National Library of Energy BETA

Sample records for vehicle emissions standards

  1. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  2. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  3. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This

  4. Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This

  5. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  6. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2006-01-01

    in the history of vehicle emissions regulation: the Zero-adopt and implement motor vehicle emission standards, in-useCalifornia and Federal vehicle emission standards to that

  7. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  8. California Motor Vehicle Standards and Federalism: Lessons for the European Union

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    to Reduce Motor Vehicle Emissions in Major Metropolitanin establishing motor vehicle emissions controls. The stateprocess in setting motor vehicle emissions standards has led

  9. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  10. Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge '92

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P.

    1992-01-01

    The Natural Gas Vehicle Challenge '92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  11. Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge `92

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P.

    1992-09-01

    The Natural Gas Vehicle Challenge `92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  12. Inhalation of Vehicle Emissions in Urban Environments

    E-Print Network [OSTI]

    Marshall, Julian David

    2005-01-01

    distances between vehicles, and emissions from neighboringgasoline on motor vehicle emissions. 2. 6 Volatile organicgasoline on motor vehicle emissions. 1. Mass emission rates.

  13. The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States

    E-Print Network [OSTI]

    Karplus, Valerie

    2012-07-31

    Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

  14. The Crafting of the National Low-Emission Vehicle Program: a Private Contract Theory of Public Rulemaking

    E-Print Network [OSTI]

    Fern, Danielle F.

    1997-01-01

    enforcing its own motor vehicle emission standards. 2 5 Sec-standards for motor vehicle emissions; 90 section 301(a)more stringent motor vehicle emissions standards until the

  15. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01

    Agency; Highway Vehicle Emission Estimates; Office offor Evolving Motor Vehicle Emission Modeling Approachesfor Evolving Motor Vehicle Emission Modeling Approaches

  16. Effects of Vehicle Speed and Engine Load on Motor Vehicle Emissions

    E-Print Network [OSTI]

    Kean, Andrew J.; Harley, Robert A.; Kendall, Gary R.

    2003-01-01

    Engine Load on Motor Vehicle Emissions ANDREW J. KEAN, † R Oknowledge regarding vehicle emissions, but questions remainbetween on-road vehicle emissions and changes in vehicle

  17. Exposure to motor vehicle emissions: An intake fraction approach

    E-Print Network [OSTI]

    Marshall, Julian D.

    2002-01-01

    on California Light-Duty Vehicle Emissions." EnvironmentalGasoline on Motor Vehicle Emissions. 2. Volatile OrganicGasoline on Motor Vehicle Emissions. I. Mass Emission

  18. Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models

    E-Print Network [OSTI]

    Younglove, T; Scora, G; Barth, M

    2005-01-01

    Uncertainty in Highway Vehicle Emission Factors,” EmissionPrograms for Effective Vehicle Emission Model DevelopmentU.S. EPA’s Mobile Vehicle Emission Simulator) are becoming

  19. Investigation of Particle and Gaseous Emissions from Conventional and Emerging Vehicle Technologies Operating on Bio-Fuels

    E-Print Network [OSTI]

    Short, Daniel

    2014-01-01

    D.R. 2009. Real World Vehicle Emissions: A Summary of the 18Research Council On-Road Vehicle Emissions Workshop, JournalAnalysis: Tier 3 Motor Vehicle Emission and Fuel Standards,

  20. Winter Motor-Vehicle EMISSIONS in

    E-Print Network [OSTI]

    Denver, University of

    Winter Motor-Vehicle EMISSIONS in Yellowstone National Park A ir-pollution emissions from off- road recreational vehicles have ris- en in national importance, even as emissions from these vehicles have declined of lawsuits, a new study shows that reductions in snowmobile emissions highlight the need for the snowcoach

  1. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Regulations for Low-Emission Vehicles and Clean Fuels: FinalAmendments to the Zero-Emissions Vehicle Requirements, Marchauthority to regulate vehicle emissions. California is not

  2. Comparison of Particle Sizing Instrument Technologies for Vehicle Emissions Testing

    E-Print Network [OSTI]

    Chen, Vincent

    2014-01-01

    Technologies for Vehicle Emissions Testing A ThesisTechnologies for Vehicle Emissions Testing by Vincent Chen9 Figure 3-1. Schematic diagram of vehicle emissions

  3. Intake fraction of nonreactive vehicle emissions in US urban areas

    E-Print Network [OSTI]

    Marshall, Julian D.; Teoh, Soon-Kay; Nazaroff, William W.

    2006-01-01

    and trends in motor vehicle emissions to monthly urbanExposure to motor vehicle emissions: An intake fractionpollutants: Motor vehicle emissions in the South Coast Air

  4. Intake fraction of nonreactive vehicle emissions in US urban areas

    E-Print Network [OSTI]

    Marshall, J D; Teoh, S K; Nazaroff, William W

    2005-01-01

    fraction of nonreactive vehicle emissions JD Marshall et al.and trends in motor vehicle emissions to monthly urbanExposure to motor vehicle emissions: An intake fraction

  5. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Reactivity Scale for Low- Emission Vehicles and Clean Fuelsgas, and electricity. Vehicle emission estimates includedtype in controlling vehicle emissions. DedLicated methanol

  6. Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  7. Emissions from US waste collection vehicles

    SciTech Connect (OSTI)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-05-15

    Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  8. Reducing Vehicle Emissions to Meet Environmental Goals | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Emissions to Meet Environmental Goals Reducing Vehicle Emissions to Meet Environmental Goals Now that both gasoline and diesel vehicles have been cleaned up, it's time to...

  9. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

  10. An Emission Saved is an Emission Earned: An Empirical Study of Emission Banking for Light-Duty Vehicle Manufacturers

    E-Print Network [OSTI]

    Rubin, Jonathan D.; Kling, Catherine

    1993-01-01

    System for Light-Duty Vehicle Emission Control," Ph.D.the same number of vehicles and emissions in each category.estimates for vehicle emissions, unpublished manuscript,

  11. Trends in on-road vehicle emissions of ammonia

    E-Print Network [OSTI]

    Kean, A.J.

    2009-01-01

    Gasoline on Motor Vehicle Emissions: Mass Emission Rates.Trends in On-Road Vehicle Emissions of Ammonia A.J. Kean 1 ,94720 Abstract Motor vehicle emissions of ammonia have been

  12. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    E-Print Network [OSTI]

    Wenzel, Thomas P

    2010-01-01

    on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

  13. Testing and Validation of Vehicle to Grid Communication Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Validation of Vehicle to Grid Communication Standards Testing and Validation of Vehicle to Grid Communication Standards 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  14. Congestion Pricing and Motor Vehicle Emissions: An Initial Review

    E-Print Network [OSTI]

    Guensler, Randall; Sperling, Daniel

    1994-01-01

    CRC-APRAC On Road Vehicle Emissions Workshop. CoordinatingCoast On-Road Motor Vehicle Emission Inventory Process.W.R. Pierson. 1991. Motor Vehicle Emissions Modeling Issues.

  15. A Fuel-Based Motor Vehicle Emission Inventory

    E-Print Network [OSTI]

    Singer, Brett C.; Harley, Robert A.

    1996-01-01

    R.E. Measurement On-Road of Vehicle Emission Factors in TheFourth CRC on-road vehicle emissions workshop, San Diego,On-Road Motor Vehicle Emissions (BURDENTF); Mobile Source

  16. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  17. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

  18. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  19. Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1999-01-01

    gasoline on motor vehicle emissions. 2. Volatile organicOn Motor Vehicle Emissions 1. Mass Emission Rates ThomasW.the effect of phase RFGon vehicle emissions, including cold-

  20. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  1. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Conditions on Vehicle Emissions and Fuel Economy. ” SocietyGM Canada), 2005. “Vehicle Emissions & Fuels. ” http://downward trend in vehicle emissions is shown as vehicles

  2. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Conditions on Vehicle Emissions and Fuel Economy. ” SocietyGM Canada), 2005. “Vehicle Emissions & Fuels. ” http://downward trend in vehicle emissions is shown as vehicles

  3. Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas

    E-Print Network [OSTI]

    Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate

  4. Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)

    SciTech Connect (OSTI)

    IMPCO Technologies

    1998-10-28

    This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

  5. Intake fraction of primary pollutants: motor vehicle emissions in the South Coast Air Basin

    E-Print Network [OSTI]

    Marshall, J D; Riley, W J; McKone, T E; Nazaroff, William W

    2003-01-01

    gasoline on motor vehicle emissions: 2. volatile organicgasoline on motor vehicle emissions: 1. mass emission rates.Exposure to Motor Vehicle Emissions: An Intake Fraction

  6. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  7. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  8. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect (OSTI)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  9. On-Road Motor Vehicle Emissions Measurements

    E-Print Network [OSTI]

    Denver, University of

    On-Road Motor Vehicle Emissions Measurements Worldwide -------- www.feat.biochem.du.edu Sajal S but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department(tons/day) RSD IM MOBILE5b #12;Implications · RSD method ideal for realistic on-road mobile source emissions

  10. Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1999-01-01

    California reformulated gasoline on motor vehicle emissions.Impact of California Reformulated Gasoline OIl Motor Vehicleprogress, increased vehicle Gasoline Motor on Vehicle travel

  11. VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD

    E-Print Network [OSTI]

    Frey, H. Christopher

    VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD OBSERVATIONS AT SIGNALIZED between vehicle emissions and traffic control measures is an important step toward reducing the potential roadway design and traffic control, have the ability to reduce vehicle emissions. However, current vehicle

  12. Emissions from the European Light Duty Diesel Vehicle During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the European Light Duty Diesel Vehicle During DPF Regeneration Events Emissions from the European Light Duty Diesel Vehicle During DPF Regeneration Events Repeated partial...

  13. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  14. Field data on testing of natural gas vehicle (NGV) containers using proposed ASTM standard test method for examination of gas-filled filament-wound pressure vessels using acoustic emission (ASTM-E070403-95/1)

    SciTech Connect (OSTI)

    Fultineer, R.D. Jr.; Mitchell, J.R.

    1999-07-01

    There are many composite wrapped pressure vessels in service. These containers are most widely used for gas storage in natural gas vehicles (NGV). A standard has been developed for the testing of these vessels by the subcommittee ASTM E07.04.03 Acoustic Emission (AE) applications. The AE test method is supported by both field test data and laboratory destructive testing. The test method describes a global volumetric testing technique which is offered as an alternative to the current practice of visual inspection.

  15. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    category includes California-owned power plants out- sideCalifornia Air ResourcesBoard, "Uncontrolled and controlled power-plantsCalifornia. First, we include emissions from out-state coal power plants.

  16. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    of Alternative Fuel Vehicles: Emissions, Energy, and Costof Transport, Vehicle Emissions Trends, Organization forvehicles) Motor-vehicle emissions (light-duty and heavy-

  17. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy Edward

    1999-01-01

    to costs for vehicles and emissions. Also, infrastructureN.E. Delucchi (1997) Vehicle Emissions: Author Estimatec (restrictions on motor vehicle emissions and drew attention

  18. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy E.

    1999-01-01

    to costs for vehicles and emissions. Also, infrastructure3,2321a Delucchi (1997) Vehicle Emissions: Author Estimate‘restrictions on motor vehicle emissions and drew attention

  19. Characterizing the Effects of Driver Variability on Real-World Vehicle Emissions

    E-Print Network [OSTI]

    Holmén, Britt; Niemeier, Debbie

    1998-01-01

    D. H. (1995) On-road vehicle emissions: regulations, costs,L. (1996) Motor vehicle emissions variability. Journal ofections on controlling vehicle emissions. Science 261, 37±

  20. Trends in Exhaust Emissions from In-Use California Light-Duty Vehicles, 1994-2001

    E-Print Network [OSTI]

    Kean, Andrew J.; Sawyer, Robert F.; Harley, Robert A.; Kendall, Gary R.

    2002-01-01

    efforts to control motor vehicle emissions have been made inVOC) [1]. Motor vehicle emissions are particularlythe concentrations of vehicles, emissions, and people are

  1. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01

    on-road motor vehicle emissions (BURDEN7F). Mobile Sourcespeciation profile for vehicle emissions agrees with cold=Light-Duty Vehicle Emissions Thomas W. Kirchstetter Brett C°

  2. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    of Alternative Fuel Vehicles: Emissions, Energy, and Costof Transport, Vehicle Emissions Trends, Organization forvehicles) Motor-vehicle emissions (light-duty and heavy-

  3. Light-Duty Vehicle Exhaust Emission Control Cost Estimates Using a Part-Pricing Approach

    E-Print Network [OSTI]

    Wang, Quanlu; Kling, Catherine; Sperling, Daniel

    1993-01-01

    System for Light-Duty Vehicle: Emission Control," Ph.D.reductions motor in vehicle emissions have that Today’scorresponding to consumers vehicle emission one path over

  4. Inhalation of motor vehicle emissions: effects of urban population and land area

    E-Print Network [OSTI]

    Marshall, Julian D.; McKone, Thomas E.; Deakin, Elizabeth; Nazaroff, William W.

    2006-01-01

    in California light-duty vehicle emissions. Environmentalload on motor vehicle emissions. Environmental Science andpollutants: motor vehicle emissions in the South Coast Air

  5. Neural NetworkBased Modeling and Optimization for Effective Vehicle Emission Testing and

    E-Print Network [OSTI]

    Huang, Yinlun

    Introduction Automotive emission of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) has beenNeural Network­Based Modeling and Optimization for Effective Vehicle Emission Testing and Engine emission testing and engine calibration are the key to achieving emission standards with satisfactory fuel

  6. Advanced Clean Cars Zero Emission Vehicle Regulation

    E-Print Network [OSTI]

    California at Davis, University of

    Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program.4% of Annual Sales in 2025 Projected: ZEVs #12;Advanced Clean Cars Hydrogen Infrastructure · Without infrastructure, the cars won't come · Complementary Policies to support ZEV regulation ­ Clean Fuels Outlet

  7. Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues

    E-Print Network [OSTI]

    Texas at Austin, University of

    0-5217-P2 Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues Administration and the Texas Department of Transportation. Abstract: In this research product, industry standards functions. Keywords: Tolling, electronic vehicle identification, DSRC, standards, performance, electronic

  8. Vehicle Technologies Office Merit Review 2014: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  9. Vehicle Technologies Office Merit Review 2015: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  10. Overview of China's Vehicle Emission Control Program: Past Successes...

    Open Energy Info (EERE)

    Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.orgsitesdefaultfilespublications...

  11. System Simulations of Hybrid Electric Vehicles with Focus on Emissions

    Broader source: Energy.gov [DOE]

    Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control.

  12. A Statistical Model of Vehicle Emissions and Fuel Consumption

    E-Print Network [OSTI]

    Cappiello, Alessandra

    2002-09-17

    A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

  13. On-road remote sensing of vehicle emissions in

    E-Print Network [OSTI]

    Denver, University of

    On-road remote sensing of vehicle emissions in the Auckland Region August 2003 Technical 1877353000 www.arc.govt.nz #12;TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region #12;Page i TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region On-road remote sensing

  14. Centre for Low Emission Vehicle Research (CLEVeR)

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Centre for Low Emission Vehicle Research (CLEVeR) www.pvrc.org.uk Powertrain & Vehicle Research Centre #12;Centre for Low Emission Vehicle Research (CLEVeR) The state of the art Chassis Dynamometer · Humiditycontrol · Fullfrontalwidthroadspeedfanforrepresentativevehiclecooling Emissions · 2offHoribaMEXA7000

  15. Inhalation of Vehicle Emissions in Urban Environments Julian David Marshall

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    Inhalation of Vehicle Emissions in Urban Environments by Julian David Marshall B.S.E. (Princeton Spring 2005 #12;3 Inhalation of Vehicle Emissions in Urban Environments Copyright 2005 By Julian David Marshall #12;1 ABSTRACT Inhalation of Vehicle Emissions in Urban Environments by Julian David Marshall

  16. TECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    TECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions

  17. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  18. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  19. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

  20. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  1. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  2. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  3. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  4. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    CO 2 , CO, HC and NOx emissions for a single vehicle TRBalthough there are a few NOx emission events that the modelemissions. In regards to NOx emissions, it was noted that

  5. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Natural Gas Liquids Natural Gas Vehicle Ammonia Non-methanein emissions for natural gas vehicles (NGVs), emissions for226. Timmons, S. Natural Gas Fuel Effects on Vehicle Exhaust

  6. Effects of Ethanol and Volatility Parameters on Exhaust Emissions of Light-Duty Vehicles

    E-Print Network [OSTI]

    Durbin, T; Miller, J W; Huai, T; Cocker III, D R; Younglove, Y

    2005-01-01

    in-use vehicles ranging from Low-Emission Vehicle (LEV) toSuper-Ultra-Low- Emission Vehicle (SULEV) certification. Thecontent on exhaust emissions from vehicles that can meet

  7. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  8. Heavy Duty Vehicle In-Use Emission Performance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use Emission Performance Heavy Duty Vehicle In-Use Emission Performance 2003 DEER Conference Presentation: VTT Technical Research Centre of Finland deer2003ikonen.pdf More...

  9. Fuel and emission impacts of heavy hybrid vehicles.

    SciTech Connect (OSTI)

    An, F.; Eberhardt, J. J.; Stodolsky, F.

    1999-03-02

    Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

  10. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.

    2008-01-01

    Changes in motor vehicle emissions on diurnal to decadalof a revised motor vehicle emission inventory. J. Geophys.and trends in motor vehicle emissions to monthly urban

  11. Development of a Microscopic Activity-Based Framework for Analyzing the Potential Impacts of Transportation Control Measures on Vehicle Emissions

    E-Print Network [OSTI]

    Recker, Wilfred W.; Parimi, A.

    2000-01-01

    Control Measures on Vehicle Emissions W. W. Recker and A.the increase in the vehicle emissions and energy consumptionalternatives in reducing vehicle emissions. Subject to this

  12. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  13. A Fuel-Based Approach to Estimating Motor Vehicle Exhaust Emissions

    E-Print Network [OSTI]

    Craig, Brett

    1998-01-01

    study with other on-road vehicle emission data. J. Air Wasteon California light-duty vehicle emissions. Environ. Sci.Sixth CRC 0n-Road Vehicle Emissions Workshop, San Diego, CA,

  14. Marketable Credits for Light-Duty Vehicle Emission Control in California

    E-Print Network [OSTI]

    Wang, Quanlu; Kling, Catherine; Sperling, Daniel

    1992-01-01

    for Light-Duty Vehicle Emission CQntrol, Ph.D dissertation,for Light-Duty Vehicle Emission Control in Califorr6a QuantuSince the beginning of vehicle emission regulation in the

  15. Inhalation of primary motor vehicle emissions: Effects of urban population and land area

    E-Print Network [OSTI]

    Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

    2004-01-01

    and inhalation of motor vehicle emissions JD Marshall et al.pollutants: motor vehicle emissions in the South Coast AirAn on-road motor vehicle emissions inventory for Denver: an

  16. Inhalation of motor vehicle emissions: effects of urban population and land area

    E-Print Network [OSTI]

    Marshall, J D; McKone, T E; Deakin, E; Nazaroff, William W

    2005-01-01

    and inhalation of motor vehicle emissions JD Marshall et al.pollutants: motor vehicle emissions in the South Coast Airand inhalation of motor vehicle emissions JD Marshall et al.

  17. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  18. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Houston Zero Emission Delivery Vehicle Deployment Project

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Intake fraction of nonreactive vehicle emissions in US urban areas

    E-Print Network [OSTI]

    Marshall, Julian D.; Teoh, Soon-Kay; Nazaroff, William W.

    2006-01-01

    vehicle emission, 1,3-butadiene (characteristic lifetime E6remove a portion of the 1,3-butadiene from ambient air. Ourreactions (as for 1,3- butadiene) and physical removal as

  1. Innovation, Retail Performance and Zero Emission Vehicle Policy

    E-Print Network [OSTI]

    California at Davis, University of

    ;3 "Encourage and support auto dealers to increase sales and leases of ZEVs." (p. 15) " " Why Study the Retail1 Innovation, Retail Performance and Zero Emission Vehicle Policy Eric Cahill Research Briefing Market for Plug-in Electric Vehicles (PEVs)? #12;4 Policy Focus is on Automakers and Consumers Government

  2. Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles

    E-Print Network [OSTI]

    Goldstein, Allen

    Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional

  3. California's Zero Emission Vehicle Program Cleaner air needed

    E-Print Network [OSTI]

    Gille, Sarah T.

    these highly functional vehicles and called for more. The regulation also spurred advances in natural gas allow recharging overnight ­no trips to the gas station as EV drivers wake up each morning with a "full gasoline powered vehicle *** Includes powerplant emissions Studies estimate that EV maintenance will cost

  4. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  5. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  6. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710

    E-Print Network [OSTI]

    Hudda, N.; Fruin, S.; Delfino, R. J; Sioutas, C.

    2013-01-01

    determination of vehicle emission factors by fuel useCalifornia Motor Vehicle Emission Factor/Emission InventorySN. Changes in motor vehicle emissions on diurnal to decadal

  7. Vehicle Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C.; Buttner, W.; Rivkin, C.

    2010-02-01

    This report identifies gaps in vehicle codes and standards and recommends ways to fill the gaps, focusing on six alternative fuels: biodiesel, natural gas, electricity, ethanol, hydrogen, and propane.

  8. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  9. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    are for total full fuel cycle emissions. References l.Light Duty Vehicle Full Fuel Cycle Emissions Analysis,AND FUEL ECONOMY FULL FUEL CYCLE EMISSIONS REGULATORY

  10. CleanFleet. Final report: Volume 7, vehicle emissions

    SciTech Connect (OSTI)

    1995-12-01

    Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

  11. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  12. Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of

    E-Print Network [OSTI]

    Gille, Sarah T.

    12/10/01 Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of zero emission vehicles (ZEVs). Specifically, the Air Resources Board mandated that at least 2 percent, 5 percent and 10 percent of new car sales

  13. Emissions Minimization Vehicle Routing Problem Miguel Figliozzi

    E-Print Network [OSTI]

    costs will have a clear economic value, e.g CO2 emissions in $/kg. This research aims to formulate it is likely that GHG emissions will have a monetary cost. Under cap and trade emissions system initiatives is the primary objective or is part of a generalized cost function. In addition, departure times and travel

  14. Emissions from ethanol- and LPG-fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1995-06-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

  15. Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity

    E-Print Network [OSTI]

    Kirchstetter, Thomas; Singer, Brett; Harley, Robert

    1999-01-01

    California Reformulated Gasoline On Motor Vehicle EmissionsCalifornia Reformulated Gasoline on Motor Vehicle EmmissionsBerkeley Environ. ScLTechnoL gasoline Impact California of

  16. Atmospheric Environment 36 (2002) 51775184 An on-road motor vehicle emissions inventory for Denver

    E-Print Network [OSTI]

    Denver, University of

    2002-01-01

    Atmospheric Environment 36 (2002) 5177­5184 An on-road motor vehicle emissions inventory for DenverNOxÞ to the national emission inventory (USEPA, 2000). Thus, an accurate assessment of emissions from motor vehicles is crucial to under- stand the air quality of a given region. Until recently, motor vehicle emission

  17. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  18. Fuel composition effects on natural gas vehicle emission

    SciTech Connect (OSTI)

    Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States)

    1994-12-31

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart & Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level I electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 L MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  19. Fuel composition effects on natural gas vehicle emissions

    SciTech Connect (OSTI)

    Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States); Bailey, B.K.; Colucci, C. [National Renewable Energy Lab., Golden, CO (United States)

    1994-09-01

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  20. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a Vehicle FuelFuelingBiodiesel

  1. Future Emissions Impact On Off-Road Vehicles

    SciTech Connect (OSTI)

    Kirby Baumgard; Steve Ephraim

    2001-04-18

    Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

  2. Fuel-Based On-Road Motor Vehicle Emissions Inventory

    E-Print Network [OSTI]

    Denver, University of

    Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S -legally correct but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department -quite precise Inventory -uncertainty can be estimated Travel Based Model Fuel

  3. Development of a Microscopic Activity-Based Framework for Analyzing the Potential Impacts of Transportation Control Measures on Vehicle Emissions

    E-Print Network [OSTI]

    Recker, Will; Parimi, Arun

    1998-01-01

    Control Measures on Vehicle Emissions Will Recker 1 ArunControl Measures on Vehicle Emissions W. W. Recker and A.the increase in the vehicle emissions and energy consumption

  4. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art 2003 DEER...

  5. Fact #771: March 18, 2013 California Zero-Emission Vehicle Mandate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: March 18, 2013 California Zero-Emission Vehicle Mandate is Now in Effect Fact 771: March 18, 2013 California Zero-Emission Vehicle Mandate is Now in Effect A waiver granted by...

  6. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control 2012 DOE Hydrogen and Fuel...

  7. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  8. ESTIMATING FUEL CONSUMPTION AND VEHICLE TAIL-PIPE EMISSIONS AT SIGNALISED INTERSECTIONS

    E-Print Network [OSTI]

    Hellinga, Bruce

    ESTIMATING FUEL CONSUMPTION AND VEHICLE TAIL-PIPE EMISSIONS AT SIGNALISED INTERSECTIONS Bruce are developed on the basis of emission measurements made on vehicles driving that specific cycle. The US EPA modelling, in which individual vehicle behaviour is represented and emissions are estimated over each time

  9. Temperature dependence of volatile organic compound evaporative emissions from motor vehicles

    E-Print Network [OSTI]

    Goldstein, Allen

    Temperature dependence of volatile organic compound evaporative emissions from motor vehicles Juli tailpipe sources to motor vehicle volatile organic compound (VOC) emissions. Contributions were determined in a highway tunnel were used to define the composition of running vehicle emissions. The chemical mass balance

  10. Reduction in Vehicle Idling Emissions Using RFID Parking Permits Dawson, Pakes-Ahlman, Graham, Gutierrez, Vilasdaechanont

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    1 Reduction in Vehicle Idling Emissions Using RFID Parking Permits 9/20/13 Dawson, Pakes consumption and vehicle emissions. RFID Background RFID tags contain electronically stored data that can's entrance and exit from parking ramps. Table 1. Average Idle Emission Rates by Pollutant and Vehicle Type

  11. Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air

    E-Print Network [OSTI]

    Denver, University of

    Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air Pollution G A R Y A . B I S H, Denver, Colorado 80208 L E N O R A B O H R E N The National Center for Vehicle Emissions Control & Safety of vehicle emissions information system has been developed which utilizes an innovative variable message sign

  12. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet Fuel toEmissions to

  13. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  14. Roadmap for Testing and Validation of Electric Vehicle Communication Standards

    SciTech Connect (OSTI)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2012-07-12

    Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  15. Methanol fuel vehicle demonstration: Exhaust emission testing. Final report

    SciTech Connect (OSTI)

    Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

    1993-07-01

    Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

  16. Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2010-01-01

    use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

  17. Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves 

    E-Print Network [OSTI]

    Gu, Chaoyi

    2013-07-31

    Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. ...

  18. A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions by Christopher D. Dresser OF WISCONSIN - MADISON Abstract A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions Christopher-duty diesel vehicles (HDDV) for a ten-state Midwest region (Mississippi Valley Freight Coalition) using

  19. The Natural Gas Vehicle Challenge `92: Exhaust emissions testing and results

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P. [Argonne National Lab., IL (United States); Zammit, M.G. [Johnson Matthey, Wayne, PA (United States); Davies, J.G.; Salmon, G.S. [General Motors of Canada Ltd., Toronto, ON (Canada); Bruetsch, R.I. [US Environmental Protection Agency (United States)

    1992-11-01

    The Natural Gas Vehicle (NGV) Challenge `92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  20. The Natural Gas Vehicle Challenge '92: Exhaust emissions testing and results

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P. (Argonne National Lab., IL (United States)); Zammit, M.G. (Johnson Matthey, Wayne, PA (United States)); Davies, J.G.; Salmon, G.S. (General Motors of Canada Ltd., Toronto, ON (Canada)); Bruetsch, R.I. (US Environmental Protection Agency (United States))

    1992-01-01

    The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  1. Alternative fuel vehicles: The emerging emissions picture. Interim results, Summer 1996

    SciTech Connect (OSTI)

    1996-10-01

    In this pamphlet, program goal, description, vehicles/fuels tested, and selected emissions results are given for light-duty and heavy-duty vehicles. Other NREL R&D programs and publications are mentioned briefly.

  2. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  3. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Sperling, D. , 1989. Electric vehicles: performance, life-in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. Random House, New York.

  4. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.Nasar S. A. (1982) electric vehicle technology. John Wiley &batteries fornia. for electric vehicles. Argonne National

  5. On-Road Remote Sensing of Vehicle Exhaust Emissions in Auckland, New Zealand

    E-Print Network [OSTI]

    Denver, University of

    On-Road Remote Sensing of Vehicle Exhaust Emissions in Auckland, New Zealand S. Xie, J. G. Bluett Zealand's vehicle fleet. The remote sensing campaign was implemented to establish the emissions profile of this remote sensing campaign was to redress this knowledge gap, improve understanding of the emissions

  6. The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel

    E-Print Network [OSTI]

    The Economic, Energy, and GHG Emissions Impacts of Proposed 2017­2025 Vehicle Fuel Economy in the passenger vehicle fleet to evaluate the economic, energy use, and greenhouse gas (GHG) emissions impacts analysis need to be related to the economic, technological, and political forces that drive emissions

  7. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    vehicles, E85 (mixture of 85%ethanol and 15%gasoline byemissions from ethanol vehicles opexatlng on E85 were not

  8. Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

  9. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  10. Simultaneous Measurement of On-Road Vehicle Emissions and Traffic Flow Using Remote Sensing and an Area-Wide

    E-Print Network [OSTI]

    Frey, H. Christopher

    1 Simultaneous Measurement of On-Road Vehicle Emissions and Traffic Flow Using Remote Sensing Current practice for estimating vehicle emissions is based upon the use of planning-level vehicle mile input emissions data are based upon dynamometer testing of new vehicles under controlled conditions and

  11. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect (OSTI)

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  12. ANSI Electric Vehicle Standards Roadmap v2.0 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap v2.0 ANSI Electric Vehicle Standards Roadmap v2.0 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

  13. Perspective on the Future Development of Diesel Emission Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective on the Future Development of Diesel Emission Standards in Europe - Euro 5 for LDV, amendment of EURO 5 for HDV Perspective on the Future Development of Diesel Emission...

  14. THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT, it is of some interest to explore the inclusion of road transport in emission trading schemes. Starting from

  15. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

  16. EPA Emissions | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPA Emissions ORNL research informs new EPA emissions standards July 11, 2014 Oak Ridge National Laboratory (ORNL) has developed a streamlined method for determining vehicle...

  17. Shaping the Terms of Competition: Environmental Regulation and Corporate Strategies to Reduce Diesel Vehicle Emissions

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Diesel Vehicle Emissions by Christine Bik-Kay Ng B.S., Civil and Environmental Engineering University Strategies to Reduce Diesel Vehicle Emissions by Christine Bik-Kay Ng Submitted to the Engineering Systems. This research explains the conditions under which competitive regulatory strategies are pursued in the diesel

  18. Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area

    E-Print Network [OSTI]

    Denver, University of

    Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S of obtaining on-road emissions inventories has been developed. This technique calculates emission factors these factors with fuel use data, available from tax records, yields a fuel based emission inventory. We have

  19. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    Motor-vehicle flows Uranium enrichment Agriculture Fuel production Nitrogen deposition Multi-modal emissions Corn-ethanol

  20. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    E-Print Network [OSTI]

    McGaughey, Alan

    and GHG emissions of electrified vehicles. c We design PHEVs and BEVs and assign vehicles and charging). Passenger vehicles accounted for 9.5% of 2010 US carbon dioxide emissions (US EPA, 2011) and 19% of 2009Optimal design and allocation of electrified vehicles and dedicated charging infrastructure

  1. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    McGaughey, Alan

    T S Electrified vehicle life cycle emissions and cost depend on driving conditions. GHGs can triple in NYC cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20 vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple

  2. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production

    E-Print Network [OSTI]

    Goldstein, Allen

    Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from-based, single vehicle dynamometer testing, and on-road measurements in roadway tunnels.3-12 Emission factors

  3. Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy

    E-Print Network [OSTI]

    Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy://globalchange.mit.edu/ Printed on recycled paper #12;Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy

  4. California Motor Vehicle Standards and Federalism: Lessons for the European Union

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    rather than on per car emissions standards. The Tier 2effective for MY 2009 cars, the emissions of carbon dioxide,regulate greenhouse gas emissions from passenger cars. Yet

  5. Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

    2010-06-01

    Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

  6. A Study of the Emissions Benefits of Commercial Vehicle Lane Management Strategies

    E-Print Network [OSTI]

    than light-duty (LD) vehicles. This research shows that the estimated emissions effects of congestion of a general purpose lane to a truck-only lane may produce more emissions benefits than adding either a truck-only lane or a general purpose lane. Furthermore, the expected emissions benefits from truck-only lane

  7. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures

    E-Print Network [OSTI]

    Elliott, Emily M.

    and d18 O values of natural and anthropogenic NOx emission sources. We report the first d15 N and d18 and vehicle emissions. We provide evidence for passive sampler use to collect NOx for isotope analysis. a r Accepted 7 April 2014 Available online 8 April 2014 Keywords: Nitrogen dioxide NOx Isotope Emission a b

  8. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  9. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  10. that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows,

    E-Print Network [OSTI]

    Bertini, Robert L.

    that minimizes vehicle emissions during design of routes in congested environments with time emissions, and several laboratory and field methods are available for estimating vehicle emissions rates (1 and then begins to increase again (2); hence, the relationship between emission rates and travel speed

  11. Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 4: Emission standard for industrial environments

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    1997-01-01

    This standard for emission requirements applies to electrical and electronic apparatus intended for use in the industrial locations (both indoor and outdoor, or in proximity to industrial power installations) for which no designed product or product-family emission standard exists. Disturbances in the frequency range 0 Hz to 400 GHz are covered.

  12. Vehicle Technologies Office Merit Review 2015: Zero Emission Cargo Transport II

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero emission cargo transport II.

  13. Vehicle Technologies Office Merit Review 2015: Zero Emission Cargo Transport Projects

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero emission...

  14. Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?

    E-Print Network [OSTI]

    Paltsev, S.

    Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

  15. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  16. Mileage efficiency and relative emission of automotive vehicles

    E-Print Network [OSTI]

    Patankar, Neelesh A

    2015-01-01

    Physics dictates that cars with small mass will travel more miles per gallon (mpg) compared to massive trucks. Does this imply that small cars are more efficient machines? In this work a mileage efficiency metric is defined as a ratio of actual car mileage (mpg) to the mileage of an ideal car. This metric allows comparison of efficiencies of cars with different masses and fuel types. It is as useful to quantify efficiencies of cars as the concept of drag coefficient is to quantify the efficacy of their aerodynamic shapes. Maximum mileage and lowest CO2 emission of conventional gasoline cars, at different driving schedules, is reported based on the concept of an ideal car. This can help put government imposed standards in a rigorous context.

  17. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  18. Vehicle to Grid Communication Standards Development Support | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruaryVehicleReport |10 DOE Vehicle09

  19. Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    Derivation of average cost of emission reduction by blending?) and ? respectively. GHG emissions per unit of blend is, ?+ ?? i Reduction in GHG emissions with respect to unblended

  20. ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO

    E-Print Network [OSTI]

    Denver, University of

    ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO Final Report Prepared for the University of Denver traveled to Monterrey, N.L. Mexico to monitor remotely the carbon monoxide (CO with other cities that have been sampled in Mexico. The on-road emission averages are similar to the latest

  1. Determining the Volatility of Ultrafine (UF) PM Emissions from CNG Vehicles

    E-Print Network [OSTI]

    Determining the Volatility of Ultrafine (UF) PM Emissions from CNG Vehicles Contract#: 500. Limited research has been done to characterize compressed natural gas (CNG) mass emissions and practically no work focused on the determination of the size- segregated volatility of UF particles from CNG engines

  2. National Emission Standards for Hazardous Air Pollutants submittal -- 1997

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1998-06-01

    Each potential source of Nevada Test Site (NTS) emissions was characterized by one of the following methods: (1) monitoring methods and procedures previously developed at the NTS; (2) a yearly radionuclide inventory of the source, assuming that volatile radionuclide are released to the environment; (3) the measurement of tritiated water (as HTO or T{sub 2}O) concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) using a combination of environmental measurements and CAP88-PC to calculate emissions. The emissions for National Emission Standards for Hazardous Air Pollutants (NESHAPs) reporting are listed. They are very conservative and are used in Section 3 to calculate the EDE to the maximally exposed individual offsite. Offsite environmental surveillance data, where available, are used to confirm that calculated emissions are, indeed, conservative.

  3. Energy-consumption and carbon-emission analysis of vehicle and component manufacturing.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Burnham, A.; Wang, M.; Energy Systems

    2010-10-12

    A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The approach is bottom-up, with a special focus on energy consumption and CO{sub 2} emissions. The model is applied to both conventional and advanced vehicles, the latter of which include aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. An important component of the model, a weight-based distribution function of materials and associated transformation processes (casting, stamping, etc.), is developed from the United States Council for Automotive Research Generic Vehicle Life Cycle Inventory Study. As the approach is bottom-up, numerous transformation process data and plant operational data were extracted from the literature for use in representing the many operations included in the model. When the model was applied to conventional vehicles, reliable estimates of cumulative energy consumption (34 GJ/vehicle) and CO{sub 2} emission (2 tonnes/vehicle) were computed for the VMA life-cycle stage. The numerous data sets taken from the literature permitted the development of some statistics on model results. Because the model explicitly includes a greater coverage of relevant manufacturing processes than many earlier studies, our energy estimates are on the higher end of previously published values. Limitations of the model are also discussed. Because the material compositions of conventional vehicles within specific classes (cars, light duty trucks, etc.) are sensibly constant on a percent-by-weight basis, the model can be reduced to a simple linear form for each class dependent only on vehicle weight. For advanced vehicles, the material/transformation process distribution developed above needs to be adjusted for different materials and components. This is particularly so for aluminum-intensive and electric-drive vehicles. In fact, because of their comparatively high manufacturing energy, batteries required for an electric vehicle can significantly add to the energy burden of the VMA stage. Overall, for conventional vehicles, energy use and CO{sub 2} emissions from the VMA stage are about 4% of their total life-cycle values. They are expected to be somewhat higher for advanced vehicles.

  4. Vehicle to Grid Communication Standards Development, Testing and Validation - Status Report

    SciTech Connect (OSTI)

    Gowri, Krishnan; Pratt, Richard M.; Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-09-01

    In the US, more than 10,000 electric vehicles (EV) have been delivered to consumers during the first three quarters of 2011. A large majority of these vehicles are battery electric, often requiring 220 volt charging. Though the vehicle manufacturers and charging station manufacturers have provided consumers options for charging preferences, there are no existing communications between consumers and the utilities to manage the charging demand. There is also wide variation between manufacturers in their approach to support vehicle charging. There are in-vehicle networks, charging station networks, utility networks each using either cellular, Wi-Fi, ZigBee or other proprietary communication technology with no standards currently available for interoperability. The current situation of ad-hoc solutions is a major barrier to the wide adoption of electric vehicles. SAE, the International Standards Organization/International Electrotechnical Commission (ISO/IEC), ANSI, National Institute of Standards and Technology (NIST) and several industrial organizations are working towards the development of interoperability standards. PNNL has participated in the development and testing of these standards in an effort to accelerate the adoption and development of communication modules.

  5. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  6. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  7. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  8. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  9. In-use vehicle emissions in China: Beijing study

    SciTech Connect (OSTI)

    Oliver, Hongyan H.; Gallagher, Kelly Sims ); Li, Mengliang; Qin, Kongjian; Zhang, Jianwei ); Liu, Huan; He, Kebin )

    2009-05-01

    China's economic boom in the last three decades has spurred increasing demand for transportation services and personal mobility. Consequently, vehicle population has grown rapidly since the early 1990s, especially in megacities such as Beijing, Guangzhou, and Tianjin. As a result, mobile sources have become more conspicuous contributors to urban air pollution in Chinese cities. Tianjin was our first focus city, and the study there took us about two years to complete. Building upon the experience and partnership generated through the Tianjin study, the research team carried out the Beijing study from fall 2007–fall 2008. Beijing was chosen to be our second focus city for several reasons: it has the largest local fleet and the highest percentage of the population owning vehicles among all Chinese cities, and it has suffered from severe air pollution, partially due to the ever-growing population of on-road vehicles.

  10. Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels

    SciTech Connect (OSTI)

    Vertin, K.; Glinsky, G.; Reek, A.

    2012-08-01

    The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

  11. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  12. Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions

    E-Print Network [OSTI]

    : gasoline, gasoline-ethanol l'rlends, diesel, biodiesel blends, LPG lquefied petroleurn gas) ancl CNG operating on gasoline arrd a similar non-FF\\-. llir:s rs a in-al ethanol composition blend requires vehicle in the atmosphere. For many r.ears, the primary vehicie fuels used have been gasoline and diesel fuels. These iuels

  13. Light duty vehicle full fuel cycle emissions analysis. Topical report, April 1993-April 1994

    SciTech Connect (OSTI)

    Darrow, K.G.

    1994-04-01

    The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of California and two time frames, current and year 2000.

  14. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pmaterialsveenstra.pdf More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization CNG and Hydrogen Tank Safety, R&D, and Testing Hydrogen Tank Testing R&D...

  15. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    SciTech Connect (OSTI)

    Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  16. 1990 INEL national emission standards for hazardous air pollutants

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The Environmental Protection Agency issued on December 15, 1989 final rules governing air emissions of radionuclides. Requirements concerning radionuclide emissions from Department of Energy Facilities are addressed under Title 40, Code Federal Regulations (CFR) 61, Subpart H, National Emission Standards for Emissions of Radionuclides other Than Radon From Department of Energy Facilities.'' Section 61.94 of the regulations require that each DOE facility submit on an annual basis a report documenting compliance with the Subpart H requirements. This report addresses the section 61.94 reporting requirements for operations at the Idaho National Engineering Laboratory (INEL) for calendar year 1990. The Idaho Operations Office of the Department of Energy is the primary contact concerning NESHAPs compliance at the INEL.

  17. Ambient temperature and driving cycle effects on CNG motor vehicle emission

    SciTech Connect (OSTI)

    Gabele, P.; Krapp, K.T.; Ray, W.D.; Snow, R.; Crews, W.; Perry, N.; Lanning, J.

    1990-01-01

    This paper describes an emissions study of two vans powered by compressed natural gas (CNG). One van was relatively new, while the other had been driven more than 120,000 mi. The purpose of the study was to obtain emissions information which could be used to predict the impact of CNG use on ambient air quality and air toxic concentrations, and to develop a better understanding of the effect of ambient temperature variations on CNG emissions. Using four different driving cycles, emission tests were carried out at 20{degree}F, 75{degree}F, and 105{degree}F. Test results agree with previous findings that document low emissions of nonmethane hydrocarbons from CNG vehicles. Results also confirm the expectation that CNG emissions are not significantly affected by ambient temperature variations, although an increase in formaldehyde emission was noted for the 20{degree}F cold-start tests.

  18. Incorporating Vehicle Emission Models into the Highway Design Process 

    E-Print Network [OSTI]

    Ko, Myung-Hoon

    2012-02-14

    ?. ........................................................................................... 80 xii Page Figure 5.6 EMFs of fuel consumption and emissions by design categories ........... 83 Figure 5.7 Fuel consumption and emissions by K on vertical curves .................... 87 Figure 5.8 Fuel consumption... Figure 7.1 US 101 route evaluated with real geometric data ................................. 111 Figure 7.2 EMFs from actual vertical grades selected relative to the hypothetical condition of the good design...

  19. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    2000-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  20. 1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    1999-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  1. Optical and Physical Properties from Primary On-Road Vehicle Particle Emissions And Their Implications for Climate Change

    E-Print Network [OSTI]

    1 Optical and Physical Properties from Primary On-Road Vehicle Particle Emissions between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical size distributions and optical properties were insensitive to increases in relative humidity to values

  2. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  3. Power Plant Emission Reductions Using a Generation Performance Standard

    Reports and Publications (EIA)

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  4. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

  5. Motor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbHMontebalito SAPhotoVoltaic Ltd JumpMoteckVehicle

  6. Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy Vehicle Technologies OfficeforLife

  7. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  8. Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study

    E-Print Network [OSTI]

    Hohl, Carrie

    2012-12-31

    On-road emissions and operating data were collected from a plug-in hybrid electric vehicle (PHEV) over the course of 6months spanning August 2007 through January 2008 providing the first comprehensive on-road evaluation of the PHEV drivetrain...

  9. On-Road Emissions of Motor Vehicles in Brazil: Current Status

    E-Print Network [OSTI]

    Denver, University of

    On-Road Emissions of Motor Vehicles in Brazil: Current Status and Future Possibilities of Denver 2101 E. Wesley Ave. Denver, CO 80208 #12;#12;On-road system Motorcycle system #12;#12;RSD measures pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department -quite precise

  10. 23rd CRC On-Road Vehicle Emissions Workshop San Diego, California

    E-Print Network [OSTI]

    Denver, University of

    .feat.biochem.du.edu Wendy Clark National Renewable Energy Laboratory Golden, CO 80401 Wei Li and Dean Saito South Coast Air of Vehicle Technologies through National Renewable Energy Laboratory South Coast Air Quality Management at two locations in the South Coast Air Basin · To follow HDDT emission changes during this period as new

  11. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    solely from stored electric energy during the day. With theIn Hybrid Electric Vehicles on Energy and Emissions UsingIn Hybrid Electric Vehicles on Energy and Emissions Using

  12. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

  13. Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle

    SciTech Connect (OSTI)

    1995-07-01

    On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

  14. Standards Governing All Advertising in or upon Transportation Services Bus Vehicles or Property

    E-Print Network [OSTI]

    Standards Governing All Advertising in or upon Transportation Services Bus Vehicles or Property 1. Transportation Services shall not display or maintain any advertisement that falls within one or more of the following categories: a. Demeaning or disparaging. The advertisement contains material that demeans

  15. SESAM FT-IR: A Comparison of the R&D Workhorse to Standard Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SESAM FT-IR: A Comparison of the R&D Workhorse to Standard Emission Benches SESAM FT-IR: A Comparison of the R&D Workhorse to Standard Emission Benches Data for a number of...

  16. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  17. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  18. Electric Vehicle Communication Standards Testing and Validation Phase I: SAE J2847/1

    SciTech Connect (OSTI)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2011-09-21

    Executive Summary Vehicle to grid communication standards are critical to the charge management and interoperability among vehicles, charging stations and utility providers. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee / HomePlug Alliance are developing requirements for communication messages and protocols. While the standard development is in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers and utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified performance requirements and test plan based on possible communication pathways using power line communication over the control pilot and mains. Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This report presents a test plan and results from initial testing of two power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  19. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    SciTech Connect (OSTI)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine; LaChance, Jeffrey L.; Horne, Douglas B.

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazards from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.

  20. Impact of Stops on Vehicle Fuel Consumption and Emissions Hesham Rakha1 and Yonglian Ding2

    E-Print Network [OSTI]

    Rakha, Hesham A.

    chemical compounds that leave the engine through the tail pipe system and crankcase, and evaporative or exhaust emissions). Currently, diesel-powered engines cannot use catalytic oxidizers due to plugging from on a limited number of standard drive cycles. For example, the MOBILE5a model utilizes baseline emission rates

  1. The FreedomCAR & Vehicle Technologies Health Impacts Program- The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4

    SciTech Connect (OSTI)

    McCormick, R. L.; Williams, A.; Ireland, J.; Hayes, R. R.

    2006-10-01

    The objective was to determine if testing entire vehicles, vs. just the engines, on a heavy-duty chassis dynamometer provides a better, measurement of the impact of B20 on emissions.

  3. Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  5. Acknowledgments: NASA Glenn Research Center (Grant #NNC04GB44G) College of Engineering Prof. Martin Abraham NASA envisions employing fuel cells running on jet fuel reformate for its uninhabited aerial vehicles (UAVs), low emission alternative power (LE

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    uninhabited aerial vehicles (UAVs), low emission alternative power (LEAP) missions and for transatlantic

  6. Driving down emissions : analyzing a plan for meeting Massachusetts' carbon emission reduction targets for passenger vehicles

    E-Print Network [OSTI]

    Irvin, Elizabeth J. (Elizabeth Joanna)

    2015-01-01

    Massachusetts is one of the US states at the forefront of carbon emission reduction policy, and has the potential to model success to the rest of the country. The state's Global Warming Solutions Act (GWSA) passed in 2008, ...

  7. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  8. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  9. International Trade in Used Vehicles: The Environmental Consequences of NAFTA

    E-Print Network [OSTI]

    Davis, Lucas

    2009-01-01

    trade  leads  average  vehicle  emissions  to  decrease  in country.  How average  vehicle emissions change in both vehicles  and  vehicle  emissions.   Our  dataset  allows 

  10. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo

    2006-01-01

    California. ‘ The Role of Electric Vehicles. The Claremontof GM ’s Revolutionary Electric Vehicle. New York: Random1995). Future Drive: Electric Vehicles and Sustainable

  11. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2006-01-01

    in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. New York: Random House.1995). Future Drive: Electric Vehicles and Sustainable

  12. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  13. The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy 

    E-Print Network [OSTI]

    Love, Michael Lee

    1982-01-01

    THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

  14. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2010 INL Report for Radionuclides (2011)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2011-06-01

    This report documents the calendar Year 2010 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'

  15. Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change

    SciTech Connect (OSTI)

    Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

    2009-01-23

    During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

  16. Electric Vehicle Communications Standards Testing and Validation - Phase II: SAE J2931/1

    SciTech Connect (OSTI)

    Pratt, Richard M.; Gowri, Krishnan

    2013-01-15

    Vehicle to grid communication standards enable interoperability among vehicles, charging stations and utility providers and provide the capability to implement charge management. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee/HomePlug Alliance are developing requirements for communication messages and protocols. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified vehicle to grid communication performance requirements and developed a test plan as part of SAE J2931/1 committee work. This laboratory test plan was approved by the SAE J2931/1 committee and included test configurations, test methods, and performance requirements to verify reliability, robustness, repeatability, maximum communication distance, and authentication features of power line carrier (PLC) communication modules at the internet protocol layer level. The goal of the testing effort was to select a communication technology that would enable automobile manufacturers to begin the development and implementation process. The EPRI/Argonne National Laboratory (ANL)/Pacific Northwest National Laboratory (PNNL) testing teams divided the testing so that results for each test could be presented by two teams, performing the tests independently. The PNNL team performed narrowband PLC testing including the Texas Instruments (TI) Concerto, Ariane Controls AC-CPM1, and the MAXIM Tahoe 2 evaluation boards. The scope of testing was limited to measuring the vendor systems communication performance between Electric Vehicle Support Equipment (EVSE) and plug-in electric vehicles (PEV). The testing scope did not address PEV’s CAN bus to PLC or PLC to EVSE (Wi-Fi, cellular, PLC Mains, etc.) communication integration. In particular, no evaluation was performed to delineate the effort needed to translate the IPv6/SEP2.0 messages to PEV’s CAN bus. The J2931/1 laboratory test results were presented to the SAE membership on March 20-22, 2012. The SAE committee decided to select HomePlug GreenPHY (HPGP) as the communication technology to use between the PEV and EVSE. No technology completely met all performance requirements. Both the MAXIM Tahoe 2 and TI Concerto met the 100Kbps throughput requirement, are estimated to meet the latency measurement performance, and met the control pilot impairment requirements. But HPGP demonstrated the potential to provide a data throughput rate of 10x of the requirement and either met or showed the potential to meet the other requirements with further development.

  17. A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCR/DPF Applications/Data-Logger for Vehicle Data Acquisition

    Broader source: Energy.gov [DOE]

    This project describes a novel system of sensors that continuously monitor emissions in real time and a data logger to gather real-time data from a vehicle

  18. Vehicle Technologies Office Merit Review 2014: Robust Nitrogen oxide/Ammonia Sensors for Vehicle on-board Emissions Control

    Broader source: Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about robust...

  19. Vehicle Technologies Office Merit Review 2015: Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about robust...

  20. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2011 INL Report for Radionuclides (2012)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2012-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  1. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2012 INL Report for Radionuclides (2013)

    SciTech Connect (OSTI)

    Verdoorn, Mark; Haney, Tom

    2013-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  2. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2013 INL Report for Radionuclides (2014)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2014-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, “Protection of the Environment,” Part 61, “National Emission Standards for Hazardous Air Pollutants,” Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.” The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  3. Overview of ASTM D7036: A Quality Management Standard for Emission Testing

    E-Print Network [OSTI]

    Measurement Challenges and Metrology for Monitoring CO2 Emissions from Smokestacks Gaithersburg, MD April 207036 (1/3) Air Emission Testing Stationary source sampling and analysis, exclusive of fuel samplingOverview of ASTM D7036: A Quality Management Standard for Emission Testing NIST Workshop

  4. Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data

    E-Print Network [OSTI]

    Wang, Guihua; Bai, Song; Ogden, Joan M.

    2009-01-01

    distribution of vehicle emissions inventories. Environmentalfor 2005, regional vehicle emissions are disaggregated intodistributions of vehicle emissions/activities and the

  5. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation’s site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides that are resuspended into the air (e.g., by winds, dust-devils) along with historically-contaminated soils on the NTS. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 Code of Federal Regulations 61 Subpart H) limits the release of radioactivity from a U. S. Department of Energy (DOE) facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent (EDE) to any member of the public. This is the dose limit established for someone living off of the NTS for inhaling radioactive particles that may be carried by wind off of the NTS. This limit assumes that members of the public surrounding the NTS may also inhale “background levels” or radioactive particles unrelated to NTS activities that come from naturally-occurring elements in the environment (e.g., radon gas from the earth or natural building materials) or from other man-made sources (e.g., cigarette smoke). The U. S. Environmental Protection Agency (EPA) requires DOE facilities (e.g., the NTS) to demonstrate compliance with the NESHAP dose limit by annually estimating the dose to a hypothetical member of the public, referred to as the maximally exposed individual (MEI), or the member of the public who resides within an 80-kilometer (50-mile) radius of the facility who would experience the highest annual dose. This dose to a hypothetical person living close to the NTS cannot exceed 10 mrem/yr. C.1 This report has been produced annually for the EPA Region IX, and for the state of Nevada since 1992 and documents that the estimated EDE to the MEI has been, and continues to be, well below the NESHAP dose limit. The report format and level of technical detail has been dictated by the EPA and DOE Headquarters over the years. It is read and evaluated for NESHAP compliance by federal and state regulators. Each section and appendix presents technical information (e.g., NTS emission source estimates, onsite air sampling data, air transport model input parameters, dose calculation methodology, etc.), which supports the annual dose assessment conclusions. In 2005, as in all previous years for which this report has been produced, the estimated dose to the public from inhalation of radiological emissions from current and past NTS activities is shown to be well below the 10 mrem/yr dose limit. This was demonstrated by air sampling data collected onsite at each of six EPA-approved “critical receptor” stations on the NTS. The sum of measured EDEs from the four stations at the NTS boundaries is 2.5 mrem/yr. This dose is 25 percent of the allowed NESHAP dose limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, this individual receives only a small fraction of this dose. NESHAP compliance does not require DOE facilities to estimate annual inhalation dose from non-DOE activities. Therefore, this report does not estimate public radiation doses from any other sources or activities (e.g., naturally-occurring radon, global fallout).

  6. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    OF TECHNOLOGIES FOR HYBRID-ELECTRIC VEHICLES 4.1EnginesG.H. , SIMPLEV: Simple Electric Vehicle Simulation Program-G.H, SIMPLEV: Simple Electric Vehicle Simulation Program-

  7. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  8. Projections of highway vehicle population, energy demand, and CO{sub 2} emissions in India through 2040.

    SciTech Connect (OSTI)

    Arora, S.; Vyas, A.; Johnson, L.; Energy Systems

    2011-02-22

    This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.

  9. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

  10. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations (U.S. Environmental Protection Agency [EPA] and DOE, 1995). This method was approved by the EPA for use on the NNSS in 2001(EPA, 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2010, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of that measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000032 mrem/yr, more than 300,000 times lower than the 10 mrem/yr limit.

  11. Development of the DDA 8. 2L diesel engine for 1988 emission standards

    SciTech Connect (OSTI)

    Winsor, R.E.; Wheeler, C.L.

    1988-01-01

    The emission development performed to meet 1988 Federal and California emission standards with a four-stroke direct-injection V-8 diesel engine of 8.2L displacement is described. On the naturally aspirated engine the major concern was meeting particulate and lug smoke standards at low NO/sub x/ levels. Acceleration smoke and particulate emission reduction was necessary on the turbocharged engine. The performance and emission goals were met by modifying the unit injectors and pistons of both naturally aspirated and turbocharged engines.

  12. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    motor vehicles ..182 The nuclear fuelcycle .184 Crop production and fertilizer use..186 Corn-ethanol

  13. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    motor vehicles ..182 The nuclear fuelcycle .184 Crop production and fertilizer use..186 Corn-ethanol

  14. Effect of SoyEffect of Soy--Based B20 Biodiesel on Fuel UseBased B20 Biodiesel on Fuel Use and Emissions of 15 Construction Vehiclesand Emissions of 15 Construction Vehicles

    E-Print Network [OSTI]

    Frey, H. Christopher

    Normalized Manifold Absolute Pressure PM(g/gallon) PD B20 Average Fuel-Based NOx Emission Factors for Motor 1b 2 3 Average NOasNO2(g/gallon) Resurfacing Roading Shouldering Average Fuel-Based NOx Emission and Emissions of 15 Construction Vehiclesand Emissions of 15 Construction Vehicles Based on InBased on In

  15. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

  16. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2013

    SciTech Connect (OSTI)

    Warren, R.

    2014-06-04

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitations to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2013, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from 0.2% to a maximum of 10.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000011 mrem/yr, more than 900,000 times lower than the 10 mrem/yr limit.

  17. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2012

    SciTech Connect (OSTI)

    Warren, R.

    2013-06-10

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2012, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 0.5% to a maximum of 11.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

  18. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2009

    SciTech Connect (OSTI)

    Ciucci, John

    2010-06-11

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada Test Site (NTS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the NLVF, an NTS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from sources such as medically or commercially used radionuclides. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. At any one location, if multiple radionuclides are detected, then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2009, the potential dose from radiological emissions to air, resulting from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.69 mrem/yr, well below the 10 mrem/yr dose limit. Air sampling data collected at all six critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers from potential release points on the NTS, concentrations at this location would be only a small fraction of that measured on the NTS. The potential dose to the public from NLVF emissions was also very low at 0.000044 mrem/yr, 230,000 times lower than the 10 mrem/yr limit.

  19. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2012-06-19

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the NNSS in 2001 and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2011, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1% to a maximum of 12.2% of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

  20. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  1. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  3. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    and Greenhouse Gas Emissions from CNG Transit Buses EquippedOxidation Catalyst Effect on CNG Transit Bus Emissions. SAEOxidation Catalyst Effect on CNG Transit Bus Emissions. SAE

  4. National emission standards for hazardous air pollutants submittal -- 1996

    SciTech Connect (OSTI)

    Townsend, Y.E. [ed.; Black, S.C.

    1997-06-01

    The Nevada Test Site (NTS) is operated by the US Department of Energy, Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing. Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in 1996 were releases from the following: evaporation of tritiated water from containment ponds that receive drainage from E tunnel and from wells used for site characterization studies; onsite radioanalytical laboratories; the Area 5 RWMS facility; and diffuse sources of tritium and resuspension of plutonium. Section 1 describes these sources on the NTS. Section 2 tabulates the air emissions data for the NTS. These data are used to calculate the effective dose equivalents to offsite residents. Appendices describe the methods used to determine the emissions from the sources listed.

  5. On-Road Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving Across the U.S.

    Broader source: Energy.gov [DOE]

    Measuring particle emissions from a 2010 compliant HD Diesel tractor while traveling on-road for 2300 miles found average gravimetric TPM over the entire route to be well below EPA's 2010 PM standard.

  6. Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts

    Reports and Publications (EIA)

    2009-01-01

    This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States.

  7. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,

    E-Print Network [OSTI]

    Denver, University of

    concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing based emission ratio. In effect this technique makes use of CO2, and the other usually minor carbon

  9. YAZDANI BOROUJENI, BEHDAD. Road Grade Quantification Using GPS in On-Board Vehicle Emission Measurements. (Under the direction of H. Christopher Frey.)

    E-Print Network [OSTI]

    Frey, H. Christopher

    that NOx emission rates are 4 times higher when driving on a road with +5 percent grade compared to a flat Emission Measurements. (Under the direction of H. Christopher Frey.) Real-world vehicle tailpipe emissions constitute an important portion of ambient air pollution. NOx , CO2, CO, and hydrocarbons are among the main

  10. Project Information Form Project Title White Paper on Strategies for Transitioning to Zero-Emission Vehicles--

    E-Print Network [OSTI]

    California at Davis, University of

    health, enhance energy diversity, save consumers money, and promote economic growth. While national (ZEVs) include battery-electric vehicles (BEVs), plug-in hybrid-electric vehicles (PHEVs), and hydrogen fuel-cell-electric vehicles (HFCVs). These technologies can be used in passenger cars, trucks

  11. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    52, 23-37. Lewtas, J. Air Pollution Combustion Emissions:Reference Lewtas, J. Air Pollution Combustion Emissions:

  12. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    SciTech Connect (OSTI)

    Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

    2007-11-09

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  13. Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003

    SciTech Connect (OSTI)

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2007-10-01

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  14. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  15. Vehicle Technologies Office Merit Review 2015: Wireless & Conductive Charging Testing to support Code & Standards

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless and...

  16. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    E-Print Network [OSTI]

    Thornhill, D. A.

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

  17. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  18. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  19. Vehicle Technologies Office Merit Review 2015: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  20. Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

  1. Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Commission Neste Oil biomass-to-liquid Natural Gas NaturalGas Liquids Natural Gas Vehicle Ammonia Non-methanerecover valuable natural gas liquids (NGLs), such as ethane,

  3. Vehicle Technologies Office Merit Review 2014: Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

  4. Vehicle Technologies Office Merit Review 2015: Joint Development and Coordination of Emissions Control Data and Models

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about joint...

  5. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

    Broader source: Energy.gov [DOE]

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other.

  6. Optimized control studies of a parallel hybrid electric vehicle 

    E-Print Network [OSTI]

    Bougler, Benedicte Bernadette

    1995-01-01

    This thesis addresses the development of a control scheme to maximize automobile fuel economy and battery state-of-charge (SOC) while meeting exhaust emission standards for parallel hybrid electric vehicles, which are an alternative to conventional...

  7. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Restrictions of Car Emissions. ” http://www.metronews.ca/passenger cars and 95% for light trucks from Tier 1 emissionPassenger Cars - With low-GHG MAC Credit GHG Emission Rate (

  8. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Restrictions of Car Emissions. ” http://www.metronews.ca/passenger cars and 95% for light trucks from Tier 1 emissionPassenger Cars - With low-GHG MAC Credit GHG Emission Rate (

  9. Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions

    E-Print Network [OSTI]

    Nielsen, Eric

    2012-12-31

    Increasing energy demands require more energy extraction from fossil fuels. The energy is extracted through combustion and results in mainly CO2 emissions as well as other trace emissions. Reducing energy usage can save money and CO2 emissions...

  10. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  11. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  12. Optimal Design and Allocation of Electrified Vehicles and Dedicated Charging Infrastructure for Minimum Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    for Minimum Greenhouse Gas Emissions Submitted for Presentation at the 2011 Annual Meeting to reduce greenhouse gas (GHG) emissions from personal transportation by shifting energy demand from

  13. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    A. Potential Methods for NOx Reduction from Biodiesel. SAECombustion on NOx Emissions and their Reduction Approaches.Combustion on NOx Emissions and their Reduction Approaches.

  14. National Emission Standards for Hazardous Air Pollutants, June 2005

    SciTech Connect (OSTI)

    Robert F. Grossman

    2005-06-01

    The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility (NLVF). At the NLVF, parts of Building A-1 were contaminated with tritium by a previous contractor in 1995. The incident involved the release of tritium as HTO. This unusual occurrence led to a very small potential exposure to an offsite person. The HTO emission has continued at lower levels (probably re-emanation from building materials), even after cleanup activities in November and December 1997. A description of the incident and the potential effective dose equivalent (EDE) for offsite exposure are set forth in Appendix A.

  15. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement VouchersBrakingHydrogen Vehicle and

  16. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement VouchersBrakingHydrogen Vehicle and pipeline

  17. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement VouchersBrakingHydrogen Vehicle andNatural

  18. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement VouchersBrakingHydrogen Vehicle

  19. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement VouchersBrakingHydrogen Vehicle NREL is a

  20. Savannah River Site radionuclide air emissions annual report for national emission standards for hazardous air pollutants

    SciTech Connect (OSTI)

    Sullivan, I.K.

    1993-12-31

    The radiological air emission sources at the SRS have been divided into three categories, Point, Grouped and Non-Point, for this report. Point sources, analyzed individually, are listed with a listing of the control devices, and the control device efficiency. The sources listed have been grouped together either for security reasons or where individual samples are composited for analytical purposes. For grouped sources the listed control devices may not be on all sources within a group. Point sources that did not have continuous effluent monitoring/sampling in 1993 are noted. The emissions from these sources was determined from Health Protection smear data, facility radionuclide content or other calculational methods, including process knowledge, utilizing existing analytical data. This report also contain sections on facility descriptions, dose assessment, and supplemental information.

  1. MOBILE4. 1: Highway-vehicle mobile-source emission-factor model (Apple MacIntosh version) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    MOBILE4.1 is the latest revision to EPA's highway vehicle mobile source emission factor model. Relative to MOBILE4, it contains numerous revisions and provides the user with additional options for modeling highway vehicle emission factors. it will calculate emission factors for hydrocarbons (HC), carbon monoxide, (CO), and oxides of nitrogen (NOx) from highway motor vehicles. It calculates emission factors for eight individual vehicle types, in two regions of the country (low and high altitude). The emission factors depend on various conditions such as ambient temperature, fuel volatility, speed, and mileage accrual rates. It will estimate emission factors for any calendar year between 1960 and 2020 inclusive. The 25 most recent model years are considered in operation in each calendar year. EPA is requiring that states and others preparing emission inventories for nonattainment areas for CO and ozone to use MOBILE4.1 in the development of the base year 1990 emission inventories required under the Clean Air Act of 1990.

  2. J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria

    E-Print Network [OSTI]

    Boyer, Edmond

    ; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

  3. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  4. Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States

    E-Print Network [OSTI]

    Karplus, V.J.

    The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

  5. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    SciTech Connect (OSTI)

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  6. Investigation of Particle and Gaseous Emissions from Conventional and Emerging Vehicle Technologies Operating on Bio-Fuels

    E-Print Network [OSTI]

    Short, Daniel

    2014-01-01

    20% when testing a GDI turbocharged vehicle with two enginewhen they tested a turbocharged GDI vehicle over the Federalwhen they tested a GDI turbocharged vehicle with two engine

  7. Vehicle Technologies Office Merit Review 2015: Fuel and Lubricant Effects on Emissions Control Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about fuel and...

  8. Vehicle Technologies Office Merit Review 2014: Fuel and Lubricant Effects on Emissions Control Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel and...

  9. Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  10. 1990 INEL national emission standards for hazardous air pollutants. Annual report, June 1991

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The Environmental Protection Agency issued on December 15, 1989 final rules governing air emissions of radionuclides. Requirements concerning radionuclide emissions from Department of Energy Facilities are addressed under Title 40, Code Federal Regulations (CFR) 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides other Than Radon From Department of Energy Facilities.`` Section 61.94 of the regulations require that each DOE facility submit on an annual basis a report documenting compliance with the Subpart H requirements. This report addresses the section 61.94 reporting requirements for operations at the Idaho National Engineering Laboratory (INEL) for calendar year 1990. The Idaho Operations Office of the Department of Energy is the primary contact concerning NESHAPs compliance at the INEL.

  11. The development of a prescreening model to identify failed and gross polluting vehicles

    E-Print Network [OSTI]

    Choo, Sangho; Shafizadeh, Kevan; Niemeier, Deb

    2007-01-01

    Seventh CRC On-Road Vehicle Emissions Workshop, San Diego. vehicle emissions. The Rand Journal ofB. 1997. Pro?ling Vehicle Emissions with the High Emitter

  12. Evaluating Air Quality Benefits of Freeway High-Occupancy Vehicle Lanes in Southern California

    E-Print Network [OSTI]

    Boriboonsomsin, K; Barth, M

    2007-01-01

    on Light-Duty Vehicle Emissions: Experimental Study withtheir impacts on vehicle emissions. Four general HOV laneand compared. Vehicle emissions and fuel consumption were

  13. Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2013-01-01

    2009. Stephen P Holland. Emissions taxes versus intensityindustry’s greenhouse gas emissions. Environmental Research2008. John CV Pezzey. Emission taxes and tradeable permits a

  14. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Injection Vehicle Particulate Matter Emissions Investigation of Direct Injection Vehicle Particulate Matter Emissions This study focuses primarily on particulate matter mass...

  15. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas.

  16. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane.

  17. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen.

  18. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for ethanol.

  19. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen.

  20. Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for electric.

  1. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel.

  2. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements.

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  3. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy E.

    1999-01-01

    gases; NC = natural gas-fired powerplant; O = other fuelpowerplant emissions of criteria pollutants and greenhouse gasespowerplant electricity for BEV recharging is from coal and natural gas

  4. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy Edward

    1999-01-01

    = natural gas-fired powerplant; O = other fuel powerplant. aF = fuel oil-fired powerplant; GHGs = greenhouse gases; NGpowerplant emissions of criteria pollutants and greenhouse gases

  5. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    using an Optical Direct Injection Diesel Engine. 2006, 7,using an Optical Direct Injection Diesel Engine. 2006, 7,Emissions Using an Optical Direct Injection Diesel Engine.

  6. Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program

    SciTech Connect (OSTI)

    George Sverdrup

    1999-06-07

    DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

  7. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  8. EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

    E-Print Network [OSTI]

    Kammen, Daniel M.

    fuel passenger cars, light-duty trucks, and heavy-duty vehicles. 1. Introduction The use of energy). In most industrialized countries, trans- portation fuel use produces a major fraction of all energy/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant

  9. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    sulfur diesel fuel is less expensive due to reduced taxes and as such may be prone to illegal use in on-road November 2005; published online 18 January 2006 A remote sensor for measuring on-road vehicles passing of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  10. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    Powerplant Efficiency (%) FF Vehicle Fuel/Technologies gmC02) pp I Llecmcity gmC02 ] j KJ)Fuel gm j Coal Steam Oil Steam GasGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJf°r Usage for Various Powerplant

  11. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement Vouchers TheIncentiveAlternative

  12. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement Vouchers TheIncentiveAlternativeBiodiesel

  13. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement Vouchers TheIncentiveAlternativeBiodieselE85

  14. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement Vouchers

  15. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect (OSTI)

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  16. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  17. International Conference 'Transport and Air Pollution' 2008, Graz EMISSION FACTOR MODELLING FOR LIGHT VEHICLES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - 16th International Conference 'Transport and Air Pollution' 2008, Graz EMISSION FACTOR in Europe: The European MEET (Methodologies for Estimating air pollutant Emissions from Transport) project. Transport and Air Pollution, Graz : Austria (2008)" #12;- 2 - 16th International Conference 'Transport

  18. Achieving Vehicle Fuel Efficiency: The CAFE Standards and Abstract: As a series of political objectives converge and call for enhanced domestic automobile

    E-Print Network [OSTI]

    Mauzerall, Denise

    Achieving Vehicle Fuel Efficiency: The CAFE Standards and Beyond Abstract: As a series of political objectives converge and call for enhanced domestic automobile fuel efficiency, it is time to reassess the United States Corporate Average Fuel Economy (CAFE) standards and compare future options for limiting

  19. Smog Check II Evaluation Part II: Overview of Vehicle

    E-Print Network [OSTI]

    Denver, University of

    Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 ___________________________________ 12 7. Emissions of Individual Vehicles Vary from Test to Test ________ 15 8. Total Emissions

  20. A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications for regional

    E-Print Network [OSTI]

    Wing, Ian Sue

    point sources, but California's also sets future fuel economy standards for vehicles. Regulating-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies

  1. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    with a 10% aromatic, ultra-low sulfur diesel fuel used inequivalent 10% aromatic ultra-low sulfur diesel fuel used inx emissions compared to ultra-low sulfur diesel fuel (ULSD).

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

  3. Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-DutyCELLs more and

  4. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01

    matter from on-road gasoline and diesel vehicles.D.H. , Chase, R.E. , 1999b. Gasoline vehicle particle sizeFactors for On-Road Gasoline and Diesel Motor Vehicles

  5. Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range

    SciTech Connect (OSTI)

    Michael Sandvig

    2011-01-01

    The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, “National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities,” (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

  6. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

    2014-01-14

    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  7. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    SciTech Connect (OSTI)

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E.; Dearth, M.A.

    1997-09-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  8. Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is andFederal Test Procedure

  9. Application of positive matrix factorization to on-road measurements for source apportionment of diesel-and gasoline-powered vehicle emissions in Mexico City

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    of diesel- and gasoline-powered vehicle emissions in Mexico City D. A. Thornhill, A. E. Williams, T. B be low. The second figure shows the background versus diesel factors. There may be a slight horizontal factors. In this case, even when the diesel factor's contributions are very high, the background factor

  10. Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas Brian C. McDonald and Drew R. Gentner

    E-Print Network [OSTI]

    Goldstein, Allen

    to estimate long- term trends (1990-2010) in carbon monoxide (CO) emissions from motor vehicles. Non), nitrogen oxides (NOx = NO + NO2), and carbon monoxide (CO) are coemitted with carbon dioxide (CO2) during combustion. These pollutants are important to tropospheric ozone (O3) and secondary organic aerosol (SOA

  11. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    in California Energy Markets, Transportation Research BoardEnergy and Emissions Using One-Day Travel Data UNIVERSITY OF CALIFORNIA TRANSPORTATIONCalifornia Transportation Center UCTC-FR-2010-14 An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy

  12. Vehicle Technologies Office Merit Review 2014: Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  13. Commercial Vehicle Safety Alliance | Department of Energy

    Office of Environmental Management (EM)

    Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

  14. Multi-species On-Road Remote Sensing of Vehicle Emissions in Van Nuys, California

    E-Print Network [OSTI]

    Denver, University of

    Report prepared under National Renewable Energy Laboratory Subcontract AEV-8-88609-01 Gary A. Bishop Denver, CO 80208 December 2010 Prepared for: National Renewable Energy Laboratory 1617 Cole Blvd. Golden responsible for 86%, 90% and 72% of the CO, HC and NO emissions respectively. One particularly egregious case

  15. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    tcf in 2035. 3 The quality of natural gas depends on bothQuality Standards National Development Reform Commission Neste Oil biomass-to-liquid Natural Gasair quality. In this study, six blends of natural gas with

  16. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

  17. Vehicle Technologies Office | Department of Energy

    Energy Savers [EERE]

    Station Read more Compare MPG and Emissions for New and Used Vehicles Compare MPG and Emissions for New and Used Vehicles Read more The U.S. Department of Energy's Vehicle...

  18. The Design and Economics of Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    The Design and Economics of Low Carbon Fuel Standards Gabriel E. Lade and C.-Y. Cynthia Lin January greenhouse gas (GHG) emissions, and the vast majority of those emissions are the direct result of fossil fuel in the sector. Proposals include using carbon taxes, fuel economy standards for new vehicles, renewable fuel

  19. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber

    SciTech Connect (OSTI)

    Gao, Zhiming; Kim, Miyoung; Choi, Jae-Soon; Daw, C Stuart; Parks, II, James E; Smith, David E

    2012-01-01

    We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

  20. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    by crediting against full fuel cycle emissions from theuse” process fuel -- is the full fuel cycle emission factor,where the full fuel cycle includes emissions from

  1. 1995 Idaho National Engineering Laboratory (INEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs): Radionuclides. Annual report

    SciTech Connect (OSTI)

    1996-06-01

    Under Section 61.94 of 40 CFR 61, Subpart H (National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities), each DOE facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at INEL for CY 1995. For that year, airborne radionuclide emissions from INEL operations were calculated to result in a maximum individual dose to a member of the public of 1.80E-02 mrem (1.80E-07 Sievert), well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  2. Frey, H.C., H.W. Choi, E. Pritchard, and J. Lawrence, "In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd Annual Conference and Exhibition, Air &

    E-Print Network [OSTI]

    Frey, H. Christopher

    Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd. 1 In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle Emission Inventory data. An engine load-based model based on vehicle-specific power (VSP) was developed

  3. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  4. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  5. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    How do alternative vehicle emissions compare on a well-to-1970s it established vehicle emissions and building energyplatforms. Well-to-wheels vehicle emissions rates (gCO 2 /

  6. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  7. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  8. A Vehicle to Roadside Communications Architecture for ITS Applications

    E-Print Network [OSTI]

    Lo, Tetiana; Varaiya, Pravin

    2000-01-01

    c_ data_?ow pollution_ incident vehicle_ pollution_ messageEmissions (dfd) vehicle_ pollution_ alert From_ Parking_reference ?ows: • pollution_state_vehicle_log_data •

  9. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions...

  10. Vietnam-Integrated Action Plan to Reduce Vehicle Emissions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:Standards JumpUSA(EC-LEDS) | Open EnergyIISD

  11. Performance targets for electric vehicle batteries

    E-Print Network [OSTI]

    Chang, Michael Tse-Gene

    2015-01-01

    Light-duty vehicle transportation accounted for 17.2% of US greenhouse gas emissions in 2012 [95]. An important strategy for reducing CO? emissions emitted by light-duty vehicles is to reduce per-mile CO? emissions. While ...

  12. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    by 50% and average vehicle emissions rates by up to 35%.compares well-to-wheel vehicle emissions for various vehicleand compares WTW vehicle emissions for various vehicle and

  13. An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

    E-Print Network [OSTI]

    Yeh, Sonia

    2007-01-01

    579–594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.Exhaust emissions from natural gas vehicles: issues related

  14. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  15. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission...

  16. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

  17. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid...

  18. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

  19. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  20. Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2013-01-01

    Hughes, and C.R. Knittel. Greenhouse Gas Reductions underoil sands industry’s greenhouse gas emissions. EnvironmentalA cost curve for greenhouse gas reduction. McKinsey

  1. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01

    losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

  2. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  3. Vehicle Technologies Office Merit Review 2015: Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development and...

  4. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  5. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    vehicles (EVs) Fuel options: Petroleum Gasoline Diesel E85 with ethanol from Corn Switchgrass for these vehicle types were used ICEV: Gasoline, E85, Diesel HEV: Gasoline, E85, Diesel; Hydrogen FC (250 mi on UDDS) PHEV: Gasoline, E85, Diesel; Hydrogen FC EV (150 mi on UDDS) PHEV configuration options Power

  6. >.........standard

    E-Print Network [OSTI]

    to the multimedia research and product development industry Planned Accomplishments MPEG Standards: ·Establishing 2D. ......... IETF standard protocols Collaborators / Customers Standards Groups: MPEG, SMPTE NIST Collaborators: ATP Other Collaborators: Academic

  7. Modeling the vehicle cycle impacts of hybrid electric vehicles

    SciTech Connect (OSTI)

    Wang, M.Q.; Gaines, L.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1997-03-13

    Pure and hybrid electric vehicles, considered environmentally benign, are being developed to reduce urban air pollutant emissions. The obvious emissions benefit of pure electric vehicles is that they produce no tailpipe emissions. Hybrid electric vehicles have the potential of improving fuel economy and reducing emissions. However, both electric vehicles and hybrid electric vehicles (HEVs) do have their own environmental impacts. In order to quantify the potential benefits from introducing such vehicles, it is necessary to compare their impacts with those from the conventional vehicles they would replace. These impacts include energy use and emissions from the entire energy cycle, including fuel production, vehicle and battery production and recycling, and vehicle operation. Argonne`s previous work in collaboration with other national laboratories analyzed the total energy cycle of electric vehicles; this paper compares energy use and emissions for the total energy cycles of several HEV designs with those from modern conventional vehicles. The estimates presented indicate that use of HEVs can reduce energy use and emissions of greenhouse gases, volatile organic gases, carbon monoxide, and particulate matter smaller than 10 micrometers. HEVs may, in some cases, increase emissions of nitrogen oxides and sulfur oxides. Although some of the HEV designs illustrated in this paper could run a significant proportion of annual miles in all electric operation, no calculation of the emission reductions that result from using electricity from the utility grid is presented in this paper.

  8. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement VouchersBrakingHydrogen Vehicle and

  9. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2014: PEV Integration with Renewables Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration ANSI Electric Vehicle Standards Roadmap v2.0...

  10. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect (OSTI)

    1997-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  11. SOCIALLY OPTIMAL CHARGING STRATEGIES FOR ELECTRIC VEHICLES

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    SOCIALLY OPTIMAL CHARGING STRATEGIES FOR ELECTRIC VEHICLES ELENA YUDOVINA AND GEORGE MICHAILIDIS Abstract. Electric vehicles represent a promising technology for reducing emissions and dependence. This pa- per studies decentralized policies that assign electric vehicles to a network of charging

  12. Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  13. Vehicle Technologies Office Merit Review 2015: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  14. Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced heavy...

  15. Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles

    Broader source: Energy.gov [DOE]

    In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many cold/warm starts.

  16. Vehicle Technologies Office Merit Review 2014: Joint Development and Coordination of Emissions Control Data and Models (CLEERS Analysis and Coordination)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the joint...

  17. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008

    SciTech Connect (OSTI)

    Ronald Warren and Robert F. Grossman

    2009-06-30

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2008a). At any one location, if multiple radionuclides are detected then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2008, the potential dose from radiological emissions to air, from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.9 mrem/yr; well below the 10 mrem/yr dose limit. Air sampling data collected at all six pseudo-critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61 (CFR, 2008a). Concentrations ranged from less than 1 percent to a maximum of 19 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS. Potential dose to the public from NLVF was also very low at 0.00006 mrem/yr; more than 160,000 times lower than the 10 mrem/yr limit.

  18. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    C (data from DME, 2001). EF E = the fuel cycle emissionDME = dimethyl ether. The feedstocks from which the fuels

  19. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  20. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  1. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect (OSTI)

    1998-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  2. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007

    SciTech Connect (OSTI)

    Robert Grossman; Ronald Warren

    2008-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. There are six critical receptor locations on the NTS that are actually pseudocritical receptor locations because they are hypothetical receptor locations; no person actually resides at these onsite locations. Annual average concentrations of detected radionuclides are compared with Concentration Levels (CL) for Environmental Compliance values listed in 40 CFR 61, Appendix E, Table 2. Compliance is demonstrated if the sum of fractions (CL/measured concentrations) of all detected radionuclides at each pseudo-critical receptor location is less than one. In 2007, as in all previous years for which this report has been produced, the NTS has demonstrated that the potential dose to the public from radiological emissions to air from current and past NTS activities is well below the 10 mrem/yr dose limit. Air sampling data collected onsite at each of the six pseudo-critical receptor stations on the NTS had average concentrations of nuclear test-related radioactivity that were a fraction of the limits listed in Table 2 in Appendix E of 40 CFR 61. They ranged from less than 1 percent to a maximum of 20 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS.

  3. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  4. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.

    2014-05-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  5. Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept

    Broader source: Energy.gov [DOE]

    Experimental results show low-emissions potential - possibly T2/B2 (SULEV) NOx with low-emitting engines and system optimization.

  6. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    gas emissions from petroleum-based fuels and impactson low carbon fuel policies. Environ. Sci. Technol. 450 (1),effects of low carbon fuel policies. AgBioforum 150 (1), 1–

  7. International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies

    E-Print Network [OSTI]

    Sperling, Daniel; Lipman, Timothy

    2003-01-01

    D. (1995), Future Drive Electric Vehicles and Sustainable1996), "The Case for Electric Vehicles," Sclent~c American,Emissions Impacts of Electric Vehicles," Journal of the Alr

  8. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    update. REN21 Renewable Energy Policy Network and Worldwatchconclusion Policies such as renewable energy mandates arerenewable fuels standard: economic and greenhouse gas implications. Energy Policy

  9. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    carbon policies on the renewable fuels standard: economicreport: 2009 update. REN21 Renewable Energy Policy Networktransportation fuels: Comparing renewable fuel mandates and

  10. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    SciTech Connect (OSTI)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  11. 10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1

  12. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20)...

  13. Hanford Site radionuclide national emission standards for hazardous air pollutants registered stack source assessment

    SciTech Connect (OSTI)

    Davis, W.E.; Barnett, J.M.

    1994-07-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency,, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site . The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified a total of 16 stacks as having potential emissions that,would cause an effective dose equivalent greater than 0.1 mrem/yr.

  14. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2008-01-01

    Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

  15. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx

    Broader source: Energy.gov [DOE]

    Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during cold-start of HEVs and PHEVs over transient driving cycles

  16. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases ...

  17. CAFE Standards (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Pursuant to the Presidents announcement of a National Fuel Efficiency Policy, the National Highway Traffic Safety Administration (NHTSA) and the EPA have promulgated nationally coordinated standards for tailpipe Carbon Dioxide (CO2)-equivalent emissions and fuel economy for light-duty vehicles (LDVs), which includes both passenger cars and light-duty trucks. In the joint rulemaking, the Environmental Protection Agency is enacting CO2-equivalent emissions standards under the Clean Air Act (CAA), and NHTSA is enacting companion Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act of 2007.

  18. Natural Gas Vehicle Cylinder Safety, Training and Inspection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of natural gas vehicle fuel systems in order to... Help encourage the use of natural gas vehicles in order to... * displace petroleum * lower emissions and greenhouse gases *...

  19. The Path to Low Carbon Passenger Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reducing Vehicle Emissions to Meet Environmental Goals Moving toward a commercial market for hydrogen fuel cell vehicles A View From The Bridge...

  20. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Energy Savers [EERE]

    Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

  1. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

  2. Role of Thermoelectrics in Vehicle Efficiency Increase | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Role of Thermoelectrics in Vehicle Efficiency Increase Role of Thermoelectrics in Vehicle Efficiency Increase 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...

  3. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  4. Status of the Application of Thermoelectric Technology in Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Application of Thermoelectric Technology in Vehicles Status of the Application of Thermoelectric Technology in Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  5. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  6. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems

    SciTech Connect (OSTI)

    Peter J. Blau

    2000-04-26

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

  7. Proving Environmental Discretion: An Argument for Regulating Greenhouse Gases from Motor Vehicles under the Clean Air Act

    E-Print Network [OSTI]

    Jackson, Omari

    2006-01-01

    consultant on motor vehicle pollution technology and formerdirector of EPA's motor vehicle pollution control efforts,vehicles where, in the Administrator's judgment, such emissions contribute to air pollution

  8. Emissions Technology Gives Company Clean Win as Energy Innovator

    Broader source: Energy.gov [DOE]

    Umpqua Energy produced an emission control system that can potentially reduce the emissions from vehicles by 90 percent.

  9. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  10. Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M.Emilio Segrè About the LabEmission

  11. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  12. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    SciTech Connect (OSTI)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  13. Clean Cities Offers Fleets New Tool to Evaluate Benefits of Alternative Fuel Vehicles

    Broader source: Energy.gov [DOE]

    The AFLEET Tool allows fleets to calculate payback periods and emissions benefits of alternative fuel vehicles.

  14. National emission standards for hazardous air pollutants application for approval to stabilize the 105N Basin

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces-to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin is a reinforced unlined concrete structure 150 feet long, 50 feet wide, and 24 feet deep. The basin is segregated into seven areas sharing a common pool of water; the Discharge/Viewing (``D``) Pit, the fuel segregation pit (including a water tunnel that connects the ``D`` pit and segregation pit), two storage basins designated as North Basin and South Basin, two cask load-out pits, and a fuel examination area. The North Basin floor is entirely covered and the South Basin is partly covered by a modular array of cubicles formed by boron concrete posts and boron concrete panels.

  15. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect (OSTI)

    Stork, K.C.; Singh, M.K.

    1995-04-01

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  16. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    and compared emissions and energy usages. HEVs were found toforecasting emission and energy usages. Time frames play ansimilar emission and energy usage as current ICV operation.

  17. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    SciTech Connect (OSTI)

    Bachand, D.D.; Crummel, G.M.

    1994-07-01

    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

  18. Modeling Traffic Flow Emissions

    E-Print Network [OSTI]

    Cappiello, Alessandra

    2002-09-17

    The main topic of this thesis is the development of light-duty vehicle dynamic emission models and their integration with dynamic traffic models. Combined, these models

  19. Plug-in electric vehicle introduction in the EU

    E-Print Network [OSTI]

    Sisternes, Fernando J. de $q (Fernando José Sisternes Jiménez)

    2010-01-01

    Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

  20. Real-World Emissions from Model Year 1993, 2000, and 2010 Passenger Cars

    E-Print Network [OSTI]

    Ross, M.

    2010-01-01

    the 5th CRC On-Road Vehicle Emissions Workshop, CoordinatingApproach to Estimating Vehicle Emissions,” Presented at the4th CRC On-Road Vehicle Emission Workshop, March 16-18,

  1. Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Neutral Studies of Particulate Matter Transport Emissions Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of Particulate Matter Transport Emissions...

  2. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

  3. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  4. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David; Gibson, Robert

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  5. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    solar generation can reduce costs and emissions associated with supplying vehicle electricity demand dramatically. Sensitivity Analysis of Long-term

  6. A Bottom up Approach to on-Road CO2 Emissions Estimates: Improved Spatial Accuracy and Applications for Regional Planning

    E-Print Network [OSTI]

    Hutyra, Lucy R.

    targets for power plants and other point sources, but California's also sets future fuel economy standards Supporting Information ABSTRACT: On-road transportation is responsible for 28% of all U.S. fossil- fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing

  7. Autonomie Modeling Tool Improves Vehicle Design and Testing,...

    Office of Environmental Management (EM)

    Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel...

  8. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  9. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01

    modern clean diesel engines and hybrid-electric powertrainsare advanced, clean diesel engines and hybrid-electricmarkets for diesel powered and hybrid-electric vehicles in

  10. Well-to-Wheel Energy, Emissions, and Cost Analysis of Electricity and Fuel Used in Conventional and Electrified Vehicles, and Their Connection to a Sustainable Energy Infrastructure

    E-Print Network [OSTI]

    Strecker, Bryan Anthony

    2012-12-31

    's ability to perform proper emissions reductions. This chapter additionally demonstrates an improvement in the fuel use emissions profiles of Argonne National Laboratories' Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model...

  11. Electrochemical NOx Sensor for Monitoring Diesel Emissions |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Monitoring Diesel Emissions Electrochemical NOx Sensor for Monitoring Diesel Emissions Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review...

  12. Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

    2006-05-01

    Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

  13. The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan H.

    2007-01-01

    Green Power Programs in State Renewables Portfolio StandardsGreen Power Programs in State Renewables Portfolio Standardshave adopted mandatory renewables portfolio standards (RPS)

  14. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

  15. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  16. Clean Cities 2011 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  17. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  18. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  19. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling U.S. Light Duty Diesel Vehicles Fueling U.S. Light Duty Diesel Vehicles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  20. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  1. The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan H.

    2007-01-01

    s rules state: “Renewable Energy Trading Program Emissionsin a renewable energy trading program shall have exclusiverenewable energy and RECs in emissions trading markets. For

  2. The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan H.

    2007-01-01

    Renewable Energy Certificates and Air Emissions Benefits:risk mitigation benefits of renewable energy are achievedenvironmental benefits from renewable energy in general

  3. The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan H.

    2007-01-01

    of Carbon Regulation for Green Power Markets. ” NREL (and Blair Swezey, 2006. “Green Power Marketing in the UnitedEmissions Allowances, and Green Power Programs in State

  4. Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th

    E-Print Network [OSTI]

    Frey, H. Christopher

    Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA 26-28, 2007 1 Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels

  5. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  6. International Trade in Used Vehicles: The Environmental Consequences of NAFTA

    E-Print Network [OSTI]

    Davis, Lucas

    2009-01-01

    Run Long?Run Carbon Dioxide Emissions Per Vehicle (Tons)for example, 33.8% of carbon dioxide emissions are derived 2008), Table A18, Carbon  Dioxide Emissions by Sector and 

  7. Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle vehicle production emissions and other life cycle emissions. Non- operation emissions are more dominant the need, effectiveness, and policy strategies for capturing life cycle vehicle emissions in LDV GHG

  8. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  9. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    order for the low carbon fuel standard, 2012. URL http://mediated e?ects of low carbon fuel policies. AgBioForum, 15(Gas Reductions under Low Carbon Fuel Standards? American

  10. Clean Cities 2014 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  11. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  12. A Review of the International Modeling Literature: Transit, Land Use, and Auto Pricing Strategies to Reduce Vehicle Miles Traveled and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Rodier, Caroline J.

    2009-01-01

    California Department of Transportation (Caltrans), California EnergyTransportation Pricing Strategies for California: An Assessment of Congestion, Emissions, Energy,

  13. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles...

  14. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

  15. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    FY 2012 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

  16. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    FY 2011 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

  17. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization.

  18. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    ghg) emissions from canadian oil sands as a feed- stock forCanada’s questions and oil sands: answers, Opportuni- URLimpacts of alberta’s oil sands. canadian energy research

  19. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

  20. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

  1. Alternative Fuels and Advanced Vehicles Data Center - Codes and...

    Open Energy Info (EERE)

    Codes and Standards Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources...

  2. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect (OSTI)

    Cox, Daryl; Papar, Riyaz; Wright, Dr. Anthony

    2012-07-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  3. A reevaluation of the National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) program at Sandia National Laboratories, New Mexico

    SciTech Connect (OSTI)

    Culp, T.A.; Hylko, J.M.

    1997-10-01

    The initial National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) Program at Sandia National Laboratories, New Mexico (SNL/NM) required: (1) continuous air monitoring of sources if the calculated effective dose equivalent (EDE) to the maximum exposed individual (MEI) was > 0.1 mrem/yr; (2) the determination of emissions based on measurements or measured parameters if the EDE to the MEI was < 0.1 mrem/yr; and (3) the calculation of worst case releases when the expected air concentrations were below detection limits using standard monitoring equipment. This conservative interpretation of the regulation guided SNL/NM to model, track, and trend virtually all emission sources with the potential to include any radionuclides. The level of effort required to implement these activities was independent of the EDE contributing from individual sources. A recent programmatic review found the NESHAP program to be in excess of the legal requirements. A further review found that, in summation, 13 of 16 radionuclide sources had a negligible impact on the final calculated EDE to the MEI used to demonstrate compliance at 20 separate on-site receptor locations. A reevaluation was performed to meet the legal requirements of 40 CFR 61, Subpart H, and still be reasonable and appropriate under the existing circumstances.

  4. Biofuels, Climate Policy and the European Vehicle Fleet

    E-Print Network [OSTI]

    Rausch, Sebastian

    We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

  5. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  6. Equivalent circuit modeling of hybrid electric vehicle drive train 

    E-Print Network [OSTI]

    Routex, Jean-Yves

    2001-01-01

    The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool...

  7. Collaborative Lubricating Oil Study on Emissions

    E-Print Network [OSTI]

    Collaborative Lubricating Oil Study on Emissions TRANSPORTATION ENERGY RESEARCH PIER Transportation, particulate matter emissions may become a significant barrier to deploying beneficial alternative fuel that particulate matter from sparkignition vehicles contributes significantly to particulate matter emissions

  8. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    regarding demand or emission, they can forecast energy orenergy efficiency with increased PHEV charging demand, the previous results can be used to forecast

  9. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

  10. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  11. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  12. Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong

    E-Print Network [OSTI]

    2009-01-01

    Chemistry and Physics Vehicular emission of volatile organicY. , and Huang, Y. S. : Emission factors and characteristicslight-duty vehicle emissions, Environ. Sci. Technol. , 30,

  13. Cold-Storage Potential of Four Yellow-Fleshed Peach Cultivars Defined by Their Volatile Compounds Emissions, Standard Quality

    E-Print Network [OSTI]

    Crisosto, Carlos H.

    Cold-Storage Potential of Four Yellow-Fleshed Peach Cultivars Defined by Their Volatile Compounds in firmness during both storage and commercialization periods. In contrast, the SSC, TA, and color remained constant during storage. Ten days of cold storage produced the highest total volatile emissions

  14. Hanford Site radionuclide national emission standards for hazardous ari pollutants registered and and unregistered stack (powered exhaust) source assessment

    SciTech Connect (OSTI)

    Davis, W.E.

    1995-12-01

    On February 3, 1993, US DOE Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Div. of US EPA, Region X. The compliance order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford site to determine which are subject to the continuous emission measurement requirements in Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request required The provision of a written compliance plan to meet the requirements of the compliance order. A compliance plan was submitted to EPA, Region X, on April 30, 1993. It set as one of the milestones, the complete assessment of the Hanford Site 84 stacks registered with the Washington State Department of Health, by December 17, 1993. This milestone was accomplished. The compliance plan also called for reaching a Federal Facility Compliance Agreement; this was reached on February 7, 1994, between DOE Richland Operations and EPA, Region X. The milestone to assess the unregistered stacks (powered exhaust) by August 31, 1994, was met. This update presents assessments for 72 registered and 22 unregistered stacks with potential emissions > 0.1 mrem/yr.

  15. TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND

    E-Print Network [OSTI]

    #12;#12;TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND EMISSIONS STUDY: PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current Diesel Idling Emissions Factors

  16. Fuel Cell Electric Vehicles (FCEVs) to Be Displayed on June 22...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    derived from natural gas reduces emissions by half and hydrogen produced from renewables cuts total emissions by more than 90% compared to today's gasoline vehicle....

  17. The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan H.

    2007-01-01

    Mexico: “…generation of electricity through the use of renewable energyMexico: Legislation passed in March 2007 defines a renewable energyrenewable energy standards or any voluntary clean electricity market or voluntary clean electricity program. ” New Mexico

  18. Review of SCR Technologies for Diesel Emission Control: Euruopean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

  19. A Low-Cost Continuous Emissions Monitoring System for Mobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition A Low-Cost Continuous Emissions...

  20. 2008 Annual Merit Review Results Summary - 9. Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9. Emission Control and Aftertreatment 2008 Annual Merit Review Results Summary - 9. Emission Control and Aftertreatment DOE Vehicle Technologies Annual Merit Review...