

12

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

DOE Green Energy (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

13

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

14

The 1995 HEV challenge: Results and technology summary  

DOE Green Energy (OSTI)

The objective of this paper is to analyze and summarize the performance results and the technology used in the 1995 Hybrid Electric Vehicle (HEV) Challenge. Government and industry are exploring hybrid electric vehicle technology to significantly improve fuel economy and reduce emissions of the vehicles without sacrificing performance. This last in a three-year series of HEV competitions provided the testing grounds to evaluate the different approaches of 29 universities and colleges constructing HEVS. These HEVs competed in an affay of events, including: acceleration, emissions testing, consumer acceptance, range, vehicle handling, HVAC testing, fuel economy, and engineering design. The teams also documented the attributes of their vehicles in the technical reports. The strategies and approaches to HEV design are analyzed on the basis of the data from each of the events. The overall performance for promising HEV approaches is also examined. Additional significant design approaches employed by the teams are presented, and the results from the events are discussed.

LeBlanc, N.; Larsen, R.; Duoba, M.

1996-03-01T23:59:59.000Z

15

HEV America - 2001 Honda Insight Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

t H y b r i d E l e c t r i c V e h i c l e HEVAMERICA U.S. DEPARTMENT OF ENERGY ADVANCED VEHICLE TESTING ACTIVITY PERFORMANCE STATISTICS Acceleration 0-50 mph At 100% SOC: 11.3...

16

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Emissions Inspection and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Digg

17

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Emissions Inspection and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Digg

18

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

19

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

the Demand for Electric Vehicles. Transportation Research Ain Relation to the Electric Vehicle. Science, Technology,In Early Markets For Hybrid Electric Vehicles. Institute of

Heffner, Reid R.

2007-01-01T23:59:59.000Z

20

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

In Early Markets For Hybrid Electric Vehicles. Institute ofon Plug-in Hybrid Electric Vehicle (PHEV) Technology,and Impacts of Hybrid Electric Vehicle Options. Electric

Heffner, Reid R.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

Would You Buy a Hybrid Vehicle? Study #715238, conducted forGolf 12,000 miles/year Hybrid Vehicle 5a. Did you have toYellow Flag on 'Green' Hybrid Vehicles. Los Angeles Times. 7

Heffner, Reid R.

2007-01-01T23:59:59.000Z

22

Personalized driving behavior monitoring and analysis for emerging hybrid vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles, such as hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs), hold the potential for substantial reduction of fuel consumption and greenhouse gas emissions. User driving behavior, which varies from person ...

Kun Li; Man Lu; Fenglong Lu; Qin Lv; Li Shang; Dragan Maksimovic

2012-06-01T23:59:59.000Z

23

Current Hybrid Electric Vehicle performance based on temporal data from the world`s largest HEV fleet  

SciTech Connect

The United States Department of Energy (DOE) procured new data collection equipment for the 42 vehicles registered to compete in the 1994 Hybrid Electric Vehicle (HEV) Challenge, increasing the amount of information gathered from the worlds largest fleet of HEVs. Data were collected through an on-board data storage device and then analyzed to determine effects of different hybrid control strategies on energy efficiency and driving performance. In this paper, the results of parallel hybrids versus series hybrids with respect to energy usage and acceleration performance are examined, and the efficiency and performance of the power-assist types are compared to that of the range-extender types. Because on-board and off-board electrical charging performance is critical to an efficient vehicle energy usage cycle, charging performance is presented and changes and improvements from the 1993 HEV Challenge are discussed. Peak power used during acceleration is presented and then compared to the electric motor manufacturer ratings. Improvements in data acquisition methods for the 1995 HEV Challenge are recommended.

Wipke, K.

1994-09-01T23:59:59.000Z

24

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer (OSTI)

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

25

Engines - Emissions Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

EPRI Hybrid Electric Vehicle Working Group: HEV Costs and Emissions EPRI Hybrid Electric Vehicle Working Group: HEV Costs and Emissions Hybrid electric vehicles (HEVs) are attractive options for increasing vehicle fuel economy and reducing emissions of criteria pollutants and greenhouse gases. Two automobile manufacturers have already introduced HEVs, and other manufacturers are planning to introduce their own models. One available HEV combines mass reduction (also applicable to conventional vehicles) with idle-stop, regenerative braking, and electric-drive assist to achieve a fuel economy more than 2.5 times the current Corporate Average Fuel Economy (CAFE) standard. The second HEV combines idle-stop, regenerative braking, electric assist acceleration, and continuously variable transmission (CVT) to achieve a fuel economy of more than twice the current CAFÉ standard, qualifying as a super ultra-low emissions vehicle (SULEV).

26

Microsoft Word - HEV Spec Rev 1 copy.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

EV AMERICA: HYBRID ELECTRIC VEHICLE (HEV) TECHNICAL SPECIFICATIONS Revision 1 Effective November 1, 2005 Prepared by Electric Transportation Applications HEV AMERICA November 1,...

27

Developing a standardized test procedure for hybrid vehicles: The challenge of the SAE HEV task force  

DOE Green Energy (OSTI)

In 1992, the Society of Automotive Engineers (SAE) established a task force to develop a procedure for measuring electric energy consumption, all-electric range, fuel economy, and exhaust emissions for hybrid vehicles; the procedure will be submitted to regulatory agencies as representing the automotive industry`s recommendations. The draft procedure is currently being tested on hybrid vehicles. The University of Maryland`s parallel hybrid was tested in September 1994, and the University of California-Davis` parallel hybrid and the University of Illinois` series hybrid will be tested in November 1994 and January 1995, respectively. The procedure is being modified to incorporate any lessons learned, and the task force hopes to recommend the final procedure to the SAE by mid 1995.

Penney, T; Christensen, D [National Renewable Energy Lab., Golden, CO (United States); Poulos, S [General Motors Corp., Warren, MI (United States)

1994-11-01T23:59:59.000Z

28

Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative

29

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

30

Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Hybrid Electric State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg

31

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

32

Just the Basics: Vehicle Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Are Exhaust Are Exhaust Emissions? In most heavily settled areas of the U.S., the personal automobile is the single greatest producer of harmful vehicle exhaust emissions. Exhaust emissions are generated by the fuel-air mixture burning in internal combus- tion engines, both gasoline-powered and diesel-powered. Emissions are also produced by fuel evaporation within the vehicle when it is stopped, and again during fueling. The constituents of car (gasoline and diesel) and truck (diesel) emissions vary depending on fuel type and indi- vidual vehicle operating characteris- tics. The bulk of vehicular emissions are composed of water vapor, carbon dioxide, nitrogen, and oxygen (in unconsumed air). There are other pollutants, such as carbon monoxide, nitrogen oxides, unburned fuel, and

33

Alternative Fuels Data Center: Biodiesel Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Vehicle Biodiesel Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Biodiesel Vehicle Emissions When used as a vehicle fuel, biodiesel offers some tailpipe and considerable greenhouse gas (GHG) emissions benefits over conventional

34

Challenges for the vehicle tester in characterizing hybrid electric vehicles  

DOE Green Energy (OSTI)

Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

Duoba, M.

1997-08-01T23:59:59.000Z

35

Alternative Fuels Data Center: Propane Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles » Propane Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Emissions

36

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

37

Issues in emissions testing of hybrid electric vehicles.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

38

Electric Vehicles, Hybrid Vehicles, and the California Zero Emission...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles, Hybrid Vehicles, and the California Zero Emission Mandate Speaker(s): Ron Chestnut Date: October 26, 2000 - 12:00pm Location: Bldg. 90 The California Air...

39

Shortest Path Stochastic Control for Hybrid Electric Vehicles , J.W. Grizzle2  

E-Print Network (OSTI)

1 of 28 Shortest Path Stochastic Control for Hybrid Electric Vehicles Ed Tate1 , J.W. Grizzle2 , Huei Peng3 Abstract: When a Hybrid Electric Vehicle (HEV) is certified for emissions and fuel economy this is the Hybrid Electric Vehicle (HEV) which consists of an electric powertrain coupled to a conventional

Grizzle, Jessy W.

40

Emission Impacts of Electric Vehicles  

E-Print Network (OSTI)

greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Emissions Modeling for Electric Vehicles: Progress Report  

Science Conference Proceedings (OSTI)

There has been considerable debate and numerous publications comparing the emissions from alternative fuel vehicles with those of internal combustion engine vehicles. Considering the highly competitive nature of the automotive industry, the size of the automotive fuels markets, and intense regulatory scrutiny of emissions, there is no easy method of establishing agreement on all of the analytical factors involved in emissions analysis from vehicles. However, agreement on many of the factual parameters sh...

1999-12-09T23:59:59.000Z

42

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

43

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

44

Use of microPCM fluids as enhanced liquid coolants in automotive EV and HEV vehicles. Final report  

DOE Green Energy (OSTI)

Proof-of-concept experiments using a specific microPCM fluid that potentially can have an impact on the thermal management of automotive EV and HEV systems have been conducted. Samples of nominally 20-micron diameter microencapsulated octacosane and glycol/water coolant were prepared for testing. The melting/freezing characteristics of the fluid, as well as the viscosity, were determined. A bench scale pumped-loop thermal system was used to determine heat transfer coefficients and wall temperatures in the source heat exchanged. Comparisons were made which illustrate the enhancements of thermal performance, reductions of pumping power, and increases of heat transfer which occur with the microPCM fluid.

Mulligan, James C.; Gould, Richard D.

2001-10-31T23:59:59.000Z

45

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

46

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

47

Battery Choices for Different Plug-in HEV Configurations (Presentation)  

DOE Green Energy (OSTI)

Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

Pesaran, A.

2006-07-12T23:59:59.000Z

48

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network (OSTI)

Carbonyl compounds present in motor vehicle exhaust, rangingfrom gasoline and diesel motor vehicles. Environ. Sci. Tech.composition and toxicity of motor vehicle emission samples.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

49

Alternative Fuels Data Center: Vehicle Emissions Reduction Grants -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Emissions Vehicle Emissions Reduction Grants - Sacramento to someone by E-mail Share Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Facebook Tweet about Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Twitter Bookmark Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Google Bookmark Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Delicious Rank Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Digg Find More places to share Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

50

Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

Gonder, J.; Ireland, J.; Cosgrove, J.

2013-04-01T23:59:59.000Z

51

Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles  

SciTech Connect

This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

52

Modelling vehicle emissions from an urban air-quality perspective:testing vehicle emissions interdependencies.  

E-Print Network (OSTI)

??Abstract This thesis employs a statistical regression method to estimate models for testing the hypothesis of the thesis of vehicle emissions interdependencies. The thesis at… (more)

Dabbas, Wafa M

2010-01-01T23:59:59.000Z

53

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-12-31T23:59:59.000Z

54

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

55

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards All new passenger vehicles, light-duty trucks, and medium-duty vehicles

56

Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Retrofit Emissions Inspection Process to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on AddThis.com...

57

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Connecticut Low Emission Vehicles II Program requires that all new

58

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Maine has adopted the California motor vehicle emissions standards

59

Alternative Fuels Data Center: Low Emission Vehicle Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle Standards New vehicles sold or offered for sale in Vermont must meet California emissions and compliance requirements in Title 13 of the California Code of

60

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards New Jersey has adopted California motor vehicle emissions standards as set

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Washington adopted the California motor vehicle emission standards in Title

62

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Maryland has adopted the California motor vehicle emission standards in

63

PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES  

Science Conference Proceedings (OSTI)

The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicle’s large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75°F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95°F) and low (20°F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95°F, 75°F, and 20°F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300–400°C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

Seidman, M.R.; Markel, T.

2008-01-01T23:59:59.000Z

64

NREL: Learning - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid Electric Vehicles Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. HEVs are powered by two energy sources: an energy conversion unit, such as

65

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Pennsylvania Clean Vehicles Program requires that all new passenger

66

Alternative Fuels Data Center: Low Emission Vehicle Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Requirement on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Requirement on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle Requirement All Model Year (MY) 2007 and later heavy-duty vehicles sold, leased, or

67

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY)

68

Improvement of an EVT-based HEV using dynamic programming  

E-Print Network (OSTI)

vehicle, dynamic programming, electrical variable transmission I. INTRODUCTION Hybrid Electric Vehicles for automotive hybridization [4], [6]. However other advanced SP-HEVs like the Electric Variable Transmission. Abstract- Automotive engineers and researchers have proposed different Series-Parallel Hybrid Electric

Recanati, Catherine

69

Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER)  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Diesel Engine Emissions Reduction (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Digg Find More places to share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on

70

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Under the Oregon LEV Program, all new passenger cars, light-duty trucks,

71

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Rhode Island Department of Environmental Management has adopted

72

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Any new light-duty passenger car, light-duty truck, or medium-duty

73

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Zero Emission Vehicle (ZEV) Tax Credit An income tax credit is available to individuals who purchase or lease a

74

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Massachusetts LEV Program requires all new passenger cars and

75

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Under the Clean Cars Act of 2008, the Mayor of the District of Columbia

76

Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emissions Vehicle Zero Emissions Vehicle (ZEV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Zero Emissions Vehicle (ZEV) Tax Exemption

77

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Promotion Plan to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Zero Emission Vehicle (ZEV) Promotion Plan

78

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

and compared emissions and energy usages. HEVs were found toforecasting emission and energy usages. Time frames play ansimilar emission and energy usage as current ICV operation.

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

79

Light-Duty Vehicle Program Emissions Results (Interim Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedure (FTP) emissions testing of flexible- fuel methanol, ethanol, and dedicated CNG vehicles from the U. S. Federal Fleet was completed in 1995. The vehicles tested in the...

80

Emission control cost-effectiveness of alternative-fuel vehicles  

DOE Green Energy (OSTI)

Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

1993-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Vehicle (HEV) Acquisition Requirements to Hybrid Electric Vehicle (HEV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Digg

82

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Acquisition Requirements to and Hybrid Electric Vehicle (HEV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Digg

83

Alternative Fuels Data Center: Natural Gas Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions to someone by E-mail Emissions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Emissions Natural gas burns cleaner than conventional gasoline or diesel due to its

84

Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions in Directions in Engine-Efficiency and Emissions Research (DEER) Conference to someone by E-mail Share Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Facebook Tweet about Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Twitter Bookmark Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Google Bookmark Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Delicious Rank Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Digg Find More places to share Vehicle Technologies Office: Directions in

85

Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle Heavy-Duty Vehicle Emissions Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Vehicle Emissions Reduction Grants

86

Cooperative Regulation of Emissions Using Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

We exploit new types of vehicles, such as Plug-in Hybrid Electric Vehicles (PHEVs), to control transport related emissions in urban environments. By appropriately choosing whether single power-split hybrid vehicles should be operated in fully electric ...

A. Schlote, F. Hausler, T. Hecker, A. Bergmann, E. Crisostomi, I. Radusch, R. Shorten

2012-12-01T23:59:59.000Z

87

Vehicle Technologies Office: Emission Control R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Control R&D to Emission Control R&D to someone by E-mail Share Vehicle Technologies Office: Emission Control R&D on Facebook Tweet about Vehicle Technologies Office: Emission Control R&D on Twitter Bookmark Vehicle Technologies Office: Emission Control R&D on Google Bookmark Vehicle Technologies Office: Emission Control R&D on Delicious Rank Vehicle Technologies Office: Emission Control R&D on Digg Find More places to share Vehicle Technologies Office: Emission Control R&D on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Emission Control R&D

88

Demonstrating Ultra-Low Diesel Vehicle Emissions  

DOE Green Energy (OSTI)

Evaluate performance of near-term exhaust emissions control technologies on a modern diesel vehicle over transient drive cycles; Phase 1: Independent (separate) evaluations of engine-out, OEM catalysts, CDPF, and NOx adsorber (Completed March 2000); Phase 2: Combine NOx adsorber and CDPF to evaluate/demonstrate simultaneous reduction of NOx and PM (Underway--interim results available); Establish potential for these technologies to help CIDI engines meet emission reduction targets; and Investigate short-term effects of fuel sulfur on emissions performance

McGill, R.N.

2000-08-20T23:59:59.000Z

89

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

90

Alternative Fuels Data Center: Support for Low Emission Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Support for Low Support for Low Emission Vehicles to someone by E-mail Share Alternative Fuels Data Center: Support for Low Emission Vehicles on Facebook Tweet about Alternative Fuels Data Center: Support for Low Emission Vehicles on Twitter Bookmark Alternative Fuels Data Center: Support for Low Emission Vehicles on Google Bookmark Alternative Fuels Data Center: Support for Low Emission Vehicles on Delicious Rank Alternative Fuels Data Center: Support for Low Emission Vehicles on Digg Find More places to share Alternative Fuels Data Center: Support for Low Emission Vehicles on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Support for Low Emission Vehicles The New Jersey legislature urges the United States Congress and President

91

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

92

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

93

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Production Requirements to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

94

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

95

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

96

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

97

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Sales Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

98

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle (AFV) Emissions Inspection Exemption to someone by E-mail Vehicle (AFV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on AddThis.com... More in this section...

99

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

100

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Statistical Model of Vehicle Emissions and Fuel Consumption  

E-Print Network (OSTI)

A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

Cappiello, Alessandra

2002-09-17T23:59:59.000Z

102

Overview of China's Vehicle Emission Control Program: Past Successes...  

Open Energy Info (EERE)

Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.orgsitesdefaultfilespublications...

103

Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Diesel 8 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

104

Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Diesel 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

105

On-road remote sensing of vehicle emissions in  

E-Print Network (OSTI)

On-road remote sensing of vehicle emissions in the Auckland Region August 2003 Technical 1877353000 www.arc.govt.nz #12;TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region #12;Page i TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region On-road remote sensing

Denver, University of

106

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

107

Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Airport Zero Emission Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on AddThis.com...

108

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

hybrid electric vehicles (that fell in the category of advanced-technology partial zero emission vehicles

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

109

Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on AddThis.com...

110

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

111

Alternative Fuels Data Center: Low Emission Vehicle Incentives and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Low

112

Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles  

DOE Green Energy (OSTI)

This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

2003-12-01T23:59:59.000Z

113

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on AddThis.com... More in this section...

114

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Test Requirement to someone by E-mail Emissions Test Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on AddThis.com... More in this section... Federal State Advanced Search

115

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Digg Find More places to share Alternative Fuels Data Center: Alternative

116

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Digg

117

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network (OSTI)

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

Klier, Thomas

118

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

DOE Green Energy (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

119

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

120

California's Zero-Emission Vehicle Mandate  

E-Print Network (OSTI)

in a Shared Electric Vehicle Program. In Transporta- tionadvanced technologies and electric vehicles i n Japan. Earlysur­ vey. Nearly 50 electric vehicles were used, including

Shaheen, Susan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling and Design Optimization of Plug-In Hybrid Electric Vehicle Powertrains.  

E-Print Network (OSTI)

??Hybrid electric vehicles (HEVs) were introduced in response to rising environmental challenges facing the automotive sector. HEVs combine the benefits of electric vehicles and conventional… (more)

Chehresaz, Maryyeh

2013-01-01T23:59:59.000Z

122

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

DOE Green Energy (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

123

The origin of California’s zero emission vehicle mandate  

E-Print Network (OSTI)

industry in California, combined to make the idea of mandating (electric) zero emission vehiclesIndustry felt that CARB had not seriously addressed the question of the commercial viability of electric vehicles.

Sperling, Dan; Collantes, Gustavo O

2008-01-01T23:59:59.000Z

124

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

125

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

gasoline vehicles, hybrid electric vehicles, aircraft, high-Gasoline Vehicle (CGV), Hybrid Electric Vehicle (HEV),Plug-in Hybrid Electric Vehicle (PHEV), and Battery Electric

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

126

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

127

Black Carbon Concentrations and Diesel Vehicle Emission Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003 Title Black Carbon Concentrations and Diesel...

128

Vehicle Technologies Office: Emission Control R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Control R&D The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All...

129

Vehicle Technologies Office: 2005 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

391 KB) Lung Toxicity and Mutagenicity of Emissions from Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Joe Mauderly Lovelace Respiratory Research Institute (PDF 325...

130

Elimination of Harmonics in a Multilevel Converter for HEV Applications  

E-Print Network (OSTI)

possible solu- tions are found. Keywords­ Hybrid Electric Vehicles, Multilevel Convert- ers, Harmonic Elimination, Resultants I. Introduction Designs for heavy duty hybrid-electric vehicles (HEVs) that have large electric drives such as tractor trailers, trans- fer trucks, or military vehicles will require advanced

Tolbert, Leon M.

131

Trends in On-Road Vehicle Emissions of Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

132

Vehicle Technologies Office: Emission Control R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Control R&D Emission Control R&D The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All engines that enter the vehicle market must comply with the Environmental Protection Agency's emissions regulations. Harmful pollutants in these emissions include: Carbon monoxide Nitrogen oxides Unburned hydrocarbons Volatile organic compounds (VOCs) Particulate matter The energy required for emission control often reduces vehicle fuel economy and increases vehicle cost. VTO's Emission Control R&D focuses on developing efficient, durable, low-cost emission control systems that complement new combustion strategies while minimizing efficiency losses. VTO often leverages the national laboratories' unique capabilities and facilities to conduct this research.

133

Fuel and emission impacts of heavy hybrid vehicles.  

DOE Green Energy (OSTI)

Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

An, F.; Eberhardt, J. J.; Stodolsky, F.

1999-03-02T23:59:59.000Z

134

Assessment of Current Knowledge of Hybrid Vehicle Characteristics and Impacts  

Science Conference Proceedings (OSTI)

EPRI has taken a leadership role in bringing together representatives from the utility and automotive industries, along with those of the U. S. Department of Energy (DOE) and other regulatory agencies to participate in a study: Assessment of Current Knowledge of Hybrid Vehicle Characteristics and Impacts. This study focused on key attribute areas of HEV energy efficiency, emissions, life cycle, and customer acceptance and HEV's potential impacts on private and public stakeholders.

1999-09-16T23:59:59.000Z

135

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

experiences with plug-in hybrid vehicles (PHEVs). At theA.A. (2007) “Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric Utilities

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

136

Harmful Exhaust Emissions Monitoring of Road Vehicle Engine  

Science Conference Proceedings (OSTI)

Road vehicle improve the quality of people's life, however harmful vehicle exhaust emissions, such as carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), hydrocarbon (HC), and sulphur dioxide (SO2), have become more and more unacceptable ... Keywords: optic absorption spectroscopy based gas sensor, harmful exhaust emission monitoring, engine vibration

Chuliang Wei; Zhemin Zhuang; H. Ewald; A. I. Al-Shamma'a

2012-01-01T23:59:59.000Z

137

National Center for Vehicle Emissions Control and Safety  

E-Print Network (OSTI)

National Center for Vehicle Emissions Control and Safety Emissions-related research and outreach Sensing · Federal Test Procedures Laboratory · Light Duty Vehicles Capability · Engineering studies for kit & parts manufacturers · After-market devices and fuel additives testing · Testing of international

138

DOE Hydrogen Analysis Repository: MOVES (Motor Vehicle Emission Simulator)  

NLE Websites -- All DOE Office Websites (Extended Search)

MOVES (Motor Vehicle Emission Simulator) MOVES (Motor Vehicle Emission Simulator) Project Summary Full Title: MOVES (Motor Vehicle Emission Simulator) Previous Title(s): New Generation Mobile Source Emissions Model (NGM) Project ID: 179 Principal Investigator: Margo Oge Brief Description: Estimates emissions for on-road and nonroad sources, multiple pollutants, fine-scale analysis to national inventory estimation. Keywords: Vehicle; transportation; emissions Purpose Estimate emissions for on-road and nonroad sources, cover a broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national inventory estimation. When fully implemented MOVES will serve as the replacement for MOBILE. Performer Principal Investigator: Margo Oge Organization: U.S. Environmental Protection Agency

139

Validating simulation tools for vehicle system studies using advanced control and testing procedure.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer the potential to increase propulsion system efficiency and decrease pollutant emissions relative to conventional vehicles. The US Department of Energy (DOE) and the auto industry are developing HEV technology as part of the Partnership for a New Generation of Vehicles (PNGV) program. Argonne National Laboratory (ANL) supports the DOE in this program by contributing to technical target setting and evaluating new technologies in a vehicle systems context. In this role, ANL has developed a unique set of interrelated tools and facilities to analyze, develop, and validate components and propulsion systems in a vehicle environment.

Pasquier, M.; Duoba, M.; Rousseau, A.

2001-09-12T23:59:59.000Z

140

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

for Flex-Fuel Vehicles Including E85, Plug-in Hybrids Peakfor-flex-fuel-vehicles-including-e85-plug-in- hybrids-peak-

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

142

Research on optimal control method of hybrid electric vehicles  

Science Conference Proceedings (OSTI)

Energy saving and environmental protection are the two main themes of today's auto industry development. The hybrid electric vehicle (HEV) has become one of the most practical significant ways to solve energy and emission problems with good fuel economy ... Keywords: Hybrid electric vehicle, control strategy, energy efficiency, optimization method, system efficiency

Jing Lian, Hu Han, Linhui Li, Yafu Zhou, Jian Feng

2013-09-01T23:59:59.000Z

143

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicle Emission Simulator (MOVES) Motor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Motor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/otaq/models/moves/index.htm Cost: Free Equivalent URI: cleanenergysolutions.org/content/motor-vehicle-emission-simulator-move Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: http://www.epa.gov/otaq/models/moves/index.htm Intended to replace MOBILE6, NONROAD, and NMIM. Estimates energy consumption emissions from highway vehicles from 1999-2050 and accounts for

144

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

DOE Green Energy (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

145

Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)  

DOE Green Energy (OSTI)

Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

Not Available

2012-03-01T23:59:59.000Z

146

Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Vehicles and Mobile Equipment Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:32am Addthis YOU ARE HERE Step 2 To gain a good understanding of a Federal agency's Scope 1 vehicle and mobile equipment greenhouse gas (GHG) emissions, the agency must first collect the necessary data to profile any emissions sources then analyze the data in a way that will clarify the most viable strategies and alternatives. Emissions cannot be managed until they are measured. Through the use of fleet/vehicle management information systems, as well as reporting to the Federal Energy Management Program and General Services Administration, agencies are increasingly collecting and documenting useful data elements at the headquarters-and sometimes at specific site -levels.

147

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

148

An assessment of the potential environmental impact of electric and hybrid-electric vehicles in Texas  

E-Print Network (OSTI)

Increases in environmental and air quality problems due to continued growth in automobile population and usage have prompted many states including Texas to consider the implementation of an alternative vehicle program to alleviate these problems. Given the need for such programs, there has been minimal research conducted in analyzing the potential impacts of alternative vehicles, namely electric vehicles (EVs) and hybrid-electric vehicles (HEVs). This research addresses the need for assessing the potential environmental impacts of alternative vehicles for the state of Texas. The main contributions of this research are the derivation of emission rates for EVs that are representative of Texas, and an analysis of the potential impact of various alternative vehicle programs incorporating EVs and HEVS. Specifically, emission inventory results from various alternative vehicle Scenarios were compared to a Baseline Scenario with conventional vehicles, in order to measure the relative benefits of each program. Emission inventories were generated by standard EPA procedure using Mobile5b. Two major findings of this research were the negative impact of EVs on NO,, Emissions and the HEVs superior Emissions performance for all the three pollutants addressed in this study. Based on the research findings, the use of HEVs as an alternative vehicle for the state of Texas is recommended.

Kim, Jung-Woo

1998-01-01T23:59:59.000Z

149

NREL: Vehicle Ancillary Loads Reduction - Air Conditioning and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioning and Emissions Conditioning and Emissions Air conditioning and indirect emissions go together in the sense that when a vehicle's air conditioning system is in use, fuel economy declines. When more petroleum fuel is burned, more pollution and greenhouse gases are emitted. An additional, "direct" source of greenhouse gas emissions is the refrigerant used in air conditioning. Called HFC-134a, this pressurized gas tends to seep through tiny openings and escapes into the atmosphere. It can also escape during routine service procedures such as system recharging. NREL's Vehicle Ancillary Loads Reduction team applied its vehicle systems modeling expertise in a study to predict fuel consumption and indirect emissions resulting from the use of vehicle air conditioning. The analysis

150

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

in the last century. Hybrid electric vehicles (HEVs) reduceon their design, hybrid electric vehicles employ electricof this paper, hybrid electric vehicles are a broad set of

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

151

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of veh

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

152

MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

MOtor Vehicle Emission Simulator (MOVES) MOtor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary Name: MOtor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: U.S. Environmental Protection Agency Focus Area: GHG Inventory Development Topics: Analysis Tools Website: www.epa.gov/otaq/models/moves/index.htm This emission modeling system estimates emissions from mobile sources, including cars, trucks, and motorcycles. The modeling tool covers a broad range of pollutants and allows multiple scale analysis. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

153

Technical analysis of the 1994 HEV challenge  

DOE Green Energy (OSTI)

The 1994 Hybrid Electric Vehicle Challenge provided the backdrop for collecting data and developing testing procedures for hybrid electric vehicle technology available at colleges and universities across North America. The data collected at the competition was analyzed using the HEV definitions from the draft SAE J1711 guidelines. The energy economy, percentage of electrical to total energy used, and acceleration performance was analyzed for any correlation between the over-the-road data and the commuter-sustaining, commuter-depleting, and reserve-sustaining hybrid vehicles. The analysis did not provide any direct correlation between over-the-road data and the three hybrid types. The analysis did show that the vehicle configurations provide the best information on vehicle performance. It was also clear that a comprehensive data analysis system along with a well-defined testing procedure would allow for a more complete analysis of the data.

LeBlanc, N.M.; Duoba, M.; Quong, S.; Larsen, R.P.; Stithim, M.; Rimkus, W.

1995-06-01T23:59:59.000Z

154

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

155

Modeling, simulation, and analysis of series hybrid electric vehicles for fuel economy improvement.  

E-Print Network (OSTI)

??A hybrid electric vehicle (HEV) combines a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system. In a series HEV, an electric… (more)

Khandaker, Masuma

2011-01-01T23:59:59.000Z

156

Trends in on-road vehicle emissions of ammonia  

SciTech Connect

Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

2008-07-15T23:59:59.000Z

157

Inhalation of motor vehicle emissions: effects of urban population and land area  

E-Print Network (OSTI)

M.A. , 1996. Total cost of motor-vehicle use. Access 8, 7-Urban density and inhalation of motor vehicle emissions JDof primary pollutants: motor vehicle emissions in the South

Marshall, J D; McKone, T E; Deakin, E; Nazaroff, William W

2005-01-01T23:59:59.000Z

158

Inhalation of motor vehicle emissions: effects of urban population and land area  

E-Print Network (OSTI)

M.A. , 1996. Total cost of motor-vehicle use. Access 8,of ammonia and other motor vehicle exhaust emissions.and engine load on motor vehicle emissions. Environmental

Marshall, Julian D.; McKone, Thomas E.; Deakin, Elizabeth; Nazaroff, William W.

2006-01-01T23:59:59.000Z

159

California's Zero-Emission Vehicle Mandate  

E-Print Network (OSTI)

E V s ) such as compressed natural gas, gas-electric hybrid,e.g. , electric, compressed natural gas, and hybridP Z E V (e.g. , compressed natural gas vehicles and hybrids)

Shaheen, Susan

2004-01-01T23:59:59.000Z

160

Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate  

Science Conference Proceedings (OSTI)

The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

Calvin, Katherine V.; Thomson, Allison M.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total energy cycle emissions and energy use of electric vehicles  

DOE Green Energy (OSTI)

The purpose of this project is to provide estimates of changes in life cycle energy use and emissions that would occur with the introduction of EVs. The topics covered include a synopsis of the methodology used in the project, stages in the EV and conventional vehicle energy cycles, characterization of EVs by type and driving cycle, load analysis and capacity of the electric utility, analysis of the materials used for vehicle and battery, description of the total energy cycle analysis model, energy cycle primary energy resource consumption, greenhouse gas emissions, energy cycle emissions, and conclusions.

Singh, M.

1997-12-31T23:59:59.000Z

162

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

163

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

164

CleanFleet. Final report: Volume 7, vehicle emissions  

DOE Green Energy (OSTI)

Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

NONE

1995-12-01T23:59:59.000Z

165

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z

166

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

167

HEAVY-DUTY VEHICLE IN USE EMISSION PERFORMANCE  

DOE Green Energy (OSTI)

Engines for heavy-duty vehicles are emission certified by running engines according to specified load pattern or duty cycle. In the US, the US Heavy-Duty Transient cycle has been in use already for a number of years, and Europe is, according to the requirements of the Directive 1999/96/EC gradually switching to transient-type testing. Evaluating the in-use emission performance of heavy-duty vehicles presents a problem. Taking engines out of vehicles for engine dynamometer testing is difficult and costly. In addition, engine dynamometer testing does not take into account the properties of the vehicle itself (i.e. mass, transmission etc.). It is also debatable, how well the standardized duty cycles reflect real-life -driving patterns. VTT Processes has recently commissioned a new emission laboratory for heavy-duty vehicles. The facility comprises both engine test stand and a fully transient heavy-duty chassis dynamometer. The roller diameter of the dynamometer is 2.5 meters. Regulated emissions are measured using a full-flow CVS system. The HD vehicle chassis dynamometer measurements (emissions, fuel consumption) has been granted accreditation by the Centre of Metrology and Accreditation (MIKES, Finland). A national program to generate emission data on buses has been set up for the years 2002-2004. The target is to generate emission factors for some 50 different buses representing different degree of sophistication (Euro 1 to Euro5/EEV, with and without exhaust gas aftertreatment), different fuel technologies (diesel, natural gas) and different ages (the effect of aging). The work is funded by the Metropolitan Council of Helsinki, Helsinki City Transport, The Ministry of Transport and Communications Finland and the gas company Gasum Oy. The International Association for Natural Gas Vehicles (IANGV) has opted to buy into the project. For IANGV, VTT will deliver comprehensive emission data (including particle size distribution and chemical and biological characterization of particles) for up-to-date diesel and natural gas vehicles. The paper describes the methodology used for the measurements on buses, the test matrix and some preliminary emission data on both regulated and unregulated emissions.

Nylund, N; Ikonen, M; Laurikko, J

2003-08-24T23:59:59.000Z

168

Vehicle Technologies Office: Combustion and Emission Control  

NLE Websites -- All DOE Office Websites (Extended Search)

and fuel formulation to arrive at the most cost-effective approach to optimizing advanced combustion engine efficiency and performance while reducing emissions to near-zero levels....

169

Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)  

SciTech Connect

Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

Gonder, J.; Pesaran, A.

2010-03-18T23:59:59.000Z

170

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, Volume 1: NationwideBEVs or plug-in hybrid electric vehicles (PHEVs) requirescell vehicle; HEV = Hybrid electric vehicle; ICE = Internal

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

171

Remote monitoring of emissions using on-vehicle sensing and vehicle to roadside communications  

DOE Green Energy (OSTI)

Recent developments in on-vehicle electronics makes practical remote monitoring of vehicle emissions compliance with CARB and EPA regulations. A system consisting of emission controls malfunction sensors, an on-board computer (OBC), and vehicle-to-roadside communications (VRC) would enable enforcement officials to remotely and automatically detect vehicle out-of-compliance status. Remote sensing could be accomplished at highway speeds as vehicles pass a roadside RF antenna and reader unit which would interrogate the on- vehicle monitoring and recording system. This paper will focus on the hardware system components require to achieve this goal with special attention to the VRC; a key element for remote monitoring. this remote sensing concept piggybacks on the development of inexpensive VRC equipment for automatic vehicle identification for electronic toll collection and intelligent transportation applications. Employing an RF transponder with appropriate interface to the OBC and malfunction sensors, a practical monitoring system can be developed with potentially important impact on air quality and enforcement. With such a system in place, the current -- and costly and ineffective -- emission control strategy of periodic smog checking could be replaced or modified.

Davis, D.T.

1995-06-01T23:59:59.000Z

172

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions  

Open Energy Info (EERE)

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Evaluate Options Topics: Co-benefits assessment, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.transportation.anl.gov/modeling_simulation/AirCred/index.html

173

Symbolism and the Adoption of Fuel-Cell Vehicles  

E-Print Network (OSTI)

in Relation to the Electric Vehicle” Science, Technology,The World Electric Vehicle Association Journal, Vol. 1, 2007Research of hybrid-electric vehicles (HEVs) indicates that

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2007-01-01T23:59:59.000Z

174

DOE Field Operations Program EV and HEV Testing  

SciTech Connect

The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

175

Vehicle emissions and energy consumption impacts of modal shifts  

E-Print Network (OSTI)

Growing concern over air quality has prompted the development of strategies to reduce vehicle emissions in these areas. Concern has also been expressed regarding the current dependency of the U,S, on foreign oil. An option for addressing these concerns is to reduce vehicle-miles travelled (VMT), High- occupancy vehicle (HOV) lanes have been cited as one alternative for achieving this goal. However, latent travel demand frequently negates some or all of the VMT savings brought about by HOV lanes, The net effects of modal shifts to HOV lanes and the subsequent latent travel demand were studied in the thesis, A methodology was developed for estimating vehicle emissions and energy consumption impacts of modal shifts from private vehicles in the freeway mainlanes to buses in an HOV lane when latent travel demand is considered. The methodology was evaluated and determined to yield reasonable results, Finally, the methodology was applied to a freeway corridor in Houston, Texas. The results of the application indicate that reductions in VMT do not necessarily cause reductions in vehicle emissions of interest even when considered, all three of the pollutants of latent travel demand is not consumption was decreased at considered. Energy consumption was decreased a virtually all levels of latent travel demand except where latent travel demand was equivalent to the mode shift.

Mallett, Vickie Lynn

1993-01-01T23:59:59.000Z

176

California's Zero Emission Vehicle Mandate - Linking Clean Fuel Cars, Carsharing, and Station Car Strategies  

E-Print Network (OSTI)

PZEVs) such as compressed natural gas, gas-electric hybrid,e.g. , electric, compressed natural gas, and hybride.g. , compressed vehicles) emission vehicles natural gas

Shaheen, Susan; Wright, John; Sperling, Daniel

2001-01-01T23:59:59.000Z

177

2008 Special Issue: Toyota Prius HEV neurocontrol and diagnostics  

Science Conference Proceedings (OSTI)

A neural network controller for improved fuel efficiency of the Toyota Prius hybrid electric vehicle is proposed. A new method to detect and mitigate a battery fault is also presented. The approach is based on recurrent neural networks and includes the ... Keywords: Battery diagnostics, Control, EKF, Fault mitigation, HEV, NN controller, NN model, Neurocontrol, RNN

Danil V. Prokhorov

2008-03-01T23:59:59.000Z

178

Fuel composition effects on natural gas vehicle emissions  

DOE Green Energy (OSTI)

Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States); Bailey, B.K.; Colucci, C. [National Renewable Energy Lab., Golden, CO (United States)

1994-09-01T23:59:59.000Z

179

Microsoft Word - Vehicle Battery EA_BASF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lithium-ion battery industry and, more specifically, the electric drive vehicle (EDV) and hybrid-electric vehicle industry (HEV). If approved, DOE would provide approximately 50...

180

Just the Basics - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid electric vehicles (HEVs) offer reduced pollution and improved fuel economy. That's why the government and auto- makers are anxious to introduce a...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hybrid Electric and Pure Electric vehicle testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric and Pure Electric Vehicle Testing (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INLCON-05-00693 HEV & EV Testing...

182

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

183

Non-Road Electric Vehicle Emissions: Analysis and Recommendations  

Science Conference Proceedings (OSTI)

Energy security and quality of life in the United States and around the globe are dependent upon the reduction of air pollution, petroleum dependency, and developing a solution to global warming. Non-road transportation equipment offers an opportunity to support this quality of life objective with a reduction in emissions through electrification. Private sector initiatives and regulatory agencies have begun to focus on non-road vehicles and equipment. This emission source category, which was largely unre...

2003-08-18T23:59:59.000Z

184

Optimally Controlling Hybrid Electric Vehicles using Path Forecasting  

E-Print Network (OSTI)

The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

Kolmanovsky, Ilya V.

185

Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions  

DOE Green Energy (OSTI)

In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. A The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a series hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.

Aceves, S.M.; Smith, J.R.

1996-12-10T23:59:59.000Z

186

On-Road Motor Vehicle Emissions Measurements  

E-Print Network (OSTI)

and maintenance are both important. Propane and CNG are NOT "cleaner burning". RSD is a very good tool but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department inventories · Only need one week of work and fuel sales to get fuel based emissions inventories · RSD

Denver, University of

187

Future Emissions Impact On Off-Road Vehicles  

DOE Green Energy (OSTI)

Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

Kirby Baumgard; Steve Ephraim

2001-04-18T23:59:59.000Z

188

Fuel-Based On-Road Motor Vehicle Emissions Inventory  

E-Print Network (OSTI)

Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S sales from tax department -quite precise Inventory -uncertainty can be estimated Travel Based Model FuelGasohol (LTK, PAS) Tons/day3748369Gasoline (LTK, PAS) g per kg of fuel7859Gasohol (LTK, PAS) g per kg

Denver, University of

189

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network (OSTI)

for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica reduce greenhouse gas (GHG) emissions by shifting energy demand from gasoline to electricity. GHG benefits. HEVs are optimal or near-optimal for minimum cost in most scenarios. High gas prices and low

Michalek, Jeremy J.

190

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

in relation to the electric vehicle." Science Technology &Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." Transportation

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

191

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." TransportationPlug-in Hybrid Electric Vehicle (PHEV) Demonstration and

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

192

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions-related emissions. In the U.S., for example, emissions of carbon dioxide (CO2) from the production and use of motor

Kammen, Daniel M.

193

A zinc-air battery and flywheel zero emission vehicle  

DOE Green Energy (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

194

Particulate Emissions from a Pre-Emissions Control Era Spark-Ignition Vehicle: A Historical Benchmark  

DOE Green Energy (OSTI)

This study examined the particulate emissions from a pre-emissions control era vehicle operated on both leaded and unleaded fuels for the purpose of establishing a historical benchmark. A pre-control vehicle was located that had been rebuilt with factory original parts to approximate an as-new vehicle prior to 1968. The vehicle had less than 20,000 miles on the rebuilt engine and exhaust. The vehicle underwent repeated FTP-75 tests to determine its regulated emissions, including particulate mass. Additionally, measurements of the particulate size distribution were made, as well as particulate lead concentration. These tests were conducted first with UTG96 certification fuel, followed by UTG96 doped with tetraethyl lead to approximate 1968 levels. Results of these tests, including transmission electron micrographs of individual particles from both the leaded and unleaded case are presented. The FTP composite PM emissions from this vehicle averaged 40.5 mg/mile using unleaded fuel. The results from the leaded fuel tests showed that the FTP composite PM emissions increased to an average of 139.5 mg/mile. Analysis of the particulate size distribution for both cases demonstrated that the mass-based size distribution of particles for this vehicle is heavily skewed towards the nano-particle range. The leaded-fuel tests showed a significant increase in mass concentration at the <0.1 micron size compared with the unleaded-fuel test case. The leaded-fuel tests produced lead emissions of nearly 0.04 g/mi, more than a 4-order-of-magnitude difference compared with unleaded-fuel results. Analysis of the size-fractionated PM samples showed that the lead PM emissions tended to be distributed in the 0.25 micron and smaller size range.

John M.E. Storey; C. Scott Sluder; Douglas A. Blom; Erin Higinbotham

2000-06-19T23:59:59.000Z

195

Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on AddThis.com... More in this section... Federal

196

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

197

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

198

Alternative Fuels Data Center: Low Emission Vehicle Electricity...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel...

199

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

200

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Digg Find More places to share Alternative Fuels Data Center: Alternative

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Methanol fuel vehicle demonstration: Exhaust emission testing. Final report  

DOE Green Energy (OSTI)

Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

1993-07-01T23:59:59.000Z

202

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

203

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network (OSTI)

BATTERIES FOR USE IN HYBRID ELECTRIC VEHICLES R. Kostecki,ion batteries for hybrid electric vehicles. Nine 18650-sizebatteries for hybrid electric vehicle (HEV) applications.

2001-01-01T23:59:59.000Z

204

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network (OSTI)

the interest in hybrid electric vehicles (HEVs) and hydrogenfollowed by hybrid electric vehicles. G.O. Collantes /are replaced only by hybrid electric vehicles and hybrid

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

205

The future of electric two-wheelers and electric vehicles in China  

E-Print Network (OSTI)

s Electric and Hybrid Electric Vehicle Program. SAE Hybrida regular gasoline hybrid electric vehicle (HEV), while theIn the global hybrid electric vehicle market, no automakers

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

206

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Air- Vehicle Air- Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range Preprint September 2000 * NREL/CP-540-28960 R. Farrington and J. Rugh To Be Presented at the Earth Technologies Forum Washington, D.C. October 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

207

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on AddThis.com... More in this section...

208

An Energy Evolution: Alternative Fueled Vehicle  

E-Print Network (OSTI)

Hydrogen #12;5 What is best for society? · Hybrid electric vehicles? (HEVs) · Plug-in hybrids? (PHEVs) Gasoline HEVs Fuel Cell Hybrid Electric Vehicle (FCEV) Gasoline PHEVs Ethanol PHEVs #12;11 Fuel Cell) · Biofuels? · Fuel cell electric vehicles? (FCEVs) · Battery Electric Vehicles (BEVs) ... .or all

209

Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment  

Science Conference Proceedings (OSTI)

Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

1993-06-01T23:59:59.000Z

210

Implications of NiMH Hysteresis on HEV Battery Testing and Performance  

SciTech Connect

Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

2002-08-01T23:59:59.000Z

211

Advanced Vehicle Testing Activity - Medium and Heavy Duty Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

an electric vehicle. Medium and heavy duty HEV testing results to date are posted below. Vehicle Testing Reports INL Hybrid Shuttle Busses INL Hybrid Shuttle Busses INL Hybrid...

212

Plug-In Hybrid Electric Vehicles - PHEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a...

213

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Collect Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:34am Addthis YOU ARE HERE Step 2 Data needs for greenhouse gas (GHG) mitigation planning related to Federal agency vehicles and mobile equipment can be described in terms of five key categories: Vehicle Inventory A detailed vehicle profile is essential to right-sizing an agency's vehicle inventory and thereby reducing fuel use, emissions, and operating costs. In combination with vehicle usage and mission data, this information can be used to develop an optimal vehicle acquisition plan and vehicle allocation methodology (VAM) to identify vehicles that may represent good candidates for reassignment or disposal. This data assists in correctly sizing a fleet

214

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

VIN # 1N4CL21E87C172351 Date Mileage Description Cost 10/22/2007 3,658 Changed oil $36.39 11/14/2007 7,562 Changed oil $36.39 12/4/2007 12,008 Changed oil $36.41 1/3/2008 15,418 Changed oil $42.31 1/24/2008 19,057 Changed oil $27.60 1/29/2008 19,109 Replaced one tire $82.13 3/4/2008 24,662 Changed oil and filter $35.84 4/8/2008 32,703 Changed oil and filter $27.85 4/30/2008 37,495 Changed oil and filter $27.91 5/21/2008 40,655 Replaced and balanced four tires $258.41 5/29/2008 44,833 Changed oil and filter $27.91 7/2/2008 53,778 Changed oil and filter $27.91 8/4/2008 62,686 Changed oil and filter, replaced air filter and cabin air filter, replaced coolant, and rotated tires $246.04 8/22/2008 66,967 Changed oil and filled windshield washer $41.30

215

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Ford Escape 2WD 5 Ford Escape 2WD VIN # 1FMYU95H75KC45881 Date Mileage Description Cost 5/25/2005 6,707 Changed oil (5W20 synthetic) and purchased oil for three oil changes $105.47 7/15/2005 17,236 15K service $438.65 8/17/2005 22,221 Changed oil and rotated tires $27.44 9/26/2005 27,425 Changed oil and rotated tires $28.20 11/8/2005 32,703 30K service $211.63 11/25/2005 33,560 Repaired tire $20.00 1/12/2006 42,632 45K service (included: tire balancing, replacing fuel filter and replacing cabin filter) $274.16 3/8/2006 52,141 Changed oil and rotated tires $31.56 4/19/2006 59,883 60K service $317.80 4/19/2006 59,883 HV traction battery connection failed $262.50 5/17/2006 64,641 Changed oil and rotated tires $34.73 6/5/2006 66,059 Recall for absorbing materials being insufficient above forward corner of the interior headliner no charge

216

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Lexus RX400h Lexus RX400h VIN # JTJHW31U160002575 Date Mileage Description Cost 7/27/2005 5,159 Changed oil no charge 10/5/2005 10,375 10K service $212.23 1/4/2006 15,835 Changed oil and rotated tires $18.21 4/11/2006 21,752 Changed oil and rotated tires $18.69 8/16/2006 26,957 Changed oil and rotated tires $18.69 9/7/2006 27,641 Replaced power switch on rear door Warranty 11/20/2006 29,275 13 trouble codes with install of data box - replaced auxiliary battery Warranty 12/13/2006 32,283 Changed oil and rotated tires $23.18 1/4/2007 36,620 Changed oil $32.38 1/26/2007 41,491 changed oil and replaced filter $55.78 2/19/2007 45,948 Changed oil $40.47 3/29/2007 57,021 Changed oil $31.78 4/20/2007 61,238 Changed oil $35.92 5/11/2007 66,417 Changed oil $33.28

217

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

15,288 15K service 236.58 11132006 22,611 Changed oil 31.14 2162007 31,126 Changed oil, replaced filter, and changed transmission fluid 179.90 3122007 37,111 Safety...

218

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

charging systems, and balanced and installed one tire 245.02 7182009 76,011 Changed oil and filter, replaced left motor mount and front shocks 637.33 7302009 85,718...

219

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

18R207400 Date Mileage Description Cost 7312008 7,363 Changed oil and filter and rotated tires 20.30 8222008 Purchased spare tire 362.43 10142008 22,316 Changed oil and...

220

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Saturn Vue VIN 5GZCZ33Z37S813344 Date Mileage Description Cost 5162007 5,172 Changed oil and rotated tires 35.22 6212007 7,200 Passenger side window was shattered in...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

VIN 1N4CL21E27C177982 Date Mileage Description Cost 1312008 4,856 Changed oil 25.45 2182008 9,817 Changed oil 35.84 482008 18,289 Changed oil and filter 27.85 5272008...

222

Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

6: August 1, 6: August 1, 2011 Emissions and Energy Use Model - GREET to someone by E-mail Share Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Facebook Tweet about Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Twitter Bookmark Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Google Bookmark Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Delicious Rank Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Digg Find More places to share Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on AddThis.com...

223

Measuring and Modeling Emissions from Extremely Low Emitting Vehicles  

E-Print Network (OSTI)

last several years, vehicle manufacturers have started tospecifications by the vehicle manufacturers, and are readilymanufacturers have been producing gasoline-powered vehicles

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

2006-01-01T23:59:59.000Z

224

Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles  

E-Print Network (OSTI)

last several years, vehicle manufacturers have started tospecifications by the vehicle manufacturers, and are readilymanufacturers have been producing gasoline-powered vehicles

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

2006-01-01T23:59:59.000Z

225

The origin of California’s zero emission vehicle mandate  

E-Print Network (OSTI)

Sperling, D. , 1989. Electric vehicles: performance, life-in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. Random House, New York.

Sperling, Dan; Collantes, Gustavo O

2008-01-01T23:59:59.000Z

226

Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

227

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

Effects of Compressed Natural Gas as a VehicleFuel-Volumepetroleumgas, compressed natural gas, and electricity.fuel vehicle types, compressed natural gas vehicles are the

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

228

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

229

Development and design of a Z-Source Inverter for Electric Vehicle Applications Omar ELLABBAN  

E-Print Network (OSTI)

vehicle (HEV), where the high-performance ZSI used to integrate both the fuel cell and the supercapacitor

Glineur, François

230

Alternative fuel vehicles: The emerging emissions picture. Interim results, Summer 1996  

DOE Green Energy (OSTI)

In this pamphlet, program goal, description, vehicles/fuels tested, and selected emissions results are given for light-duty and heavy-duty vehicles. Other NREL R&D programs and publications are mentioned briefly.

NONE

1996-10-01T23:59:59.000Z

231

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

DOE Green Energy (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

232

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

233

On-Road Remote Sensing of Vehicle Exhaust Emissions in Auckland, New Zealand  

E-Print Network (OSTI)

On-Road Remote Sensing of Vehicle Exhaust Emissions in Auckland, New Zealand S. Xie, J. G. Bluett Zealand's vehicle fleet. The remote sensing campaign was implemented to establish the emissions profile of this remote sensing campaign was to redress this knowledge gap, improve understanding of the emissions

Denver, University of

234

Simulation of PSO Fuzzy Control Stratety for Regenerative Braking of HEV  

Science Conference Proceedings (OSTI)

Based on particle swarm optimization algorithm, a new fuzzy controller was constructed and a fuzzy control strategy of regenerative braking for HEV was proposed. A model of a parallel hybrid electric vehicle was built. The performance of the default ... Keywords: hybrid electric vehicle, fuzzy control, regenerative braking, particle swarm optimization

Wang Chun; Tang Lan

2012-04-01T23:59:59.000Z

235

Study of Shifting without Driving Force Interrupt for Double Electric Motor HEV  

Science Conference Proceedings (OSTI)

For traditional gearbox, the engine power is cut off while shifting, which will interrupt the power of power-train, make velocity down, affect the acceleration of up gear and lower the vehicle dynamic. A double electric motor hybrid electric vehicle ... Keywords: Double Electric Motor HEV, Shifting Without Driving Force Interrupt (SWDFI), Integrated Power-train

Wang Jiaxue; Wang Qingnian; Wang Weihua; Zeng Xiaohua; Li Chuan

2009-10-01T23:59:59.000Z

236

Regulatory Impediments to Neighborhood Electric Vehicles: Safety Standards and Zero-Emission Vehicle Rules  

E-Print Network (OSTI)

to Neighborhood Electric Vehicles: Safety Standardsand Zero-to Neighborhood Electric Vehicles: Safety Standards andto Neighborhood Electric Vehicles: Safety Standards and

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

237

Regulatory Impediments to Neighborhood Electric Vehicles: Safety Standards and Zero-Emission Vehicle Rules  

E-Print Network (OSTI)

to Neighborhood Electric Vehicles: Safety Standardsand Zero-to Neighborhood Electric Vehicles: Safety Standards andto Neighborhood Electric Vehicles: Safety Standards and

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

2001-01-01T23:59:59.000Z

238

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices is the 2004 Toyota Prius HEV, which has a split powertrain architecture shown in Fig. 1. The other is a plug

Tolbert, Leon M.

239

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System  

DOE Green Energy (OSTI)

Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

2006-05-01T23:59:59.000Z

240

Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions  

DOE Green Energy (OSTI)

Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

Wang, M.Q.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Evolution of Sustainable Personal Vehicles  

E-Print Network (OSTI)

Ready Plug-in Hybrid Electric Vehicle. D.O.E. Challenge X,FCHEV- fuel cell hybrid electric vehicle GHG- greenhouseuser interface HEV- hybrid electric vehicle ICE- internal

Jungers, Bryan D

2009-01-01T23:59:59.000Z

242

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Digg

243

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Digg

244

Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

Table3 to the incre- no oil costs, and that Na/S batteries,costs, of vehicle’s Oil costs, percent ofgasoline vehicle’stires are (M&R) costs (we exclude fires and oil) than ICEVs,

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

245

Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs  

E-Print Network (OSTI)

with 85% ethanol EIA ­ Energy Information Administration EVSE ­ Electric vehicle supply equipment gPlug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size to get this thesis finished. #12;iv Intentionally blank #12;v Abstract Plug-in hybrid electric vehicles

246

Zero-emission vehicle technology assessment. Final report  

DOE Green Energy (OSTI)

This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

Woods, T.

1995-08-01T23:59:59.000Z

247

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

DOE Green Energy (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

248

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The State of California was given authority under CAAA90 to set emissions standards for light-duty vehicles that exceed Federal standards. In addition, other States that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the EPA under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the Nation in developing stricter vehicle emissions standards, and other States have adopted the California standards.

Information Center

2006-02-01T23:59:59.000Z

249

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:36am Addthis YOU ARE HERE Step 2 After a Federal agency has collected detailed information about its vehicle inventory, fuel consumption, usage, mission, and alternative fuel availability, it can analyze the data to determine the most cost-effective options for petroleum reduction and greenhouse gas (GHG) mitigation. Data can be analyzed at the agency, program, fleet (or site), or vehicle level for the following purposes: Determining the most important mobile emission sources Determining whether vehicles are performing and being utilized to minimize GHG emissions Identifying mission constraints. Next Step After analyzing data for evaluating an emissions profile, the next step in

250

Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development and deployment of alternative fuels for environmental and national security reasons, NREL has managed a series of light-duty vehicle emissions tests on alternative fuel vehicles (AFVs). The purpose of this report is to give a detailed evaluation of the final emissions test results on vehicles tested on methanol, ethanol, and compressed natural gas.

Kelly, K.; Eudy, L.; Coburn, T.

1999-12-13T23:59:59.000Z

251

Development of a particle number and particle mass vehicle emissions inventory for an urban fleet  

Science Conference Proceedings (OSTI)

Motor vehicles are major emitters of gaseous and particulate matter pollution in urban areas, and exposure to particulate matter pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle ... Keywords: Emission factors, Motor vehicle inventory, PM 1, PM 10, PM 2.5, Particle emissions, Particle mass, Particle number, South-East Queensland, Traffic modelling, Transport modelling, Ultrafine particles

Diane U. Keogh; Luis Ferreira; Lidia Morawska

2009-11-01T23:59:59.000Z

252

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

DOE Green Energy (OSTI)

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

253

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

SciTech Connect

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

254

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Laws & Incentives Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on

255

The Crafting of the National Low-Emission Vehicle Program: a Private Contract Theory of Public Rulemaking  

E-Print Network (OSTI)

and industry associations repre- senting service stations, vehicle dealerships, gas companies, emission control equip- ment manufacturers, electric

Fern, Danielle F.

1997-01-01T23:59:59.000Z

256

Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles  

E-Print Network (OSTI)

1997. “Analysis of modal emissions from diverse in-useof a Comprehensive Modal Emissions Model”. Final reportof a Comprehensive Modal Emissions Model: Operating Under

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

2006-01-01T23:59:59.000Z

257

Measuring and Modeling Emissions from Extremely Low Emitting Vehicles  

E-Print Network (OSTI)

1997. “Analysis of modal emissions from diverse in-useof a Comprehensive Modal Emissions Model”. Final reportof a Comprehensive Modal Emissions Model: Operating Under

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

2006-01-01T23:59:59.000Z

258

A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV)  

Science Conference Proceedings (OSTI)

Hybrid Electric Vehicles (HEV) combine the power from an electric motor with that from an internal combustion engine to propel the vehicle. The HEV electric motor is typically powered by a battery pack through power electronics. The HEV battery is recharged ...

Harpreetsingh Banvait; Sohel Anwar; Yaobin Chen

2009-06-01T23:59:59.000Z

259

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions | Open Energy  

Open Energy Info (EERE)

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Jump to: navigation, search Name Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Agency/Company /Organization Asian Development Bank Focus Area Transportation Topics Implementation, Policies/deployment programs, Background analysis Resource Type Guide/manual Website http://www.adb.org/documents/o Program Start 2002 Country Vietnam UN Region South-Eastern Asia References Vietnam-Integrated Action Plan to Reduce Vehicle Emissions[1] Background "A major goal of this strategy is to reduce mobile sources of air pollution in Viet Nam's largest cities. According to this strategy, industry, business units, management agencies and the transport sector must carefully control pollutant emissions such as carbon monoxide (CO), carbon dioxide

260

Overview of China's Vehicle Emission Control Program: Past Successes and  

Open Energy Info (EERE)

Overview of China's Vehicle Emission Control Program: Past Successes and Overview of China's Vehicle Emission Control Program: Past Successes and Future Prospects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Overview of China's Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.org/sites/default/files/publications/Retrosp_final_bilingual.p Equivalent URI: cleanenergysolutions.org/content/overview-china's-vehicle-emission-con Language: "English,Chinese" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Model Year 2013: Alternative Fuel Vehicles and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

13: Alternative Fuel and Advanced Technology Vehicles 13: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 3/6/13) 1 Source: http:/afdc.energy.gov/vehicles/search/light/ Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy HEV Acura ILX Sedan 1.5L I4 ECVT Tier 2 Bin 3 LEVII PZEV 39 / 38 N/A FFV E85 Audi A4 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Cabriolet Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi Allroad Quatro Wagon 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 27 14 / 18 FFV E85 Audi Q5 SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 28 14 / 19 HEV Audi Q5 Hybrid SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 24 / 30 N/A FFV E85 Bentley

262

Diesel Exhaust Emissions Control for Light-Duty Vehicles  

SciTech Connect

The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

2003-03-01T23:59:59.000Z

263

Design and Control of the Propulsion System of a Series Hybrid Electric Vehicle  

Science Conference Proceedings (OSTI)

Hybrid Electric Vehicles, HEV, are an attractive opportunity to use new energy sources in road transportation, not only to minimize fuel consumption but also to reduce air pollution. Efforts are being made to improve the HEV electrical subsystems, such ...

Patricia Caratozzolo; Manuel Canseco

2006-09-01T23:59:59.000Z

264

A Library of SIMULINK Blocks for Real-Time Control of HEV Traction John Chiasson1  

E-Print Network (OSTI)

, researchers have considered several motor types including the DC motor, induction motor, permanent magnet (PM algorithms for the various types of motor drives considered for hybrid electric vehicles (HEVs, and permanent magnet synchronous machines. This eliminates the need for specialized programming in C or assembly

Tolbert, Leon M.

265

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

DOE Green Energy (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

266

An Emission Saved is an Emission Earned: An Empirical Study of Emission Banking for Light-Duty Vehicle Manufacturers  

E-Print Network (OSTI)

costs across vehicles and manufacturers are equal. In thefor individual vehicles and manufacturers differ from thefor Light-Duty Vehicle Manufacturers Jonathan D. Rubin

Rubin, Jonathan D.; Kling, Catherine

1993-01-01T23:59:59.000Z

267

Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range.  

E-Print Network (OSTI)

??Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in… (more)

Lo, Joshua

2013-01-01T23:59:59.000Z

268

Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?  

E-Print Network (OSTI)

Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

Paltsev, S.

269

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

171 Emissions related to the use of lubricating oil by motoruse of lubricating oil by motor vehicles The LEM estimatesoil refining to gasoline), the efficiency of fuel use by motor

Delucchi, Mark

2005-01-01T23:59:59.000Z

270

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

171 Emissions related to the use of lubricating oil by motoruse of lubricating oil by motor vehicles The LEM estimatesoil refining to gasoline), the efficiency of fuel use by motor

Delucchi, Mark

2005-01-01T23:59:59.000Z

271

ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO  

E-Print Network (OSTI)

ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO Final Report Prepared for the University of Denver traveled to Monterrey, N.L. Mexico to monitor remotely the carbon monoxide (CO

Denver, University of

272

Vehicle Technologies Office: Fact #783: June 10, 2013 Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conventional Internal Combustion Engine Vehicles Gasoline 220 Diesel 210 Natural Gas 200 Corn Ethanol (E85) 170 Cellulosic E85 66 Cellulosic Gasoline 76 Gasoline 170 Hybrid...

273

HEV Fleet Testing Operating Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

calculated for this figure using mass air flow over dynamic vehicle operation. 2006 Toyota Highlander Hybrid Final Fleet Testing Results Operating Performance Cumulative MPG 1 :...

274

HEV Fleet Testing Operating Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

calculated for this figure using mass air flow over dynamic vehicle operation. 2007 Toyota Camry Hybrid Final Fleet Testing Results Operating Performance Cumulative MPG 1 : 33.6...

275

Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)  

DOE Green Energy (OSTI)

Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

Pesaran, A.; Gonder, J.; Keyser, M.

2009-04-01T23:59:59.000Z

276

An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance but are quite expensive. In spite of their lower… (more)

Stienecker, Adam W

2005-01-01T23:59:59.000Z

277

Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations.  

E-Print Network (OSTI)

??Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these… (more)

Boyd, Steven J

2006-01-01T23:59:59.000Z

278

Hybrid & electric vehicle technology and its market feasibility  

E-Print Network (OSTI)

In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

279

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

r---1 DF LPG M85 FFV J E85 FFV M100 FFV S/ton (Thousands)Vehicles MI00 DedL Vehicles E85 FFVs LPGVs Dual-Fuel CNGVsM85 Dedi. M1 00 DF LPG M85 FFV E85 FFV M100 FFV S/ton 3O (

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

280

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

~ of AFVs, Including Air-Toxic Vehicle Type Dedi. CNGDF CNG EV Dedi. M85 EE3 DedL M100 r---1 DF LPG M85 FFV J E85decrease. Vehicle Type Oedi. CNG DF CNG EV Dedi. M85 Dedi.

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Diesel hybridization and emissions.  

DOE Green Energy (OSTI)

The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

Pasquier, M.; Monnet, G.

2004-04-21T23:59:59.000Z

282

Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles  

DOE Green Energy (OSTI)

This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

1997-12-18T23:59:59.000Z

283

The impact of electric vehicles on CO[sub 2] emissions  

DOE Green Energy (OSTI)

A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T. (Little (Arthur D.), Inc., Cambridge, MA (United States))

1992-05-01T23:59:59.000Z

284

The impact of electric vehicles on CO{sub 2} emissions. Final report  

DOE Green Energy (OSTI)

A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T. [Little (Arthur D.), Inc., Cambridge, MA (United States)

1992-05-01T23:59:59.000Z

285

Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.  

SciTech Connect

This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

1999-06-18T23:59:59.000Z

286

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

DOE Green Energy (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

287

Hybrid Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with...

288

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

289

High Power SiC Modules for HEVs and PHEVs  

DOE Green Energy (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. Research on SiC power electronics has shown their higher efficiency compared to Si power electronics due to significantly lower conduction and switching losses. This paper focuses on the development of a high power module based on SiC JFETs and Schottky diodes. Characterization of a single device, a module developed using the same device, and finally an inverter built using the modules is presented. When tested at moderate load levels compared to the inverter rating, an efficiency of 98.2% was achieved by the initial prototype.

Chinthavali, Madhu Sudhan [ORNL; Tolbert, Leon M [ORNL; Zhang, Hui [ORNL; Han, Jung H [ORNL; Barlow, Fred D. [University of Idaho; Ozpineci, Burak [ORNL

2010-01-01T23:59:59.000Z

290

Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

P. Davis I. (1988) R. ETX-II propulsion system industry..,sulfur batteryfor the ETX-II propuLsion system. Proca. ,9thsulphur battery, in the ETX-II test vehicle. The ETX-II test

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

291

The origin of California’s zero emission vehicle mandate  

E-Print Network (OSTI)

them. Staff estimates of battery costs were questioned, how-has always been battery technology and costs. In 1990, whenmate of the additional cost of a battery electric vehicle,

Sperling, Dan; Collantes, Gustavo O

2008-01-01T23:59:59.000Z

292

Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles  

Science Conference Proceedings (OSTI)

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

Yanowitz, J.; McCormick, R. L.

2009-02-01T23:59:59.000Z

293

Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President  

E-Print Network (OSTI)

reduction goals1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plugin hybrid electric electric vehicle; H2 ICE HEV = hydrogen internal combustion engine hybrid electric vehicle) C.E. Thomas Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H2Gen

294

HEV Fleet Testing Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

U520038836 Advanced Vehicle Testing Activity Date Mileage Description Cost 8-Aug 11,142 Oil change 35.44 11-Oct 14,133 Rear Bumper damaged in collision (not included in...

295

HEV Fleet Testing Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Bicyclist rams vehicle denting hood. Damage not repaired. (not included in maintenance costs) ---- 10292002 9,594 Oil change 20.67 1242003 12,953 Oil change 20.67 623...

296

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2001 Toyota Prius VIN JT2BK12U310035828 Vehicle Specifications VINJT2BK12U310035828 0 10 20 30...

297

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2002 Toyota Prius VIN JT2BK18U820042105 Vehicle Specifications VIN JT2BK18U820042105 0 10 20 30...

298

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2002 Toyota Prius VIN JT2BK18U720044279 Vehicle Specifications VIN JT2BK18U720044279 0 10 20 30...

299

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2002 Toyota Prius VIN JT2BK18U520038836 Vehicle Specifications VIN JT2BK18U520038836 0 10 20 30...

300

Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber  

SciTech Connect

We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

Gao, Zhiming [ORNL; Kim, Miyoung [ORNL; Choi, Jae-Soon [ORNL; Daw, C Stuart [ORNL; Parks, II, James E [ORNL; Smith, David E [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for HEVs / PHEVs

302

Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for HEVs / PHEVs

303

Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for HEVs / PHEVs

304

Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for HEVs / PHEVs

305

Alternative Fuels Data Center: Washington Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for HEVs / PHEVs

306

Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for HEVs / PHEVs

307

Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for HEVs / PHEVs

308

Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for HEVs / PHEVs

309

Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for HEVs / PHEVs

310

Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for HEVs / PHEVs

311

Alternative Fuels Data Center: California Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for HEVs / PHEVs

312

Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for HEVs / PHEVs

313

Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for HEVs / PHEVs

314

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for HEVs / PHEVs

315

Vehicle-emission characteristics using mechanically emulsified alcohol/diesel fuels  

Science Conference Proceedings (OSTI)

A light-duty diesel vehicle fueled with an emulsified alcohol/diesel fuel was operated under cyclic mode. Emission and fuel economy measurements were taken during vehicle operation. The test results showed the volumetric fuel economy decreased slightly. Carbon monoxide emissions increased slightly, and oxides of nitrogen showed no significant change. Particulate emissions were reduced slightly, and the particulate extractables increased slightly. The environmental effect of these data cancel each other resulting in no significant changes in the total release of biological activity into the environment.

Allsup, J.R.; Seizinger, D.E.; Cox, F.W.; Brook, A.L.; McClellan, R.O.

1983-07-01T23:59:59.000Z

316

Correlation of I/M240 and FTP emissions for Alternative Motor Fuels Act test vehicles  

SciTech Connect

The National Remewable Energy Laboratory (NREL) is managing a series of light duty vehicle chasis dynamometer chasis tests on alternative fuel vehicles for the US Department of Energy (DOE). This testing program is part of a larger demonstration of alternative fuel vehicles that was mandated by the Alternative Motor Fuels Act of 1988 (AMFA). In Phase I of the AMFA emissions test program (AMFA I) 18 vehicles were tested by three laboratories. All the vehicles tested were 1991 model year. In Phase II of the program (AMFA II), the number of vehicles was increased to nearly 300, including M85 Dodge Spirits, E85 Chevrolet Luminas, and compressed natural gas Dodge passenger vans. Phase II testing includes a Federal Test Procedure (FTP) test, followed by two of the EPA`s Inspection/Maintenance (I/M240) tests. It is concluded that the I/M240 test is not an appropriate comparison to the FTP. Further the I/M 240 test is not as reliable as the FTP in estimating the `real world` emissions of these relatively low emission vehicles. 7 refs., 10 figs., 8 tabs.

Kelly, K.J.

1994-10-01T23:59:59.000Z

317

Emissions results for dedicated propane Chrysler minivans: the 1996 propane vehicle challenge  

DOE Green Energy (OSTI)

The U.S. Department of Energy (US DOE), through Argonne National Laboratory, and in cooperation with Natural Resources-Canada and Chrysler Canada, sponsored and organized the 1996 Propane Vehicle Challenge (PVC). For this competition , 13 university teams from North America each received a stock Chrysler minivan to be converted to dedicated propane operation while maintaining maximum production feasibility. The converted vehicles were tested for performance (driveability, cold- and hot-start, acceleration, range, and fuel economy) and exhaust emissions. Of the 13 entries for the 1996 PVC, 10 completed all of the events scheduled, including the emissions test. The schools used a variety of fuel-management, fuel-phase and engine-control strategies, but their strategies can be summarized as three main types: liquid fuel-injection, gaseous fuel-injection, and gaseous carburetor. The converted vehicles performed similarly to the gasoline minivan. The University of Windsor`s minivan had the lowest emissions attaining ULEV levels with a gaseous-injected engine. The Texas A&M vehicle, which had a gaseous-fuel injection system, and the GMI Engineering and Management Institute`s vehicle, which had a liquid-injection system both reached LEV levels. Vehicles with an injection fuel system (liquid or gaseous) performed better in terms of emissions than carbureted systems. Liquid injection appeared to be the best option for fuel metering and control for propane, but more research and calibration are necessary to improve the reliability and performance of this design.

Buitrago, C.; Sluder, S.; Larsen, R.

1997-02-01T23:59:59.000Z

318

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

DOE Green Energy (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

319

Vehicle Technologies Office: 2003 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: Fuels and Lubrication, Part 2 Emissions from Heavy-Duty Diesel Engine with Exhaust Gas Recirculation (EGR) using Oil Sands Derived Fuels Stuart Neill National Research...

320

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

DOE Green Energy (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuel savings and emissions reductions from light duty fuel cell vehicles  

DOE Green Energy (OSTI)

Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

Mark, J.; Ohi, J.M.; Hudson, D.V. Jr.

1994-04-01T23:59:59.000Z

322

Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions  

E-Print Network (OSTI)

| Issue 1 | Winter 2013 17 16 16 TransForum In order for CNG to take hold, many more stations will need the country will have to be increased. There are roughly 500 publicly available CNG refueling stations automotive industry leaders test and analyze CNG vehicles. In particular, Argonne's Greenhouse Gases

323

California's Zero Emission Vehicle Program Cleaner air needed  

E-Print Network (OSTI)

these highly functional vehicles and called for more. The regulation also spurred advances in natural gas regulation ­or "ZEV Mandate"as it is sometimes called -- required automakers to put small demonstration. Benefits of the ZEV Regulation The benefits of the ZEV regulation are now apparent: The major automakers

Gille, Sarah T.

324

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

325

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

326

Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels  

DOE Green Energy (OSTI)

The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

Vertin, K.; Glinsky, G.; Reek, A.

2012-08-01T23:59:59.000Z

327

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whys early market for hybrid electric vehicles. TransportationDriving Plug-In Hybrid Electric Vehicles: Reports from U.S.

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

328

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

DOE Green Energy (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

329

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions 1015325 Final Report, July 2007 Each of the ... scenarios showed significant Greenhouse Gas reductions due to PHEV fleet penetration ... ... PHEVs adoption results in significant reduction in the consumption of petroleum fuels. ' ' DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING

330

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

331

A Fuel-Based Motor Vehicle Emission Inventory  

E-Print Network (OSTI)

and cruises al 20-40 mph. Vermont sites, two instrumentsDuplicate measurements a for Vermont:. SouthboundVermontAve.ve- hicles at the Vermont Avenue site have emissions which

Singer, Brett C.; Harley, Robert A.

1996-01-01T23:59:59.000Z

332

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

DOE Green Energy (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

333

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

334

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

DOE Green Energy (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

335

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

Science Conference Proceedings (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

336

Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models  

E-Print Network (OSTI)

HC Reduction in S.E. (%) NOx Reduction in S.E. (%) Table 2:c) HC, d) NOx Younglove/Scora/Barth VSP Bin CO2 Reduction inNOx Table 1: Vehicle Specific Power bins used in preliminary MOVES model (4). Table 2: Percent reduction

Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

337

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

338

Vehicle tail pipe emissions. A comparison of natural gas and petrol injection  

SciTech Connect

Tests were undertaken with a Renault Express 1.4 litre converted to natural gas operation. The effect of cold starts at cold temperatures and vehicle weight on tail pipe emissions were investigated with petrol and natural gas operation over the FTP75 and the 91/441/EEC drive cycles. The results show that the emissions with natural gas are unaffected by cold temperature, unlike petrol emissions which are several times higher at -15{degree}-C than at 25{degree}-C. A crude simulation, accounting for the actual temperature, shows that the conversion of a significant quantity of light duty vehicles to natural gas operation could reduce the emissions of CO and HC by more than 90% in Switzerland. 15 refs., 17 figs., 8 tabs.

Bates, G.J.; Germano, S.

1994-10-01T23:59:59.000Z

339

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

340

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)  

Reports and Publications (EIA)

In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

Information Center

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various countries and US cities  

SciTech Connect

Past studies have shown that use of electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled internal-combustion-engine vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, the authors estimate greenhouse gas emission reductions for EVs, including these important aspects. They select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the US) and analyze greenhouse emission impacts of EVs in each city or country. These selected cities and countries have distinct differences in electric power-plant fuel mixes. They also select six driving cycles developed around the world. They choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Thus, the city- or country-specific vehicle energy consumption estimates reflect effects of both vehicle driving cycles and electric power-plant mixes. Finally, they estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and power-plant and vehicle operations. They estimate that relative to GVs, EVs reduce greenhouse gas emissions in all selected US cities and countries.

Wang, M.Q.; Marr, W.W. (Argonne National Lab., IL (United States). Center for Transportation Research)

1994-09-01T23:59:59.000Z

342

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main… (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

343

Speed-sensorless torque control of induction motors for hybrid electric vehicles.  

E-Print Network (OSTI)

??Hybrid Electric Vehicles (HEVs) are exciting new additions to the car markets since they combine the best features of conventional and electric cars to improve… (more)

Fu, Tianjun

2005-01-01T23:59:59.000Z

344

Public policies for hybrid-electric vehicles| The impact of government incentives on consumer adoption.  

E-Print Network (OSTI)

?? This dissertation examines the outcomes and effectiveness of public policies designed to promote the adoption of hybrid-electric vehicles (HEVs). As a primary methodology, I… (more)

Diamond, David B.

2008-01-01T23:59:59.000Z

345

Real-time power management of parallel full hybrid electric vehicles.  

E-Print Network (OSTI)

??Lastly, the fuel saving capability of the HEV through intelligent driving was investigated. The intelligent vehicle velocity modification algorithm proposed by Manzie et al. is… (more)

Adhikari, Sunil

2010-01-01T23:59:59.000Z

346

Development of simulation tools, control strategies, and a hybrid vehicle prototype .  

E-Print Network (OSTI)

??This thesis (1) reports the development of simulation tools and control strategies for optimizing hybrid electric vehicle (HEV) energy management, and (2) reports the design… (more)

Pei, Dekun

2012-01-01T23:59:59.000Z

347

Public Policies for Hybrid-Electric Vehicles: The Impact of Government Incentives on Consumer Adoption .  

E-Print Network (OSTI)

??This dissertation examines the outcomes and effectiveness of public policies designed to promote the adoption of hybrid-electric vehicles (HEVs). As a primary methodology, I employ… (more)

Diamond, David

2008-01-01T23:59:59.000Z

348

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

ENERGY USAGE, AND GREENHOUSE EMISSIONS GAS 4. ASSESSMENT ANDgas consumption (miles per gallon or Wh mile) of a vehicle, calculation of the fuel usageGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJf°r Usage

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

349

Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area  

SciTech Connect

Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

2004-06-14T23:59:59.000Z

350

Symbolism in California’s Early Market for Hybrid Electric Vehicles  

E-Print Network (OSTI)

1. Why would anyone buy a hybrid electric vehicle? FirstUS in 1999, hybrid electric vehicles (HEVs) are a radicalearly market for hybrid electric vehicles Reid R. He?ner * ,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2008-01-01T23:59:59.000Z

351

Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options  

DOE Green Energy (OSTI)

Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

Wang, M.Q.

1997-05-20T23:59:59.000Z

352

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

353

Field Operations Program Toyota Prius Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle. Unlike electric vehicles, where a kilowatt- hour meter can accurately measure energy flows, the energy use of a Prius type of HEV (non-grid connected) is determined by...

354

Optimally controlling hybrid electric vehicles using path forecasting  

E-Print Network (OSTI)

Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

Katsargyri, Georgia-Evangelina

2008-01-01T23:59:59.000Z

355

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

356

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

Science Conference Proceedings (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

357

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

DOE Green Energy (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

358

Idle Stop Vehicle Testing Downloadable Dynamometer Database  

E-Print Network (OSTI)

Battery Electric Vehicle (BEV) PHEV EREV Charge Sustaining (CS) Hybrid Electric Vehicle (HEV) Fuel Cell vehicle terminology map for SAE J1715 Increased electric power and energy Increasedelectricpowerandenergy #12;Note: Manual Transmission Vehicle Shift schedules for Dynamometers Most cars in the US use

Kemner, Ken

359

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

360

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities  

SciTech Connect

Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

Wang, M.Q.; Marr, W.W.

1994-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE EFFECTS OF BIODIESEL BLENDS AND ARCO EC-DIESEL ON EMISSIONS from LIGHT HEAVY-DUTY DIESEL VEHICLES  

DOE Green Energy (OSTI)

Chassis dynamometer tests were performed on 7 light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from 4 other fuels: ARCO EC-diesel (EC-D) and three 20% biodiesel blends (1 yellow grease and 2 soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in THC and CO emissions over the test vehicle fleet. EC-D also showed reductions in PM emission rates. NOx emissions were comparable for the different fuel types over the range of vehicles tested. The soy-based biodiesel blends did not show significant or consistent emissions differences over all test vehicles. Total carbon accounted for more than 70% of the PM mass for 4 of the 5 sampled vehicles. Elemental and organic carbon ratios varied significantly from vehicle-to-vehicle but showed very little fuel dependence. Inorganic species represented a smaller portion of the composite total, ranging from 0.2 to 3.3% of the total PM. Total PAH emissions ranged from approximately 1.8 mg/mi to 67.8 mg/mi over the different vehicle/fuel combinations representing between 1.6 and 3.8% of the total PM mass.

Durbin, Thomas

2001-08-05T23:59:59.000Z

362

The prospects for electric and hybrid electric vehicles: Second-stage results of a two-stage Delphi study  

DOE Green Energy (OSTI)

This study was conducted to collect information for a technical and economic assessment of electric (EV) and hybrid (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994, while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. Key results: EVs will penetrate the market first, followed by internal combustion engine HEVs, while gas turbine and fuel cell HEVs will come after 2020. By 2020, EVs and internal combustion engine HEVs will have a 15% share of the new vehicle market; they will also cost 18-50% more and will be slightly inferior to 1993 gasoline cars. AC induction motor is projected to be superior to DC and DC brushless motors by 2020, although the DC motor will be less expensive in 2000. DC brushless motors are projected to be the most expensive. Though generally declining, battery costs will remain high. EVs are believed to be effective in reducing urban emissions; however, their costs must be reduced drastically. Petroleum is expected to be the predominant fuel for hybrid vehicles through 2020. Mean energy equivalent fuel economy of electric drivetrain vehicles is projected to be 20-40% greater than for conventional vehicles in 2000, and to rise a few percents during the projection period. Respondents anticipate only a 16% increase in conventional vehicle fuel economy from 2000 to 2020.

Ng, H.K.; Anderson, J.L.; Santini, D.J.; Vyas, A.D.

1996-08-01T23:59:59.000Z

363

Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2012-04-01T23:59:59.000Z

364

A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions  

DOE Green Energy (OSTI)

The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

Hadder, G.R.

1995-11-01T23:59:59.000Z

365

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

April 5. Canadian Vehicle Manufacturers Association (CVMA),equivalent Canadian Vehicle Manufacturers’ Associationof the Canadian Vehicle Manufacturers’ Association, Joe

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

366

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

April 5. Canadian Vehicle Manufacturers Association (CVMA),equivalent Canadian Vehicle Manufacturers’ Associationof the Canadian Vehicle Manufacturers’ Association, Joe

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

367

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

in California: The Role of Electric Vehicles. The Claremontto the program? (e.g. inclusion of hybrid electric vehicles,neighborhood electric vehicles, fuel-cell vehicles,

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

368

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

369

Power storage options for hybrid electric vehicles—A survey  

Science Conference Proceedings (OSTI)

Hybrid electric vehicles (HEVs) are the future transportation structure as they provide better fuel economy. Energy storage devices are therefore required for the HEVs. The problem for deciding the optimum combination of power storage is still unresolved. The power storage options in this regard must have a feasible weight/energy ratio for better performance. This survey is about the comparison of different power storage options for HEV including the batteries

Hadeed Ahmed Sher; Khaled E. Addoweesh

2012-01-01T23:59:59.000Z

370

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

change to “Ethanol, E85 corn, C0/NG50/B50”, where the “B50”on five fuels: RFG, M85, E85, LPG, and CNG. The vehicle wasPM E85 CNG LPG “Off-cycle” emissions,

Delucchi, Mark

2003-01-01T23:59:59.000Z

371

Plug-In Hybrid Electric Vehicle Environmental Analysis--Electric Sector Modeling of CO2 Emissions  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute has initiated a comprehensive collaborative study to quantify the environmental impacts of electric transportation, specifically with respect to plug-in hybrid electric vehicles (PHEVs). This technical update describes the adaptation of the EPRI electric sector model for the analysis of CO2 emissions from the charging on PHEVs on the electrical grid. A "PHEV Base Case" was developed using baseline assumptions from the "EPRI Base Case," a nominal set of key assumptio...

2006-11-29T23:59:59.000Z

372

Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4  

DOE Green Energy (OSTI)

The objective was to determine if testing entire vehicles, vs. just the engines, on a heavy-duty chassis dynamometer provides a better, measurement of the impact of B20 on emissions.

McCormick, R. L.; Williams, A.; Ireland, J.; Hayes, R. R.

2006-10-01T23:59:59.000Z

373

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Analyzed distribution of vehicles by last trip ending time for each region Generated PHEVs load profiles PSAT were adjusted to on-road values for this analysis PHEV miles driven by grid electricity and onWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad

374

The Natural Gas Vehicle Challenge `92: Exhaust emissions testing and results  

DOE Green Energy (OSTI)

The Natural Gas Vehicle (NGV) Challenge `92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P. [Argonne National Lab., IL (United States); Zammit, M.G. [Johnson Matthey, Wayne, PA (United States); Davies, J.G.; Salmon, G.S. [General Motors of Canada Ltd., Toronto, ON (Canada); Bruetsch, R.I. [US Environmental Protection Agency (United States)

1992-11-01T23:59:59.000Z

375

The Natural Gas Vehicle Challenge '92: Exhaust emissions testing and results  

DOE Green Energy (OSTI)

The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P. (Argonne National Lab., IL (United States)); Zammit, M.G. (Johnson Matthey, Wayne, PA (United States)); Davies, J.G.; Salmon, G.S. (General Motors of Canada Ltd., Toronto, ON (Canada)); Bruetsch, R.I. (US Environmental Protection Agency (United States))

1992-01-01T23:59:59.000Z

376

Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.  

Science Conference Proceedings (OSTI)

Since 1989, the Northeast Sustainable Energy Association (NESEA) has organized the American Tour de Sol in which a wide variety of participants operate electric vehicles (EVs) and hybrid electric vehicles (HEVs) for several hundred miles under various roadway conditions (e.g., city center and highway). The event offers a unique opportunity to collect on-the-road energy efficiency data for these EVs and HEVs as well as comparable gasoline-fueled conventional vehicles (CVs) that are driven under the same conditions. NESEA and Argonne National Laboratory (ANL) collaborated on collecting and analyzing vehicle efficiency data during the 1998 and 1999 NESEA American Tour de Sols. Using a transportation fuel-cycle model developed at ANL with data collected on vehicle fuel economy from the two events as well as electric generation mix data from the utilities that provided the electricity to charge the EVs on the two Tours, we estimated full fuel-cycle energy use and GHG emissions of EVs and CVs. This paper presents the data, methodology, and results of this study, including the full fuel-cycle energy use and GHG emission reduction potential of the EVs operating on the Tour.

Singh, M.; Wang, M.; Hazard, N.; Lewis, G.; Energy Systems; Northeast Sustainable Energy Association; Univ. of Michigan

2000-01-01T23:59:59.000Z

377

Prospects on fuel economy improvements for hydrogen powered vehicles.  

DOE Green Energy (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

378

Market Feasibility for Nickel Metal Hyride and Other Advanced Electric Vehicle Batteries in Selected Stationary Applications  

Science Conference Proceedings (OSTI)

Governments in the United States and other countries, as well as the automotive, battery, and utility industries, have spent millions to demonstrate the viability of next generation of batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). An important question remains unanswered: "What value might these EV and HEV batteries add when employed in stationary and secondary use applications?"

2000-12-12T23:59:59.000Z

379

Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle  

E-Print Network (OSTI)

Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle Namwook Kim. INTRODUCTION he optimal control of HEVs (Hybrid Electric Vehicles) is an important topic not only because, Sukwon Cha, Huei Peng Abstract - A number of strategies for the power management of HEVs (Hybrid Electric

Peng, Huei

380

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

Science Conference Proceedings (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies  

DOE Green Energy (OSTI)

The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments.

Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

2000-06-19T23:59:59.000Z

382

Probabilistic evaluation of mobile source air pollution: Volume 1 -- Probabilistic modeling of exhaust emissions from light duty gasoline vehicles. Final report, 1 August 1994--31 May 1997  

Science Conference Proceedings (OSTI)

Emission factors for light duty gasoline vehicles (LDGV) are typically developed based upon laboratory testing of vehicles for prescribed driving cycles. In this project, selected LDGV data sets and modeling assumptions used to develop Mobile5a were revisited. Probabilistic estimates of the inter-vehicle variability in emissions and the uncertainty in fleet average emissions for selected vehicle types and driving cycles were made. Case studies focused upon probabilistic analysis of base emission rate and speed correction estimates used in Mobile5a for throttle body and port fuel injected vehicles. Based upon inter-vehicle variability in the data sets and a probabilistic model in which the standard error terms of regression models employed in Mobile5a are also considered, the uncertainty was estimated for average emission factors for the selected fleets of light duty gasoline vehicles. The 90 percent confidence interval for the average emission factor varied in range with pollutant and driving cycle.

Frey, H.C.; Kini, M.D.

1997-12-01T23:59:59.000Z

383

HEV America Advanced Vehicle Testing Activity - 2002 Toyota Prius...  

NLE Websites -- All DOE Office Websites (Extended Search)

inches Rear Window Defroster 1 State-Of-Charge Meter TIRES Low Rolling Resistance Tires Tire Mfg: Bridgestone BATTERY Tire Model: Potenza Tire Size: P17565R14 Manufacturer:...

384

HEV America - 2003 Honda Civic Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

inches Rear Window Defroster 1 State-Of-Charge Meter TIRES Low Rolling Resistance Tires Tire Mfg: Dunlop BATTERY Tire Model: SP20 FE Tire Size: 18570R14 Manufacturer: Panasonic EV...

385

Advanced Vehicle Testing Activity - HEV Fleet Testing - 2003...  

NLE Websites -- All DOE Office Websites (Extended Search)

55.54 9142004 140,343 30K service - Replaced front motor mount and driver side motor mount 794.90 10252004 145,516 Changed oil, rotated tires 24.34 12162004...

386

Advanced Vehicle Testing Activity - HEV Fleet Testing - 2003...  

NLE Websites -- All DOE Office Websites (Extended Search)

splash shield came off 187.22 722004 131,120 15K service 240.00 7292004 133,706 Safety restrain light is on, left front inflator inop 892004 135,324 Changed oil, rotated...

387

EV America: Hybrid Electric Vehicle (HEV) Technical Specifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be designed and constructed such that there is complete containment of the flywheel energy storage system during all modes of operation. Additionally, flywheels and...

388

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

389

Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

Greene, David L [ORNL

2011-01-01T23:59:59.000Z

390

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

from Transportation Fuels, Motor Vehicles, Transportationfrom alternative fuels for motor vehicles and electricity-Environmental Externalities of Motor-Vehicle Use in the U.

Delucchi, Mark

2005-01-01T23:59:59.000Z

391

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

from Transportation Fuels, Motor Vehicles, Transportationfrom alternative fuels for motor vehicles and electricity-Environmental Externalities of Motor-Vehicle Use in the U.

Delucchi, Mark

2005-01-01T23:59:59.000Z

392

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

a unique city car," Eletric and Hybrid Vehicle TechnologyB. Purcell, "Stepping Ahead," Eletric and Hybrid VehicleJ. Wallace, "Electric Dreams," Eletric and Hybrid Vehicle

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

393

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

Organization of Motor Vehicle Manufacturers, Paris, France,Organization of Motor Vehicle Manufacturers (2003) providesOrganization of Motor Vehicle Manufacturers. Because of

Delucchi, Mark

2005-01-01T23:59:59.000Z

394

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

Organization of Motor Vehicle Manufacturers, Paris, France,Organization of Motor Vehicle Manufacturers (2003) providesOrganization of Motor Vehicle Manufacturers. Because of

Delucchi, Mark

2005-01-01T23:59:59.000Z

395

Canada’s Voluntary Agreement on Vehicle Greenhouse Gas Emissions: When the Details Matter  

E-Print Network (OSTI)

17.10.2005). Canadian Vehicle Manufacturers Association,of the Canadian Vehicle Manufacturers’ Association, JoeTherefore, the Canadian vehicle manufacturers are committed

Lutsey, Nicholas P.; Sperling, Dan

2007-01-01T23:59:59.000Z

396

Chinese Rural Vehicles: An Explanatory Analysis of Technology, Economics, Industrial Organization, Energy Use, Emissions, and Policy  

E-Print Network (OSTI)

larger conventional vehicle manufacturers? We address theseLargest Farm Vehicle Manufacturer , http://www.yanmar.co.jp/conventional vehicle manufacturers. A key to understanding

Sperling, Dan; Lin, Zhenhong; Hamilton, Peter

2004-01-01T23:59:59.000Z

397

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

ZEV program, the vehicle manufacturers did not believe thatof fuel-cell vehicles: manufacturers would produce theirHonda Motor Vehicle Manufacturers Association Mercedes Benz

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

398

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

399

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

inclusion of hybrid electric vehicles, neighborhood electriccertain plug-in hybrid electric vehicles (PHEVs) to the ZEVprovisions pertaining hybrid electric vehicles (that fell in

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

400

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Cost-benefit Analysis of Plug-in Hybrid Electric Vehicle Technology, National Renewable EnergyCost and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Introduction to the OR Forum Article: “Modeling the Impacts of Electricity Tariffs on Plug-in Hybrid Electric Vehicle Charging, Costs, and Emissions” by Ramteen Sioshansi  

Science Conference Proceedings (OSTI)

Comment on “Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions” by Ramteen Sieshansi. Keywords: energy, environment, plug-in hybrid electric vehicles, pricing

Edieal J. Pinker

2012-05-01T23:59:59.000Z

402

Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts  

Gasoline and Diesel Fuel Update (EIA)

2 2 Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts January 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester.

403

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions  

Science Conference Proceedings (OSTI)

Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Barone, Teresa L [ORNL

2010-01-01T23:59:59.000Z

404

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

How would air quality and greenhouse gas emissions be affected if significant numbers of Americans drove cars that were fueled by the power grid? A recently completed assessment conducted by the Electric Power Research Institute and the Natural Resources Defense Council made a detailed study of the question looking at a variety of scenarios involving the U.S. fleet of power generation and its fleet of light-duty and medium-duty cars and trucks.The study focused on plug-in hybrid electric vehicles (PHEVs)...

2007-07-23T23:59:59.000Z

405

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization  

DOE Green Energy (OSTI)

Speed-time and video data were tractor-trailers performing local deliveries in logged for Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the drier-to-driver variation of NO{sub x} was under 4%, although the driver-to driver variations of CO and PM were higher. Emissions levels of NO{sub x} for the Ford tractor at a test weight of 46,400 lb. u sing the CSHVR were comparable with values obtained using the WVU 5 mile route and the EPA Urban Dynamometer Driving Schedule for Heavy Duty Vehicles (''Test D''). The PM missions were slightly higher for the CSHVR than the 5 mile route and Test D. The effect of test weight on emissions, in units of mass/distance, was assessed using the International tractor with the CSHVR at 26,000, 36,000 and 46,400 lb. test weights. Variation of all regulated exhaust emissions was small between test weights, although the CO{sub 2} level reflected the additional energy used at higher weights. The small variation in regulated emissions may be attributed to the fact that in all three cases, the route called for full power operation of the vehicle, and that PM puff associated with gear shifting would be similar. It is concluded that the CSHVR represents a useful and realistic test schedule for truck emissions characterization.

Nigel N. Clark; James J. Daley; Ralph D. Nine; Christopher M. Atkinson

1999-05-03T23:59:59.000Z

406

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

DOE Green Energy (OSTI)

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

407

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Test Procedure Emissions Test Results from Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc. (Telephone: 412.776.4970; E-mail: publications@sae.org)

408

Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change  

SciTech Connect

During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

2009-01-23T23:59:59.000Z

409

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

410

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

411

Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid  

E-Print Network (OSTI)

engine. Keywords: electric vehicles, electric-vehicle simulation, hybrid electric vehicles, hybrid-duty hybrid electric truck', Int. J. of Heavy Vehicle Systems, Vol. 11, Nos. 3/4, pp. 349­370. 1 Introduction. Hybrid-electric vehicles (HEV) appear to be one of the most viable technologies with significant

Peng, Huei

412

The prospects for hybrid electric vehicles, 2005-2020 : results of a Delphi Study.  

DOE Green Energy (OSTI)

The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among US automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future ''top-selling'' HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, with methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020. Survey respondents view batteries as the component that contributes the most to the HEV cost increment. The mean projection for battery-alone range is 49 km in 2005, 70 km in 2010, and 92 km in 2020. Responding to a question relating to their personal vision of the most desirable HEV and its likely characteristics when introduced in the US market in the next decade, the experts predicted their ''vision'' HEV to have attributes very similar to those of the ''top-selling'' HEV. However, the ''vision'' HEV would cost significantly less. The experts projected attributes of three leading batteries for HEVs and projected acceleration times on battery power alone. The resulting battery packs are evaluated, and their initial and replacement costs are analyzed. These and several other opinions are summarized.

Ng, H. K.; Santini, D. J.; Vyas, A. D.

1999-07-22T23:59:59.000Z

413

Route-Based Control of Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

Gonder, J. D.

2008-01-01T23:59:59.000Z

414

Path dependent receding horizon control policies for hybrid electric vehicles  

E-Print Network (OSTI)

Future hybrid electric vehicles (HEVs) may use path-dependent operating policies to improve fuel economy. In our previous work, we developed a dynamic programming (DP) algorithm for prescribing the battery state of charge ...

Kolmanovsky, Ilya V.

415

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

416

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

417

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

418

hybrid electric vehicle and lithium polymer nev testing  

NLE Websites -- All DOE Office Websites (Extended Search)

P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing James Edward Francfort Advanced Vehicle Testing Activity Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID. 83415-3830 james.francfort@inl.gov Abstract: The U.S. Department of Energy's Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery. Keywords: hybrid; neighborhood; electric; battery; fuel;

419

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction  

DOE Green Energy (OSTI)

Cummins Inc. is a world leader in the development and production of diesel engines for on-highway vehicles, off-highway industrial machines, and power generation units. Cummins Inc. diesel products cover a 50-3000 HP range. The power range for this project includes 174-750 HP to achieve EPA's Tier 3 emission levels of 4.0 NOx+NMHC gm/kW-hr and 0.2 PM gm/kWhr and Tier 4 Interim emission levels of 2.0 gm/kW-hr NOx and 0.02 gm/kW-hr PM. Cummins' anticipated product offerings for Tier 4 in this range include the following: QSB6.7, QSC8.3, QSL9, QSM11, QSX15, QSK19. (For reference, numerical values indicate engine displacement in liters, the letter designation ns indicate the product model). A summary of the EPA's mobile off-highway emissions requirements is given in Figure 1.

Jennifer Rumsey

2005-12-31T23:59:59.000Z

420

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

Table3 to the incre- no oil costs, and that Na/S batteries,costs, of vehicle’s Oil costs, percent ofgasoline vehicle’stires are (M&R) costs (we exclude fires and oil) than ICEVs,

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

in a Shared Electric Vehicle Program. In Transporta- tiontechnologies and electric vehicles in Japan. E a r l y H i ssur­ vey. Nearly 50 electric vehicles were used, including

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

422

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

OF TECHNOLOGIES FOR HYBRID-ELECTRIC VEHICLES 4.1EnginesG.H. , SIMPLEV: Simple Electric Vehicle Simulation Program-G.H, SIMPLEV: Simple Electric Vehicle Simulation Program-

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

423

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

one product or industry (electric vehicles) to the exclusionelectric vehicle (electric utilities, battery developers, and electric-drive components industry).industry had a vested interest in the debate, as a success of electric vehicles

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

424

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

OF TECHNOLOGIES FOR HYBRID-ELECTRIC VEHICLES 4.1Engines13. Burke, A.F. , Hybrid/Electric Vehicle Design Options andOperation for Hybrid/Electric Vehicles, SAE Paper 930042,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

425

Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV) will benefit from their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole power train system in a HEV, and thus performance and cost. In this work, the performance of HEVs is analyzed using PSAT (powertrain system analysis tool, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved and the vehicles consume less energy and emit less harmful gases. It also makes it possible to improve the system compactness with simplified thermal management system. For the PHEV, the benefits are more distinct. Especially, the size of battery bank can be reduced for optimum design.

Zhang, Hui [ORNL; Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

2008-01-01T23:59:59.000Z

426

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

427

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

industry experts believe that new vehicle designs based on fuel cells, electricElectric Power Research Institute, Pricing for Success: Using Auto Industry Models to Review Electric Vehicle

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

428

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

vehicles using the Stirling engine are very. low (less thanexcept possibly with the Stirling engine. Theprospects ofHybrid Vehicles using Stirling Engines with DifferentAll-

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

429

Projections of highway vehicle population, energy demand, and CO{sub 2} emissions in India through 2040.  

Science Conference Proceedings (OSTI)

This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.

Arora, S.; Vyas, A.; Johnson, L.; Energy Systems

2011-02-22T23:59:59.000Z

430

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

431

Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge '92  

DOE Green Energy (OSTI)

The Natural Gas Vehicle Challenge '92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P.

1992-01-01T23:59:59.000Z

432

Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge `92  

DOE Green Energy (OSTI)

The Natural Gas Vehicle Challenge `92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P.

1992-09-01T23:59:59.000Z

433

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

hybrid vehicle technologyunless there are special incentives through newemissionsor fuel economy regulations or tax

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

434

Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Vermont laws and incentives

435

Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Georgia laws and incentives

436

Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for HEVs / PHEVs

437

Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Oregon laws and incentives related

438

Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Alabama laws and incentives

439

Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Laws and Incentives for HEVs / PHEVs

440

Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Arizona laws and incentives

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for HEVs / PHEVs

442

Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Florida laws and incentives

443

Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Indiana laws and incentives

444

Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Nevada laws and incentives related

445

Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Carolina Laws and Incentives for HEVs / PHEVs

446

Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Maine laws and incentives related

447

Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Federal laws and incentives

448

Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Idaho laws and incentives related

449

Alternative Fuels Data Center: New York Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for HEVs / PHEVs

450

Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Carolina Laws and Incentives for HEVs / PHEVs

451

Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Utah laws and incentives related

452

Well-to-wheel energy use and greenhouse gas emissions of advanced fuel/vehicle systems North American analysis.  

DOE Green Energy (OSTI)

There are differing, yet strongly held views among the various ''stakeholders'' in the advanced fuel/propulsion system debate. In order for the introduction of advanced technology vehicles and their associated fuels to be successful, it seems clear that four important stakeholders must view their introduction as a ''win'': Society, Automobile manufacturers and their key suppliers, Fuel providers and their key suppliers, and Auto and energy company customers. If all four of these stakeholders, from their own perspectives, are not positive regarding the need for and value of these advanced fuels/vehicles, the vehicle introductions will fail. This study was conducted to help inform public and private decision makers regarding the impact of the introduction of such advanced fuel/propulsion system pathways from a societal point of view. The study estimates two key performance criteria of advanced fuel/propulsion systems on a total system basis, that is, ''well'' (production source of energy) to ''wheel'' (vehicle). These criteria are energy use and greenhouse gas emissions per unit of distance traveled. The study focuses on the U.S. light-duty vehicle market in 2005 and beyond, when it is expected that advanced fuels and propulsion systems could begin to be incorporated in a significant percentage of new vehicles. Given the current consumer demand for light trucks, the benchmark vehicle considered in this study is the Chevrolet S