Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy management of HEV to optimize fuel consumption and pollutant emissions  

E-Print Network [OSTI]

AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

Paris-Sud XI, Université de

2

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

SciTech Connect (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

3

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

4

The 1995 HEV challenge: Results and technology summary  

SciTech Connect (OSTI)

The objective of this paper is to analyze and summarize the performance results and the technology used in the 1995 Hybrid Electric Vehicle (HEV) Challenge. Government and industry are exploring hybrid electric vehicle technology to significantly improve fuel economy and reduce emissions of the vehicles without sacrificing performance. This last in a three-year series of HEV competitions provided the testing grounds to evaluate the different approaches of 29 universities and colleges constructing HEVS. These HEVs competed in an affay of events, including: acceleration, emissions testing, consumer acceptance, range, vehicle handling, HVAC testing, fuel economy, and engineering design. The teams also documented the attributes of their vehicles in the technical reports. The strategies and approaches to HEV design are analyzed on the basis of the data from each of the events. The overall performance for promising HEV approaches is also examined. Additional significant design approaches employed by the teams are presented, and the results from the events are discussed.

LeBlanc, N.; Larsen, R.; Duoba, M.

1996-03-01T23:59:59.000Z

5

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network [OSTI]

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

6

HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...  

Broader source: Energy.gov (indexed) [DOE]

Testing Advanced Vehicle Testing Activity Maintenance Sheet for 2010 Ford Fusion VIN 3FADP0L32AR194699 Date Mileage Description Cost 1012009 5915 Changed oil and filter 28.77...

7

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

8

Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)  

SciTech Connect (OSTI)

The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

Cosgrove, J.; Gonder, J.; Pesaran, A.

2013-11-01T23:59:59.000Z

9

Abstract--Control strategies have been developed for Hybrid Electric Vehicles (HEV) that minimize fuel consumption while  

E-Print Network [OSTI]

is typically the ubiquitous internal combustion engine, tailpipe emissions must also be considered. This paper consumption and engine out emissions. If catalysts or other after treatments are used, minimization of engine sum of fuel consumption and tailpipe emissions for an HEV equipped with a dual mode Electrically

Peng, Huei

10

Hyundai Sonata HEV Accelerated Testing - March 2013  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata HEV Accelerated Testing - March 2013 Two model year 2011 Hyundai Sonata hybrid electric vehicles (HEVs) entered Accelerated testing during June 2011 in a fleet in...

11

Chevrolet Malibu HEV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Malibu HEV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Malibu hybrid electric vehicles (HEVs) entered Accelerated testing during November 2012 in a fleet in...

12

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Would You Buy a Hybrid Vehicle? Study #715238, conducted forcars/high-cost-of-hybrid-vehicles- 406/overview.htm ConsumerRelease. (2005) Most Hybrid Vehicles Not as Cost-Effective

Heffner, Reid R.

2007-01-01T23:59:59.000Z

13

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Hybrid Vehicle? Study #715238, conducted for National Renewableand Renewable Energy, Report DOE/EE-0314 Valdes-Dapena, P. (2005) Hybrids:

Heffner, Reid R.

2007-01-01T23:59:59.000Z

14

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

15

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

) Note: PSAT included after-treatment thermal efficiency penalty to the diesel fuel economy · CD ElectricWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad engine vehicles (ICEVs) Regular hybrid electric vehicles (HEVs) Plug-in hybrid electric vehicles (PHEVs

16

HEV, PHEV, EV Test Standard Development and Validation | Department...  

Broader source: Energy.gov (indexed) [DOE]

HEV, PHEV, EV Test Standard Development and Validation HEV, PHEV, EV Test Standard Development and Validation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

17

Honda Gen II Insight HEV Accelerated Testing - August 2012  

Broader source: Energy.gov (indexed) [DOE]

Honda Gen II Insight HEV Accelerated Testing - August 2012 Two model year 2010 Honda Generation II Insight hybrid electric vehicles (HEVs) entered Accelerated testing during July...

18

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

19

AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing  

Broader source: Energy.gov (indexed) [DOE]

Testing * 18 HEV models and 47 HEVs tested to date: Year Model Vehicles Testing Status 2001 Honda Insight 6 Completed 2002 Gen I Toyota Prius 6 Completed 2003 Gen I Honda...

20

Vehicle Emissions Review - 2011  

Broader source: Energy.gov (indexed) [DOE]

Emissions Review - 2011 (so far) Tim Johnson October 4, 2011 DOE DEER Conference, Detroit JohnsonTV@Corning.com 2 Summary * California LD criteria emission regs are tightening....

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

Not Available

2014-05-01T23:59:59.000Z

22

Issues in emissions testing of hybrid electric vehicles.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

23

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

24

Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

Gonder, J.; Ireland, J.; Cosgrove, J.

2013-04-01T23:59:59.000Z

25

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

battery chemistry for future HEVs (including PHEVs) is currently Li-ion.its battery pack, but it used lead-acid rather than Li-ion

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

26

Emissions from US waste collection vehicles  

SciTech Connect (OSTI)

Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 610% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

Maimoun, Mousa A., E-mail: mousamaimoun@gmail.com [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Reinhart, Debra R. [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Gammoh, Fatina T. [Quality Department, Airport International Group, Amman (Jordan); McCauley Bush, Pamela [Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL (United States)

2013-05-15T23:59:59.000Z

27

A Library of SIMULINK Blocks for Real-Time Control of HEV Traction John Chiasson1  

E-Print Network [OSTI]

algorithms for the various types of motor drives considered for hybrid electric vehicles (HEVs algorithms for the various types of motor drives considered for hybrid electric vehicles (HEVs02FCC-30 A Library of SIMULINK Blocks for Real-Time Control of HEV Traction Drives John Chiasson1

Tolbert, Leon M.

28

Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions Benefits from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

29

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

30

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

31

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

32

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

33

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network [OSTI]

engines. At time t = 0, gasoline HEVs enter the market, followed by hydrogen-hydrogen vehicles have no tailpipe emissions while at the same time offer private benefits relative to conventional internal combustion engine

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

34

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

* Hybrid Electric (HEV) * Plug-in HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen * Ethanol, Butanol * Diesel (Bio,...

35

Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates  

E-Print Network [OSTI]

California reformulated gasoline on motor vehicle emissions.Impact of California Reformulated Gasoline OIl Motor Vehicleprogress, increased vehicle Gasoline Motor on Vehicle travel

Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

1999-01-01T23:59:59.000Z

36

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

37

VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD  

E-Print Network [OSTI]

VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD OBSERVATIONS AT SIGNALIZED between vehicle emissions and traffic control measures is an important step toward reducing the potential roadway design and traffic control, have the ability to reduce vehicle emissions. However, current vehicle

Frey, H. Christopher

38

Advanced Clean Cars Zero Emission Vehicle Regulation  

E-Print Network [OSTI]

Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program 2020 2021 2022 2023 2024 2025 Current Regulation -ZEVs Current Regulation -PHEVs Projected: PHEVs 15Net ­ Blueprint Plan ­ Regional clusters, environmental and economic analysis · Clean Fuels Outlet

California at Davis, University of

39

Air Emissions and Oil Displacement Benefits  

E-Print Network [OSTI]

battery packs allow vehicles to travel longer distance on electric power instead of gasoline may (1) produce fewer greenhouse gas emissions when powered by electricity instead of gasoline emissions relative to HEVs, depending on electricity source. Plug-in vehicles with large battery packs

Michalek, Jeremy J.

40

Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...  

Broader source: Energy.gov (indexed) [DOE]

HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

A.A. (2007) Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric UtilitiesWould You Buy a Hybrid Vehicle? Study #715238, conducted for

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

42

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

Electric Vehicles. EPRI: Palo Alto, CA. Report1009299. [9]Popular Science. July. [4] EPRI (2001) Comparing theHybrid Electric Vehicle Options. EPRI: Palo Alto, CA. Report

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

43

A Statistical Model of Vehicle Emissions and Fuel Consumption  

E-Print Network [OSTI]

A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

Cappiello, Alessandra

2002-09-17T23:59:59.000Z

44

Vehicle Technologies Office Merit Review 2014: Emissions Control...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Control for Lean Gasoline Engines Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines Presentation given by Oak Ridge National...

45

Vehicle Technologies Office Merit Review 2014: Particulate Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems for GDI Engines Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration...

46

On-road remote sensing of vehicle emissions in  

E-Print Network [OSTI]

On-road remote sensing of vehicle emissions in the Auckland Region August 2003 Technical 1877353000 www.arc.govt.nz #12;TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region #12;Page i TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region On-road remote sensing

Denver, University of

47

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids, Part 1: Technical

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

48

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network [OSTI]

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 20052010, a vehicles tax is negatively correlated with its ...

Klier, Thomas

49

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

SciTech Connect (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

50

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

51

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

52

Fuel-Based On-Road Motor Vehicle Emissions Inventory  

E-Print Network [OSTI]

Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S of Denver 2101 E. Wesley Ave. Denver, CO 80208 #12;Mobile Source Emissions Inventory Methods MOBILE emission factors -g/mile uncertain Vehicle miles traveled -very uncertain Speed correction factors Inventory

Denver, University of

53

Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)  

SciTech Connect (OSTI)

Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

Gonder, J.; Pesaran, A.

2010-03-18T23:59:59.000Z

54

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

55

DOE Field Operations Program EV and HEV Testing  

SciTech Connect (OSTI)

The United States Department of Energys (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

56

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

57

Vehicle Technologies Office Merit Review 2014: Emissions Modeling...  

Energy Savers [EERE]

More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of VehicleFuel Systems Fuel-Cycle Energy and Emissions Analysis with the GREET Model...

58

Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles: A Survey  

SciTech Connect (OSTI)

The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

Malikopoulos, Andreas [ORNL

2014-01-01T23:59:59.000Z

59

Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study  

E-Print Network [OSTI]

(petrol ICE, diesel ICE, LPG ICE, petrol HEV), engine size (2 litres) and vehicle age. The most used vehicle reported by the participants was taken as the reference vehicle for the emissions analysis. Where one or more... fleet average of petrol and diesel car emissions factors. Multiplying total distance travelled by these speed-emissions factors gave us an estimate of the total hot emissions for each vehicle when the engine was warmed up. As a final adjustment...

Goodman, Anna; Brand, Christian; Ogilvie, David; on behalf of the iConnect consortium

2012-08-03T23:59:59.000Z

60

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

COMPACT EMISSIONS HEV PHEV marginal power plant is a coalpower uses relatively little coal, but in other cases emissions

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

62

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect (OSTI)

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

63

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect (OSTI)

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

64

Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)  

SciTech Connect (OSTI)

Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

Not Available

2012-03-01T23:59:59.000Z

65

Houston Zero Emission Delivery Vehicle Deployment Project  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

66

Optimally Controlling Hybrid Electric Vehicles using Path Forecasting  

E-Print Network [OSTI]

The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

Kolmanovsky, Ilya V.

67

Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of  

E-Print Network [OSTI]

12/10/01 Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of zero emission vehicles (ZEVs). Specifically, and in 1998 to allow partial ZEV (PZEV) credits for extremely clean vehicles that were not pure ZEVs

Gille, Sarah T.

68

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive Selection Issues for HEV  

E-Print Network [OSTI]

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive--Comparison, electric propulsion, hybrid electric vehicle (HEV). I. INTRODUCTION SELECTION of traction motors for hybrid of electric motors adopted or under serious consideration for HEVs as well as for EVs include the dc motor

69

2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV  

E-Print Network [OSTI]

defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables. This affects the material and manufacturing costs of the battery, electric motor, and controller. *Prepared performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV

Tolbert, Leon M.

70

Cold-Start Emissions Control in Hybrid Vehicles Equipped with...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Z. Gao, C.S. Daw, M.-Y. Kim, J.-S. Choi, J.E. Parks II, and D.E. Smith Oak Ridge...

71

Vehicle emissions and energy consumption impacts of modal shifts  

E-Print Network [OSTI]

Growing concern over air quality has prompted the development of strategies to reduce vehicle emissions in these areas. Concern has also been expressed regarding the current dependency of the U,S, on foreign oil. An option for addressing...

Mallett, Vickie Lynn

1993-01-01T23:59:59.000Z

72

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles  

E-Print Network [OSTI]

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional

Cohen, Ronald C.

73

Trends in on-road vehicle emissions of ammonia  

SciTech Connect (OSTI)

Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

2008-07-15T23:59:59.000Z

74

CleanFleet. Final report: Volume 7, vehicle emissions  

SciTech Connect (OSTI)

Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

NONE

1995-12-01T23:59:59.000Z

75

Alternative Fuels Data Center: Biodiesel Vehicle Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric VehiclesBiodiesel Vehicle

76

On-Road Motor Vehicle Emissions Measurements  

E-Print Network [OSTI]

. Pokharel, Gary A. Bishop and Donald H. Stedman Department of Chemistry and Biochemistry University 1990 1991 1992 1993 1994 1995 1996 1997 1998 Model Year FailureRate(%) Gasoline Vehicles Natural Gas Bi/day382252Diesel trucks Tons/day2730220Gasohol (LTK, PAS) Tons/day3748369Gasoline (LTK, PAS) g per kg of fuel

Denver, University of

77

Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity  

E-Print Network [OSTI]

California Reformulated Gasoline On Motor Vehicle EmissionsCalifornia Reformulated Gasoline on Motor Vehicle EmmissionsBerkeley Environ. ScLTechnoL gasoline Impact California of

Kirchstetter, Thomas; Singer, Brett; Harley, Robert

1999-01-01T23:59:59.000Z

78

Zero-emission vehicle technology assessment. Final report  

SciTech Connect (OSTI)

New York State adopted the California Low Emission Vehicle (LEV) program that includes a sales mandate for ZEVs starting in 1988. The New York State Department of Environmental Conservation (NYSDEC) was required to perform a technology review of zero-emission vehicles (ZEVs) in 1994, and examine technology developments and issues relating to ZEV performance in New York State, by the amendments to 6NYCRR Part 218, February 1992. The Final Report presents an overview of technology as of the spring of 1995, and a projection of technology status over the next 10 years.

Woods, T.

1995-08-01T23:59:59.000Z

79

Electric Drive Vehicle Level Control Development Under Various...  

Broader source: Energy.gov (indexed) [DOE]

3 The objective is to develop the entire vehicle thermal management system for two electric drive vehicles (HEVs, PHEVs). Limited battery power and low engine efficiency at...

80

Vehicle Level Model and Control Development and Validation Under...  

Broader source: Energy.gov (indexed) [DOE]

Relevance 5 The objective is to develop the entire vehicle thermal management system for advanced electric drive vehicles (EREVs, HEVs, EVs, PHEVs). Additional energy...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

SciTech Connect (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

82

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someoneEthanol Vehicle

83

Air Quality Impacts of Some Alternative Vehicle Options UC Irvine National Fuel Cell Research Center 1 March 28, 2008  

E-Print Network [OSTI]

) ............................................................. 6 2.2 Hybrid Electric Vehicle (HEV)............................................................................ 7 2.3 Plug-in Hybrid Electric Vehicle (PHEV)............................................................. 8 2.4 Pure Electric Vehicle (PEV

Dabdub, Donald

84

TECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions  

E-Print Network [OSTI]

measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxideTECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA 2 National Renewable Energy

Denver, University of

85

Future Emissions Impact On Off-Road Vehicles  

SciTech Connect (OSTI)

Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

Kirby Baumgard; Steve Ephraim

2001-04-18T23:59:59.000Z

86

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Fuel Cell Vehicle Analysis of Energy Use, Emissions, and Cost,"Cost Analysis of Conventional and Fuel Cell/Battery Powered Urban Passenger Vehicles,cost analysis of several types of AFVs, but did not include fuel cell vehicles

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

87

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Fuel Cell Vehicle Analysis of Energy Use, Emissions, and Cost,&Cost Analysis of Conventional and Fuel Cell/Battery Powered Urban Passenger Vehicles,cost analysis of several types of AFV s, but did not include fuel cell vehicles

Lipman, Timothy E.

1999-01-01T23:59:59.000Z

88

Fact #771: March 18, 2013 California Zero-Emission Vehicle Mandate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1: March 18, 2013 California Zero-Emission Vehicle Mandate is Now in Effect Fact 771: March 18, 2013 California Zero-Emission Vehicle Mandate is Now in Effect A waiver granted by...

89

Vehicle Emission Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave.Emission Basics

90

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

91

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen, Natural Gas * Ethanol, Butanol * Diesel (Bio, Fisher-Tropsch) APRF Test Process:...

92

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

SciTech Connect (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

93

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect (OSTI)

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

94

Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment  

SciTech Connect (OSTI)

Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

1993-06-01T23:59:59.000Z

95

Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles  

E-Print Network [OSTI]

use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

Millstein, Dev E.; Harley, Robert A

2010-01-01T23:59:59.000Z

96

Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves  

E-Print Network [OSTI]

Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. The original definition...

Gu, Chaoyi

2013-07-31T23:59:59.000Z

97

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

E-Print Network [OSTI]

potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles mustValuation of plug-in vehicle life-cycle air emissions and oil displacement benefits Jeremy J

Michalek, Jeremy J.

98

In-Vehicle Evaluation of Lower-Energy Energy Storage System ...  

Broader source: Energy.gov (indexed) [DOE]

DOE Fuel-Saving Mission * HEVs effectively reduce per-vehicle fuel use * Incremental cost remains a barrier to a wider market penetration o HEVs still only 3% of new car sales *...

99

Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

100

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

ace079mukundan2012o.pdf More Documents & Publications Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Vehicle Technologies Office Merit Review 2014:...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An analysis on long term emission benefits of a government vehicle fleet replacement plan  

E-Print Network [OSTI]

vehicle scrappage program was launched by the Unocal Corporation (known as the South Coast Recycled Auto duty vehicle Á Survival probability Á Lifetime emissions J. Lin (&) Department of Civil and Materials

Illinois at Chicago, University of

102

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

103

A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions  

E-Print Network [OSTI]

A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions by Christopher D. Dresser OF WISCONSIN - MADISON Abstract A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions Christopher Studies This study presents a "bottom-up" emissions inventory for NOx, PM2.5, SO2, CO, and VOCs from heavy

Wisconsin at Madison, University of

104

Canadas Voluntary Agreement on Vehicle Greenhouse Gas Emissions: When the Details Matter  

E-Print Network [OSTI]

goals. Science 301, 506508. General Motors Canada (GM Canada), 2005. Vehicle emissions & fuels. Canada, 2006. Canadas clean

Lutsey, Nicholas P.; Sperling, Dan

2007-01-01T23:59:59.000Z

105

Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

106

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...  

Broader source: Energy.gov (indexed) [DOE]

technology development - Evaluation of electric vehicle benefits and challenges 3 HEV Systems Reduce cost, increase energy of energy storage Low-cost power electronics Modeling...

107

Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

Pesaran, A.; Gonder, J.; Keyser, M.

2009-04-01T23:59:59.000Z

108

"Catching the second wave" of the Plug in Electric Vehicle  

E-Print Network [OSTI]

"Catching the second wave" of the Plug in Electric Vehicle Market PEV market update from ITS PHEV on gasoline, diesel, natural gas, biofuels and other liquid or gaseous fuels. HEV = Hybrid electric vehicles Vehicles are like HEVs, but have bigger batteries, and can store electricity from plugging into the grid

California at Davis, University of

109

THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT  

E-Print Network [OSTI]

1 THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT, it is of some interest to explore the inclusion of road transport in emission trading schemes. Starting from

Paris-Sud XI, Université de

110

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

emission goal cannot be achieved by merely improving the mainstream technology (internal combustion engine),emissions equivalent to a certain, bigger number of hybrid electric vehicles, and because internal combustion engines

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

111

Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and...

112

Hybrid & electric vehicle technology and its market feasibility  

E-Print Network [OSTI]

In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

113

Reduction in Vehicle Idling Emissions Using RFID Parking Permits Dawson, Pakes-Ahlman, Graham, Gutierrez, Vilasdaechanont  

E-Print Network [OSTI]

1 Reduction in Vehicle Idling Emissions Using RFID Parking Permits 9/20/13 Dawson, Pakes Frequency Identification permits (RFID) allow drivers to remain in their vehicles without coming this conversion to RFID equates to shorter vehicle queues, lower idling time and, ultimately, lower fuel

Sprott, Julien Clinton

114

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect (OSTI)

The U.S. Department of Energys Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

115

Zero-emission vehicle technology assessment. Final report  

SciTech Connect (OSTI)

This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

Woods, T.

1995-08-01T23:59:59.000Z

116

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

2006-01-01T23:59:59.000Z

117

Shaping the Terms of Competition: Environmental Regulation and Corporate Strategies to Reduce Diesel Vehicle Emissions  

E-Print Network [OSTI]

Diesel Vehicle Emissions by Christine Bik-Kay Ng B.S., Civil and Environmental Engineering University Strategies to Reduce Diesel Vehicle Emissions by Christine Bik-Kay Ng Submitted to the Engineering Systems. This research explains the conditions under which competitive regulatory strategies are pursued in the diesel

de Weck, Olivier L.

118

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles Chris A. Jakober, 2  

E-Print Network [OSTI]

1 Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1 Chris A0205CH11231. LBNL752E #12;Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1Chris A DATE * mjkleeman@ucdavis.edu, (530)-752-8386 ABSTRACT Carbonyls from gasoline powered light

119

that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows,  

E-Print Network [OSTI]

that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows, andcapacityconstraints.ThiscreatesanewtypeofVRP,theemissions vehicle routing problem (EVRP). BACKGROUND AND LITERATURE REVIEW There is extensive literature related to vehicle

Bertini, Robert L.

120

Final report for measurement of primary particulate matter emissions from light-duty motor vehicles  

SciTech Connect (OSTI)

This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect (OSTI)

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

122

Data Needs for Evolving Motor Vehicle Emission Modeling Approaches  

E-Print Network [OSTI]

model was originally developed by the TransportationSystems Center of the USDepartment Transportationto support vehicle of energy

Guensler, Randall

1993-01-01T23:59:59.000Z

123

California's Zero Emission Vehicle Program Cleaner air needed  

E-Print Network [OSTI]

that are powered by a combination of electric motors and internal combustion engines, and fuel cell vehicles and other alternative fueled vehicles, super-clean gasoline vehicles, fuel-efficient hybrids powered by electricity created from pollution-free hydrogen. ARB is not suggesting that every Californian

Gille, Sarah T.

124

Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions  

SciTech Connect (OSTI)

Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

2010-06-01T23:59:59.000Z

125

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network [OSTI]

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

126

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

127

Hybrid Human Powered Vehicle (Phase 3) The Zero EMission (ZEM) Vehicle Project  

E-Print Network [OSTI]

The Construction of ZEM Car ­ a hybrid human/electric/solar powered vehicle (P-2) (2007-2008) Principal) Hybrid human pedaling/ electric powered vehicle- Designed and constructed P-1 prototype Sponsor: SJSU) Hybrid human pedaling/ Electric/solar powered vehicle (HPV-ZEM)-Designed P-2 Sponsor: SJSU-COE 16 ME + 3

Su, Xiao

128

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

SciTech Connect (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

129

Inductorless DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/Hybrid Electric Vehicle  

E-Print Network [OSTI]

Inductorless DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/Hybrid Electric Vehicle boost inverter for EV and HEV applications. Currently available power inverter systems for HEVs use a DC- DC boost converter to boost the battery voltage for a traditional 3-phase inverter. The present HEV

Tolbert, Leon M.

130

Advanced Vehicle Benchmarking of HEVs and PHEVs  

Broader source: Energy.gov (indexed) [DOE]

rd Qtr 2008 - 2010 Honda Insight: 3 rd Qtr 2009 - 2010 Toyota Prius: 4 th Qtr 2009 - 2010 Fusion Hybrid: 4 th Qtr 2009 - 2010 Saturn Vue Hybrid: 4 th Qtr 2009 PHEV Benchmarking -...

131

Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air  

E-Print Network [OSTI]

, Denver, Colorado 80208 L E N O R A B O H R E N The National Center for Vehicle Emissions Control & Safety system. The Smart Sign used a combination of words, colors, and graphics to connect with its audience

Denver, University of

132

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

2014: Robust Nitrogen oxideAmmonia Sensors for Vehicle on-board Emissions Control CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

133

Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?  

E-Print Network [OSTI]

Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

Paltsev, S.

134

The origin of Californias zero emission vehicle mandate  

E-Print Network [OSTI]

that one million alternative fuel vehicles be sold in thethe adoption of alternative fuels (particularly methanol) asof the adoption of alternative fuels. A key recommendation

Sperling, Dan; Collantes, Gustavo O

2008-01-01T23:59:59.000Z

135

Vehicle Technologies Office Merit Review 2014: Zero-Emission...  

Office of Environmental Management (EM)

given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

136

Optimally controlling hybrid electric vehicles using path forecasting  

E-Print Network [OSTI]

Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

Katsargyri, Georgia-Evangelina

2008-01-01T23:59:59.000Z

137

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

SciTech Connect (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

138

Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.  

SciTech Connect (OSTI)

This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

1999-06-18T23:59:59.000Z

139

Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles  

SciTech Connect (OSTI)

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

Yanowitz, J.; McCormick, R. L.

2009-02-01T23:59:59.000Z

140

ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO  

E-Print Network [OSTI]

ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO Final Report Prepared for the University of Denver traveled to Monterrey, N.L. Mexico to monitor remotely the carbon monoxide (CO with other cities that have been sampled in Mexico. The on-road emission averages are similar to the latest

Denver, University of

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

SciTech Connect (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

142

Using Local and Regional Air Quality Modeling and Source Apportionment Tools to Evaluate Vehicles and Biogenic Emission Factors  

E-Print Network [OSTI]

and inventories of CO, NO_(x) and VOCs from on-road vehicles estimated by vehicle emission factor models and biogenic emissions of isoprene estimated by a popular biogenic emission model are evaluated using local and regional scale air quality modeling and source...

Kota, Sri H

2014-07-25T23:59:59.000Z

143

The prospects for electric and hybrid electric vehicles: Second-stage results of a two-stage Delphi study  

SciTech Connect (OSTI)

This study was conducted to collect information for a technical and economic assessment of electric (EV) and hybrid (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994, while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. Key results: EVs will penetrate the market first, followed by internal combustion engine HEVs, while gas turbine and fuel cell HEVs will come after 2020. By 2020, EVs and internal combustion engine HEVs will have a 15% share of the new vehicle market; they will also cost 18-50% more and will be slightly inferior to 1993 gasoline cars. AC induction motor is projected to be superior to DC and DC brushless motors by 2020, although the DC motor will be less expensive in 2000. DC brushless motors are projected to be the most expensive. Though generally declining, battery costs will remain high. EVs are believed to be effective in reducing urban emissions; however, their costs must be reduced drastically. Petroleum is expected to be the predominant fuel for hybrid vehicles through 2020. Mean energy equivalent fuel economy of electric drivetrain vehicles is projected to be 20-40% greater than for conventional vehicles in 2000, and to rise a few percents during the projection period. Respondents anticipate only a 16% increase in conventional vehicle fuel economy from 2000 to 2020.

Ng, H.K.; Anderson, J.L.; Santini, D.J.; Vyas, A.D.

1996-08-01T23:59:59.000Z

144

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

SciTech Connect (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

145

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

SciTech Connect (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

146

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

147

Cold-Start Emissions Control in Hybrid Vehicles Equipped with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during...

148

Overview of China's Vehicle Emission Control Program: Past Successes...  

Open Energy Info (EERE)

in the short and long term (between 2010 and 2030), covering urban and regional air pollutants as well as emissions of climate forcers. The scenarios include the potential...

149

Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions  

E-Print Network [OSTI]

: gasoline, gasoline-ethanol l'rlends, diesel, biodiesel blends, LPG lquefied petroleurn gas) ancl CNG operating on gasoline arrd a similar non-FF\\-. llir:s rs a in-al ethanol composition blend requires vehicle in the atmosphere. For many r.ears, the primary vehicie fuels used have been gasoline and diesel fuels. These iuels

150

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

SciTech Connect (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

Barlow, F.D.; Elshabini, A.

2006-11-30T23:59:59.000Z

151

Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels  

SciTech Connect (OSTI)

The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

Vertin, K.; Glinsky, G.; Reek, A.

2012-08-01T23:59:59.000Z

152

Measurement of vehicle emissions and the associated dispersion near roadways  

E-Print Network [OSTI]

halance I, echnique sufl'ers I&vo disadva&i&, ages: (1) the emission factor may &&nly l&e calcula4cd for exis&, ing roads and (2) I, he analys4 &nusI, have accuraLe air quality, I, raflic, and inel, eorological da4a to estimal, e the emission rate...

Hlavinka, M. W

1986-01-01T23:59:59.000Z

153

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

SciTech Connect (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

154

Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 JeffersonFuel-Efficient Tires

155

HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...  

Broader source: Energy.gov (indexed) [DOE]

DU5A0006063 Date Mileage Description Cost 8192009 5,090 Changed oil and filter and rotated tires 39.28 9162009 14,484 Changed oil and filter and replaced flat tire 152.58 10...

156

AVTA: Honda Civic HEV 2013 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2013 Honda Civic hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

157

AVTA: Honda CRZ HEV 2011 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Honda CRZ hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

158

AVTA: Mercedes Benz HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Mercedes Benz hybrid-electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

159

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

160

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modelling and control strategy development for fuel cell electric vehicles  

E-Print Network [OSTI]

Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

Peng, Huei

162

High Power SiC Modules for HEVs and PHEVs Abstract--With efforts to reduce the cost, size, and thermal  

E-Print Network [OSTI]

, inverter, efficiency, hybrid electric vehicle, HEV, PHEV. I. INTRODUCTION Development of power electronics system in an under-the-hood high temperature environment. Development of new power devices is a critical aspect for future power electronic applications along with new topologies and control techniques

Tolbert, Leon M.

163

Vehicle Technologies Office: Fuel Efficiency and Emissions | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri Mechanical EngineerEnergy Vehicle

164

Investigation of Direct Injection Vehicle Particulate Matter Emissions |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationary FuelPresentation from theDepartment of

165

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)  

Reports and Publications (EIA)

In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

2005-01-01T23:59:59.000Z

166

Prospects on fuel economy improvements for hydrogen powered vehicles.  

SciTech Connect (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

167

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop  

E-Print Network [OSTI]

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop@du.edu ABSTRACT In 1993, on-road emissions in Continental Europe showed a pronounced South/North declining gradient for CO, HC and NO fuel specific emissions (gm/kg). Emissions in Hamburg and Rotterdam were

Denver, University of

168

HEV, PHEV, BEV Test Standard Validation  

Broader source: Energy.gov (indexed) [DOE]

BEV Test Standard Validation 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Michael Duoba Argonne National Laboratory Sponsored by Lee Slezak...

169

Project Information Form Project Title Strategies for Transitioning to Zero-Emission Vehicles--Freight  

E-Print Network [OSTI]

Source(s) and Amounts Provided (by each agency or organization) US DOT $38,884 Total Project Cost $38Project Information Form Project Title Strategies for Transitioning to Zero-Emission Vehicles Description of Research Project According to the EIA, freight modes accounted for 29% of transportation fuel

California at Davis, University of

170

Project Information Form Project Title White Paper on Strategies for Transitioning to Zero-Emission Vehicles--  

E-Print Network [OSTI]

or organization) US DOT $38,875 Total Project Cost $38,875 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title White Paper on Strategies for Transitioning to Zero and End Dates July 2014 to September 2014 Brief Description of Research Project Zero-emission vehicles

California at Davis, University of

171

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized.

172

Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area  

SciTech Connect (OSTI)

Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

2004-06-14T23:59:59.000Z

173

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

174

Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options  

SciTech Connect (OSTI)

Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

Wang, M.Q.

1997-05-20T23:59:59.000Z

175

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

the uses of oil and diesel for electric generation increasesfuture gasoline and diesel hybrid electric vehicles (HEVs) [diesel vehicles, 6% of ethanol vehicles, and less than 1% of CNG, electric

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

176

Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)  

SciTech Connect (OSTI)

Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

Cosgrove, J.; Gonger, J.

2014-01-01T23:59:59.000Z

177

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

178

Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

2007-01-01T23:59:59.000Z

179

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawk MunicipalMontvale,GTZVehicle Emission

180

AVTA: Honda Insight HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Honda Insight hybrid-electric vehicle. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_honda_insight.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AVTA: Hyundai Sonata HEV 2011 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Hyundai Sonata hybrid electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2011_hyundai_sonata_hybrid.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

182

AVTA: Ford Fusion HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_fusion_hybrid.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

183

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

solely from stored electric energy during the day. With theIn Hybrid Electric Vehicles on Energy and Emissions UsingIn Hybrid Electric Vehicles on Energy and Emissions Using

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

184

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

SciTech Connect (OSTI)

The U.S. Department of Energys Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEVs fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

185

Comparing Emissions Benefits from Regulating Heavy Vehicle Idling |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment of Energy Emissions

186

Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2012-04-01T23:59:59.000Z

187

Hybrid Energy Storage System Integration For Vehicles , Hai Zhou  

E-Print Network [OSTI]

electric-drive vehicles have shown promises for substantial reductions in petroleum use and vehicle emis, Electric-Drive Vehicle, Design, Optimization 1. Introduction Transportation electrification has drawn these challenges [3]. Hybrid electric vehicles (HEVs) have been fast adopted and widely deployed over the past

Zhou, Hai

188

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

189

Path dependent receding horizon control policies for hybrid electric vehicles  

E-Print Network [OSTI]

Future hybrid electric vehicles (HEVs) may use path-dependent operating policies to improve fuel economy. In our previous work, we developed a dynamic programming (DP) algorithm for prescribing the battery state of charge ...

Kolmanovsky, Ilya V.

190

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network [OSTI]

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

191

In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries  

E-Print Network [OSTI]

-extending series hybrid electric vehicle (HEV) by the student members of the Society of Automotive Engineers (SAEIn-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J driving conditions as opposed to purely experimental testing. The new approach is cost- effective, greatly

Wang, Chao-Yang

192

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

SciTech Connect (OSTI)

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

193

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

SciTech Connect (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

194

On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.  

SciTech Connect (OSTI)

In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H. (Energy Systems)

2007-01-01T23:59:59.000Z

195

BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV  

E-Print Network [OSTI]

­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been for the broadband monitoring of a battery. Keywords-- battery impedance, spectroscopy, broadband signals, Li-ion system of EV and HEV. Li-ion battery technology is believed to be the most attractive

Paris-Sud XI, Université de

196

Benchmarking of Advanced HEVs and PHEVs over a Wide Range...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08carlson.pdf More Documents & Publications Off-Cycle Benchmarking...

197

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect (OSTI)

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

198

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

SciTech Connect (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.

Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

2006-11-01T23:59:59.000Z

199

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

200

Contribution of vehicle emissions to ambient carbonaceous particulate matter: A review and synthesis of the available data in the South Coast Air Basin. Final report  

SciTech Connect (OSTI)

Table of Contents: Executive Summary; Introduction; Ambient Carbonaceous Particulate Matter in the South Coast Air Basin; Measurements of Emissions from In-Use Motor Vehicles in the South Coast Air Basin; Integration of Emissions Measurements into Comprehensive Emissions Inventories; Relating Emissions fom Motor Vehicles to Particulate Air Quality; Synthesis: The Combined Effect of All Vehicle-Related Source Contributions Acting Together; Trends in More Recent Years; Opportunities for Further Research; References; Appendix A: Detailed Mass Emissions Rates for Organic Compounds from Motor Vehicle Exhaust; and Appendix B: Organic Compounds Emitted from Tire Dust, Paved Road Dust, and Brake Lining Wear Dust.

Cass, G.R.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network [OSTI]

for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

Michalek, Jeremy J.

202

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

203

Candidate Fuels for Vehicle Fuel Cell Power Systems  

E-Print Network [OSTI]

, Petroleum, HEV Gasoline, Petroleum, ICEV Energy, MJ/mi Vehicle: Petroleum Vehicle: Other Fossil Fuel Vehicle: Non Fossil Fuel Fuel Chain: Petroleum Fuel Chain: Other Fossil Fuel Fuel Chain: Non Fossil Fuel price premium · Subsidies/taxes · Supply chain (natural gas, materials) · Fuel economy · FCV and fueling

204

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

SciTech Connect (OSTI)

Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

2009-04-10T23:59:59.000Z

205

Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change  

SciTech Connect (OSTI)

During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

2009-01-23T23:59:59.000Z

206

Vehicle Technologies Office Merit Review 2014: Robust Nitrogen oxide/Ammonia Sensors for Vehicle on-board Emissions Control  

Broader source: Energy.gov [DOE]

Presentation given by Los Alamos National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about robust...

207

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

SciTech Connect (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

208

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

producing zero emissions. . The EPRI studies mentioned abovetwo technical reports, EPRI (2007) published Environmentalsport utility vehicles (EPRI, 2002) An 80% required safety

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

209

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

210

US residential charging potential for electric vehicles Elizabeth J. Traut a  

E-Print Network [OSTI]

US residential charging potential for electric vehicles Elizabeth J. Traut a , TsuWei Charlie market, conventional vehicles (CV) make up the vast majority of market share, hy- brid electric vehicles (HEVs) represent less than 4% share, and sales of plug-in electric vehicles (PEVs), including plug-in hy

Michalek, Jeremy J.

211

Performance Analysis and Comparison of Three IPMSM with High Homopolar Inductance for Electric Vehicle Applications  

E-Print Network [OSTI]

Synchronous Motor, Zero-Sequence Inductance, Electric Vehicle, Ripple Torque, Fast evaluation, Harmonics three topologies of PMSM according to the specifications of an electric vehicle (EV) with severe and especially for hybrid electric vehicle (HEV) and electric vehicle (EV). Moreover, interior permanent magnet

Boyer, Edmond

212

An analysis of hybrid-electric vehicles as the car of the future  

E-Print Network [OSTI]

This thesis will examine the validity of the benefits of the Hybrid-Electric Vehicle (HEV). With the recent focus on energy initiatives, reflected through Bush's state of the union, as well as President Hockfield's MIT ...

Kang, Heejay

2007-01-01T23:59:59.000Z

213

Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

SciTech Connect (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1995-09-01T23:59:59.000Z

214

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

215

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment  

Broader source: Energy.gov [DOE]

Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

216

Multilevel Inverters for Electric Vehicle Applications  

SciTech Connect (OSTI)

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

217

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network [OSTI]

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

218

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

press/105827/article.html Electric Drive TransportationAssociation (2005) Electric Drive Market and SalesGM's New Family of Electric-drive Propulsion Systems.

Heffner, Reid R.

2007-01-01T23:59:59.000Z

219

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

haul merchandise, but he no longer played a role in the business, and the trucks 20 MPG fuel economy

Heffner, Reid R.

2007-01-01T23:59:59.000Z

220

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Role of Advertising in Brand Image Development. The JournalD. (1986) Strategic Brand Concept-Image Management Journalthe Impact of Self-Image Congruence on Brand Preference and

Heffner, Reid R.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Bradford, S. (2003) Are Hybrid Cars Worth It? Smartmoney 28p. C1. Hakim, D. (2005b) Hybrid-Car Tinkerers Scoff at No-Dollars and Sense of Hybrid Cars. Available from: http://

Heffner, Reid R.

2007-01-01T23:59:59.000Z

222

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

haul cargo in the truck, but both he and Ellen were feeling guilty about the trucks high fuelhaul merchandise, but he no longer played a role in the business, and the trucks 20 MPG fuel

Heffner, Reid R.

2007-01-01T23:59:59.000Z

223

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

headed sales and marketing at BMW, run Fords internationalfor example, that Volvo and BMW are two distinct automobileVolvo Automobile Safe BMW Automobile High-Performance In

Heffner, Reid R.

2007-01-01T23:59:59.000Z

224

AVTA: 2010 Ford Fusion HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA …Ford Fusion HEV

225

AVTA: 2011 Honda CRZ HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTASmartHonda CRZ HEV

226

AVTA: 2013 Chevrolet Malibu HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota Prius PHEVofMalibu HEV

227

HEV, PHEV, BEV Test Standard Validation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED Hot TestingEPA2010 | Department- -HEV,

228

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles . Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

229

Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,  

E-Print Network [OSTI]

Motor Vehicle Fleet Emissions by OP-FTIR K I M B E R L Y S . B R A D L E Y , K E V I N B . B R O O concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing

Denver, University of

230

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

231

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

232

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

233

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

234

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

235

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

236

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

237

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

238

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles Hui Zhang1 , Leon M -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain

Tolbert, Leon M.

239

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

240

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks  

E-Print Network [OSTI]

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks management system for hybrid electric vehicles (HEV), using neural networks (NN), was developed and tested. The system minimizes the energy requirement of the vehicle and can work with different primary power sources

Catholic University of Chile (Universidad Católica de Chile)

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles  

SciTech Connect (OSTI)

The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

2012-03-30T23:59:59.000Z

242

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect (OSTI)

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOEs FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTAs end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

243

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003  

SciTech Connect (OSTI)

We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

2007-11-09T23:59:59.000Z

244

Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003  

SciTech Connect (OSTI)

We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

2007-10-01T23:59:59.000Z

245

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

246

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network [OSTI]

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

247

Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

Thornhill, D. A.

248

U.S. Based HEV and PHEV Transaxle Program  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

249

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

ed petroleum gas, compressed natural gas, electricity, and to supply compressed natural gas and electricity though.category are compressed natural gas vehicles, hydrogen

Collantes, Gustavo

2006-01-01T23:59:59.000Z

250

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

petroleum gas, compressed natural gas, electricity, and to supply compressed natural gas and electricity though.category are compressed natural gas vehicles, hydrogen

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

251

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

* 53% NO x sensors that meet stringent vehicle requirements are not available: a) Cost (Complex sensors compared to the automotive sensor) b) Sensitivity (Need 5ppm or...

252

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

complete NO x sensors that meet stringent vehicle requirements are not available: a) Cost (Complex sensors compared to the automotive sensor) b) Sensitivity (Need 5ppm or...

253

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

that strongly supported electricdrive vehicles, was workingbattery developers, and electric-drive components industry).on attributes of the electric drive system that would help

Collantes, Gustavo

2006-01-01T23:59:59.000Z

254

Vehicle Technologies Office Merit Review 2014: Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

255

Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

256

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

257

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

258

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

259

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

of Biodiesel and Second Generation Biofuels on NOx Emissionsof Biodiesel and Second Generation Biofuels on NOx EmissionsBiodiesel and Second Generation Biofuels on NO x Emissions

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

260

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Emissions Comparisons from Alternative Fuel Buses and DieselEmissions Comparisons from Alternative Fuel Buses and Dieselof Biodiesel as an Alternative Fuel for Current and Future

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Determining the Volatility of Ultrafine (UF) PM Emissions from CNG Vehicles  

E-Print Network [OSTI]

. Limited research has been done to characterize compressed natural gas (CNG) mass emissions and practically

262

Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and  

E-Print Network [OSTI]

convention is used to denote different types of vehicles and engine technologies. Internal combustion engine of energy. Hybrid electric vehicles (HEV) have an internal combustion engine but also a battery that can and no combustion engine. Although still a small share of the automobile marketplace, hybrid vehicle models

263

Wireless Power Transfer for Electric Vehicles  

SciTech Connect (OSTI)

As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

2011-01-01T23:59:59.000Z

264

HEV, PHEV, EV Test Standard Development and Validation  

Broader source: Energy.gov (indexed) [DOE]

EV Test Standard Development and Validation 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 13-17, 2013 Michael Duoba, Henning Lohse-Busch, Kevin...

265

AVTA: Chevrolet Malibu HEV 2013 Testing Results | Department...  

Broader source: Energy.gov (indexed) [DOE]

The following reports describe results of testing done on a 2013 Chevrolet Malibu hybrid electric vehicle. The baseline performance testing provides a point of comparison...

266

AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid...  

Broader source: Energy.gov (indexed) [DOE]

and development. The following reports describe results of testing done on a 2010 Civic hybrid electric vehicle with an advanced experimental ultra-lead acid battery, an...

267

Vehicle Technologies Office Merit Review 2014: Fuel and Lubricant Effects on Emissions Control Technologies  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel and...

268

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Now, a portion of the 10% EV sales mandate can be composeda small percentage of EV sales with the ZEV mandate). Withsale of more high-profit, light-duty trucks and sport-utility vehicles under CAFE regulations. EV

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

269

Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration  

Broader source: Energy.gov [DOE]

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

270

J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria  

E-Print Network [OSTI]

; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

Boyer, Edmond

271

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

272

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

natural gas engines are predominately unburned fuel, therefore, the non-methane hydrocarbon fraction of THC exhaust emissions typically trends

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

273

HOT SPOT ANALYSIS OF REAL WORLD VEHICLE EMISSIONS BASED UPON A PORTABLE ON-BOARD  

E-Print Network [OSTI]

emissions of carbon monoxide (CO), nitric oxide (NO), hydrocarbons (HC), and carbon dioxide (CO2, and open loop/closed loop flag were also recorded using the OEM-2100TM . This paper presents examples percent of nitrogen oxides (NOx) emissions, 77 percent of carbon monoxide (CO) emissions, and 25 percent

Frey, H. Christopher

274

AVTA: Toyota Prius Gen III HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Toyota Prius III hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_toyota_prius.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

275

Smog Check II Evaluation Part II: Overview of Vehicle  

E-Print Network [OSTI]

Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 4. The Vehicle Fleet Is Dominated by Newer Vehicles______________ 8 5. More Recent Vehicle Models

Denver, University of

276

A Control Strategy Scheme for Fuel Cell-Vehicle Based on Frequency Hamza Alloui  

E-Print Network [OSTI]

A Control Strategy Scheme for Fuel Cell-Vehicle Based on Frequency Separation Hamza Alloui based on frequency-separation for Fuel cell-Battery Hybrid Electric Vehicle (HEV), using a Fuel cell (FC of this strategy. Keywords ­ Fuel cell, hybrid source, battery, DC-DC Boost converter, Buck-boost converter

Boyer, Edmond

277

Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

SciTech Connect (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1996-06-01T23:59:59.000Z

278

Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions  

E-Print Network [OSTI]

their net CO2 emissions when a full life cycle analysis is considered, although some fuel system problems may arise with higher biofuel blends especially in cold weather....

Nielsen, Eric

2012-12-31T23:59:59.000Z

279

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

x emissions from biodiesel in newer engine technologies in afeedstock, biodiesel blend level, engine technology, andBiodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

280

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

feedstock, biodiesel blend level, engine technology, andx emissions from biodiesel in newer engine technologies in aBiodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HEV Fleet Testing - Summary Fact Sheet for 2010 Ford Fusion  

Broader source: Energy.gov (indexed) [DOE]

Ford Fusion VIN 3FADP0L32AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features:...

282

HEV Fleet Testing - Summary Fact Sheet for 2010 Honda Insight  

Broader source: Energy.gov (indexed) [DOE]

courts, law offices, and medical facilities on city streets and urban freeways. Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 10 kW Battery: NiMH Seatbelt...

283

HEV Fleet Testing - Summary Fact Sheet for 2010 Toyota Prius  

Broader source: Energy.gov (indexed) [DOE]

courts, law offices, and medical facilities on city streets and urban freeways. Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt...

284

HEV Fleet Testing - Summary Fact Sheet 2011 Hyundai Sonata vin...  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata VIN KMHEC4A47BA003539 Vehicle Specifications Engine: 2.4 L Electric Motor: 30 kW Battery: Lithium Polymer Seatbelt Positions: Five Payload: 1074 lbs Features:...

285

HEV Fleet Testing - Summary Fact Sheet 2011 Hyundai Sonata vin...  

Broader source: Energy.gov (indexed) [DOE]

2011 Hyundai Sonata VIN KMHEC4A43BA004932 Vehicle Specifications Engine: 2.4 L Electric Motor: 30 kW Battery: Lithium Polymer Seatbelt Positions: Five Payload: 1074 lbs Features:...

286

HEV Fleet Testing - Summary Fact Sheet 2010 Toyota Prius  

Broader source: Energy.gov (indexed) [DOE]

Toyota Prius VIN JTDKN3DU2A5010462 Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 885 lbs Features:...

287

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

288

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

a small percentage of EV sales with the ZEV mandate). WithNow, a portion of the 10% EV sales mandate can be composedSales - High Produciton Volume Scenario Subcompact Vehicle Chassis Manufacturing Costs GM Ovonics Projection of Selling Prices of NiMH EV

Lipman, Timothy E.

1999-01-01T23:59:59.000Z

289

Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan  

E-Print Network [OSTI]

Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

Nishimura, Eriko

2011-01-01T23:59:59.000Z

290

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

291

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

292

Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles  

E-Print Network [OSTI]

D. Carbonyl and nitrogen dioxide emissions from gasoline-in the exhaust to nitrogen dioxide (NO 2 ). NO 2 in turn ispollutants such as nitrogen dioxide (NO 2 ), nitrous acid (

Millstein, Dev E.; Harley, Robert A

2010-01-01T23:59:59.000Z

293

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

294

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. Effects of Fuel Ethanol Use on Fuel-Cycle

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

295

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. Effects of Fuel Ethanol Use on Fuel-Cycle

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

296

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

matter from on-road gasoline and diesel vehicles.D.H. , Chase, R.E. , 1999b. Gasoline vehicle particle sizeFactors for On-Road Gasoline and Diesel Motor Vehicles

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

297

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

298

Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system  

DOE Patents [OSTI]

A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

2014-01-14T23:59:59.000Z

299

Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238  

SciTech Connect (OSTI)

Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E. [Oak Ridge National Lab., TN (United States); Dearth, M.A. [Ford Motor Co., Dearborn, MI (United States). Environmental Research Consortium

1997-09-01T23:59:59.000Z

300

Vehicle Technologies Office Merit Review 2014: Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications  

Broader source: Energy.gov [DOE]

Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hybrid options for light-duty vehicles.  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

302

Application of positive matrix factorization to on-road measurements for source apportionment of diesel-and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

of diesel- and gasoline-powered vehicle emissions in Mexico City D. A. Thornhill, A. E. Williams, T. B be low. The second figure shows the background versus diesel factors. There may be a slight horizontal factors. In this case, even when the diesel factor's contributions are very high, the background factor

Meskhidze, Nicholas

303

Well-to-Wheel Energy, Emissions, and Cost Analysis of Electricity and Fuel Used in Conventional and Electrified Vehicles, and Their Connection to a Sustainable Energy Infrastructure  

E-Print Network [OSTI]

produced in creating the electricity through a full Life Cycle Analysis. As a result, proper comparison of electrified and conventional vehicles must include a complete Well-to-Wheel (WtW) study including the emissions generated through production and use...

Strecker, Bryan Anthony

2012-12-31T23:59:59.000Z

304

Temperature dependence of volatile organic compound evaporative emissions from motor vehicles  

E-Print Network [OSTI]

gasoline samples collected at Sacramento area service stations. Vapor-liquid equilibrium relationships were summer 2001. Additional gasoline- related VOC emissions not shown in Figure 1 occur at service stations gasoline permeation through rubber and plastic components of the fuel system. [3] EMFAC [California Air

Silver, Whendee

305

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network [OSTI]

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

306

Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study  

E-Print Network [OSTI]

Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study M. Zeraoulia1 Combustion Engine (ICE) and the electric motor to deliver power in parallel to drive the wheels. Since both the ICE and electric motor are generally coupled to the drive shaft of the wheels via two clutches

Paris-Sud XI, Université de

307

Silicon Carbide Power Device Characterization for HEVs Burak Ozpineci1,3  

E-Print Network [OSTI]

Silicon Carbide Power Device Characterization for HEVs Burak Ozpineci1,3 burak@ieee.org Leon M: The emergence of silicon carbide- (SiC-) based power semiconductor switches, with their superior features material. Another material, silicon carbide (SiC), with superior properties compared with Si, is a good

Tolbert, Leon M.

308

Effects of Silicon Carbide (SiC) Power Devices on HEV PWM Inverter Losses*  

E-Print Network [OSTI]

Effects of Silicon Carbide (SiC) Power Devices on HEV PWM Inverter Losses* Burak Ozpineci1,3 burak and Education Oak Ridge, TN 37831-0117 Abstract-The emergence of silicon carbide- (SiC-) based power, silicon carbide (SiC) with its superior properties compared with Si, is a good candidate to be used

Tolbert, Leon M.

309

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect (OSTI)

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

310

Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study  

E-Print Network [OSTI]

and willingness to forgive my work responsibilities, ultimately, allowed me to complete my dissertation. Time is a sacred resource, and if you had not been so generous with yours and mine, I might still be working on Chapter 3. Thank you for giving me more....3.1 Statistical Results 360 9.3.2 EM vs. dICE Use Between Operating Modes. 364 9.4 Pollutant Emissions... 377 9.5 Concluding Remarks. 400 CHAPTER 10: Diesel Internal Combustion Engine Use in PHEV...

Hohl, Carrie

2012-12-31T23:59:59.000Z

311

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

312

Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report  

SciTech Connect (OSTI)

The U.S. Department of Energys Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

2001-12-01T23:59:59.000Z

313

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

314

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel...  

Energy Savers [EERE]

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Vehicle Technologies Office Merit Review 2014:...

315

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

SciTech Connect (OSTI)

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

316

HYBRID ELECTRIC VEHICLE OWNERSHIP AND FUEL ECONOMY ACROSS TEXAS: AN APPLICATION OF SPATIAL MODELS  

E-Print Network [OSTI]

and environmental policies (Koo et al. 2012). While EV sales (including both HEVs and PEVs) have risen considerably significant. If households registering more fuel- efficient vehicles, including hybrid EVs, are also more inclined to purchase plug-in EVs, these #12;findings can assist in spatial planning of charging

Kockelman, Kara M.

317

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

318

Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

319

System Simulations of Hybrid Electric Vehicles with Focus on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid...

320

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vehicle Technologies Office Merit Review 2014: Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

322

NREL: Vehicles and Fuels Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D...

323

Vehicle Technologies Office Merit Review 2014: Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

324

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

SciTech Connect (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

325

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

326

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

of Conventional vs. Hybrid Vehicles, paper to be presented15 Table 10 Hybrid Vehicle Sales to Date - North America &Power Projections of Hybrid Vehicle Characteristics (1999-

Burke, Andy

2004-01-01T23:59:59.000Z

327

The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

328

Vehicle Technologies Office Merit Review 2014: Joint Development and Coordination of Emissions Control Data and Models (CLEERS Analysis and Coordination)  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the joint...

329

Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

330

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain  

E-Print Network [OSTI]

of a hybrid electric vehicle (HEV) powertrain test cell is proposed. The test cell consists of a motor combustion engine (ICE) and an electric motor/generator (EM) in series or parallel configurations. The ICE charges the battery or by- passes the battery to propel the wheels via an electric motor. This electric

Mi, Chunting "Chris"

331

ENSC 461 PROJECT: Next generation air conditioning systems for vehicles Assigned date: Feb. 21, 2011 Due date: April 11, 2011  

E-Print Network [OSTI]

to significant power consumption of vapour-compression systems, finding a new "green" refrigerant is another vehicles (HEVs), as it is the second most energy consuming system after the electric motor. Further, HVAC air conditioning systems used in the automotive industry are based on vapour-compression refrigeration

Bahrami, Majid

332

cDNA encoding a polypeptide including a hev ein sequence  

DOE Patents [OSTI]

A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

2000-07-04T23:59:59.000Z

333

Vehicle Fuel Economy Improvement through Thermoelectric Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

334

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

335

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

Whitney, K.

2014-05-01T23:59:59.000Z

336

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

337

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network [OSTI]

converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

338

10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1-in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum

Kammen, Daniel M.

339

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003  

E-Print Network [OSTI]

Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

2008-01-01T23:59:59.000Z

340

Optical and Physical Properties from Primary On-Road Vehicle Particle Emissions And Their Implications for Climate Change  

E-Print Network [OSTI]

, 2008). Many global climate models take particulate mass emissions from inventories, assume a size not always yield satisfactory results. In one study the amount of BC in current aerosol inventories had

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Comparative Study on Emerging Electric Vehicle Technology Assessments  

SciTech Connect (OSTI)

Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary steps: (1) Search Relevant Literature - An extensive search of recent analyses that address the environmental impacts, market penetration rates, and oil displacement potential of various EV technologies was conducted; (2) Consolidate Studies - Upon completion of the literature search, a list of analyses that have sufficient data for comparison and that should be included in the study was compiled; (3) Identify Key Assumptions - Disparity in conclusions very likely originates from disparity in simple assumptions. In order to compare 'apples-to-apples,' key assumptions were identified in each study to provide the basis for comparing analyses; (4) Extract Information - Each selected report was reviewed, and information on key assumptions and data points was extracted; (5) Overlay Data Points - Visual representations of the comprehensive conclusions were prepared to identify general trends and outliers; and (6) Draw Final Conclusions - Once all comparisons are made to the greatest possible extent, the final conclusions were draw on what major factors lead to the variation in results among studies.

Ford, Jonathan [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Blackburn, Julia [Sentech, Inc.; Sikes, Karen [Sentech, Inc.

2011-03-01T23:59:59.000Z

342

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable costand Fuel Cell Electric Vehicle Symposium GHG emissions rate (CO 2 -eq/kWh) Cost

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

343

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

PHEV impact on wind energy market (Short et al. , 2006) andVehicles in California Energy Markets, TransportationElectric Vehicles on Wind Energy Markets, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

344

Research on Fault Analysis and Fault-Tolerant Control of EV/HEV Powertrain  

E-Print Network [OSTI]

presents research works in the topics of fault analysis and fault tolerant control of an electric vehicle mechanism (transition strategy) at sensor fault occurrence. Index Terms--Electric vehicle, induction motor-tolerant AC motor drives in industrial applications [9-10- 41]. II. ELECTRIC VEHICLE POWERTRAIN COMPONENTS

Brest, Université de

345

Cost Effectiveness of Technology Solutions for Future Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Effectiveness of Technology Solutions for Future Vehicle Systems Cost Effectiveness of Technology Solutions for Future Vehicle Systems Explores the economics of CO2 emission...

346

Environmental Assessment of Plug-In Hybrid Electric Vehicles...  

Energy Savers [EERE]

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

347

Vehicle Technologies Office Merit Review 2014: Robust Nitrogen...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Merit Review 2014: Robust Nitrogen oxideAmmonia Sensors for Vehicle on-board Emissions Control Vehicle Technologies Office Merit Review 2014: Robust Nitrogen...

348

The FreedomCAR & Vehicle Technologies Health Impacts Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The FreedomCAR & Vehicle Technologies Health Impacts...

349

Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...  

Broader source: Energy.gov (indexed) [DOE]

emissions regulations. 2009advcombustionengine.pdf More Documents & Publications Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report Vehicle...

350

Vehicle Electrification is Key to Reducing Petroleum Dependency...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas...

351

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman, Gary Bishop, Allison Peddle, University of Denver Department of Chemistry and Biochemistry Denver CO 80208. www.feat.biochem.du.edu  

E-Print Network [OSTI]

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman Nitrogen dioxide: Less than 5% of the NOx BUT with an outstanding peak for the 2007 MY in Fresno 0. Nitrogen dioxide: less than 5% of NOx except the Fresno fleet containing the 2007 Sprinter ambulances. #12;

Denver, University of

352

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

353

Plugging Vehicles into Clean Energy October, 2012  

E-Print Network [OSTI]

Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

California at Davis, University of

354

Electric and Hydrogen Vehicles Past and Progress  

E-Print Network [OSTI]

status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

Kammen, Daniel M.

355

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

356

Vehicle Technologies Office | Department of Energy  

Office of Environmental Management (EM)

Read more Buying a New Car? Buying a New Car? Compare gas mileage, emissions, air pollution ratings, and safety data for new and used vehicles. Read more The Vehicle...

357

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

Technologies to Reduce CO2 Emissions of New Light- Dutyreduce their CO2 emissions. The emerging technologiessignificantly reduce their CO2 emissions. These technologies

Burke, Andy

2004-01-01T23:59:59.000Z

358

Clean Cities Offers Fleets New Tool to Evaluate Benefits of Alternative Fuel Vehicles  

Broader source: Energy.gov [DOE]

The AFLEET Tool allows fleets to calculate payback periods and emissions benefits of alternative fuel vehicles.

359

Plug-in electric vehicle introduction in the EU  

E-Print Network [OSTI]

Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

Sisternes, Fernando J. de $q (Fernando Jos Sisternes Jimnez)

2010-01-01T23:59:59.000Z

360

Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC...  

Broader source: Energy.gov (indexed) [DOE]

Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

362

Vehicle Technologies Office Merit Review 2014: Advanced Heavy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

363

Vehicle Technologies Office: Directions in Engine-Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference The...

364

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Resources Board (CARB), battery and fuel cell EDVs are considered Zero Emission Vehicles (ZEV), hybrids for carrying power from hybrid and fuel cell vehicles to the grid. Implications for current industry directions

Firestone, Jeremy

365

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives  

SciTech Connect (OSTI)

Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

Giorgio Rizzoni

2005-09-30T23:59:59.000Z

366

HEV Fleet Testing - Summary Fact Sheet 2010 Ford Fusion vin#4757  

Broader source: Energy.gov (indexed) [DOE]

www.eere.energy.govinformationcenter Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features:...

367

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

of a typical Internal Combustion Engine (ICE) vehicle and awhile an Internal Combustion Engine (ICE) suppliesoff and the internal combustion engine starts to operate.

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

368

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

by adding additional batteries to the design, allowing theincreases. Advanced Batteries for Electric-Drive Vehicles (generally require larger batteries with correspondingly

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

369

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network [OSTI]

LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

370

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

371

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

372

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

373

Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data  

SciTech Connect (OSTI)

Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

Wu, Xing [Lamar University] [Lamar University; Dong, Jing [Iowa State University] [Iowa State University; Lin, Zhenhong [ORNL] [ORNL

2014-01-01T23:59:59.000Z

374

Clean Cities 2011 Vehicle Buyer's Guide  

SciTech Connect (OSTI)

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

375

Clean Cities 2014 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

Not Available

2013-12-01T23:59:59.000Z

376

Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and CO, compared to diesel vehicles, while meeting certification requirements deer11johnson.pdf More Documents & Publications Vehicle Emissions Review - 2012 Emissions Control...

377

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect (OSTI)

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

378

Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report  

SciTech Connect (OSTI)

PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

2010-07-01T23:59:59.000Z

379

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

Vehicle (BEV) with an electric motor capable of supplyingmode operation uses the electric motor to run during low-PHEV x can be run on the electric motor only for the first x

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

380

Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications  

SciTech Connect (OSTI)

Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

Vimmerstedt, L.J.; Hammel, C.J.

1997-04-01T23:59:59.000Z

382

Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

None

2007-09-30T23:59:59.000Z

383

Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

Marlino, Laura D [ORNL

2007-09-01T23:59:59.000Z

384

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

385

The _Ibmitted manuscript has been authored bv e contr=,orof,,eU.S.Go._.me., -H_e-(-;V--96-37  

E-Print Network [OSTI]

The _Ibmitted manuscript has been authored bv e contr=,orof,,eU.S.Go._.me., -H_e-(-;V--96-37 under, with the focus being on benchmarks and technology dem- MARK 1TESTBEDS onstrations to demonstrate proof of princi

Grossman, Robert

386

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

internal combustion engine is working, it reasonably can be assumed to have similar emissionInternal Combustion Engine (ICE) supplies additional power for high- speed/power operation. Although some studies capture emission

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

387

Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas Brian C. McDonald and Drew R. Gentner  

E-Print Network [OSTI]

suggest rates of reduction in NMHC versus CO emissions may differ somewhat. Emission ratios of CO), nitrogen oxides (NOx = NO + NO2), and carbon monoxide (CO) are coemitted with carbon dioxide (CO2) during which are mostly diesel powered. Emission reduction measures in the U.S. have been implemented over

Cohen, Ronald C.

388

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

389

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

390

The Greenhouse Gases, Regulated Emissions, and Energy Use in...  

Open Energy Info (EERE)

of a variety of vehicle, fuel, and technology choices. Overview Measures the petroleum displacement and greenhouse gas emissions of medium and heavy-duty vehicles and...

391

Effect of SoyEffect of Soy--Based B20 Biodiesel on Fuel UseBased B20 Biodiesel on Fuel Use and Emissions of 15 Construction Vehiclesand Emissions of 15 Construction Vehicles  

E-Print Network [OSTI]

Effect of SoyEffect of Soy--Based B20 Biodiesel on Fuel UseBased B20 Biodiesel on Fuel Use Tests with B20 Biodiesel ­ Based on Regular NCDOT Duty Schedule Overview of Study Design for Field for Other Pollutants B20 Biodiesel Tier 0Tier 0 VehicleVehicle Tier 1Tier 1 Tier 2Tier 2 Tier 3Tier 3 0 40

Frey, H. Christopher

392

Commercial Vehicle Classification using Vehicle Signature Data  

E-Print Network [OSTI]

Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

2008-01-01T23:59:59.000Z

393

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

2007) Impacts of Electric-drive Vehicles on California'sInteractions between electric-drive vehicles and the powerin emissions found for electric- drive vehicles is a result

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

394

The future of electric two-wheelers and electric vehicles in China  

E-Print Network [OSTI]

SAE Hybrid Vehicle Symposium, San Diego CA, 1314 February.emissions from a plug-in hybrid vehicle (PHEV) in China has2008. Nissans Electric and Hybrid Electric Vehicle Program.

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

395

Mack LNG vehicle development  

SciTech Connect (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

396

Biofuels, Climate Policy and the European Vehicle Fleet  

E-Print Network [OSTI]

We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

Rausch, Sebastian

397

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

398

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

trucks powered by internal combustion engines burn gasolineHEVs combine internal combustion engines running on gasolinefrom a stop that internal combustion engines have difficulty

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

399

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

trucks powered by internal combustion engines burn gasolineHEVs combine internal combustion engines running on gasolinemay replace the internal combustion engine with a cleaner,

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

400

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)  

SciTech Connect (OSTI)

This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2010-11-01T23:59:59.000Z

402

Consumer Vehicle Choice Model Documentation  

SciTech Connect (OSTI)

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle. Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2012-08-01T23:59:59.000Z

403

TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND  

E-Print Network [OSTI]

#12;#12;TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND EMISSIONS STUDY: PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current Diesel Idling Emissions Factors

404

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

405

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

406

Vehicle Technologies Office Merit Review 2014: Development and...  

Energy Savers [EERE]

Long-Term Energy and GHG Emission Macroeconomic Accounting Tool Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

407

Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Improved Energy Efficiency and Reduced Emissions in Engines Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

408

System Simulations of Hybrid Electric Vehicles with Focus on...  

Broader source: Energy.gov (indexed) [DOE]

System Simulations of Hybrid Electric Vehicles with Focus on Emissions Zhiming Gao Veerathu K. Chakravarthy Josh Pihl C. Stuart Daw Maruthi Devarakonda Jong Lee...

409

Assessment of Future Vehicle Transportation Options and Their...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the United States while simultaneously reducing GHGs through the expanded use of renewable electricity-fueled transportation and reduced emissions per vehicle-mile (VMT). On a...

410

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

411

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

412

Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong  

E-Print Network [OSTI]

Chemistry and Physics Vehicular emission of volatile organicY. , and Huang, Y. S. : Emission factors and characteristicslight-duty vehicle emissions, Environ. Sci. Technol. , 30,

2009-01-01T23:59:59.000Z

413

Planning an itinerary for an electric vehicle  

E-Print Network [OSTI]

The steady increase in oil prices and awareness regarding environmental risks due to carbon dioxide emissions are promoting the current interest in electric vehicles. However, the current relatively low driving range ...

Chale-Gongora, Hugo G.

414

Ultracapacitor Boosted Fuel Cell Hybrid Vehicle  

E-Print Network [OSTI]

With the escalating number of vehicles on the road, great concerns are drawn to the large amount of fossil fuels they use and the detrimental environmental impacts from their emissions. A lot of research and development have been conducted...

Chen, Bo

2010-01-14T23:59:59.000Z

415

Autonomous vehicles  

SciTech Connect (OSTI)

There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

1996-08-01T23:59:59.000Z

416

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

417

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

SciTech Connect (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-04-15T23:59:59.000Z

418

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

419

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Three-Dimensional Composite Nanostructures for Lean NOx Emission Control 2010 DOE Vehicle Technologies and...

420

A Low-Cost Continuous Emissions Monitoring System for Mobile...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition A Low-Cost Continuous Emissions...

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Review of SCR Technologies for Diesel Emission Control: Euruopean...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

422

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

423

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

424

The Large Scale Roll-Out of Electric Vehicles  

E-Print Network [OSTI]

the emissions reduction targets. Within the transport sector, electric vehicles (EV) are considered as one of the important mitigation options. However the effect of EVs on emissions and the electricity sector is subject to debate. We use scenario analysis...

Talaei, Alireza; Begg, Katherine; Jamasb, Tooraj

2012-10-26T23:59:59.000Z

425

Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th  

E-Print Network [OSTI]

the Alternative Fuel Data Center (AFDC) of the U.S. Department of Energy.4 Carbon dioxide (CO2), CO, and nitricZhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA

Frey, H. Christopher

426

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

SciTech Connect (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

427

Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.  

E-Print Network [OSTI]

Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

Cheah, Lynette W. (Lynette Wan Ting)

2010-01-01T23:59:59.000Z

428

Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives  

SciTech Connect (OSTI)

High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance sufficiently to reduce the characteristic current to value of the rated current, which will enable them to operate at high CPSR. This feature also limits short-circuit fault currents. Second, their segmented structure simplifies assembly problems and is expected to reduce assembly costs. Third, the back-emf waveform is nearly sinusoidal with low cogging. To examine in depth this design ORNL entered into a collaborative agreement with the University of Wisconsin to build and test a 6 kW laboratory demonstration unit. Design, fabrication, and testing of the unit to 4000 rpm were completed during FY 2005. The motor will be sent to ORNL to explore ways to control its inverter to achieve higher efficiency during FY 2006. This paper first reviews the concept of characteristic current and what is meant by optimal flux weakening. It then discusses application of the fractional-slot concentrated winding technique to increase the d-axis inductance of a PMSM showing how this approach differs from an integral-slot motor with sinusoidal-distributed windings. This discussion is followed by a presentation of collaborative analyses and comparison with the University of Wisconsin's measured data on a 6 kW, 36-slot, 30-pole motor with concentrated windings. Finally ORNL presents a PMSM design with integral-slot windings that appears to meet the FreedomCAR Specifications, but has some disadvantages. Further collaboration with the University of Wisconsin is planned for FY 2006 to design a motor that meets FreedomCAR specifications.

Bailey, J.M.

2005-10-24T23:59:59.000Z

429

Fuel Cell Vehicles and Hydrogen in Preparing for market launch  

E-Print Network [OSTI]

Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

California at Davis, University of

430

Vehicle Technologies Office: AVTA - Electric Vehicle Community...  

Broader source: Energy.gov (indexed) [DOE]

Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

431

Vehicle Technologies Office: Advanced Vehicle Testing Activity...  

Energy Savers [EERE]

initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

432

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

Whitney, K.; Shoffner, B.

2014-06-01T23:59:59.000Z

433

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

434

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

435

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

436

Lifecycle-analysis for heavy vehicles.  

SciTech Connect (OSTI)

Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

Gaines, L.

1998-04-16T23:59:59.000Z

437

978-3-901882-46-3 c 2012 IFIP Green Move: towards next generation sustainable smartphone-based vehicle sharing  

E-Print Network [OSTI]

efficient with respect to traditional Internal Combustion Engine (ICE) vehicles. EVs, however, face some their overall greenhouse gas emissions by 60-80% compared to 1990. Yet, the continuing growth in emissions due vehicles (EV). In fact, EVs are almost entirely Zero Emission Vehicles (ZEV); hence, their widespread use

Cugola, Gianpaolo

438

The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles  

E-Print Network [OSTI]

Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

Berry, Irene Michelle

2010-01-01T23:59:59.000Z

439

Advanced Collaborative Emissions Study (ACES) NETL Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NETL Agreement 13919 Advanced Collaborative Emissions Study (ACES) NETL Agreement 13919 Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

440

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report  

SciTech Connect (OSTI)

This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

Barnitt, R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

442

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

443

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

444

Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.  

SciTech Connect (OSTI)

Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

Burnham, A.; Wang, M. Q.; Wu, Y.

2006-12-20T23:59:59.000Z

445

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

446

Energy Star Concepts for Highway Vehicles  

SciTech Connect (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

447

Hydrogen-Enhanced Natural Gas Vehicle Program  

SciTech Connect (OSTI)

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

448

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect (OSTI)

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

449

Plug-in HEVs: A Near-Term Option to Reduce Petroleum Consumption from FY05 Milestone Report (Presentation)  

SciTech Connect (OSTI)

Presented to DOE management staff on September 14, 2005 at the DOE headquarters in Washington DC. Content was updated January 19, 2006 for publication. This presentation addresses plug-in hybrid electric vehicle (PHEV) market and technology issues for research and development efforts.

Markel, T.; O'Keefe, M.; Simpson, A.; Gonder, J.; Brooker, A.

2006-01-19T23:59:59.000Z

450

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

451

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

452

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

453

Design of a fuzzy controller for energy management of a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the design of a control scheme based on Fuzzy Logic to minimize automobile fuel consumption and exhaust emissions while maximizing battery state of charge (SOC) for hybrid vehicles. The advantages the hybrid vehicle has over...

Estrada Gutierrez, Pedro Cuauhtemoc

1997-01-01T23:59:59.000Z

454

Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis  

E-Print Network [OSTI]

The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

Karplus, Valerie Jean

2008-01-01T23:59:59.000Z

455

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint  

SciTech Connect (OSTI)

Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

2011-01-01T23:59:59.000Z

456

Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles  

SciTech Connect (OSTI)

This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

2007-12-01T23:59:59.000Z

457

Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

McKeever, JW

2005-06-16T23:59:59.000Z

458

Symbolism in Californias Early Market for Hybrid Electric Vehicles  

E-Print Network [OSTI]

economy, passing by a gasoline station without having toother drivers at gasoline stations about their HEV are

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2008-01-01T23:59:59.000Z

459

On-Road Particle Matter Emissions from a MY 2010 Compliant HD...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving Across the U.S. On-Road Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving...

460

Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems  

E-Print Network [OSTI]

cost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or enginecost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or engine

Griswold, Julia Baird

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network [OSTI]

Motor Vehicle Growth, Oil Demand and CO2 Emissions through61 4.3.2 Crude Oil Demand and TradeMotor Vehicle Growth, Oil Demand and CO2 Emissions through

G. Fridley, David

2010-01-01T23:59:59.000Z

462

Vehicle Standards in a Climate Policy Framework WORKING PAPER  

E-Print Network [OSTI]

action to raise Corporate Average Fuel Economy (CAFE) standards and issue vehicle greenhouse gas (GHG) emissions standards both in California and federally. At the same time, U.S. policy makers are moving toward a national program to limit GHG emissions economy wide. The most robust strategy entails capping emissions

Edwards, Paul N.

463

City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program  

SciTech Connect (OSTI)

The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

None

2013-12-31T23:59:59.000Z

464

Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

465

US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"  

SciTech Connect (OSTI)

The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

William E. Wallace

2006-09-30T23:59:59.000Z

466

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

467

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 Provide Clean Air Grow the Clean Energy Economy Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles Established the Northeast Electric Vehicle Network through

California at Davis, University of

468

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

2013-01-01T23:59:59.000Z

469

6, 57735796, 2006 Vehicular emissions  

E-Print Network [OSTI]

be partly responsible for lower CO2 and higher CO and NO emission factors. Also, a fast reduction the emission (in g/km) of key and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO, NMHC, dur-10 of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO20 and CO2

Paris-Sud XI, Université de

470

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

471

Measuring congestion and emissions : a network model for Mexico City  

E-Print Network [OSTI]

Congestion is a major problem for the major cities of today. It reduces mobility, slows economic growth, and is a major cause of emissions. Vehicles traveling at slow speeds emit significantly more pollutants than vehicles ...

Amano, Yasuaki Daniel, 1978-

2004-01-01T23:59:59.000Z

472

Vehicle Technologies Office: Multi-Year Program Plan 2011-2015...  

Energy Savers [EERE]

undertaken to help meet the Administrations goals for reductions in oil consumption and carbon emissions from the ground transport vehicle sector of the economy....

473

AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-  

E-Print Network [OSTI]

-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

Miller, Jeffrey A.

474

Winter Motor-Vehicle EMISSIONS in  

E-Print Network [OSTI]

in November 2000 via an environmental impact study decision that only allowed snowcoach use (4, 5 (1). Yellowstone National Park in the U.S. has a long history of balancing tourist access OF DENVER JOHN D. RAY NATIONAL PARK SERVICE APRIL 15, 2006 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 2505 #12

Denver, University of

475

Sandia National Laboratories: zero-emission vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sources andwind energy

476

Vehicle Emissions Review - 2011 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrierof Energy1

477

Vehicle Emissions Review - 2012 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrierof Energy12

478

Alternative Fuels Data Center: Propane Vehicle Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative Fuels DataConversions to someone

479

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect (OSTI)

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

480

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence  

SciTech Connect (OSTI)

This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis??s existing GATE centers have become the campus??s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

Erickson, Paul

2012-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle hev emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optimized control studies of a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the development of a control scheme to maximize automobile fuel economy and battery state-of-charge (SOC) while meeting exhaust emission standards for parallel hybrid electric vehicles, which are an alternative to conventional...

Bougler, Benedicte Bernadette

1995-01-01T23:59:59.000Z

482

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles  

E-Print Network [OSTI]

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles Angela M. Monateri at the infrared image from an automobile. ·The camera was set up with a FEAT 3000 unit to compare emissions vs

Denver, University of

483

Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes strategies to reduce petroleum through the use of alternative fuels in vehicles, as well as guidance and best practices for each strategy.

484

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

485

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Energy Savers [EERE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

486

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

487

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

488

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

489

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

490

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

491

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

492

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

493

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

494

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

495

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

496

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

497

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

498

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

499

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

for Multiplexed Electric Vehicle Charging, US20130154561A1,Chynoweth, Intelligent Electric Vehicle Charging System,of RFID Mesh Network for Electric Vehicle Smart Charging

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

500

Coordinating Automated Vehicles via Communication  

E-Print Network [OSTI]

1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

Bana, Soheila Vahdati

2001-01-01T23:59:59.000Z