Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

2

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

3

Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Medium-Speed Electric Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search

4

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

5

Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Medium-Speed Electric Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search

6

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Project Nissan Leaf Vehicle Summary Report Region: All Number of vehicles: 35 Reporting period: January 2011 through March 2011 Vehicle Usage Number of trips 3,364 Total...

7

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics EV Everywhere Grand Challenge With their immense potential for increasing the...

8

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events (mi) 25.8 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

9

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:28:32 PM INLMIS-11-24041 Page 1 of 8 EV Project Chevrolet Volt Vehicle Summary Report Region: Oregon Number of vehicles: 23...

10

Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Insurance Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Insurance Regulation

11

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

12

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 72% 10% 18% 2011 ECOtality 2132012 2:44:55 PM INLMIS-11-24041 Page 1 of 3 EV Project Chevrolet Volt Vehicle Summary Report Region: Houston, TX Metropolitan Area...

13

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 9:52:44 AM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

14

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:30:52 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

15

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 21% 1% 2011 ECOtality 8102011 1:34:23 PM INLMIS-11-21904 Page 1 of 10 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

16

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 212013 8:31:28 AM INLMIS-11-21904 Page 1 of 15 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

17

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

124,954 21,973 7,718 Percent of all charging events 81% 14% 5% Electric Vehicle Mode (EV) Operation Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC...

18

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2013 ECOtality 4232013 11:20:12 AM INLMIS-11-21904 Page 1 of 17 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

19

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 17% 5% 2011 ECOtality 1262012 2:19:55 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

20

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 2:02:15 PM INLMIS-11-24041 Page 1 of 12 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 7312012 6:48:45 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

22

Alternative Fuels Data Center: Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Charging Infrastructure Availability to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on AddThis.com... More in this section...

23

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle (EV) Vehicle (EV) Infrastructure Definitions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

24

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

25

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Registration Fee The annual registration fee for an EV is $25.00 unless the vehicle is more

26

Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promotion and Infrastructure Development to someone by E-mail Promotion and Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on AddThis.com...

27

Alternative Fuels Data Center: Electric Vehicle (EV) Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fee to someone by E-mail Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Fee EV operators must pay an annual vehicle registration renewal fee of $100. This fee expires if the legislature imposes a vehicle miles traveled fee or

28

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee Reduction to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

29

Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Parking Space Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

30

Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retail Electric Retail Electric Vehicle (EV) Charging Regulations to someone by E-mail Share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Facebook Tweet about Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Twitter Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Google Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Delicious Rank Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Digg Find More places to share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

31

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure and Battery Tax Exemptions to someone by E-mail Infrastructure and Battery Tax Exemptions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on AddThis.com...

32

Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Road User Assessment System Pilot to someone by E-mail Road User Assessment System Pilot to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on AddThis.com... More in this section... Federal State Advanced Search

33

EV-Everywhere: Making Electric Vehicles More Affordable | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable November 8, 2012 - 3:05pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs EV-Everywhere: Making Electric Vehicles More Affordable As part of the EV-Everywhere Grand Challenge, we are working with America's best and brightest scientists, engineers and businesses to make electric vehicles as affordable and convenient as today's gasoline-powered vehicles. But we can't do it without you. Storified by Energy Department · Thu, Nov 08 2012 12:04:07 In March 2012, President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time.

34

EV-Everywhere: Making Electric Vehicles More Affordable | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable November 8, 2012 - 3:05pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs EV-Everywhere: Making Electric Vehicles More Affordable As part of the EV-Everywhere Grand Challenge, we are working with America's best and brightest scientists, engineers and businesses to make electric vehicles as affordable and convenient as today's gasoline-powered vehicles. But we can't do it without you. Storified by Energy Department · Thu, Nov 08 2012 12:04:07 In March 2012, President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time.

35

VEHICLE ACCESS PORTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

36

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's 10-Year Vision for Plug-in Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in...

37

Vehicle Technologies Office: EV Everywhere Grand Challenge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

train college students and those in the workforce on development, maintenance, and emergency response for electric drive vehicles and electric vehicle charging stations....

38

Electric Vehicle (EV) Carsharing in A Senior Adult Community  

E-Print Network (OSTI)

Electric Vehicle (EV) Carsharing in A Senior Adult Community Susan;86% 0 0 65% 35% 0% 72% 25% 3% Single-car households Two-car households No-car households % of Respondents Cars per Household Interview (n=7) Focus

Kammen, Daniel M.

39

EV Project NIssan Leaf Vehicle Summary Report-Reporting period...  

NLE Websites -- All DOE Office Websites (Extended Search)

events 80% 16% 4% 2011 ECOtality 1182011 11:44:44 AM INLMIS-11-21904 Page 1 of 11 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

40

Vehicle Technologies Office: EV Everywhere Workplace Charging...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workplace Charging Challenge T U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center oday, about half of the vehicles in the United...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vehicles - ORNL inverter a boost for EVs . . . | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles - ORNL inverter a boost for EVs . . . Vehicles - ORNL inverter a boost for EVs . . . Less expensive, lighter and more efficient inverters could put hybrid electric vehicles on the highway to improved viability. While batteries receive a lot of attention, Oak Ridge National Laboratory inventor Gui-Jia Su noted that inverters, which convert direct current into alternating current, play an equally important role in powering hybrid electric vehicles. The patent-pending ORNL inverter is more compact, reduces battery losses, improves operating conditions and reliability, and can be operated in high-temperature conditions. The inverter also significantly reduces undesirable motor torque ripples, which increase or decrease output torque as the output shaft rotates. In addition to uses in hybrid electric

42

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing Activities and Results Jim Francfort E.V. Road Map - Preparing Oregon for the Introduction of Electric Vehicles...

43

Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

All-Electric Vehicle All-Electric Vehicle (EV) Manufacturing Tax Credit to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

44

Testing of TEC-Based TMS for Patrol EV and Bus Fleet Vehicles  

Science Conference Proceedings (OSTI)

This project was a continuation of a study to help improve the driving range and reliability of electric vehicles (EVs) and to encourage their commercial growth

1999-12-14T23:59:59.000Z

45

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network (OSTI)

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona Vehicle Symposium & Exhibition (EVS27), Barcelona : Spain (2013)" #12;EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals

Recanati, Catherine

46

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Range of Percent of Charging Units with a Vehicle Connected versus Time of Day Max percentage of charging units connected across all days Min percentage of charging units...

47

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Percent of time with a vehicle drawing power from charging unit 6% 0% 1% 0% 6% Max percentage of charging units connected across all days Min percentage of charging units...

48

Electric and Magnetic Fields Associated with Electric Vehicle Charging: EMF from EV Charging  

Science Conference Proceedings (OSTI)

Electric vehicles (EVs) are becoming increasingly common. On a routine basis, it is necessary to charge the batteries within these vehicles. Electric and magnetic fields (EMF) are produced as a direct result of charging, but they have not been measured in a systematic manner in order to gain a better understading of their characteristics. This study, performed at Southern California Edisons Electric Vehicle Test Center (EVTC) in Pomona, CA, was conducted to address ...

2013-11-07T23:59:59.000Z

49

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.3 1.9 2.2 Average electricity consumed per charging event (AC kWh) 8.3 6.9 7.9 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

50

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.1 2.3 Average electricity consumed per charging event (AC kWh) 8.4 7.2 8.1 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

51

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.5 2.1 2.4 Average electricity consumed per charging event (AC kWh) 8.7 7.5 8.4 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

52

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.0 2.3 Average electricity consumed per charging event (AC kWh) 8.7 7.3 8.3 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

53

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.1 2.4 Average electricity consumed per charging event (AC kWh) 8.6 7.4 8.3 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

54

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

55

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

56

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

57

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

58

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

59

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

60

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

62

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

63

Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Limited Speed Vehicle Limited Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Limited Speed Vehicle Access to Roadways A limited speed vehicle is defined as a vehicle that is capable of

64

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network (OSTI)

, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu, modeling, electric vehicle 1 Introduction Car-sharing is defined as a system which allows to eachEVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger

Paris-Sud XI, Université de

65

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

66

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Access to Tunnels to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Access to Tunnels on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Access to Tunnels on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Access to Tunnels on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Access to Tunnels on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Access to Tunnels on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Access to Tunnels on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

67

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2012 Note: EV Project charging units may be used by vehicles that are not part of the EV Project. Likewise, EV Project vehicles may connect to non-EV Project charging units....

68

Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities  

DOE Green Energy (OSTI)

The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

Mindy Kirkpatrick

2012-05-01T23:59:59.000Z

69

Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

70

Abstract--It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of  

E-Print Network (OSTI)

,000) could be replaced by electrical car by the year 2025 [8]. It is predicted that EVs will make 641 Abstract-- It is expected that a lot of the new light vehicles in the future will be electrical into account. Index Terms-- Electrical vehicle, smart charging, spot electricity price. I. INTRODUCTION HE

Mahat, Pukar

71

DOE KSU EV Site Operator Program. [United States Department of Energy (DOE) Kansas State University (KSU) Electric Vehicle (EV)  

SciTech Connect

Kansas State University, with funding from federal, state, public, and private companies, is participating in the DOE Electric Vehicle Site Operator Program. Kansas State is demonstrating, testing, and evaluating electric of hybrid vehicle technology. This will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four(4) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort station wagons. This quarter's report describes ongoing public relations activities and meetings as well as presenting performance data for the electric vehicles. (GHH)

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1992-01-01T23:59:59.000Z

72

DOE KSU EV Site Operator Program. [United States Department of Energy (DOE) Kansas State University (KSU) Electric Vehicle (EV)  

DOE Green Energy (OSTI)

Kansas State University, with funding from federal, state, public, and private companies, is participating in the DOE Electric Vehicle Site Operator Program. Kansas State is demonstrating, testing, and evaluating electric of hybrid vehicle technology. This will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four(4) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort station wagons. This quarter's report describes ongoing public relations activities and meetings as well as presenting performance data for the electric vehicles. (GHH)

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1992-01-01T23:59:59.000Z

73

xEV Simulator Virtual Prototyping of Electrified Vehicles Using Real Data.  

E-Print Network (OSTI)

??One way of reducing the emissions in the vehicle industry is to use electrified vehicles. An important method when developing new vehicles is to use (more)

Kauppinen, Kristoffer

2013-01-01T23:59:59.000Z

74

About the EV Project Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

About the EV Project Reports The EV Project fact sheets and reports are based on data from several different sources (vehicle and electric vehicle supply equipment EVSE...

75

A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project  

DOE Green Energy (OSTI)

ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

Stephen L. Schey; John G. Smart; Don R. Scoffield

2012-05-01T23:59:59.000Z

76

Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle and Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed

77

EVS24  

NLE Websites -- All DOE Office Websites (Extended Search)

6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS26 Los Angeles, California, May 6-9, 2012 A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in The EV Project Stephen Schey 1 , Don Scoffield 2 , John Smart 2 1 ECOtality North America, 430 S. 2nd Ave., Phoenix, AZ 85003, sschey@ecotality.com 2 Idaho National Laboratory, 2351 .N Boulevard, Idaho Falls, ID 83415, don.scoffield@inl.gov, john.smart@inl.gov Abstract ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over

78

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle, other than

79

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle with an

80

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle, including a neighborhood electric vehicle, is defined

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled vehicle that can reach

82

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled electric vehicle that has

83

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled vehicle with a maximum

84

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled vehicle that is capable of

85

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled electric vehicle capable

86

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a self-propelled motor vehicle that

87

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle, other than

88

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles are only allowed access to roadways with speeds limits

89

A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?  

Science Conference Proceedings (OSTI)

A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

John Smart

2013-01-01T23:59:59.000Z

90

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles are only permitted to operate on roadways with posted

91

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may not operate on roads with posted speed limits of

92

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only travel on roadways with a posted speed limit of

93

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only be used on roads that have a posted speed limit

94

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only operate on private and public roads and streets

95

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles are only permitted on highways with speed limits up to

96

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only travel on roadways with a posted speed limit of

97

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only be used on roadways with posted speed limits of

98

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may operate on streets with posted speed limits of 35

99

S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings  

DOE Green Energy (OSTI)

These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

Not Available

1991-12-31T23:59:59.000Z

100

Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Roadway Access Study to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Roadway Access Study A committee composed of members of the New Hampshire Legislature must study

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1  

DOE Green Energy (OSTI)

Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

Not Available

1992-12-01T23:59:59.000Z

102

EV Everywhere: Americas Plug-In Electric Vehicle Market Charges Forward  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

103

Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Electric Low-Speed Electric Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Electric Vehicle Access to Roadways

104

EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Infrastructure Charging Infrastructure Enabling Flexible EV Design July 30, 2012 Lee Slezak Technology Manager, Vehicle Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov Outline * Purpose - Establish Vision for Achieving EV Everywhere * Enable Strong Demand for EVs * Supply of Vehicles and Infrastructure * Current Status of Infrastructure and Vehicles * Desired Workshop Outputs * Approach - Design Candidate Infrastructure Strategies for 2022 10/12/2012 2 eere.energy.gov Achieving EV Everywhere - Enable Strong Demand for EVs 10/12/2012 3 EV Everywhere Consumer Acceptance EV Everywhere Consumer Acceptance Electric Vehicles * Safe * Cost Competitive * Utility meets consumer needs * Range

105

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways - Prudence Island to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on AddThis.com... More in this section... Federal State

106

Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Access to Plug-In Access to Plug-In Electric Vehicle (PEV) Registration Records to someone by E-mail Share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Facebook Tweet about Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Twitter Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Google Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Delicious Rank Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Digg Find More places to share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on AddThis.com...

107

Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries  

DOE Green Energy (OSTI)

Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

Rowlette, J.J.

1981-01-15T23:59:59.000Z

108

Synergy EV | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Synergy EV Jump to: navigation, search Name Synergy EV Sector Vehicles Product California-based...

109

Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low- and Medium-Speed Low- and Medium-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

110

Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low- and Medium-Speed Low- and Medium-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

111

Engineering the EV future  

Science Conference Proceedings (OSTI)

Continuing environmental concerns are moving electric vehicles (EV) into high gear at development facilities everywhere. The General Motors EV1 and the Ford Ranger EV are old news, the 106 Electric from PSA Peugeot-Citroen is established in France, where ...

M. J. Riezenman

1998-11-01T23:59:59.000Z

112

Results of electric vehicle safety issues survey: Conducted on behalf of ad hoc EV battery readiness working group in-vehicle safety sub-working group  

DOE Green Energy (OSTI)

This report documents the results of a survey conducted in the winter of 1994-1995 by the In-Vehicle Safety Sub-Working Group, a working subunit of the DOE-sponsored ad hoc EV Battery Readiness Working Group. The survey was intended to determine the opinions of a group of industry experts regarding the relative importance of a list of some 39 potential safety concerns, grouped into 8 broad areas related to electric vehicles and their battery systems. Participation in the survey was solicited from the members of the Battery Readiness Working Group, along with members of the SAE EV Battery Safety Issues Task Force and selected other knowledgeable individuals. Results of the survey questionnaire were compiled anonymously from the 38 individuals who submitted responses. For each of the issues, survey respondents ranked them as having high, medium or low importance in each of three areas: the severity of events involving this concern, the probability that such events will occur, and the likelihood that mitigating action for such events may be needed beyond normal practices. The accumulated responses from this ranking activity are tabulated, and the response totals are also provided by several subgroupings of respondents. Additionally, large numbers of written comments were provided by respondents, and these are summarized with numbers of responses indicated. A preliminary statistical analysis of the tabulated results was performed but did not provide a satisfactory ranking of the concerns and has not been included in this report. A list is provided of the 15 concerns which a majority of the respondents indicated could be of both medium-to-high severity and medium-to-high probability of occurrence. This list will be reviewed by the Safety Sub-Working Group to determine the status of actions being taken by industry or government to mitigate these concerns, and the likelihood that additional research, standards development or regulation may be warranted to address them.

Hunt, G.L.

1996-06-01T23:59:59.000Z

113

EV Micro-Climate TM Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

of Transportation EV Electric Vehicle EVSE Electric Vehicle Supply Equipment HEV Hybrid Electric Vehicle INL Idaho National Laboratory MAG Maricopa Association of Governments MSA...

114

EVS 24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network (OSTI)

driver efficiency - increase mission safety margins - minimize vehicle emissions #12;VI Issues in the U safety. #12;Intelligent Vehicle Advanced Control Capabilities - The AVIP Paradigm (a System ofThe AVIPThe U.S. Army's VehicleThe U.S. Army's Vehicle Intelligence Program (AVIP):Intelligence Program

Senger, Ryan S.

115

New Life for EV Batteries  

Science Conference Proceedings (OSTI)

Apr 15, 2013 ... Once they've finished powering electric vehicles (EV) for hundreds of ... from various automakers for the secondary market, beginning in 2020.

116

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

117

Use of microPCM fluids as enhanced liquid coolants in automotive EV and HEV vehicles. Final report  

DOE Green Energy (OSTI)

Proof-of-concept experiments using a specific microPCM fluid that potentially can have an impact on the thermal management of automotive EV and HEV systems have been conducted. Samples of nominally 20-micron diameter microencapsulated octacosane and glycol/water coolant were prepared for testing. The melting/freezing characteristics of the fluid, as well as the viscosity, were determined. A bench scale pumped-loop thermal system was used to determine heat transfer coefficients and wall temperatures in the source heat exchanged. Comparisons were made which illustrate the enhancements of thermal performance, reductions of pumping power, and increases of heat transfer which occur with the microPCM fluid.

Mulligan, James C.; Gould, Richard D.

2001-10-31T23:59:59.000Z

118

EV Fleet Success: EV Rental Cars at LAX  

Science Conference Proceedings (OSTI)

EV Fleet Success Case Studies is a series documenting successful fleet uses of electric vehicles in a variety of applications throughout the United States. Each case study describes the applications and provides a contact person for additional information, outlines the benefits of EVs and discusses the challenges encountered with the new technology. This study highlights use of electric vehicles made by Ford, General Motors, Honda and Toyota, available through Budget Rent a Car in Los Angeles.

1999-09-10T23:59:59.000Z

119

EV I  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'VIRONMENTAL R EV I EW for CATEGORI CAL EXCLUSION I>ETE RM I NATION Rocky Mo unt a in Region, Wesle rn Area Power Adm inist ra tio n C heye nne Substa tion West Co nt rol Building...

120

EV-13  

Office of Legacy Management (LM)

?a71 2.z' 1. lg EV-13 Notification of Xced for So?e Form of Reoedial Action, in Ikyo Ca;op., Los Alanos, New Mexico s. lkycrs, HEI-90 4 EVIXT has dctcrnincd that portions of...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

North American EV show  

Science Conference Proceedings (OSTI)

The hit of the North American EV and Infrastructure Conference held in Phoenix, AZ in December, was without a doubt, the new hybrid vehicle from Toyota known as the Prius. The Prius has both an internal combustion engine and an electric motor. As ordinary as it may appear, there`s a critical difference between the Prius and the other electric vehicles that were being demonstrated in Phoenix. Prius is an electric vehicle that never needs to be recharged. Range is not an issue, nor is battery replacement. This is the first mass-produced car with hybrid power providing the benefits of low emissions and high gasoline mileage in a real-world vehicle that can be driven anywhere. Many other alternative fueled vehicles were on display from other manufacturers as well. GM`s EV1, Nissan`s Altra station wagon, Ford`s electric Ranger pickup, DaimlerChrysler`s EPIC van as well as small, short-range ``neighborhood vehicles`` from Bombardier and Global Electric Motor-Cars were available for inspection and test drives.

Pfleeger, D.

1999-01-01T23:59:59.000Z

122

CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION...  

Open Energy Info (EERE)

| Sign Up Search Facebook icon Twitter icon CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION & SOLUTIONS | GREENER VEHICLES Home There are currently no...

123

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

124

EV Fleet Success: Southern California Municipal Fleets  

Science Conference Proceedings (OSTI)

This case study profiles several cities' use of electric vehicle (EV) fleets. It is part of a series documenting successful fleet uses of EVs in a variety of applications throughout the United States. Each case study describes the application and provides a contact person for additional information, outlines the benefits of EVS and discusses the challenges encountered with the new technology.

2000-01-26T23:59:59.000Z

125

EV Everywhere Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Challenge Kick-Off Patrick Davis, Vehicle Technologies Program Manager Jacob Ward, Vehicle Technologies Senior Analyst June 21, 2012 Hyatt Regency, Dearborn, Michigan EV Everywhere Workshops * Recruit the best and brightest American scientists, engineers, and businesses to tackle this electric vehicle challenge * Re-evaluate and refine the existing technical goals for increasing performance and cutting costs Topic Date Location Electric Drive Components July 24-25 Chicago, IL Advanced Batteries July 26 Chicago, IL Consumer Behavior and Charging Infrastructure July 31 - Aug 1 Los Angeles, CA Lightweight Vehicles and Structures TBD TBD The EV Everywhere Challenge Involves All of DOE The EV Everywhere Challenge Key Parameters * 5-passenger vehicle suitable for an average American family

126

News and Information about Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Electric Vehicles New Models for 2014 Vehicle EPA MPGE Estimates* Price (MSRP) Chevrolet Spark EV Subcompact Car Chevrolet Spark EV Chart: City, 128 mpge; Highway,...

127

EV Everywhere Grand Challenge Blueprint  

NLE Websites -- All DOE Office Websites (Extended Search)

A Message from A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

128

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

129

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

130

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

131

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition  

E-Print Network (OSTI)

significant amounts of the daily driving energy for the US light duty vehicle (cars, pickups, SUVs, and vans emission intensity (ton CO2/MWh), while in others regions with significant clean generation (hydro

132

Microsoft PowerPoint - Smart INL - EV Project Nissan Leaf Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America 1...

133

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

134

Fuel Economy of the 2013 Scion iQ EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Scion iQ EV Search for Other Vehicles View the Mobile Version of This Page Automatic (variable gear ratios) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon...

135

EV Charging Equipment Operational Recommendations for Power Quality  

Science Conference Proceedings (OSTI)

The success of widespread electric vehicle (EV) charging depends, in part, on the maintenance of power quality throughout the charging system. This report details recommendations to minimize negative impacts between EV chargers and the power grid.

1997-10-24T23:59:59.000Z

136

Fuel Economy of the 2013 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize...

137

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Project Overview Report Project to Date through March 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region...

138

EV Everywhere Battery Workshop: Preliminary Target-Setting Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Workshop: Preliminary Target-Setting Framework Jacob Ward, Vehicle Technologies Senior Analyst July 26, 2012 Doubletree-Rosemont, Chicago, IL For this Analysis, Three "EV "...

139

ANSI Summary of US-China Exchange on EV Standardization  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilitation American National Standards Institute US.-China Electric Vehicles and Battery Technology Workshop August 23, 2012 ANSI EVSP Roadmap | US-China EV and Battery...

140

Smart Grid EV Communication Module | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Grid EV Communication Module Argonne's technology integrates the communication controller into existing DC chargers or electric vehicles in order to accomplish SAE DC...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Smart Grid EV Communication (SpEC) Module | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

for licensing: Argonne's direct current charging digital communication controller, the Smart Grid EV Communication (SpEC) module, enables rapid recharging of electric vehicles...

142

EV Charging Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Infrastructure Charging Infrastructure JOHN DAVIS: Virtually anywhere in the U.S. you can bring light to a room with the flick of a finger. We take it for granted, but creating the national electric grid to make that possible took decades to accomplish. Now, in just a few years, we've seen the birth of a new infrastructure that allows electric vehicles to quickly recharge their batteries at home, work, or wherever they may roam. But this rapid growth has come with a few growing pains. Starting with less than 500 in 2009, there are now over 19,000 public-access charging outlets available to electric vehicles owners at commuter lots, parking garages, airports, retail areas and thousands of

143

Fuel Economy of the 2014 Toyota RAV4 EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota RAV4 EV Search for Other Vehicles View the Mobile Version of This Page Automatic (variable gear ratios) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel...

144

Fuel Economy of the 2014 Chevrolet Spark EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

145

Fuel Economy of the 2014 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

146

Hawaii Gets 'EV Ready' | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program

147

Hawaii Gets 'EV Ready' | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gets 'EV Ready' Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program By 2030, the Hawaii Clean Energy Initiative will:

148

Smartgrid EV Communication module (SpEC) SAE DC Charging Digital Communication Controller  

One of the major drawbacks of electric vehicles (EVs) is the long period of time required to recharge EV batteries. While regular Alternating Current (AC) charging systems are sufficient for overnight charging of these vehicles at home or at the ...

149

Deployment of EVs in the Federal Fleet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles 101 Electric Vehicles 101 eere.energy.gov The Parker Ranch installation in Hawaii Deployment of EVs in the Federal Fleet FUPWG Rapid City, South Dakota October 20 th , 2010 Amanda Sahl Federal Energy Management Program 2 | Electric Vehicles 101 eere.energy.gov FEMP facilitates the Federal Government"s implementation of sound, cost-effective energy management and investment practices to enhance the nation"s energy security and environmental stewardship. 3 | Electric Vehicles 101 eere.energy.gov Agenda * Overview of the Federal Fleet * Infrastructure Requirements * Current implementation and activity * Ongoing barriers and questions 4 | Electric Vehicles 101 eere.energy.gov Federal Fleet Inventory

150

EV China | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV China EV China EV China EV China More Documents & Publications Microsoft PowerPoint - Final translated version of Tsinghua Speech Industrial Energy Efficiency:Policy,...

151

How much are Chevrolet Volts in The EV Project driven in EV Mode?  

Science Conference Proceedings (OSTI)

This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how many miles are driven in EV mode, how far vehicles are driven between charging events, and how much energy is charged from the electric grid per charging event.

John Smart

2013-08-01T23:59:59.000Z

152

Multilevel Inverters for Electric Vehicle Applications  

DOE Green Energy (OSTI)

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

153

Multilevel Inverters for Electric Vehicle Applications  

SciTech Connect

This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

1998-10-22T23:59:59.000Z

154

DOE Field Operations Program EV and HEV Testing  

SciTech Connect

The United States Department of Energys (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

155

Charging EVs Efficiently NOW While Waiting for the Smart Grid  

Science Conference Proceedings (OSTI)

Due to a century of gas-tank / gas-station legacy, most of the current focus on Electrical Vehicle (EV) charging has been with respect to public charging, range anxiety, charging speed, and grid impact. Unfortunately, this focus overlooks the existing ... Keywords: Electric Vehicles, EV, charging, Plug-in Hybrids, Level-1, Level-2, EVSE, payin-to-plugin, charging at work, BEVI

Robert (Bob) Bruninga, Jill A. T. Sorensen

2013-04-01T23:59:59.000Z

156

Intelligent power management in micro grids with EV penetration  

Science Conference Proceedings (OSTI)

Large deployment of Electric Vehicles (EVs) adds new challenges in the operation of a microgrid. Assuming that a number of EV owners allow their batteries to charge when their cars are parked, this paper proposes an approach that aims to find suitable ... Keywords: Artificial immune system, Decentralized control, Electric vehicles, Microgrid, Multi agent system, Power management

Bhuvaneswari Ramachandran, Sanjeev K. Srivastava, David A. Cartes

2013-11-01T23:59:59.000Z

157

EV Everywhere Grand Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI Event Objective: To showcase existing DOE efforts in vehicle electrification and to obtain stakeholder input on the overall concept of the EV Everywhere Grand Challenge, the high-level strategy, and aggressive next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:45 AM STRATEGIC SIGNIFICANCE OF PLUG-IN ELECTRIC VEHICLES

158

EVS-23 Papers, Posters, and Brochure  

NLE Websites -- All DOE Office Websites (Extended Search)

EVS-23 Papers, Posters, and Brochure EVS-23 Papers, Posters, and Brochure Papers The papers that will be presented at EVS-23 and their Argonne authors are: "Advanced lithium-ion batteries for plug-in hybrid-electric vehicles," by Paul Nelson, Khalil Amine, Aymeric Rousseau and EnerDel Corp.'s Hiroyuki Yomoto. (222kb pdf) "In-situ torque measurements in hybrid electric vehicles powertrains," by Theodore Bohn, Michael Duoba and Richard Carlson. (723kb pdf) "Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids," by Linda Gaines, Andrew Burnham, Aymeric Rousseau and Danilo Santini. (471kb pdf) "Plug-in hybrid electric vehicle control strategy parameter optimization," by Aymeric Rousseau, Sylvain Pagerit and Tennessee Tech University's David Gao. (311kb pdf)

159

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

160

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network (OSTI)

non-electric vehicles, non-CNG vehicles, vehicle size, andrelated to ability to refuel EV or CNG vehicles at home.type vehicles: gasoline, CNG, methanol and EV. In the Wave-1

Sheng, Hongyan

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

162

Alternative Fuels Data Center: EV Charging Stations Spread Through Philly  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EV Charging Stations EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Digg Find More places to share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on AddThis.com... March 3, 2012 EV Charging Stations Spread Through Philly W atch how Philadelphia fuels electric vehicles with a growing network of

163

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

164

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

165

Secure wireless communication platform for EV-to-Grid research  

Science Conference Proceedings (OSTI)

"Vehicle to Grid" power or V2G will be a new green energy scheme that allows electricity to flow from Electric Vehicles (EVs) to power lines. The objective of this paper is to design and develop a secure wireless communication platform for V2G research, ... Keywords: authentication protocol, electric vehicle, power grid, secure wireless communication

Huaqun Guo; Fan Yu; W. C. Wong; Vivy Suhendra; Y. D. Wu

2010-06-01T23:59:59.000Z

166

EV Everywhere Charges Up the Workplace | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Everywhere Charges Up the Workplace EV Everywhere Charges Up the Workplace EV Everywhere Charges Up the Workplace January 31, 2013 - 1:45pm Addthis As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S. | Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S. | Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S.| Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging

167

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

168

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

169

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

170

Vehicle Technologies Office: EV Everywhere Workplace Charging...  

NLE Websites -- All DOE Office Websites (Extended Search)

worksites, and a best practice goal of assessing and meeting all PEV-driving employee demand. Take action by implementing a plan to install charging stations for their...

171

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

service company EV Electric vehicle (used to refer to aHenriette Schn of the Electric Vehicle Information CenterJason France of Electric Vehicle Infrastructure, and Mark

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

172

Alternative Fuels Data Center: San Diego Leads in Promoting EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

San Diego Leads in San Diego Leads in Promoting EVs to someone by E-mail Share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Facebook Tweet about Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Twitter Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Google Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Delicious Rank Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Digg Find More places to share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on AddThis.com... Sept. 3, 2011 San Diego Leads in Promoting EVs W atch how San Diego is leading the way in promoting electric vehicles. For information about this project, contact San Diego Regional Clean Cities

173

Arizona EV Infrastructure Plans Revealed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Infrastructure Plans Revealed EV Infrastructure Plans Revealed Arizona EV Infrastructure Plans Revealed November 5, 2010 - 3:21pm Addthis An electric vehicle uses a charging station. | Media photo from ECOtality An electric vehicle uses a charging station. | Media photo from ECOtality Joshua DeLung What are the key facts? 180 residential and 230 public charging stations to be installed Blueprints signify clearing of last major hurdle before implementation begins The EV Project has been recognized as one of the top Recovery Act projects Out in the desert, a revolution in automotive technology is happening. Some Arizona drivers are taking part in an innovative new project that will help develop electric vehicle infrastructure and gather crucial research data toward ensuring the vitality of EVs for years to come.

174

ev1.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

GM EV1 LEAD ACID BATTERIES SEPTEMBER 1997 Urban Range (On Urban Pomona Loop - see other side for map) Range (mi.) Without Aux. Loads With Aux. Loads 60.1 74.8 80.1 Payload (lb.)...

175

Microsoft Word - EVS25_Paper_v7.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Electricity Demand of PHEVs Operated by Private...

176

A Comparison of US and Chinese EV Battery Testing Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 USChina Electric Vehicle Initiative Meeting August 23-24, 2012...

177

Monthly EV Sales Shatter Records | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records September 25, 2013 - 3:51pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist Learn More About Electric Vehicles To find out how much you can save at the pump by switching to an EV, visit our eGallon tool. On September 5, media outlets reported that US monthly electric vehicle (EV) sales shattered the 10,000 unit barrier. Cumulative EV sales for August are estimated at 11,363 -- a 30 percent increase over the previous monthly record and a 75 percent increase since the same time last year.

178

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

179

Electric Vehicle Supply Equipment (EVSE) Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing What's New PLUGLESS Level 2 EV Charging System by Evatran Group Inc. - August 2013 The Advanced Vehicle Testing Activity is tasked...

180

Hybrid Electric and Pure Electric vehicle testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric and Pure Electric Vehicle Testing (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INLCON-05-00693 HEV & EV Testing...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

When EV Project participants  

NLE Websites -- All DOE Office Websites (Extended Search)

residential participants is programmable, as are the participating vehicles: Chevrolet Volt and Nissan Leaf. The question then is which one do participants prefer to program for...

182

GM EV1 Performance Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

system impacts. The following facts support this purpose: * As a fleet operator and an electric utility, SCE uses EVs to conduct its business. * SCE must evaluate EVs,...

183

President Obama Launches EV-Everywhere Challenge as Part of Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

said Secretary Chu. "The EV-Everywhere Challenge is focused on advancing electric vehicle technologies and continuing to reduce costs, so that a decade from now, electric...

184

Economics of EV Market/Future of EV Industry | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economics of EV MarketFuture of EV Industry Economics of EV MarketFuture of EV Industry Economics of EV MarketFuture of EV Industry Economics of EV MarketFuture of EV Industry...

185

EV Technical Center  

NLE Websites -- All DOE Office Websites (Extended Search)

March 2001 AQMD CONTRACT 00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR03 Electric Vehicle Technical Center Prepared by: Michel Wehrey Juan C. Argueta Julie M....

186

EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

- 7/20/2012 - 7/20/2012 EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next- generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program

187

Battery Electric Vehicle Driving and Charging Behavior Observed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America...

188

EV Everywhere Framing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Framing Workshop EV Everywhere Framing Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S. Department of Energy Dearborn, Michigan June 21, 2012 2 | U.S. Department of Energy energy.gov Transportation sector depends on oil Transportation sector depends on oil Petroleum 94% Natural Gas < 1% Biofuels 5% U.S. Transportation Fuel Share Gasoline prices are high Current Avg. $3.53 (as of June 18)* High gasoline prices are a burden on American families. *Source: EIA 3 | U.S. Department of Energy energy.gov U.S. oil import bill is almost $1 billion per day U.S. oil import bill is almost $1 billion per day http://www.eia.gov/petroleum/data.cfm#imports 4 | U.S. Department of Energy energy.gov

189

EV Guideline Assessment Templates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Guideline Assessment Templates EV Guideline Assessment Templates |1. Process: Organization |2. Guideline No: 1|3. Contractor: |4.Contract/project(s): | ||||| ||||| |5. Guideline Statement: Define the authorized work elements for the program. A work breakdown structure (WBS), tailored for effective internal management control, is commonly used in this process. | || |6. Documentation Required: 1) CLINs 2) WBS 3) WBS Dictionary | || || || |7. Instructions: Why this is important: The WBS represents the entire scope of work in the project, a "picture" of the work. The first level is the total system, and it continues down in successively smaller elements until it reaches the level of detail necessary for management action and control. This picture of the work is needed to facilitate traceability, ensure the

190

EV Technical Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Carrier Route Vehicles Carrier Route Vehicles Quarterly Report, June 2001 AQMD CONTRACT #00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR04 Electric Vehicle Technical Center An ISO 9001 Certified Facility Prepared by: Michel Wehrey Juan C. Argueta Julie M. Phung Southern California Edison June 15, 2001 Page i DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This report was prepared by the Electric Transportation Division of Southern California Edison, a subsidiary of Edison International. Neither the Electric Transportation Division of Southern California Edison, Southern California Edison, Edison International, nor any person working for or on behalf of any of them makes any warranty or representation, express or implied, (i) with respect to the

191

Electric Vehicle Charging Infrastructure Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

automotive manufacturers plan to launch plug-in electric vehicles (EVs) in 2010, the future of transportation is being propelled by a fundamental shift to cleaner and more...

192

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

193

Estimating the impact on fuel tax revenues from a changing light vehicle fleet with increased advanced internal combustion engine vehicles and electric vehicles.  

E-Print Network (OSTI)

??Advanced fuel economies in both traditional internal combustion engine vehicles (ICEs) and electric vehicles (EVs) have a strong influence on transportation revenue by reducing fuel (more)

Hall, Andrea Lynn

2013-01-01T23:59:59.000Z

194

Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint  

DOE Green Energy (OSTI)

This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

Brooker, A.; Thornton, M.; Rugh, J.

2010-02-01T23:59:59.000Z

195

Microsoft PowerPoint - EVS24 INL - AVTA.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

STAVANGER STAVANGER NORWAY MAY 13-16 2009 www.evs24.org John Smart Idaho National Laboratory U.S. Department of Energy - Advanced Vehicle Testing Activity: p gy g y Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities AVTA Background and Goals *The Advanced Vehicle Testing Activity (AVTA) is part of DOE's Vehicle Technologies Program *The Idaho National Laboratory (INL) and Electric Transportation y ( ) p Engineering Corporation (ETEC) conduct AVTA. Argonne National Laboratory performs dynamometer testing *AVTA goals: *AVTA goals: *Document potential of new vehicle technology to reduce petroleum consumption * *Provide benchmark data to technology modelers and target setters, research and development programs, and vehicle manufacturers * *Assist fleet managers in making informed vehicle purchase,

196

Prospects for electric vehicles  

Science Conference Proceedings (OSTI)

This paper discusses the current state-of- the-art of electric vehicles (EVs) with examples of recently developed prototype vehicles - Electric G-Van, Chrysler TEVan, Eaton DSEP and Ford/GE ETX-II. The acceleration, top speed and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress being made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles and their potential for reduction of air pollution and utility load management are postulated.

Patil, P.G. (Research and Development, Electric and Hybrid Propulsion Div., U.S. Dept. of Energy, Washington, DC (US))

1990-12-01T23:59:59.000Z

197

RealTime distributed congestion control for electrical vehicle charging  

Science Conference Proceedings (OSTI)

The significant load and unpredictable mobility of electric vehicles (EVs) makes them a challenge for grid distribution systems. Unlike most current approaches to control EV charging, which construct optimal charging schedules by predicting EV state ...

O. Ardakanian; C. Rosenberg; S. Keshav

2012-12-01T23:59:59.000Z

198

Power draw scheduling of electric and plug-in hybrid electric vehicles with unidirectional vehicle-to-grid benefits.  

E-Print Network (OSTI)

??This thesis addresses power scheduling aspects of electric and plug-in hybrid vehicles. The use of electric vehicles (EVs) as demand response resources and the unidirectional (more)

Fasugba, McDavis A.

2011-01-01T23:59:59.000Z

199

About the EV Project Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

sheets and reports are based on data from several different sources (vehicle and electric vehicle supply equipment EVSE manufacturers). These multiple data streams introduce...

200

1999 EV America Technical Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

braking and anti-lock brake systems. 4.3 OVERHEATING The vehicle motor and controllerinverter should be capable of continuous operation at maximum vehicle speed andor sustained...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electric vehicle smart charging and vehicle-to-grid operation  

Science Conference Proceedings (OSTI)

Electric vehicle EV charging must be optimised for grid load while guaranteeing that drivers' schedules and range requirements are met. A system encompassing EV owner input via a mobile application, an aggregation middleware, a charge scheduling and ... Keywords: EV, V2G, charge scheduling, smart grid

Siddhartha Mal, Arunabh Chattopadhyay, Albert Yang, Rajit Gadh

2013-06-01T23:59:59.000Z

202

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 416...

203

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2,405,406 Average Ambient Temperature (deg F) 61.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 355...

204

EV Technical Center  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2000 December 2000 AQMD CONTRACT #00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR02 Electric Vehicle Technical Center Prepared by: Ricardo Solares Juan C. Argueta Southern California Edison December 20, 2000 Page i DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This report was prepared by the Electric Transportation Division of Southern California Edison, a subsidiary of Edison International. Neither the Electric Transportation Division of Southern California Edison, Southern California Edison, Edison International, nor any person working for or on behalf of any of them makes any warranty or representation, express or implied, (i) with respect to the use of any information, product, process or procedure discussed in this report, including

205

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

206

EV Guideline Assessment Templates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Guideline Assessment Templates EV Guideline Assessment Templates DOEEVGuidelineAssessmentTemplates32.doc More Documents & Publications EV Guideline Assessment Templates...

207

EV Guideline Assessment Templates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Guideline Assessment Templates EV Guideline Assessment Templates DOEEVGuidelineAssessmentTemplates320.doc More Documents & Publications EV Guideline Assessment Templates...

208

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

209

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

210

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a...

211

Gas Mileage of 1999 Vehicles by GMC  

NLE Websites -- All DOE Office Websites (Extended Search)

1999 GMC Vehicles EPA MPG MODEL City Comb Hwy 1999 GMC EV1 Automatic (A1), Electricity Compare 1999 GMC EV1 kWh100 mi 43 City 40 Combined 36 Highway MPGe 79 City 85 Combined 94...

212

Gas Mileage of 2000 Vehicles by Nissan  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared By Vehicle Owners 21 City 24 Combined 28 Highway 2000 Nissan Altra EV , Electricity Compare 2000 Nissan Altra EV kWh100 mi 41 City 40 Combined 37 Highway MPGe 81 City...

213

ANSI Summary of US-China Exchange on EV Standardization  

NLE Websites -- All DOE Office Websites (Extended Search)

ANSI Summary of US-China Exchange on EV ANSI Summary of US-China Exchange on EV Standardization Presented by: Jim McCabe Senior Director, Standards Facilitation American National Standards Institute US.-China Electric Vehicles and Battery Technology Workshop August 23, 2012 ANSI EVSP Roadmap | US-China EV and Battery Technology Workshop Background - Why the Need for a U.S. Standardization Roadmap for EVs?  Many U.S. based standards developing organizations (SDOs) produce globally relevant standards following an open, consensus-based process (SAE, UL, NFPA, IEEE, and others)  A standardization roadmap would . . . Maximize coordination among SDOs and provide guidance on standards participation and progress  Enable the U.S. to speak more coherently with international partners

214

Wireless Charging System for Electric Vehicles  

OEM Electric Vehicles OEM EV Manufacturers Plug-in; internal technology development Street / highway in-motion charging systems Federal / State / Local

215

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

Williams, Brett D

2007-01-01T23:59:59.000Z

216

Hybrid & electric vehicle technology and its market feasibility  

E-Print Network (OSTI)

In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

217

Lessons Learned - The EV Project The EV MICRO-CLIMATE  

NLE Websites -- All DOE Office Websites (Extended Search)

will drive manufacturers to compete to deliver such vehicles. This illustrates that the future of transportation is being propelled by a fundamental shift to cleaner and more...

218

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

219

EV-Everywhere Wants to Hear from All of You! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV-Everywhere Wants to Hear from All of You! EV-Everywhere Wants to Hear from All of You! EV-Everywhere Wants to Hear from All of You! September 19, 2012 - 2:59pm Addthis As part of the EV-Everywhere Grand Challenge, we held a series of workshops to lay out the initiative. The most recent one in Washington, DC, explored ways to reduce energy consumption with improved vehicle design. | Photo courtesy of Roy Feldman. As part of the EV-Everywhere Grand Challenge, we held a series of workshops to lay out the initiative. The most recent one in Washington, DC, explored ways to reduce energy consumption with improved vehicle design. | Photo courtesy of Roy Feldman. David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy How can I participate? We want your ideas on defining what makes an EV affordable for the

220

laura.schewel@berkeley.edu 1 VIRTUAL EV TEST DRIVE: INTRODUCTION AND PROJECT SUMMARY  

E-Print Network (OSTI)

, and battery electric vehicles (4) (5). · Many consumers are not interested in strict economic rationality when costs? Her fundamental question: "What does an EV mean for me?" Virtual EV Test Drive helps answer all a plug-in hybrid probably would switch into gasoline mode, and if/where a battery electric would have run

Kammen, Daniel M.

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Simple cost model for EV traction motors  

DOE Green Energy (OSTI)

A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

Cuenca, R.M.

1995-02-01T23:59:59.000Z

222

EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer/Charging Workshop: Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior Jacob Ward, Vehicle Technologies Senior Analyst July 30, 2012 LAX Marriot, Los Angeles, California For "EV Everywhere" Analysis, Three Scenarios 1. PHEV40 - reduces battery size while removing range issues, but involves the higher cost of two powertrains 2. AEV100 - minimizes vehicle purchase cost, but introduces range/vehicle use/infrastructure tradeoffs 3. AEV300 - helps to address range issues, but large battery leads to high vehicle cost Vehicle-level analysis provides a starting point for setting EV Everywhere technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled

223

Lessons Learned - The EV Project The EV MICRO-CLIMATE  

NLE Websites -- All DOE Office Websites (Extended Search)

... 6 Figure 3. Potential Locations Publicly Accessible AC Level 2 EVSE Units ... 7 Figure 4. Aerial Imagery Level 2...

224

Residential Customer Rate Options for Electric Vehicles and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper summarizes results of a survey conducted in the summer of 2006 that examined residential electric rates available to Californias electric vehicle EV and plug-in hybrid electric vehicle PHEV customers.

2008-03-31T23:59:59.000Z

225

EV AMERICA TRENDS 2000.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Web page: http:ev.inel.govsop National Alternative Fuels Hotline http:www.afdcdoegov A c c e l e r a t i o n @ 5 0 % S O C ( 0 t o 5 0 m p h ) - S e c o n d s 0.0...

226

Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)  

SciTech Connect

NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

Neubauer, J.; Pesaran, A.; Howell, D.

2010-05-01T23:59:59.000Z

227

A Comparison of US and Chinese EV Battery Testing Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

US and Chinese EV US and Chinese EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 US/China Electric Vehicle Initiative Meeting August 23-24, 2012 Boston, MA 1 Argonne National Laboratory 2 Idaho National Laboratory 3 CATARC A Comparison of US and Chinese Battery Testing Protocols  Battery testing is a time-consuming and costly process  There are parallel testing efforts, such as those in the US and China  These efforts may be better leveraged through international collaboration  The collaboration may establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data  In turn, the collaboration may accelerate electric vehicle development and

228

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

229

Connecting electric vehicles and green energy  

Science Conference Proceedings (OSTI)

This paper discusses the interrelationship between the purchase of green energy (GE) and electric vehicles (EV) and the motivations for and values formed around the purchase of the combination of the two. The BMW Group completed a two-year EV and GE ... Keywords: electric vehicle, environment, green energy, solar

Peter Dempster

2013-07-01T23:59:59.000Z

230

EV Charging Stations Take Off Across America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

231

EV Charging Stations Take Off Across America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

232

EV Technology Accelerates in Colorado | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Technology Accelerates in Colorado EV Technology Accelerates in Colorado EV Technology Accelerates in Colorado January 13, 2012 - 5:09pm Addthis Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? One of 48 advanced battery and electric drive projects across the country funded by Recovery Act. U.S. will have increased capacity to produce electric-drive vehicles batteries from virtually zero in 2008 up to 500,000 per year in 2015. While the North American International Auto Show began this week in

233

Electric Vehicle Charging Infrastructure Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

major automotive manufacturers plan to launch plug-in electric vehicles (EV) in 2010, the future of transportation is being propelled by a fundamental shift to cleaner and more...

234

Operation Pattern Recognition and Control for Super Capacitor Braking Energy Regeneration System of Micro EV  

Science Conference Proceedings (OSTI)

Super capacitor has some advantages of high charge-discharge rate, long life, simple structure and reliable performance, and it is especially suitable as braking energy renewable energy storage device for electric vehicle and hybrid electric vehicle. ... Keywords: Super capacitor, braking energy regeneration, micro EV, pattern recognition and control

Jinyu Qu; Liyan Liang; Zhongyu Yang

2009-12-01T23:59:59.000Z

235

President Obama Launches EV-Everywhere Challenge as Part of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches EV-Everywhere Challenge as Part of Energy Launches EV-Everywhere Challenge as Part of Energy Department's Clean Energy Grand Challenges President Obama Launches EV-Everywhere Challenge as Part of Energy Department's Clean Energy Grand Challenges March 7, 2012 - 5:17pm Addthis Mt. Holly, N.C. - At an event today at the Daimler Truck factory in Mt. Holly, N.C., President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time. The EV Everywhere Challenge will bring together America's best and brightest scientists, engineers, and businesses to work collaboratively to make electric vehicles more affordable and convenient to own and drive than today's gasoline-powered vehicles within the next 10 years.

236

file:///E|/ev/test/evb.shtml  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Batteries The electric vehicle battery pack performs the same function as the gasoline tank in a conventional vehicle: it stores the energy needed to operate the...

237

Hybrid or electric vehicles? A real options perspective  

Science Conference Proceedings (OSTI)

This paper investigates the decision of an automaker concerning the alternative promotion of a hybrid vehicle (HV) and a full electric vehicle (EV). We evaluate the HV project by considering the option to change promotion from the HV to the EV in the ... Keywords: Alternative projects, American options on multiple assets, Exercise region, Hybrid and electric vehicles, Real options

Michi Nishihara

2010-03-01T23:59:59.000Z

238

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

239

file:///E|/ev/test/gandec.shtml  

NLE Websites -- All DOE Office Websites (Extended Search)

Do Gasoline & Electric Vehicles Compare? From the outside, the electric vehicle looks like a gasoline-powered vehicle with the exception that the electric vehicle does not have a...

240

Vehicle Technologies Office: Fact #797: September 16, 2013 Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

driving ranges for electric vehicles (EVs) offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV offered, ranging from 139 miles for the 40...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Large Scale Roll-Out of Electric Vehicles  

E-Print Network (OSTI)

the emissions reduction targets. Within the transport sector, electric vehicles (EV) are considered as one of the important mitigation options. However the effect of EVs on emissions and the electricity sector is subject to debate. We use scenario analysis...

Talaei, Alireza; Begg, Katherine; Jamasb, Tooraj

2012-10-26T23:59:59.000Z

242

Kansas State University electric vehicle site operator program  

DOE Green Energy (OSTI)

K-State is presently working with Grumman Allied and Unique Mobility to establish a working agreement for the research and development of a pure electric postal vehicle. K-State has worked on the design of this vehicle for the past year and is working to establish the appropriate consortium to bring this vehicle to commercial realization. K-State is working to establish infrastructure support for electric vehicles. Presently, a Kansas company is working with K-State to bring its patented low-cost vehicle metering product to market. An anticipated second year DOE project would provide 100 electric metering stations to Southern California for a large scale electric vehicle infrastructure demonstration project. This project would allow a parking lot(s) to be made EV ready. K-State's Site Operator Program continues to get the word-out'' about electric vehicles. From a personal visit by Senator Bob Dole, to Corporate Board of Director Meetings, to school classrooms, to shopping mall demonstrations; K-State Employees are increasing public access and awareness about the electric vehicle industry. As has been shown in this report, K-State's G-Van has logged an average eighteen miles per day while maintaining a full schedule of public relations tours within the state of Kansas and Missouri. K-State has now been contacted by companies in Nebraska and Iowa requesting information and involvement in this program. Kansas and Kansas State will continue its work to contribute to the Site Operator Program effort. With the purchase of two additional electric vehicles and the pending request to purchase two more electric vehicles during the next contractual year, K-states's program will grow. When vehicle development plans and infrastructure requirements are solidified, K-State's program will be ready to participate and be a major contributor to the development and introduction of this technology.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-01-01T23:59:59.000Z

243

Kansas State University electric vehicle site operator program  

SciTech Connect

K-State is presently working with Grumman Allied and Unique Mobility to establish a working agreement for the research and development of a pure electric postal vehicle. K-State has worked on the design of this vehicle for the past year and is working to establish the appropriate consortium to bring this vehicle to commercial realization. K-State is working to establish infrastructure support for electric vehicles. Presently, a Kansas company is working with K-State to bring its patented low-cost vehicle metering product to market. An anticipated second year DOE project would provide 100 electric metering stations to Southern California for a large scale electric vehicle infrastructure demonstration project. This project would allow a parking lot(s) to be made EV ready. K-State's Site Operator Program continues to get the word-out'' about electric vehicles. From a personal visit by Senator Bob Dole, to Corporate Board of Director Meetings, to school classrooms, to shopping mall demonstrations; K-State Employees are increasing public access and awareness about the electric vehicle industry. As has been shown in this report, K-State's G-Van has logged an average eighteen miles per day while maintaining a full schedule of public relations tours within the state of Kansas and Missouri. K-State has now been contacted by companies in Nebraska and Iowa requesting information and involvement in this program. Kansas and Kansas State will continue its work to contribute to the Site Operator Program effort. With the purchase of two additional electric vehicles and the pending request to purchase two more electric vehicles during the next contractual year, K-states's program will grow. When vehicle development plans and infrastructure requirements are solidified, K-State's program will be ready to participate and be a major contributor to the development and introduction of this technology.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-01-01T23:59:59.000Z

244

Evaluation of Near-Term Electric Vehicle Battery Systems through In-Vehicle Testing  

Science Conference Proceedings (OSTI)

Electric vehicles (EVs) using today's technology are suitable for certain commercial fleets. Yet expanding the EV market largely depends on developing and marketing batteries with performance characteristics superior to those already commercially available. The in-vehicle test results summarized in this report provide valuable information on the performance, life, and maintenance of 10 new batteries under real-world operating conditions.

1986-12-01T23:59:59.000Z

245

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

across all days Electricity demand on single calendar day with highest peak Max percentage of charging units connected across all days Min percentage of charging units...

246

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

through American innovation Enhance energy security by reducing our dependence on foreign oil Save money by cutting fuel costs for American families and businesses Protect our...

247

EV America: Hybrid Electric Vehicle (HEV) Technical Specifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be designed and constructed such that there is complete containment of the flywheel energy storage system during all modes of operation. Additionally, flywheels and...

248

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Max percentage of charging units connected across all days Inner-quartile range of charging units connected across all days Median percentage of charging units connected across all...

249

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

251 2,675 87 9,154 Number of charging events 490,327 11,948 50,729 26,911 579,915 Electricity consumed (AC MWh) 3,808.41 143.89 437.69 222.52 4,612.51 Percent of time with a...

250

List of Companies in Vehicles Sector | Open Energy Information  

Open Energy Info (EERE)

EV Energy Co Ltd PEVE Pengcheng Electric Taxi Company Phylion Battery Pihsiang Electric Vehicle Manufacturing Co Ltd Pihsiang Energy Technology PHET Plug In Hybrid Development...

251

NREL Evaluates Secondary Uses for Lithium Ion Vehicle Batteries  

NREL Evaluates Secondary Uses for Lithium Ion Vehicle Batteries ... of PHEVs and EVs is limited by the current high cost of Li-ion batteries.

252

Integrating plug-in electric vehicles into the electric power system.  

E-Print Network (OSTI)

??This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)collectively termed plug-in electric vehicles (PEVs)could be (more)

Wu, Di

2012-01-01T23:59:59.000Z

253

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network (OSTI)

The 9th International Electric Vehicle symposium, EVS88-072,10th International of Electric Vehicle Symposium, pp.154-International in of Electric Vehicle Symposium, pp.401-410,

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

254

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Chemistries for Plug-in Hybrid Vehicles, EVS-24, Stavanger,ion batteries in the Hybrid Vehicle Propulsion System Lab atIn the case of plug-in hybrid vehicles, there is much design

Burke, Andrew

2009-01-01T23:59:59.000Z

255

Vehicle Technologies Office: The eGallon Tool Advances Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

eGallon Tool Advances Deployment of Electric Vehicles The Department of Energy recently launched the eGallon to help consumers compare the cost of fueling electric vehicles (EVs)...

256

ENVIRONME NTA L R EV  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONME ENVIRONME NTA L R EV IEW for CATEGO RI CAL EXCLUS ION DETE RM INATION Rocky Mountain Region, Western Area Power Ad ministration Alco\'3-Caspc r North I IS-kV Transm ission Line Pole Replace ments Na t ro na Co un ty, Wyo mi ng A. Brief Desc ription of Proposal: Western Area Po\.\cr Administration's (Western) Casper Field Office proposes to replace deteriorating poles on 18 wood II-frame structures along its Alcova-Casper North 115-kV transmission line. The project structures are located on the transmission line bct\.ycen Township 33 North. Range 80 West. Section 12 and Township 30 North, Range 82 West. Section 18, 6 th Principle Meridian ncar Casper. Wyoming. in Natrona County. The land ownership is primarily private with two structures located on Bureau of Land Management administered lands. Western will accomplish

257

eGallon: Understanding the Cost of Driving EVs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » eGallon: Understanding the Cost of Driving EVs Initiatives » eGallon: Understanding the Cost of Driving EVs eGallon: Understanding the Cost of Driving EVs For most drivers, a trip to the fuel pump is an easy reminder of the day-to-day cost of gasoline or diesel fuel. But for electric vehicle (EV) drivers, who typically charge their car at home, there isn't a similar measurement to determine the cost of driving on electricity. To help both current and potential EV drivers better understand the cost of driving an EV, the Energy Department created the eGallon. The eGallon represents the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. For example, if gasoline costs $3.60 a gallon in your state and the eGallon price for your state is $1.20, that means that for $1.20 worth of electricity you can

258

Microsoft Word - EVS24 rev3.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion...

259

UHM/HNEI EV test and evaluation program  

SciTech Connect

The electric vehicle (EV) program of the Hawaii Natural Energy Institute (HNEI) focuses primarily on the field testing of promising EV/traction batteries. The intent is to utilize typical driving cycles to develop information that verifies or refutes what is obtained in the laboratory. Three different types of battery were assigned by the US DOE for testing in this program: Sonnenschein Dryfit 6V-160, Exide GC-5, Trojan T-145. We added the following battery to the test program: ALCO2200. HNEI's existing EVs were utilized as test beds. The following EVs were chosen in our program: Converted Ford Escort station wagon, Converted Ford Escort two-door sedan, Converted Ford Escort two-door sedan, Converted Dodge van (typically daily driving distances, 10--30 miles). Capacity testing is a very effective way of monitoring the status of battery modules. Based on capacity tests, corrective action such as battery replacement, additional charging, adjusting terminal connections, etc., may be taken to maintain good performance. About 15,500 miles and 600 cycles have been accumulated on the Sonnenschein Dryfit 6V-160 battery pack. Five of its 18 modules have been changed. Based on DOE's standard, the battery has reached the end of its useful life. Nevertheless, the battery pack is still operational and its operating range is still greater than 40 miles per charge. It is too early to evaluate the life expectancy of the other three batteries, the Trojan T-145, Exide GC-5, and Alco 2200. No module has been replaced in these three packs. The Trojan T-145 battery is a very promising EV traction battery in terms of quality and reliability versus price. HNEI will keep the Trojan and Exide battery packs in operation. The Alco 2200 batteries will be transferred to another vehicle. The Additional Charging Method seems to be an effective way of restoring weak modules. The Smart Voltmeter'' developed by HNEI is a promising way of monitoring the remaining range for an EV.

1992-03-01T23:59:59.000Z

260

UHM/HNEI EV test and evaluation program. Final report  

SciTech Connect

The electric vehicle (EV) program of the Hawaii Natural Energy Institute (HNEI) focuses primarily on the field testing of promising EV/traction batteries. The intent is to utilize typical driving cycles to develop information that verifies or refutes what is obtained in the laboratory. Three different types of battery were assigned by the US DOE for testing in this program: Sonnenschein Dryfit 6V-160, Exide GC-5, Trojan T-145. We added the following battery to the test program: ALCO2200. HNEI`s existing EVs were utilized as test beds. The following EVs were chosen in our program: Converted Ford Escort station wagon, Converted Ford Escort two-door sedan, Converted Ford Escort two-door sedan, Converted Dodge van (typically daily driving distances, 10--30 miles). Capacity testing is a very effective way of monitoring the status of battery modules. Based on capacity tests, corrective action such as battery replacement, additional charging, adjusting terminal connections, etc., may be taken to maintain good performance. About 15,500 miles and 600 cycles have been accumulated on the Sonnenschein Dryfit 6V-160 battery pack. Five of its 18 modules have been changed. Based on DOE`s standard, the battery has reached the end of its useful life. Nevertheless, the battery pack is still operational and its operating range is still greater than 40 miles per charge. It is too early to evaluate the life expectancy of the other three batteries, the Trojan T-145, Exide GC-5, and Alco 2200. No module has been replaced in these three packs. The Trojan T-145 battery is a very promising EV traction battery in terms of quality and reliability versus price. HNEI will keep the Trojan and Exide battery packs in operation. The Alco 2200 batteries will be transferred to another vehicle. The Additional Charging Method seems to be an effective way of restoring weak modules. The ``Smart Voltmeter`` developed by HNEI is a promising way of monitoring the remaining range for an EV.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Automotive ethernet: in-vehicle networking and smart mobility  

Science Conference Proceedings (OSTI)

This paper discusses novel communication network topologies and components and describes an evolutionary path of bringing Ethernet into automotive applications with focus on electric mobility. For next generation in-vehicle networking, the automotive ... Keywords: EV communication architecture, automotive, domain based commuication, electric vehicle, ethernet, in-vehicle networking, smart grid, vehicle network topology

Peter Hank, Steffen Mller, Ovidiu Vermesan, Jeroen Van Den Keybus

2013-03-01T23:59:59.000Z

262

2010 Plug-In Hybrid and Electric Vehicle Research  

E-Print Network (OSTI)

2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

263

Microsoft Word - EVS25_Primary Factors Impact Fuel Consumption of PHEV_FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles Richard 'Barney' Carlson, Matthew G. Shirk, and Benjamin M. Geller Energy Storage and Transportation Systems Department, Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83401, USA E-mail: richard.carlson@inl.gov Abstract- Plug-in hybrid electric vehicles (PHEVs) have proven to significantly reduce petroleum consumption when compared to conventional internal combustion engine vehicles by utilizing onboard electrical energy storage for propulsion. Through extensive testing of PHEVs, analysis has shown that fuel consumption of PHEVs is more

264

Electric vehicle smart charging and vehicle-to-grid operation, International Journal of Parallel, Emergent and Distributed Systems, vol. 27, no. 3. March 2012.  

E-Print Network (OSTI)

in to the EV Supply Equipment (EVSE), the PGAM checks for an existing charging profile. If none is found heElectric vehicle smart charging and vehicle-to-grid operation, International Journal of Parallel, Emergent and Distributed Systems, vol. 27, no. 3. March 2012. #12; Abstract--Electric vehicle (EV) charging

California at Los Angeles, University of

265

Earned Value (EV) Analysis and Project Assessment & Reporting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earned Value (EV) Analysis and Project Assessment & Reporting System (PARS II) Earned Value (EV) Analysis and Project Assessment & Reporting System (PARS II) Earned Value (EV)...

266

Land and Renewable Resources [EVS Program Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Land and Renewable Resources EVS's environmental scientists conduct environmental impact statements to help the nation create a framework for developing renewable energy...

267

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

~ of AFVs, Including Air-Toxic Vehicle Type Dedi. CNGDF CNG EV Dedi. M85 EE3 DedL M100 r---1 DF LPG M85 FFV J E85decrease. Vehicle Type Oedi. CNG DF CNG EV Dedi. M85 Dedi.

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

268

Energy 101: Electric Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

your style. These vehicles rely primarily on an electric motor, but switch over to a gasoline-fueled engine to supplement power when the battery is low. The costs of today's EVs...

269

Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs  

E-Print Network (OSTI)

Pulse Power Devices in Electric Vehicle Propulsion Systems,the Tenth International Electric Vehicle Symposium (EVS-10),4. Burke, A.F. , Hybrid/Electric Vehicle Design Options and

Burke, Andrew F

1995-01-01T23:59:59.000Z

270

PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

Newbauer, J.; Pesaran, A.

2010-05-01T23:59:59.000Z

271

Glossary Item - Electron Volt (eV)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Volt (eV) An electron volt is the amount of work done on an electron when it moves through a potential difference of one volt. 1 eV 1.602*10-19 J 1.602*10-12 erg ...

272

Metropol-E: A System for Analyzing and Optimizing Urban Electric Vehicle Fleets  

Science Conference Proceedings (OSTI)

Electric mobility becomes very important due to a lack of fossil fuels in the future. Hence, it is obvious to replace conventional vehicles with gasoline or diesel engines with Electric Vehicles (EVs). An important area of such replacements are vehicle ... Keywords: electric mobility, data collection, EV fleet, fleet management, communication

Christian Lewandowski, Sven Groning, Christian Wietfeld

2012-12-01T23:59:59.000Z

273

Switching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b  

E-Print Network (OSTI)

of automobiles. The propulsion solutions for EVs are based on hybrid or fully battery powered electric vehiclesSwitching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b 27 December 2012 Keywords: Electric Vehicles (EV) Switching algorithms Battery life Lithium ion

Kraus, Sarit

274

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

275

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Electric Vehicles Energy 101: Electric Vehicles Addthis Below is the text version for the Energy 101: Electric Vehicles video. The video opens with "Energy 101: Electric Vehicles." This is followed by various shots of different electric vehicles on the road. Wouldn't it be pretty cool to do all of your daily driving without ever having to fill up at a gas station? Well, that's quickly becoming a reality for people who drive electric vehicles-sometimes called EVs. EVs are gaining popularity. And with good reason-they're convenient; they're sleek and quiet; they keep our air clean. And for most of the short-distance driving we do, they're the perfect way to get from point A to point B safely, reliably, and comfortably. Text appears onscreen: "80% of Americans drive less than 40 miles round

276

file:///E|/ev/test/evasc.shtml  

NLE Websites -- All DOE Office Websites (Extended Search)

Auxiliary Systems Impacts Auxiliary Systems Impacts As with gasoline-powered vehicles, electric vehicles have a number of auxiliary systems. Some systems, such as the radio/tape player, lights, and horn, operate the same way as they do on a gasoline- powered vehicle. Other systems, such as the power steering and power brakes, require an additional small electric motor and have minor impact on the vehicle range. However, the air conditioning and heating systems on electric vehicles are different and can have a dramatic impact on the range. Federal safety standards require all vehicles to have adequate heating and defrosting systems. The heater/defroster system is easily operated in a conventional gasoline-powered vehicle because a supply of heated water from the engine cooling system is readily available. Electric vehicles do not have this

277

EV Micro-Climate TM Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

MGRA Master Geographic Reference Area PEV Plug-in Electric Vehicle PHEV Plug-in Hybrid Electric Vehicle ROW Right-of-Way SANDAG San Diego Association of Governments SDG&E San...

278

NREL's PHEV/EV Li-Ion Battery Secondary-Use Project  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

Newbauer, J.; Pesaran, A.

2010-06-01T23:59:59.000Z

279

Dimensioning and configuration of EES systems for electric vehicles with boundary-conditioned adaptive scalarization  

Science Conference Proceedings (OSTI)

Electric vehicles (EVs) are widely considered as a solution for efficient, sustainable and intelligent transportation. An electrical energy storage (EES) system is the most important component in an EV in terms of performances and cost. This work proposes ...

Wanli Chang; Martin Lukasiewycz; Sebastian Steinhorst; Samarjit Chakraborty

2013-09-01T23:59:59.000Z

280

PHEV/EV Li-Ion Battery Second-Use Project (Presentation)  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

Neubauer, J.; Pesaran, A.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

7/26/2012 7/26/2012 EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Monday, July 30, 2012 - LAX Marriott, Los Angeles, CA Event Objective: DOE aims to obtain stakeholder input on the consumer acceptance and charging infrastructure barriers associated with the EV Everywhere Grand Challenge. This input will help guide the Challenge and the next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles - and to do so within the next 10 years. 8:00-8:30AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program

282

EV Everywhere - Charge to Breakout Sessions  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere EV Everywhere Charge to Breakout Sessions Steven Boyd Department of Energy Energy Efficiency & Renewable Energy steven.boyd@doe.gov July 24, 2012 2 | Program Name or Ancillary Text eere.energy.gov BREAKOUT GROUPS Traction Drive System Power Electronics and Thermal Management Electric Motors and Critical Materials Work Group Focus Questions 3 | Program Name or Ancillary Text eere.energy.gov BREAKOUT SESSION #1 EV EVERYWHERE SCOPE & TECHNICAL TARGETS * Discussion of current state-of-art of the breakout group's focus area. * Are the initially posed EV-Everywhere electric drive system performance and cost targets achievable? * What role can the breakout group's focus area play on achieving these targets? * What are the major barriers?

283

EV Everywhere Grand Challenge - Battery Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandalow, Under Secretary of Energy (acting) and Assistant Secretary for Policy and International Affairs 8:45-8:55 AM SETTING THE STAGE FOR THE EV EVERYWHERE GRAND CHALLENGE Dr....

284

Sustainable Microgrid for charging electric vehicles from on-road contactless power transfer systems:.  

E-Print Network (OSTI)

??A sustainable microgrid for supplying power to electric vehicles (EVs) is investigated in this thesis. The energy produced by the microgrid would be directly transferred (more)

Stamati, T.E.

2012-01-01T23:59:59.000Z

285

The design of an automotive cockpit module for European urban electric vehicles for 2015.:.  

E-Print Network (OSTI)

??This graduation project focuses on identifying how the development of new electric vehicle (EV) archetypes could affect automotive engineering and design. Changes will occur throughout (more)

Buskermolen, S.P.S.

2010-01-01T23:59:59.000Z

286

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

287

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

288

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric vehicles, we wanted to take a moment to highlight how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. The basic principles behind the technology are this: the electric

289

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Electric Vehicles Energy 101: Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric vehicles, we wanted to take a moment to highlight how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. The basic principles behind the technology are this: the electric

290

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

291

Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)  

DOE Green Energy (OSTI)

This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.

Francfort, J.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles Dept. of Water and Power, CA (United States)] [and others

1996-03-01T23:59:59.000Z

292

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Open Access Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on AddThis.com...

293

Hybrid energy storage systems and battery management for electric vehicles  

Science Conference Proceedings (OSTI)

Electric vehicles (EV) are considered as a strong alternative of internal combustion engine vehicles expecting lower carbon emission. However, their actual benefits are not yet clearly verified while the energy efficiency can be improved in many ways. ... Keywords: battery-supercapacitor hybrid, charging/discharging asymmetry, electric vehicle, regenerative braking

Sangyoung Park, Younghyun Kim, Naehyuck Chang

2013-05-01T23:59:59.000Z

294

Plug-In Electric Vehicle Handbook for Fleet Managers  

E-Print Network (OSTI)

in to electric vehicle supply equipment (EVSE). EVs must be charged regu- larly, and charging PHEVs regularly&E's Electric Vehicle Supply Equipment Installation Manual (http:// evtransportal.org/evmanual.pdf) and e. They consume no petroleum-based fuel while driving and produce no tailpipe emissions. EVSE (electric vehicle

295

Fleet Renewal with Electric Vehicles at La Poste  

Science Conference Proceedings (OSTI)

We provide a decision model for La Poste, the French national postal operator, to address its adoption of electric vehicles (EVs) for mail and parcel distribution. Two competing technologies are availableinternal combustion vehicles (ICVs) and ... Keywords: decision making under uncertainty, electric vehicles, equipment replacement, real options

Paul R. Kleindorfer; Andrei Neboian; Alain Roset; Stefan Spinler

2012-09-01T23:59:59.000Z

296

EV Everywhere Grand Challenge - Charge to the Breakout Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge to the Charge to the Breakout Groups July 26, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov BREAKOUT GROUPS Breakout Group Room Facilitator Color Code Next-Generation Li-Ion Batteries Othello Room mezzanine Jeff Chamberlain (ANL) green Beyond Li-Ion Batteries Winchester Room mezzanine Frank McClarnon (LBNL) blue Manufacturing and Processing Medallion Room Main floor Claus Daniel (ORNL) yellow Pack Design and Optimization Signature III room main floor Ahmad Pesaran (NREL) red eere.energy.gov SESSION #1 EV EVERYWHERE SCOPE & TECHNICAL TARGETS * Discussion of current state-of-art of the breakout group's focus area.

297

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

298

EV Sales Skyrocketing. eGallon Holds Steady. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Sales Skyrocketing. eGallon Holds Steady. EV Sales Skyrocketing. eGallon Holds Steady. EV Sales Skyrocketing. eGallon Holds Steady. July 19, 2013 - 8:45am Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about 3 times less to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 · 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon 0 4 1 7 2 3 3 · 0 4 2 0 4 6 0 8 5 9 1 5 0 Data and Methodology The eGallon price is calculated using the most recently available state by state residential electricity prices. The state gasoline price above is either the statewide average retail price or a multi-state regional average

299

LEAFing Through New Vehicle Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology May 26, 2010 - 11:32am Addthis An artist’s rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project Joshua DeLung Oil and gas price fluctuations and environmental concerns are driving innovators to find new ways to power our vehicles. That's the focus of The EV Project, a new program of ECOtality North America, which was awarded a $114.8 million Recovery Act grant from the U.S. Department of Energy. The EV Project will create a network of charging stations for participants' electric vehicles and gather data on the stations' usage. "As [Energy] Secretary [Steven] Chu rightly pointed out, the only way

300

ACCESS CONTROL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TERMSDEFINITIONS FROM DOE M 470.4-7 ACCESS CONTROL. The process of permitting access or denying access to information, facilities, nuclear materials, resources, or designated...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

Electric-Drive Vehicles In the very early years of the automotive industry,electric-drive vehicles, especially battery-powered EVs The programs are almost aU in countries with major automotive manufacturing industries.

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

302

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

303

Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, January--March 1996  

DOE Green Energy (OSTI)

Goals of the site operator program include field evaluation of electric vehicles (EVs) in real-world applications and environments, advancement of electric vehicle technologies, development of infrastructure elements necessary to support significant EV use, and increasing the awareness and acceptance of EVs by the public. The site operator program currently consists of 11 participants under contract and two other organizations with data-sharing agreements with the program. The participants (electric utilities, academic institutions, Federal agencies) are geographically dispersed within US and their vehicles see a broad spectrum of service conditions. Current EV inventories of the site operators exceeds 250 vehicles. Several national organizations have joined DOE to further the introduction and awareness of EVs, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for EVs; (2) DOE, DOT, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of EVs. Current focus of the program is collection and dissemination of EV operations and performance data to aid in the evaluation of real- world EV use. This report contains several sections with vehicle evaluation as a focus: EV testing results, energy economics of EVs, and site operators activities.

Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles City Dept. of Water and Power, CA (United States)] [and others

1996-08-01T23:59:59.000Z

304

ChoosEV | Open Energy Information  

Open Energy Info (EERE)

ChoosEV ChoosEV Jump to: navigation, search Name ChoosEV Place Copenhagen, Denmark Zip 1606 Product Denmark based company formed by Sydenergi, Seus-Nve and Sixt. The company will focus on developing simple charging stands linked to the electric grid in Denmark. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications  

DOE Green Energy (OSTI)

The technical and economic feasibility of applying used electric vehicle (EV) batteries in stationary applications was evaluated in this study. In addition to identifying possible barriers to EV battery reuse, steps needed to prepare the used EV batteries for a second application were also considered. Costs of acquiring, testing, and reconfiguring the used EV batteries were estimated. Eight potential stationary applications were identified and described in terms of power, energy, and duty cycle requirements. Costs for assembly and operation of battery energy storage systems to meet the requirements of these stationary applications were also estimated by extrapolating available data on existing systems. The calculated life cycle cost of a battery energy storage system designed for each application was then compared to the expected economic benefit to determine the economic feasibility. Four of the eight applications were found to be at least possible candidates for economically viable reuse of EV batteries. These were transmission support, light commercial load following, residential load following, and distributed node telecommunications backup power. There were no major technical barriers found, however further study is recommended to better characterize the performance and life of used EV batteries before design and testing of prototype battery systems.

CREADY, ERIN; LIPPERT, JOHN; PIHL, JOSH; WEINSTOCK, IRWIN; SYMONS, PHILIP

2003-03-01T23:59:59.000Z

306

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 8, 2010 June 8, 2010 What's Up With Fuel Cells? We hear a lot about renewables like wind and solar these days, but what's the deal with fuel cells and is there a future in them? May 26, 2010 An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project LEAFing Through New Vehicle Technology The LEAF is a five-passenger hatchback, powered by advanced lithium-ion batteries - with a range of more than 100 miles on a single charge. The vehicle will cost drivers about $25,000 after a federal tax credit. May 20, 2010 Are You Participating in Bike-to-Work Day? Are you participating in Bike-to-Work day? Tell us about your plans! May 18, 2010 EcoCAR: The NeXt Challenge Beyond the use of advanced technology, EcoCAR is unique among student competitions in that it provides students with access to and training on

307

Vehicle to Grid Demonstration Project  

SciTech Connect

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

308

Environmental Security and Restoration [EVS Program Area]  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Security and Restoration Environmental Security and Restoration EVS focuses on environmental and human health aspects of homeland and national security, as well as restoration of sites contaminated with hazardous materials. Contamination in our environment - in air, water, and soil - contributes to health problems and affects the quality of our lives. The EVS Division confronts this challenge by addressing environmental and human health aspects of homeland and national security and by characterizing and restoring sites contaminated with hazardous materials. We integrate extensive expertise in engineering, health physics, hydrogeology, environmental science, chemistry, spatial analysis, database management, and computer programming to contribute to environmental security and restoration.

309

Kansas State University electric vehicle site operator program. Year 1, second quarter report, October 1, 1991--December 30, 1991  

DOE Green Energy (OSTI)

K-State is presently working with Grumman Allied and Unique Mobility to establish a working agreement for the research and development of a pure electric postal vehicle. K-State has worked on the design of this vehicle for the past year and is working to establish the appropriate consortium to bring this vehicle to commercial realization. K-State is working to establish infrastructure support for electric vehicles. Presently, a Kansas company is working with K-State to bring its patented low-cost vehicle metering product to market. An anticipated second year DOE project would provide 100 electric metering stations to Southern California for a large scale electric vehicle infrastructure demonstration project. This project would allow a parking lot(s) to be made EV ready. K-State`s Site Operator Program continues to get the ``word-out`` about electric vehicles. From a personal visit by Senator Bob Dole, to Corporate Board of Director Meetings, to school classrooms, to shopping mall demonstrations; K-State Employees are increasing public access and awareness about the electric vehicle industry. As has been shown in this report, K-State`s G-Van has logged an average eighteen miles per day while maintaining a full schedule of public relations tours within the state of Kansas and Missouri. K-State has now been contacted by companies in Nebraska and Iowa requesting information and involvement in this program. Kansas and Kansas State will continue its work to contribute to the Site Operator Program effort. With the purchase of two additional electric vehicles and the pending request to purchase two more electric vehicles during the next contractual year, K-states`s program will grow. When vehicle development plans and infrastructure requirements are solidified, K-State`s program will be ready to participate and be a major contributor to the development and introduction of this technology.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-12-31T23:59:59.000Z

310

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

311

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

312

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

313

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

314

Cobasys and Panasonic EV Energy cooperation agreement | Open...  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Cobasys and Panasonic EV Energy cooperation agreement Jump to: navigation, search Name Cobasys and Panasonic EV...

315

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30,...

316

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

317

Think City Electric Vehicle Demonstration Program  

DOE Green Energy (OSTI)

The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

Ford Motor Company

2005-03-01T23:59:59.000Z

318

New Energy 101 Video: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles January 17, 2012 - 5:15am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Electric vehicles, sometimes called EVs, can give drivers like you a convenient way to get around, while saving you money on fuel, reducing emissions, and supporting the nation's energy security. Learn about the advantages of electric vehicles, see EVs in action, and find out how they work by checking out DOE's new Electric Vehicle 101 video. The basics principles behind this technology are this: the EV's battery transfers energy to an electric motor, the motor turns a drive train, which then turns the wheels. Up to 80% of the energy in the battery is

319

New Energy Tax Credit for Electric Vehicles Purchased in 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Electric Vehicles Federal Tax Credits for Electric Vehicles Photo of cash and keys Federal Tax Credit Up To $7,500! Electric vehicles (EVs) purchased in 2009 may be eligible for a federal income tax credit of up to $7,500. The amount will vary based on the capacity of the battery used to power the vehicle. This credit was replaced with a similar credit for EVs purchased after 2009. The maximum amount of this credit is the same, but the the requirements and credit phase-out criteria are slightly different. For more information on the credit for EVs purchased after 2009, click here. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Tesla Motors Jan. 1, 2010, to Present TBD TBD TBD Tesla Roadster 2008-10 Tesla Roadster $7,500 -- -- -- Qualified Plug-In Electric Drive Motor Vehicles (IRC 30D)

320

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Drive (Power Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next-generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. The EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop was attended by senior officials of the Department of Energy and representatives from the following

322

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

323

file:///E|/ev/test/evps.shtml  

NLE Websites -- All DOE Office Websites (Extended Search)

is used as a generator to recharge the batteries when the vehicle is slowing down. During regenerative braking, some of the kinetic energy normally absorbed by the brakes and...

324

Long-Range EV Charging Infrastructure Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Escape 40 10 2012 General Motors Chevrolet Volt 40 16 2010 Hyundai Blue-Will 38 2012 Toyota Prius Plug-in 12.4-18.6 2012 Volvo V70 31 2012 Battery Electric Vehicles BMW ActiveE...

325

Long-Range EV Charging Infrastructure Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

40 10 2012 General Motors Chevrolet Volt 40 16 2010 Hyundai Blue-Will 38 2012 Toyota Prius Plug-in 12.4-18.6 2012 Volvo V70 31 2012 Battery Electric Vehicles BMW ActiveE 100...

326

Long-Range EV Charging Infrastructure Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

40 10 2012 General Motors Chevrolet Volt 40 16 2010 Hyundai Blue-Will 38 2012 Toyota Prius Plug-in 12.4-18.6 2012 Volvo V70 31 2012 BATTERY ELECTRIC VEHICLES BMW ActiveE 100...

327

Accessibility Standards  

Science Conference Proceedings (OSTI)

... of electric wheelchairs ... for person carrier robots because of their industrial vehicle experience and ... exhibits electrical and mechanical failures, etc. ...

2013-11-01T23:59:59.000Z

328

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

329

Project Title: Compare Costs and Benefits of HESA B2G and V2G The PH&EV Research Center is funded through the California Energy Commission's Public  

E-Print Network (OSTI)

Project Title: Compare Costs and Benefits of HESA B2G and V2G Systems The PH&EV Research Center AGC-Automatic Generation Control BEV-Battery Electric Vehicle B2G-Battery-to-Grid CAISO Operator V2G-Vehicle-to-Grid ZEV-Zero Emissions Vehicle #12;Table of Contents Project Title: Compare Costs

California at Davis, University of

330

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

331

Smart Grid EV Communication Model (SpEC)  

implementation. For EVs and EVSEs , interoperability means meeting standards for connectivity and communication to ensure that

332

Market Feasibility for Nickel Metal Hyride and Other Advanced Electric Vehicle Batteries in Selected Stationary Applications  

Science Conference Proceedings (OSTI)

Governments in the United States and other countries, as well as the automotive, battery, and utility industries, have spent millions to demonstrate the viability of next generation of batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). An important question remains unanswered: "What value might these EV and HEV batteries add when employed in stationary and secondary use applications?"

2000-12-12T23:59:59.000Z

333

Alternative Fuels Data Center: Federal Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for EVs The list below contains summaries of all Federal laws and incentives related to EVs.

334

Alternative Fuels Data Center: Texas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for EVs The list below contains summaries of all Texas laws and incentives related to EVs. State Incentives

335

Alternative Fuels Data Center: Florida Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for EVs The list below contains summaries of all Florida laws and incentives related to EVs.

336

Alternative Fuels Data Center: Nevada Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for EVs The list below contains summaries of all Nevada laws and incentives related to EVs.

337

Alternative Fuels Data Center: Ohio Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for EVs The list below contains summaries of all Ohio laws and incentives related to EVs. State Incentives

338

Alternative Fuels Data Center: Oregon Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for EVs The list below contains summaries of all Oregon laws and incentives related to EVs.

339

Alternative Fuels Data Center: Iowa Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for EVs The list below contains summaries of all Iowa laws and incentives related to EVs. State Incentives

340

Alternative Fuels Data Center: Idaho Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for EVs The list below contains summaries of all Idaho laws and incentives related to EVs. State Incentives

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Arizona Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for EVs The list below contains summaries of all Arizona laws and incentives related to EVs.

342

Alternative Fuels Data Center: Utah Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for EVs The list below contains summaries of all Utah laws and incentives related to EVs. State Incentives

343

Alternative Fuels Data Center: Kansas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for EVs The list below contains summaries of all Kansas laws and incentives related to EVs.

344

Alternative Fuels Data Center: Georgia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for EVs The list below contains summaries of all Georgia laws and incentives related to EVs.

345

Alternative Fuels Data Center: Alabama Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for EVs The list below contains summaries of all Alabama laws and incentives related to EVs.

346

Alternative Fuels Data Center: Maine Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for EVs The list below contains summaries of all Maine laws and incentives related to EVs. State Incentives

347

Alternative Fuels Data Center: Indiana Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for EVs The list below contains summaries of all Indiana laws and incentives related to EVs.

348

Alternative Fuels Data Center: Vermont Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for EVs The list below contains summaries of all Vermont laws and incentives related to EVs.

349

The Future of Electric Vehicles and Arizona State University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Air Ionic Liquid (MAIL) Battery - an ARPA-E funded project out of Arizona State. Electric Vehicles (or EVs) are very different than cars as we know them. Rather than...

350

EV Solar Products | Open Energy Information  

Open Energy Info (EERE)

Solar Products Solar Products Jump to: navigation, search Logo: EV Solar Products Name EV Solar Products Address 2655 N. Highway 89 Place Chino Valley, Arizona Zip 86323 Sector Solar Product renewable energy products and services Year founded 1991 Phone number (928) 636-2201 Website http://www.evsolar.com/ Coordinates 34.8387989°, -112.4600036° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8387989,"lon":-112.4600036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

352

Wireless Power Transfer for Electric Vehicles  

SciTech Connect

As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

2011-01-01T23:59:59.000Z

353

Federal Tax Credit for Electric Vehicles Purchased in or after 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Electric Vehicles Purchased in or after 2010 Federal Tax Credits for Electric Vehicles Purchased in or after 2010 Photo of cash and keys Federal Tax Credit Up To $7,500! Electric vehicles (EVs) purchased in or after 2010 may be eligible for a federal income tax credit of up to $7,500. The credit amount will vary based on the capacity of the battery used to fuel the vehicle. This credit replaces an earlier credit for EVs purchased in 2009. Small neighborhood electric vehicles do not qualify for this credit, but they may qualify for another credit. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% AMP Electric Vehicles Jan. 1, 2010, to Present TBD TBD TBD GCE Electric Vehicle 2012 GCE Electric Vehicle $7,500 -- -- -- MLE Electric Vehicle 2012 MLE Electric Vehicle $7,500 -- -- -- BMW Jan. 1, 2010, to Present TBD TBD TBD

354

Scientific Access  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Access The APS is a open user facility that makes beam time available to the international scientific community through a peer-reviewed proposal process. Two access...

355

file:///E|/ev/test/evbc.shtml  

NLE Websites -- All DOE Office Websites (Extended Search)

Chargers Chargers A constant voltage is applied and the current flows into the battery (high current when the battery is discharged, low current when the battery is nearly charged.) A constant current is applied until the battery voltage reaches a set value. The charge cycle starts with a high constant current until the voltage reaches a set value, then changes to a constant voltage control. A series of very high current and voltage pulses are applied until the battery voltage reaches a set value. Battery chargers replenish the energy used by an electric vehicle much like a gasoline pump refills a gas tank. One significant difference is that an electric vehicle operator can fully charge the vehicle overnight, at home, rather than refueling at a gasoline station. The battery charger is a device which

356

Impacts of EV battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

Gaines, L.; Singh, M. [Argonne National Lab., IL (United States). Energy Systems Div.

1996-06-01T23:59:59.000Z

357

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Digg

358

Alliance for Chinese Electric Vehicle Development and Commercialization |  

Open Energy Info (EERE)

Development and Commercialization Development and Commercialization Jump to: navigation, search Name Alliance for Chinese Electric Vehicle Development and Commercialization Place China Sector Vehicles Product China-based alliance announced in January 2010 for speeding up the commercialization and achieving mass adoption of Pure Electronic Vehicles (Pure EVs) in China. References Alliance for Chinese Electric Vehicle Development and Commercialization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alliance for Chinese Electric Vehicle Development and Commercialization is a company located in China . References ↑ "Alliance for Chinese Electric Vehicle Development and Commercialization"

359

Advanced batteries for electric vehicles  

SciTech Connect

The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. (Argonne National Lab., IL (United States))

1994-11-01T23:59:59.000Z

360

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

362

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

363

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

364

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

365

Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for EVs The list below contains summaries of all Arkansas laws and incentives

366

Alternative Fuels Data Center: Missouri Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for EVs The list below contains summaries of all Missouri laws and incentives

367

Alternative Fuels Data Center: California Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for EVs The list below contains summaries of all California laws and incentives

368

Alternative Fuels Data Center: Maryland Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for EVs The list below contains summaries of all Maryland laws and incentives

369

Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for EVs The list below contains summaries of all Louisiana laws and incentives

370

Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for EVs The list below contains summaries of all Minnesota laws and incentives

371

Alternative Fuels Data Center: Michigan Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for EVs The list below contains summaries of all Michigan laws and incentives

372

Alternative Fuels Data Center: Illinois Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for EVs The list below contains summaries of all Illinois laws and incentives

373

Alternative Fuels Data Center: Washington Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for EVs The list below contains summaries of all Washington laws and incentives

374

Alternative Fuels Data Center: Colorado Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for EVs The list below contains summaries of all Colorado laws and incentives

375

Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for EVs The list below contains summaries of all Mississippi laws and incentives

376

Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for EVs The list below contains summaries of all Connecticut laws and incentives

377

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for EVs The list below contains summaries of all Pennsylvania laws and incentives

378

Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for EVs The list below contains summaries of all Nebraska laws and incentives

379

Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for EVs The list below contains summaries of all Kentucky laws and incentives

380

Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for EVs The list below contains summaries of all Oklahoma laws and incentives

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Delaware Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for EVs The list below contains summaries of all Delaware laws and incentives

382

Alternative Fuels Data Center: Virginia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for EVs The list below contains summaries of all Virginia laws and incentives

383

Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for EVs The list below contains summaries of all Wisconsin laws and incentives

384

Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle-to-Grid Energy Vehicle-to-Grid Energy Credit to someone by E-mail Share Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Facebook Tweet about Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Twitter Bookmark Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Google Bookmark Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Delicious Rank Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Digg Find More places to share Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle-to-Grid Energy Credit Retail electricity customers with at least one grid-integrated electric vehicle (EV) may qualify to receive kilowatt-hour credits for energy

385

Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market  

E-Print Network (OSTI)

Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs ...

De los Ros Vergara, Andrs

2011-01-01T23:59:59.000Z

386

Open Access  

NLE Websites -- All DOE Office Websites (Extended Search)

Communication » Communication » Open Access Open Access Open access (OA) is the practice of providing unrestricted access via the Internet to peer-reviewed scholarly journal articles. Learn more below... Questions? Open Access Email Open access publishing and publications have experienced substantial growth, expansion and uptake in recent years. What exactly is an open access publication? There are many definitions, but in a nutshell an open access publication is a publication that provides immediately free online access to all users worldwide. This may sound like a tall order, and yet there are to date over 4000 journal publications that fit this definition. The need for this type of access has been driven by the out-of-control costs for scholarly publications. Statistics kept by the Association for Research Libraries

387

Comparative evaluation of acoustical noise levels of Soleq Evcort EV and ICE (internal combustion engine) counterpart  

DOE Green Energy (OSTI)

The Idaho National Engineering Laboratory (INEL) evaluates Ev propulsion systems and components for the US Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. This paper describes an INEL study which compares the exterior and interior acoustic noise levels of an electric vehicle to its internal combustion engine (ICE) counterpart base vehicle, under various operating conditions. The electric vehicle was a converted 1988 Ford Escort station wagon, retrofitted with a DC electric powertrain developed by Soleq Corporation. A comparably-equipped gasoline-fueled ICE-powered Ford Escort station wagon provided the baseline acoustic noise levels with which to compare the electric vehicle. Measurements of the interior and exterior noise levels were obtained using a Bruel and Kjaer (B K) Type 2231 Modular Precision Sound Level Meter. The tests were conducted in accordance with applicable Society of Automotive Engineer's (SAE) standard practices at Chrysler's Arizona Proving Grounds in Wittmann, Arizona. The results indicate that radiated interior and exterior acoustic noise levels of the electric vehicle were noticeably quieter under acceleration and idly conditions. However, under constant speed operation the electric and the ICE exhibited essentially equivalent interior and exterior noise levels. 8 refs., 2 tabs.

MacDowall, R.D.

1990-01-01T23:59:59.000Z

388

Inhalation of motor vehicle emissions: effects of urban population and land area  

E-Print Network (OSTI)

M.A. , 1996. Total cost of motor-vehicle use. Access 8, 7-Urban density and inhalation of motor vehicle emissions JDof primary pollutants: motor vehicle emissions in the South

Marshall, J D; McKone, T E; Deakin, E; Nazaroff, William W

2005-01-01T23:59:59.000Z

389

Inhalation of motor vehicle emissions: effects of urban population and land area  

E-Print Network (OSTI)

M.A. , 1996. Total cost of motor-vehicle use. Access 8,of ammonia and other motor vehicle exhaust emissions.and engine load on motor vehicle emissions. Environmental

Marshall, Julian D.; McKone, Thomas E.; Deakin, Elizabeth; Nazaroff, William W.

2006-01-01T23:59:59.000Z

390

Total energy cycle emissions and energy use of electric vehicles  

DOE Green Energy (OSTI)

The purpose of this project is to provide estimates of changes in life cycle energy use and emissions that would occur with the introduction of EVs. The topics covered include a synopsis of the methodology used in the project, stages in the EV and conventional vehicle energy cycles, characterization of EVs by type and driving cycle, load analysis and capacity of the electric utility, analysis of the materials used for vehicle and battery, description of the total energy cycle analysis model, energy cycle primary energy resource consumption, greenhouse gas emissions, energy cycle emissions, and conclusions.

Singh, M.

1997-12-31T23:59:59.000Z

391

Li ion Motors Corp formerly EV Innovations Inc | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Li ion Motors Corp formerly EV Innovations Inc Jump to: navigation, search Name Li-ion Motors Corp (formerly EV...

392

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Hunan Copower EV Battery Co Ltd Jump to: navigation, search Name Hunan Copower EV Battery Co Ltd Place...

393

Panasonic EV Energy Co Ltd PEVE | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Panasonic EV Energy Co Ltd PEVE Jump to: navigation, search Name Panasonic EV Energy Co., Ltd (PEVE)...

394

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

395

A Performance Evaluation of an Alpha EV7 Processing Node  

Science Conference Proceedings (OSTI)

In this paper we detail the performance of a new Alpha-Server node containing 16 Alpha EV7 CPUs. The EV7 processor is based on the EV68 processor core that is used in terascale systems at Los Alamos National Laboratory and the Pittsburgh Supercomputing ... Keywords: Performance, analysis, application performance, communication performance, high performance computing, memory performance

Darren J. Kerbyson; Adolfy Hoisie; Scott Pakin; Fabrizio Petrini; Harvey J. Wasserman

2004-05-01T23:59:59.000Z

396

Sneaking Interaction Techniques into Electric Vehicles Sebastian Loehmann  

E-Print Network (OSTI)

Due to the release of several electric vehicles (EV) to the car market, the number of sales from regular combustion engine cars to create electric vehicle information systems (EVIS). We argue in the near future. With the introduction of cars like the Nissan Leaf, the Ford Focus Electric or the soon

397

Plug-In Electric Vehicle Infrastructure Installation Guidelines  

Science Conference Proceedings (OSTI)

In the next five years, major automobile manufacturers are poised to deliver over a dozen electric vehicle (EV) and plug-in hybrid electric (PHEV) models. The cost savings to consumers and the positive impact on the environment will be significant. One of the chief remaining obstacles to widespread adoption of electric vehicles, however, is the scarcity of recharging facilities for PEVs.

2009-09-25T23:59:59.000Z

398

Project Fever - Fostering Electric Vehicle Expansion in the Rockies  

DOE Green Energy (OSTI)

Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

Swalnick, Natalia

2013-06-30T23:59:59.000Z

399

Comparison of advanced battery technologies for electric vehicles  

DOE Green Energy (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, B.E.; Lalk, T.R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.; Swan, D.H. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-12-31T23:59:59.000Z

400

Comparison of various battery technologies for electric vehicles  

E-Print Network (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge - discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

402

DOE/EV-0005/8  

Office of Legacy Management (LM)

8 8 Au* k.3 dJ o b /< (/),s:x ,' , -1 3 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the E.I. DuPont DeNemours and Co., Deepwater, New Jersey December 1978 . - FINAL REPORT Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, DC 20545 -.- _"_" .---_" DOE/EV-0005/8 UC-70 I Formerly Utilized MED/AEC Sites . Remedial Action Program Radiilogical Survey of the E.I. DuPont DeNemours and Co., Deepwater, New Jersey December 1878 FINAL REPORT Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, DC 20543 J UNDER CONTRACT NO. W-7405ENG-26 __-- __.-.

403

DOE/EV-0005/18  

Office of Legacy Management (LM)

8 8 w9-2/ Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Plant, Nichols, Florida January 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview Division of Environmental Control Technology .-_.--l.."-.-.- .- ..I ._--, * "--. . . .__ DOE/EV-0005/18 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological. Survey of the Former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Want, Nichols, Florida January 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview

404

Enhanced Video Surveillance (EVS) with speckle imaging  

SciTech Connect

Enhanced Video Surveillance (EVS) with Speckle Imaging is a high-resolution imaging system that substantially improves resolution and contrast in images acquired over long distances. This technology will increase image resolution up to an order of magnitude or greater for video surveillance systems. The system's hardware components are all commercially available and consist of a telescope or large-aperture lens assembly, a high-performance digital camera, and a personal computer. The system's software, developed at LLNL, extends standard speckle-image-processing methods (used in the astronomical community) to solve the atmospheric blurring problem associated with imaging over medium to long distances (hundreds of meters to tens of kilometers) through horizontal or slant-path turbulence. This novel imaging technology will not only enhance national security but also will benefit law enforcement, security contractors, and any private or public entity that uses video surveillance to protect their assets.

Carrano, C J

2004-01-13T23:59:59.000Z

405

Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range  

DOE Green Energy (OSTI)

The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

2013-04-01T23:59:59.000Z

406

Department of Energy electric and hybrid vehicle site operator program at Pacific Gas and Electric Company. Final report  

DOE Green Energy (OSTI)

Pacific Gas & Electric Company continues to expand an EV program that addresses the following: vehicle development and demonstration; vehicle technology assessment; infrastructure evaluation; participation in EV organizations; and meetings and events. This report highlights PG & E`s activities in each of these areas.

NONE

1997-10-01T23:59:59.000Z

407

Lessons Learned - The EV Project DC Fast Charge - Demand Charge...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle kW Kilowatt kWh Kilowatt-hour PEV Plug-in Electric Vehicle PHEV Plug-in Hybrid Electric Vehicle SOC State of Change TOU Time-of-Use U.S. United States Lessons...

408

NREL: News Feature - NREL Connects EVs and Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

do expanded work around the use of solar energy to charge electric vehicles within microgrids. Better Charges and Better Grids Further advances in how electric vehicles charge -...

409

Announcing $4 Million For Wireless EV Charging | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addthis The Energy Department announced up to 4 million to develop wireless chargers for electric vehicles. | Graphic courtesy of the Vehicle Technologies Program. The Energy...

410

A mean field game analysis of electric vehicles in the smart grid  

E-Print Network (OSTI)

1 A mean field game analysis of electric vehicles in the smart grid Romain Couillet1, Samir Medina electrical vehicles (EV) or electrical hybrid oil-electricity vehicles (PHEV) in the smart grid energy market to the smart grid and sell their energy surpluses, when needed. It is therefore an important economical

Paris-Sud XI, Université de

411

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Statewide California Electricity Demand. [accessed June 22,fuel efficiency and electricity demand assumptions used into added vehicle electricity demand in the BAU (no IGCC)

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

412

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

413

Automotive Accessibility and Efficiency Meet in the Innovative MV-1 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 March 11, 2011 - 4:03pm Addthis The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy Yesterday, the Department of Energy announced that we've now finalized a loan for nearly $50 million to the Vehicle Production Group - or VPG. The project will support the development and manufacturing of a new wheelchair accessible, fuel-efficient car, the MV-1, that will run on compressed natural gas instead of gasoline, produce low emissions, and create 900 jobs

414

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

415

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

416

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

417

A new high energy stabilized nickel-zinc rechargeable battery system for SLI and EV applications  

SciTech Connect

The nickel oxide-zinc rechargeable battery system is a serious candidate for a high power economical EV battery. The introduction of a new chemistry has resulted in stabilization of the performance of the zinc anode without adversely affecting the nickel electrode. The result has been a major enhancement of the cycle life capability with retention of the remarkably high practical energy density (both gravimetric and volumetric) of the nickel-zinc system. Near term practical applications for both passenger car truck SLI batteries as well as long term deep cycle applications for electric vehicles are discussed.

Reisner, D.; Eisenberg, M.

1989-01-01T23:59:59.000Z

418

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

419

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

420

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

422

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

423

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

424

Stibine/arsine monitoring during EV operation: summary report on preliminary tests at ANL and at LILCO  

DOE Green Energy (OSTI)

A series of tests was performed to monitor the evolution and dispersal of stibine and arsine from the lead-acid propulsion batteries in three different Electra-Van Model 600 vehicles operated by Argonne National Laboratory (ANL) and by the Long Island Lighting Company (LILCO). Ambient air was sampled at several locations inside the vehicles and in the garages where testing was done during charge, equalization charge, and on-the-road discharge operations. In addition, direct sampling of cell off-gases was performed with the ANL van. Interpretation of the individual test results was carried out in the context of vehicle characteristics, sampling protocol, and operating conditions. The test results demonstrated that under the test conditions only small concentrations of stibine and arsine accumulated in occupiable work areas. Measured concentrations in the vehicles and in the garages never exceeded 25% of the Threshold Limit Value-Time Weighted Average (TLV-TWA) standards. A threshold voltage for hydride production, at about 2.45 V per cell, was reflected in the results of the experiments performed during charging of the batteries. Hydride evolution rates were lower during equalization charge than during the overcharge portion of a charge cycle when the on-board charger was used in a normal operating mode. A delayed release of the metal hydrides from the battery cells was observed during on-the-road operation of the vehicles. The implications of these observations for electric vehicle (EV) operation are discussed. An engineering analysis of the generation and dispersal of the metal hydrides is presented, and equations are derived for estimating minimum ventilation requirements for the EV battery compartment and for garages housing EV operations. Recommendations are made regarding safe handling procedures for battery off-gases, procedures for conducting stibine/arsine monitoring tests and future work.

Loutfy, R.O.; Graczyk, D.G.; Varma, R.; Hayes, E.R.; Williams, F.L.; Yao, N.P.

1981-02-01T23:59:59.000Z

425

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 14, 2012 February 14, 2012 Fuel Economy Valentines What's more romantic this Valentine's Day than taking a drive with your sweetheart? January 17, 2012 New Energy 101 Video: Electric Vehicles Electric vehicles, sometimes called EVs, can give drivers like you a convenient way to get around, while saving you money on fuel, reducing emissions, and supporting the nation's energy security. January 13, 2012 Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. EV Technology Accelerates in Colorado While the North American International Auto Show began this week in Detroit, ARPA-E Director Arun Majumadar is visiting another town on the cutting edge of vehicle R&D - Longmont, Colorado, home of UQM Technologies.

426

Open Access  

E-Print Network (OSTI)

2007 Brewer; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

Earl J Brewer; Earl J Brewer

2007-01-01T23:59:59.000Z

427

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities  

SciTech Connect

Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

Wang, M.Q.; Marr, W.W.

1994-02-10T23:59:59.000Z

428

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

429

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

430

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

431

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

432

PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation  

DOE Green Energy (OSTI)

More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2012-03-01T23:59:59.000Z

433

Recycling readiness of advanced batteries for electric vehicles  

SciTech Connect

Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

Jungst, R.G.

1997-09-01T23:59:59.000Z

434

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

435

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

436

EV Project Overview Report - Project to Date through March 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

to date through March 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh)...

437

Residential Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Blink Charging Units Reporting Data in The EV Project Project to Date through December 2012 Chicago 88 Atlanta 118 Philadelphia 37 Washington State 934 Oregon 632 San Francisco...

438

Virginia EV Road Show - PHEV Operations and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

- Virginia EV Road Show - PHEV Operations and Performance Jim Francfort Virginia Clean Cities and Hampton Roads Clean Cities Coalition - Virginia Electric Drive Road Show Poquoson,...

439

EV Project Overview Report - Project to Date through December...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

440

Public Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Miles Idaho National Laboratory 662012 INLMIS-12-26073 Legend Project Regions Public Blink Charging Units Reporting Data in The EV Project Project to Date through March 2012...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Public Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory 10162012 INLMIS-12-26073 Legend Project Regions Public Blink Charging Units Reporting Data in The EV Project Project to Date through September 2012...

442

EV Project Overview Report - Project to Date through September...  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

443

EV Project Overview Report - Project to Date through June 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

444

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

445

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

446

ACCESS CONTROL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TERMS/DEFINITIONS FROM DOE M 470.4-7 TERMS/DEFINITIONS FROM DOE M 470.4-7 ACCESS CONTROL. The process of permitting access or denying access to information, facilities, nuclear materials, resources, or designated security areas. ACCESS CONTROL MEASURES. Hardware and software features, physical controls, operating procedures, administrative procedures, and various combinations of these designed to detect or prevent unauthorized access to classified information; special nuclear materials; Government property; automated information systems, facilities, or materials; or areas containing the above and to enforce use of these measures to protect Departmental security and property interests. CRITICAL PATH SCENARIO. An adversary-based scenario that is generated during the conduct of a vulnerability assessment and accounts for adversary tactics that

447

ACCESS Magazine Spring 2011  

E-Print Network (OSTI)

Chrysler Pontiac Other VEHICLE MANUFACTURER (proportion) A Chouseholds and new vehicle manufacturers would benefit fromon the overall vehicle fleets, by manufacturer and vintage,

2011-01-01T23:59:59.000Z

448

Awards To Advanced Vehicle Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those that are eager to begin, but have not previously had the resources to do so. These one-year projects will help communities address their specific needs, which include updating permitting processes, revising codes, training municipal personnel, promoting public awareness, or developing incentives, and each

449

Awards To Advanced Vehicle Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those that are eager to begin, but have not previously had the resources to do so. These one-year projects will help communities address their specific needs, which include updating permitting processes, revising codes, training municipal personnel, promoting public awareness, or developing incentives, and each

450

Vehicle-Grid Interface Key to Smart Charging Plug-in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

electrification is an important electrification is an important element in the nation's plan to transition from petroleum to electricity as the main energy source for urban/ suburban transportation - to enhance energy security, reduce environmental impact and maintain mobility in a carbon- constrained future. Well over half of America's passenger cars travel between 20 and 40 miles daily - a range that electric vehicles (EVs)

451

A procedure for derating a substation transformer in the presence of widespread electric vehicle battery charging  

Science Conference Proceedings (OSTI)

This paper studies the effect of electric vehicle (EV) battery charging on a substation transformer that supplies commercial, residential, industrial, and EV load on a peak summer day. The analysis begins on modeling non-EV load with typical utility load shapes. EV load is modeled using the results from an analytical solution technique that predicts the net power and harmonic currents generated by a group of EV battery chargers. The authors evaluate the amount of transformer derating by maintaining constant daily transformer loss-of-life, with and without EV charging. This analysis shows that the time of day and the length of time during which the EVs begin charging are critical in determining the amount of transformer derating required. The results show that with proper control, EV charging may have very little effect on power system components at the substation level.

Staats, P.T.; Grady, W.M.; Arapostathis, A. [Univ. of Texas, Austin, TX (United States); Thallam, R.S. [Salt River Project, Phoenix, AZ (United States)

1997-10-01T23:59:59.000Z

452

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

453

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

454

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

455

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

456

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

457

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

458

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

459

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

460

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

462

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

463

Electric vehicle fleet operations in the United States  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, batteries, and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation testing of electric vehicles and supporting the development of an electric vehicle infrastructure. These efforts include the evaluation of electric vehicles in baseline performance, accelerated reliability, and fleet operations testing. The baseline performance testing focuses on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 16 electric vehicle models from 1994 through 1997. During 1997, the Chevrolet S10 and Ford Ranger electric vehicles were tested. During 1998, several additional electric vehicles from original equipment manufacturers will also be baseline performance tested. This and additional information is made available to the public via the Program`s web page (http://ev.inel.gov/sop). In conjunction with industry and other groups, the Program also supports the Infrastructure Working Council in its development of electric vehicle communications, charging, health and safety, and power quality standards. The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its qualified vehicle test partners: Electric Transportation Applications, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company at the Idaho National Engineering and Environmental Laboratory.

Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; O`Hara, D. [Dept. of Energy, Washington, DC (United States)

1998-03-01T23:59:59.000Z

464

The environmental and cost impacts of vehicle electrification in the Azores  

E-Print Network (OSTI)

Electric vehicles (EVs) have the potential to reduce transportation sector CO? emissions in So Miguel, an island in the Azores, while simultaneously reducing mobility operating costs. This thesis attempts to quantify the ...

Parnes, Maximilian

2011-01-01T23:59:59.000Z

465

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNOStatmn Wagon (dummy) CNG*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

466

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNOStatmn Wagon (dummy) CNG*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

467

As you prepare for your upcoming beam time, please be aware that construction is planned to update SLAC Gate 17 with RFID proximity card access hardware and to change the stairs next to the Security hut to an ADA compliant ramp. Please forward this to your proposal collaborators (and ensure that all users have registered and completed training before they arrive). This construction is scheduled to begin Tuesday 5/28 and be completed by 6/28. During this construction, access to the LCLS and SSRL buildings and experimental facilities will be provided as follows: VEHICLES ONLY THROUGH GATE 17 5/28-6/28 0600-1530 (6 am-3:30 pm) Construction Zone. Only VEHICLE traffic will be allowed access through Gate 17 and flagman will provide traffic control. 1530-1800 (3:30-6:00 pm) Assumes construction will have stopped for the day; both traffic lanes will be open for vehicles. 1800-0600 (6 pm-6 am) As now, Gate 17 will be closed or barricaded overnight. PEDESTRIANS ONLY THROUGH GATE 16 5/28-6/28 The pedestrian turnstile at Gate 16A will not change. The turnstile is available for pedestrian use 24/7 as long as the individual has a valid SLAC ID badge (and there is a guard at Gate 30 to 'buzz' them through). 0700-1600 (6 am-4 pm) Pedestrians who would normally walk through Gate 17 will instead follow the detour to Gate 16 swing gate which will be unlocked and staffed by Security. A valid SLAC ID badge is needed to enter; new users without IDs will be allowed to proceed for check-in and badging after confirmation with the User Research Administration Office (see detour map attached). FYI - After the construction is completed and proximity card readers are fully functional, users and staff will enter Gates 17 and 30 using an activated RFID proximity card. More details to follow.  

NLE Websites -- All DOE Office Websites (Extended Search)

Building 137 Building 137 Bldg. 270 CONSTRUCTION IMPACTS PEDESTRIAN AND VEHICLE ACCESS THROUGH SLAC SECURITY GATE 17 ~ May 28-June 28, 2013 The stairs next to the Gate 17 Guard House will be replaced with an ADA compliant ramp; the turnstile and fence at SLAC Gate 17 will be updated with RFID proximity card access hardware. During this construction, access beyond the fence, including the SSRL and LCLS buildings and user facilities will be provided as follows: VEHICLES ONLY THROUGH GATE 17 Security will continue to check for valid ID badges. 0600-1530 (6 am-3:30 pm) - Construction Zone. Only VEHICLE traffic will be allowed access through Gate 17 and flagman will provide traffic control. Security will 1530-1800 (3:30-6:00 pm) - Assuming construction has

468

Living with Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Living with Electric Vehicles Living with Electric Vehicles JOHN DAVIS: On any given weekend, somewhere you'll find a gathering of cars and a group of enthusiasts assembled around them. Be the hotrods classics or sports cars, each genre of the car's evolution has developed loyal following. And electric cars are no exception. The recent National Plug-in day included events held at hundreds of sites across the U.S. enticing EV aficionados to check out the latest models and share their passion for gas-free motoring. JOHN BARRACCA: The dealer gives you 9.3 gallons. I haven't used all of that yet. But, when I get 3 gallons low, I put 3 gallons in. So, I'm still at almost a full tank. The last time I put 3 gallons in was February and this is September 23rd. JOHN DAVIS: All of the owners we talked with were pleased with their plug-in car's fuel

469

WPET '98, Dearborn, Michigan, October 22-23, 1998, pp. 79-84. Multilevel Inverters for Electric Vehicle Applications  

E-Print Network (OSTI)

) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1 and many military combat vehicles that have large electric drives will require advanced power electronic@ornl.gov Abstract This paper presents multilevel inverters as an application for all-electric vehicle (EV

Tolbert, Leon M.

470

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy Laboratory 8 May 2012 NREL/PR-5400-55080 GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting Enablers Grid / Renewables Communities Vehicles SMART GRID & COMMUNI- CATION RENEWABLE GENERATION INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY MANAGE- MENT GRID OPERATION & RELIABILITY ENERGY STORAGE LIFE & COST STRATEGIC ENERGY ANALYSIS VEHICLE SYSTEMS ANALYSIS & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG 3 Vehicle Test Facilities at NREL

471

Environment/Health/Safety/Security (EHSS): Site Access  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Access Office Site Access Office Contact Information | Feedback Most-viewed links: Badging Getting a badge - new, stolen, or replacement. Building Access On-site access, key requests, Security Access Managers. Visitor Access Visitor passes, general information. Parking at the Lab Permits, parking map, vehicles registration, parking policy. Other information: FAQ Frequently Asked Questions. Foreign National Access Information on access to DOE sites. Gate Information Information on the different Lab gates. Getting to the Lab Directions and options for getting to Berkeley Lab: buses, carpooling, rapid transit, biking. Guest House Guest House information. Lost and Found Lost and found information and contacts. Meeting and Conference Meeting and conference procedures and general information.

472

Electric and hybrid vehicle program site operator program. Quarterly progress report, October 1994--December 1994 (First quarter of FY-95)  

DOE Green Energy (OSTI)

The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three ma or activity categories: (1) Advancement of Electric Vehicle (EV) technologies, (2) Development of infrastructure elements needed to support significant EV use, and (3) Increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified in Table ES-1. The EV inventories of each participant are summarized in Table ES-2.

Kiser, D.M.; Brown, H.L.

1995-07-01T23:59:59.000Z

473

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various countries and US cities  

SciTech Connect

Past studies have shown that use of electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled internal-combustion-engine vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, the authors estimate greenhouse gas emission reductions for EVs, including these important aspects. They select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the US) and analyze greenhouse emission impacts of EVs in each city or country. These selected cities and countries have distinct differences in electric power-plant fuel mixes. They also select six driving cycles developed around the world. They choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Thus, the city- or country-specific vehicle energy consumption estimates reflect effects of both vehicle driving cycles and electric power-plant mixes. Finally, they estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and power-plant and vehicle operations. They estimate that relative to GVs, EVs reduce greenhouse gas emissions in all selected US cities and countries.

Wang, M.Q.; Marr, W.W. (Argonne National Lab., IL (United States). Center for Transportation Research)

1994-09-01T23:59:59.000Z

474

Categorical Exclusion for Access Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access Road Access Road Improvements along the Pinnacle Peak- Prescott 230-kV Transmission Line between Structures 16813 and 170/1 Yavapai County. Arizona * RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to improve access roads along a portion of the Pinnacle Peak to Prescott 230-kV Transmission Line (Structures 168/3 and 170/1). which are currently impassable. to maintain worker safety and the reliability of the bulk electric system. Western plans to blade and grade the existing access road where it enters and leaves three washes so that Western's maintenance vehicles can drive across the washes. We will remove dirt from the road prism by starting at wash edges and pulling dirt up slope in order to create ramps with grades suitable for our equipment.

475

Robust Broadcast-Communication Control of Electric Vehicle Charging  

E-Print Network (OSTI)

The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

Turitsyn, Konstantin; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

476

Robust broadcast-communication control of electric vehicle charging  

SciTech Connect

The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

477

A desiccant dehumidifier for electric vehicle heating  

DOE Green Energy (OSTI)

Vehicle heating requires a substantial amount of energy. Engines in conventional cars produce enough waste heat to provide comfort heating and defogging/defrosting, even under very extreme conditions. Electric vehicles (EVs), however, generate little waste heat. Using battery energy for heating may consume a substantial fraction of the energy storage capacity, reducing the vehicle range, which is one of the most important parameters in determining EV acceptability. Water vapor generated by the vehicle passengers is in large part responsible for the high heating loads existing in vehicles. In cold climates, the generation of water vapor inside the car may result in water condensation on the windows, diminishing visibility. Two strategies are commonly used to avoid condensation on windows: windows are kept warm, and a large amount of ambient air is introduced in the vehicle. Either strategy results in a substantial heating load. These strategies are often used in combination, and a trade-off exists between them. If window temperature is decreased, ventilation rate has to be increased. Reducing the ventilation rate requires an increase of the temperature of the windows to prevent condensation. An alternative solution is a desiccant dehumidifier, which adsorbs water vapor generated by the passengers. Window temperatures and ventilation rates can then be reduced, resulting in a substantially lower heating load. This paper explores the dehumidifier heating concept. The first part shows the energy savings that could be obtained by using this technology. The second part specifies the required characteristics and dimensions of the system. The results indicate that the desiccant system can reduce the steady-state heating load by 60% or more under typical conditions. The reduction in heating load is such that waste heat may be enough to provide the required heating under most ambient conditions. Desiccant system dimensions and weight appear reasonable for packaging in an EV.

Aceves, S.M.; Smith, J.R.

1996-09-01T23:59:59.000Z

478

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

479

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

480

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

Note: This page contains sample records for the topic "vehicle ev access" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

482

An assessment of the potential environmental impact of electric and hybrid-electric vehicles in Texas  

E-Print Network (OSTI)

Increases in environmental and air quality problems due to continued growth in automobile population and usage have prompted many states including Texas to consider the implementation of an alternative vehicle program to alleviate these problems. Given the need for such programs, there has been minimal research conducted in analyzing the potential impacts of alternative vehicles, namely electric vehicles (EVs) and hybrid-electric vehicles (HEVs). This research addresses the need for assessing the potential environmental impacts of alternative vehicles for the state of Texas. The main contributions of this research are the derivation of emission rates for EVs that are representative of Texas, and an analysis of the potential impact of various alternative vehicle programs incorporating EVs and HEVS. Specifically, emission inventory results from various alternative vehicle Scenarios were compared to a Baseline Scenario with conventional vehicles, in order to measure the relative benefits of each program. Emission inventories were generated by standard EPA procedure using Mobile5b. Two major findings of this research were the negative impact of EVs on NO,, Emissions and the HEVs superior Emissions performance for all the three pollutants addressed in this study. Based on the research findings, the use of HEVs as an alternative vehicle for the state of Texas is recommended.

Kim, Jung-Woo

1998-01-01T23:59:59.000Z

483

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Electric Vehicle Benefits Connected to Smart Grids Modeling Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Paper Year of Publication 2011 Authors Stadler, Michael, Chris Marnay, Ratnesh Sharma, Gonçalo Mendes, Maximillian Kloess, Gonçalo Cardoso, Olivier Mégel, and Afzal S. Siddiqui Conference Name 7th IEEE Vehicle Power and Propulsion Conference Date Published 09/2011 Publisher LBNL Conference Location Chicago, IL Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

484

Load calculation and system evaluation for electric vehicle climate control  

DOE Green Energy (OSTI)

Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

Aceves-Saborio, S.; Comfort, W.J. III

1993-10-27T23:59:59.000Z

485

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

486

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5, 2010 November 5, 2010 An electric vehicle uses a charging station. | Media photo from ECOtality Arizona EV Infrastructure Plans Revealed Out in the desert, a revolution in automotive technology is happening. Some Arizona drivers are taking part in an innovative new project that will help develop electric vehicle infrastructure and gather crucial research data toward ensuring the vitality of EVs for years to come. November 4, 2010 How Do You Reduce the Time You Spend Idling? Tell us how you reduce the time you spend idling? October 29, 2010 Geek-Up[10.29.2010]: The Halloween Special Find out what Ghostbusters do in their free time, why witches are trailblazers in clean energy transit and how you can identify and slay the energy vampires that may be lurking in your home.

487

Fuel Economy of the 2013 Mitsubishi i-MiEV  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 112 Combined 126 City 99 Highway...

488

Public Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Blink Charging Units Reporting Data in The EV Project Project to Date through June 2012 Washington D.C. 3 AC Level 2 Washington State 201 AC Level 2 Oregon 283 AC Level 2 2...

489

Residential Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

49 Knoxville 95 Washington D.C. 102 0 125 62.5 250 375 500 Miles Legend Project Regions All EV Project residential charging units are AC Level 2. Idaho National Laboratory 815...

490

Public Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Blink Charging Units Reporting Data in The EV Project Project to Date through December 2012 Chicago 9 AC Level 2 Philadelphia Atlanta 10 AC Level 2 Washington D.C. 31 AC Level 2...

491

Residential Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

125 250 375 500 62.5 Miles Idaho National Laboratory 10162012 INLMIS-12-26074 All EV Project residential charging units are AC Level 2. Residential Blink Charging Units...

492

Residential Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

40 Knoxville 87 Washington D.C. 83 0 125 62.5 250 375 500 Miles Legend Project Regions All EV Project residential charging units are AC Level 2. Idaho National Laboratory 66...

493

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

494

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

495

Recycling of Advanced Batteries for Electric Vehicles  

DOE Green Energy (OSTI)

The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

JUNGST,RUDOLPH G.

1999-10-06T23:59:59.000Z

496

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

497

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

498

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...