Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawk MunicipalMontvale,GTZVehicle Emission

2

System Simulations of Hybrid Electric Vehicles with Focus on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid...

3

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

4

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect (OSTI)

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

5

Vehicle Emissions Review - 2011  

Broader source: Energy.gov (indexed) [DOE]

Emissions Review - 2011 (so far) Tim Johnson October 4, 2011 DOE DEER Conference, Detroit JohnsonTV@Corning.com 2 Summary * California LD criteria emission regs are tightening....

6

System Simulations of Hybrid Electric Vehicles with Focus on...  

Broader source: Energy.gov (indexed) [DOE]

System Simulations of Hybrid Electric Vehicles with Focus on Emissions Zhiming Gao Veerathu K. Chakravarthy Josh Pihl C. Stuart Daw Maruthi Devarakonda Jong Lee...

7

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

8

Emissions from US waste collection vehicles  

SciTech Connect (OSTI)

Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 610% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

Maimoun, Mousa A., E-mail: mousamaimoun@gmail.com [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Reinhart, Debra R. [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Gammoh, Fatina T. [Quality Department, Airport International Group, Amman (Jordan); McCauley Bush, Pamela [Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL (United States)

2013-05-15T23:59:59.000Z

9

Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions Benefits from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

10

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

11

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

12

Master Thesis Proposal: Simulation of Vehicle  

E-Print Network [OSTI]

Master Thesis Proposal: Simulation of Vehicle Driving Behavior Based on External Excitations Background For vehicle manufacturers it is important to know how their vehicles are used during the components and also for designing the controls of the vehicle. For example, the load characteristics

Zhao, Yuxiao

13

Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates  

E-Print Network [OSTI]

California reformulated gasoline on motor vehicle emissions.Impact of California Reformulated Gasoline OIl Motor Vehicleprogress, increased vehicle Gasoline Motor on Vehicle travel

Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

1999-01-01T23:59:59.000Z

14

VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD  

E-Print Network [OSTI]

VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD OBSERVATIONS AT SIGNALIZED between vehicle emissions and traffic control measures is an important step toward reducing the potential roadway design and traffic control, have the ability to reduce vehicle emissions. However, current vehicle

Frey, H. Christopher

15

Advanced Clean Cars Zero Emission Vehicle Regulation  

E-Print Network [OSTI]

Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program 2020 2021 2022 2023 2024 2025 Current Regulation -ZEVs Current Regulation -PHEVs Projected: PHEVs 15Net ­ Blueprint Plan ­ Regional clusters, environmental and economic analysis · Clean Fuels Outlet

California at Davis, University of

16

A Statistical Model of Vehicle Emissions and Fuel Consumption  

E-Print Network [OSTI]

A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

Cappiello, Alessandra

2002-09-17T23:59:59.000Z

17

Vehicle Technologies Office Merit Review 2014: Emissions Control...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Control for Lean Gasoline Engines Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines Presentation given by Oak Ridge National...

18

Vehicle Technologies Office Merit Review 2014: Particulate Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems for GDI Engines Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration...

19

On-road remote sensing of vehicle emissions in  

E-Print Network [OSTI]

On-road remote sensing of vehicle emissions in the Auckland Region August 2003 Technical 1877353000 www.arc.govt.nz #12;TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region #12;Page i TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region On-road remote sensing

Denver, University of

20

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network [OSTI]

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 20052010, a vehicles tax is negatively correlated with its ...

Klier, Thomas

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

SciTech Connect (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

22

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

23

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

24

Fuel-Based On-Road Motor Vehicle Emissions Inventory  

E-Print Network [OSTI]

Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S of Denver 2101 E. Wesley Ave. Denver, CO 80208 #12;Mobile Source Emissions Inventory Methods MOBILE emission factors -g/mile uncertain Vehicle miles traveled -very uncertain Speed correction factors Inventory

Denver, University of

25

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

26

Vehicle Technologies Office Merit Review 2014: Emissions Modeling...  

Energy Savers [EERE]

More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of VehicleFuel Systems Fuel-Cycle Energy and Emissions Analysis with the GREET Model...

27

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

28

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Energy Savers [EERE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

29

Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)  

SciTech Connect (OSTI)

Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

Not Available

2012-03-01T23:59:59.000Z

30

A Stochastic Framework for Ground Vehicle Simulation  

E-Print Network [OSTI]

many "What if?" studies Simulate systems when experiments are difficult/not possible Faster computers tackling larger problemsFaster computers tackling larger problems 3Simple vehicle system (left, from [1 of model that represent system states of uncertainty Increasing # of uncertain parameters increased

Negrut, Dan

31

Houston Zero Emission Delivery Vehicle Deployment Project  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

32

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Broader source: Energy.gov (indexed) [DOE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

33

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

34

Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of  

E-Print Network [OSTI]

12/10/01 Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of zero emission vehicles (ZEVs). Specifically, and in 1998 to allow partial ZEV (PZEV) credits for extremely clean vehicles that were not pure ZEVs

Gille, Sarah T.

35

Cold-Start Emissions Control in Hybrid Vehicles Equipped with...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Z. Gao, C.S. Daw, M.-Y. Kim, J.-S. Choi, J.E. Parks II, and D.E. Smith Oak Ridge...

36

Vehicle emissions and energy consumption impacts of modal shifts  

E-Print Network [OSTI]

Growing concern over air quality has prompted the development of strategies to reduce vehicle emissions in these areas. Concern has also been expressed regarding the current dependency of the U,S, on foreign oil. An option for addressing...

Mallett, Vickie Lynn

1993-01-01T23:59:59.000Z

37

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles  

E-Print Network [OSTI]

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional

Cohen, Ronald C.

38

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

39

Trends in on-road vehicle emissions of ammonia  

SciTech Connect (OSTI)

Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

2008-07-15T23:59:59.000Z

40

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network [OSTI]

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains By Jeffrey of the author. #12;ii Modelling, Simulation, Testing and Optimization of Advanced Hybrid Vehicle Powertrains prototypes. A comprehensive survey of the state of the art of commercialized hybrid vehicle powertrains

Victoria, University of

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CleanFleet. Final report: Volume 7, vehicle emissions  

SciTech Connect (OSTI)

Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

NONE

1995-12-01T23:59:59.000Z

42

Alternative Fuels Data Center: Biodiesel Vehicle Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric VehiclesBiodiesel Vehicle

43

On-Road Motor Vehicle Emissions Measurements  

E-Print Network [OSTI]

. Pokharel, Gary A. Bishop and Donald H. Stedman Department of Chemistry and Biochemistry University 1990 1991 1992 1993 1994 1995 1996 1997 1998 Model Year FailureRate(%) Gasoline Vehicles Natural Gas Bi/day382252Diesel trucks Tons/day2730220Gasohol (LTK, PAS) Tons/day3748369Gasoline (LTK, PAS) g per kg of fuel

Denver, University of

44

Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity  

E-Print Network [OSTI]

California Reformulated Gasoline On Motor Vehicle EmissionsCalifornia Reformulated Gasoline on Motor Vehicle EmmissionsBerkeley Environ. ScLTechnoL gasoline Impact California of

Kirchstetter, Thomas; Singer, Brett; Harley, Robert

1999-01-01T23:59:59.000Z

45

Zero-emission vehicle technology assessment. Final report  

SciTech Connect (OSTI)

New York State adopted the California Low Emission Vehicle (LEV) program that includes a sales mandate for ZEVs starting in 1988. The New York State Department of Environmental Conservation (NYSDEC) was required to perform a technology review of zero-emission vehicles (ZEVs) in 1994, and examine technology developments and issues relating to ZEV performance in New York State, by the amendments to 6NYCRR Part 218, February 1992. The Final Report presents an overview of technology as of the spring of 1995, and a projection of technology status over the next 10 years.

Woods, T.

1995-08-01T23:59:59.000Z

46

Modeling and Simulation of Electric and Hybrid Vehicles  

E-Print Network [OSTI]

, and fuel cell vehicles, such as electric machines, power electronics, electronic continuously variableINVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design

Mi, Chunting "Chris"

47

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someoneEthanol Vehicle

48

TECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions  

E-Print Network [OSTI]

measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxideTECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA 2 National Renewable Energy

Denver, University of

49

Future Emissions Impact On Off-Road Vehicles  

SciTech Connect (OSTI)

Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

Kirby Baumgard; Steve Ephraim

2001-04-18T23:59:59.000Z

50

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Fuel Cell Vehicle Analysis of Energy Use, Emissions, and Cost,"Cost Analysis of Conventional and Fuel Cell/Battery Powered Urban Passenger Vehicles,cost analysis of several types of AFVs, but did not include fuel cell vehicles

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

51

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Fuel Cell Vehicle Analysis of Energy Use, Emissions, and Cost,&Cost Analysis of Conventional and Fuel Cell/Battery Powered Urban Passenger Vehicles,cost analysis of several types of AFV s, but did not include fuel cell vehicles

Lipman, Timothy E.

1999-01-01T23:59:59.000Z

52

Fact #771: March 18, 2013 California Zero-Emission Vehicle Mandate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1: March 18, 2013 California Zero-Emission Vehicle Mandate is Now in Effect Fact 771: March 18, 2013 California Zero-Emission Vehicle Mandate is Now in Effect A waiver granted by...

53

Vehicle Emission Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave.Emission Basics

54

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect (OSTI)

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

55

Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment  

SciTech Connect (OSTI)

Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

1993-06-01T23:59:59.000Z

56

Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles  

E-Print Network [OSTI]

use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

Millstein, Dev E.; Harley, Robert A

2010-01-01T23:59:59.000Z

57

Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves  

E-Print Network [OSTI]

Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. The original definition...

Gu, Chaoyi

2013-07-31T23:59:59.000Z

58

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

E-Print Network [OSTI]

potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles mustValuation of plug-in vehicle life-cycle air emissions and oil displacement benefits Jeremy J

Michalek, Jeremy J.

59

Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

60

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

ace079mukundan2012o.pdf More Documents & Publications Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Vehicle Technologies Office Merit Review 2014:...

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An analysis on long term emission benefits of a government vehicle fleet replacement plan  

E-Print Network [OSTI]

vehicle scrappage program was launched by the Unocal Corporation (known as the South Coast Recycled Auto duty vehicle Á Survival probability Á Lifetime emissions J. Lin (&) Department of Civil and Materials

Illinois at Chicago, University of

62

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

63

A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions  

E-Print Network [OSTI]

A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions by Christopher D. Dresser OF WISCONSIN - MADISON Abstract A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions Christopher Studies This study presents a "bottom-up" emissions inventory for NOx, PM2.5, SO2, CO, and VOCs from heavy

Wisconsin at Madison, University of

64

Canadas Voluntary Agreement on Vehicle Greenhouse Gas Emissions: When the Details Matter  

E-Print Network [OSTI]

goals. Science 301, 506508. General Motors Canada (GM Canada), 2005. Vehicle emissions & fuels. Canada, 2006. Canadas clean

Lutsey, Nicholas P.; Sperling, Dan

2007-01-01T23:59:59.000Z

65

Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

66

THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT  

E-Print Network [OSTI]

1 THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT, it is of some interest to explore the inclusion of road transport in emission trading schemes. Starting from

Paris-Sud XI, Université de

67

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

emission goal cannot be achieved by merely improving the mainstream technology (internal combustion engine),emissions equivalent to a certain, bigger number of hybrid electric vehicles, and because internal combustion engines

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

68

Reduction in Vehicle Idling Emissions Using RFID Parking Permits Dawson, Pakes-Ahlman, Graham, Gutierrez, Vilasdaechanont  

E-Print Network [OSTI]

1 Reduction in Vehicle Idling Emissions Using RFID Parking Permits 9/20/13 Dawson, Pakes Frequency Identification permits (RFID) allow drivers to remain in their vehicles without coming this conversion to RFID equates to shorter vehicle queues, lower idling time and, ultimately, lower fuel

Sprott, Julien Clinton

69

Zero-emission vehicle technology assessment. Final report  

SciTech Connect (OSTI)

This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

Woods, T.

1995-08-01T23:59:59.000Z

70

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

71

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

2006-01-01T23:59:59.000Z

72

Shaping the Terms of Competition: Environmental Regulation and Corporate Strategies to Reduce Diesel Vehicle Emissions  

E-Print Network [OSTI]

Diesel Vehicle Emissions by Christine Bik-Kay Ng B.S., Civil and Environmental Engineering University Strategies to Reduce Diesel Vehicle Emissions by Christine Bik-Kay Ng Submitted to the Engineering Systems. This research explains the conditions under which competitive regulatory strategies are pursued in the diesel

de Weck, Olivier L.

73

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles Chris A. Jakober, 2  

E-Print Network [OSTI]

1 Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1 Chris A0205CH11231. LBNL752E #12;Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1Chris A DATE * mjkleeman@ucdavis.edu, (530)-752-8386 ABSTRACT Carbonyls from gasoline powered light

74

that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows,  

E-Print Network [OSTI]

that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows, andcapacityconstraints.ThiscreatesanewtypeofVRP,theemissions vehicle routing problem (EVRP). BACKGROUND AND LITERATURE REVIEW There is extensive literature related to vehicle

Bertini, Robert L.

75

Thetis: A real-time Multi-Vehicles Hybrid Simulator for Heterogeneous Olivier Parodi, Lionel Lapierre, Bruno Jouvencel  

E-Print Network [OSTI]

Thetis: A real-time Multi-Vehicles Hybrid Simulator for Heterogeneous Vehicles Olivier Parodi is to present Thetis: a real-time multi-vehicles hybrid simulator for heterogeneous vehicles. This simulator, the vehicles, sensors and communication simulators and, of course, the actual embedded controller which

Boyer, Edmond

76

Final report for measurement of primary particulate matter emissions from light-duty motor vehicles  

SciTech Connect (OSTI)

This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

1998-12-31T23:59:59.000Z

77

Data Needs for Evolving Motor Vehicle Emission Modeling Approaches  

E-Print Network [OSTI]

model was originally developed by the TransportationSystems Center of the USDepartment Transportationto support vehicle of energy

Guensler, Randall

1993-01-01T23:59:59.000Z

78

California's Zero Emission Vehicle Program Cleaner air needed  

E-Print Network [OSTI]

that are powered by a combination of electric motors and internal combustion engines, and fuel cell vehicles and other alternative fueled vehicles, super-clean gasoline vehicles, fuel-efficient hybrids powered by electricity created from pollution-free hydrogen. ARB is not suggesting that every Californian

Gille, Sarah T.

79

Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions  

SciTech Connect (OSTI)

Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

2010-06-01T23:59:59.000Z

80

Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

82

Hybrid Human Powered Vehicle (Phase 3) The Zero EMission (ZEM) Vehicle Project  

E-Print Network [OSTI]

The Construction of ZEM Car ­ a hybrid human/electric/solar powered vehicle (P-2) (2007-2008) Principal) Hybrid human pedaling/ electric powered vehicle- Designed and constructed P-1 prototype Sponsor: SJSU) Hybrid human pedaling/ Electric/solar powered vehicle (HPV-ZEM)-Designed P-2 Sponsor: SJSU-COE 16 ME + 3

Su, Xiao

83

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

SciTech Connect (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

84

Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air  

E-Print Network [OSTI]

, Denver, Colorado 80208 L E N O R A B O H R E N The National Center for Vehicle Emissions Control & Safety system. The Smart Sign used a combination of words, colors, and graphics to connect with its audience

Denver, University of

85

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

2014: Robust Nitrogen oxideAmmonia Sensors for Vehicle on-board Emissions Control CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

86

Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?  

E-Print Network [OSTI]

Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

Paltsev, S.

87

The origin of Californias zero emission vehicle mandate  

E-Print Network [OSTI]

that one million alternative fuel vehicles be sold in thethe adoption of alternative fuels (particularly methanol) asof the adoption of alternative fuels. A key recommendation

Sperling, Dan; Collantes, Gustavo O

2008-01-01T23:59:59.000Z

88

Vehicle Technologies Office Merit Review 2014: Zero-Emission...  

Office of Environmental Management (EM)

given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

89

A Simple and Effective Hardware-in-the-Loop Simulation Platform for Urban Electric Vehicles  

E-Print Network [OSTI]

A Simple and Effective Hardware-in-the-Loop Simulation Platform for Urban Electric Vehicles B-in-the-loop simulation of urban electric vehicles. The proposed platform, which is expected to be used for electric is coupled to DC machine-based load torque emulator taking into account the electric vehicle mechanics

Paris-Sud XI, Universit de

90

A simulation-based assessment of plug-in hybrid electric vehicle architectures  

E-Print Network [OSTI]

Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

Sotingco, Daniel (Daniel S.)

2012-01-01T23:59:59.000Z

91

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

) Note: PSAT included after-treatment thermal efficiency penalty to the diesel fuel economy · CD ElectricWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad engine vehicles (ICEVs) Regular hybrid electric vehicles (HEVs) Plug-in hybrid electric vehicles (PHEVs

92

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

93

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

SciTech Connect (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

94

Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.  

SciTech Connect (OSTI)

This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

1999-06-18T23:59:59.000Z

95

Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles  

SciTech Connect (OSTI)

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

Yanowitz, J.; McCormick, R. L.

2009-02-01T23:59:59.000Z

96

ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO  

E-Print Network [OSTI]

ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO Final Report Prepared for the University of Denver traveled to Monterrey, N.L. Mexico to monitor remotely the carbon monoxide (CO with other cities that have been sampled in Mexico. The on-road emission averages are similar to the latest

Denver, University of

97

Using Local and Regional Air Quality Modeling and Source Apportionment Tools to Evaluate Vehicles and Biogenic Emission Factors  

E-Print Network [OSTI]

and inventories of CO, NO_(x) and VOCs from on-road vehicles estimated by vehicle emission factor models and biogenic emissions of isoprene estimated by a popular biogenic emission model are evaluated using local and regional scale air quality modeling and source...

Kota, Sri H

2014-07-25T23:59:59.000Z

98

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

and simulation of a PEM fuel cell/ultra-capacitor hybridOptimal Control for a PEM Fuel Cell Hybrid Vehicle,

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

99

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

100

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

SciTech Connect (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Using Discrete-Event Simulation to Model Situational Awareness of Unmanned-Vehicle Operators  

E-Print Network [OSTI]

but delegated to the automation onboard the unmanned vehicles (Sheridan, 1992). Reduced workload afforded1 Using Discrete-Event Simulation to Model Situational Awareness of Unmanned-Vehicle Operators Carl vehicles becomes increasingly realizable, the impact on operator situational awareness of such a paradigm

Cummings, Mary "Missy"

102

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

SciTech Connect (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

103

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

104

Cold-Start Emissions Control in Hybrid Vehicles Equipped with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during...

105

Overview of China's Vehicle Emission Control Program: Past Successes...  

Open Energy Info (EERE)

in the short and long term (between 2010 and 2030), covering urban and regional air pollutants as well as emissions of climate forcers. The scenarios include the potential...

106

Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions  

E-Print Network [OSTI]

: gasoline, gasoline-ethanol l'rlends, diesel, biodiesel blends, LPG lquefied petroleurn gas) ancl CNG operating on gasoline arrd a similar non-FF\\-. llir:s rs a in-al ethanol composition blend requires vehicle in the atmosphere. For many r.ears, the primary vehicie fuels used have been gasoline and diesel fuels. These iuels

107

Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels  

SciTech Connect (OSTI)

The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

Vertin, K.; Glinsky, G.; Reek, A.

2012-08-01T23:59:59.000Z

108

Measurement of vehicle emissions and the associated dispersion near roadways  

E-Print Network [OSTI]

halance I, echnique sufl'ers I&vo disadva&i&, ages: (1) the emission factor may &&nly l&e calcula4cd for exis&, ing roads and (2) I, he analys4 &nusI, have accuraLe air quality, I, raflic, and inel, eorological da4a to estimal, e the emission rate...

Hlavinka, M. W

1986-01-01T23:59:59.000Z

109

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

SciTech Connect (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

110

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

111

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

112

Overview of Vehicle and Systems Simulation and Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

113

Vehicle Technologies Office: Fuel Efficiency and Emissions | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri Mechanical EngineerEnergy Vehicle

114

Investigation of Direct Injection Vehicle Particulate Matter Emissions |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationary FuelPresentation from theDepartment of

115

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)  

Reports and Publications (EIA)

In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

2005-01-01T23:59:59.000Z

116

Issues in emissions testing of hybrid electric vehicles.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

117

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop  

E-Print Network [OSTI]

ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop@du.edu ABSTRACT In 1993, on-road emissions in Continental Europe showed a pronounced South/North declining gradient for CO, HC and NO fuel specific emissions (gm/kg). Emissions in Hamburg and Rotterdam were

Denver, University of

118

Project Information Form Project Title Strategies for Transitioning to Zero-Emission Vehicles--Freight  

E-Print Network [OSTI]

Source(s) and Amounts Provided (by each agency or organization) US DOT $38,884 Total Project Cost $38Project Information Form Project Title Strategies for Transitioning to Zero-Emission Vehicles Description of Research Project According to the EIA, freight modes accounted for 29% of transportation fuel

California at Davis, University of

119

Project Information Form Project Title White Paper on Strategies for Transitioning to Zero-Emission Vehicles--  

E-Print Network [OSTI]

or organization) US DOT $38,875 Total Project Cost $38,875 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title White Paper on Strategies for Transitioning to Zero and End Dates July 2014 to September 2014 Brief Description of Research Project Zero-emission vehicles

California at Davis, University of

120

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized.

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area  

SciTech Connect (OSTI)

Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

2004-06-14T23:59:59.000Z

122

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

123

Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options  

SciTech Connect (OSTI)

Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

Wang, M.Q.

1997-05-20T23:59:59.000Z

124

Incorporating Vehicle Emission Models into the Highway Design Process  

E-Print Network [OSTI]

simulator (MOVES). The generated speed profiles were matched with the extracted rates and aggregated during a trip on the grades and curves. In addition, the researcher conducted the environmental evaluation including a benefit-cost analysis with actual...

Ko, Myung-Hoon

2012-02-14T23:59:59.000Z

125

Review on single track vehicle and motorcycle simulators L. Nehaoua and H. Arioui and S. Mammar  

E-Print Network [OSTI]

Review on single track vehicle and motorcycle simulators L. Nehaoua and H. Arioui and S. Mammar of a motorcycle simulator, designed at INRETS-IBISC laboratory is given. Mechatronics aspects and the various consideration to built such a simulation tool will be discussed. Index Terms-- Motorcycle riding simulators. I

Paris-Sud XI, Université de

126

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

127

Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

2007-01-01T23:59:59.000Z

128

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

solely from stored electric energy during the day. With theIn Hybrid Electric Vehicles on Energy and Emissions UsingIn Hybrid Electric Vehicles on Energy and Emissions Using

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

129

Comparing Emissions Benefits from Regulating Heavy Vehicle Idling |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment of Energy Emissions

130

Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2012-04-01T23:59:59.000Z

131

A Discrete Event Simulation Model for "Efficient Selection of Relay Vehicles for  

E-Print Network [OSTI]

1 A Discrete Event Simulation Model for "Efficient Selection of Relay Vehicles for Broadcasting discrete event-driven simulation model for DIB and EDIB protocols on VANET. We define six types of events the ACK message to the sender. The following variables are used in the simulation model: · vehs stores

Lin, Jason Yi-Bing

132

Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines with High Performance Computing  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about simulating internal combustion engines using high performance computing.

133

Numerical Simulation/Analysis and Computer Aided Engineering for Virtual Protyping of Heavy Ground Vehicle  

E-Print Network [OSTI]

This doctoral project dissertation deals with the investigation of simulation/analysis in the product development process of specialized heavy ground vehicle engineering which posts some of the most challenging engineering ...

Abd. Rahim, Mohd. Razi

2010-08-26T23:59:59.000Z

134

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

135

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network [OSTI]

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

136

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

137

MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill <MN Office of

138

System Simulations of Hybrid Electric Vehicles with Focus on Emissions |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspectEngines |Impacts |

139

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect (OSTI)

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

140

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

SciTech Connect (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Immersive Vehicle Simulators for Prototyping, Training and Ergonomics Marcelo Kallmann1  

E-Print Network [OSTI]

Immersive Vehicle Simulators for Prototyping, Training and Ergonomics Marcelo Kallmann1 , Patrick (CRF), Human Factors - Physical Ergonomics Strada Torino, 50 - 10043 Orbassano TO - Italy {cecilia simulators allow engineers to test the car before it is built, evaluate ergonomic aspects, interior design

Kallmann, Marcelo

142

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

143

Optical Emission of Dusty RF Discharges: Experiment and Simulation  

SciTech Connect (OSTI)

The spectral emission of argon atoms in a dusty radio frequence (RF) discharge has been investigated experimentally and in simulations. It was observed that the spatially and temporally resolved emission of the argon atoms in the dusty discharge was increased compared to the dust-free case during sheath expansion. The corresponding simulations have revealed that the dust trapped in the sheath of the discharge leads to a small, but important, increase of the amount of high-energy electrons that in turn leads to an increased argon emission.

Melzer, A.; Lewerentz, L.; Schneider, R. [Institute of Physics, University Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Huebner, S. [Institute of Physics, University Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Department of Applied Physics, Technical University Eindhoven, NL-5600 MB Eindhoven (Netherlands); Matyash, K. [Max-Planck-Institute for Plasma Physics, EURATOM Association, D-17491 Greifswald (Germany); Ikkurthi, V. R. [Institute for Plasma Research, Bhat, Ghandinagar, Gujarat (India)

2011-11-29T23:59:59.000Z

144

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

145

Vehicle and Systems Simulation and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10 DOE Vehicle

146

Contribution of vehicle emissions to ambient carbonaceous particulate matter: A review and synthesis of the available data in the South Coast Air Basin. Final report  

SciTech Connect (OSTI)

Table of Contents: Executive Summary; Introduction; Ambient Carbonaceous Particulate Matter in the South Coast Air Basin; Measurements of Emissions from In-Use Motor Vehicles in the South Coast Air Basin; Integration of Emissions Measurements into Comprehensive Emissions Inventories; Relating Emissions fom Motor Vehicles to Particulate Air Quality; Synthesis: The Combined Effect of All Vehicle-Related Source Contributions Acting Together; Trends in More Recent Years; Opportunities for Further Research; References; Appendix A: Detailed Mass Emissions Rates for Organic Compounds from Motor Vehicle Exhaust; and Appendix B: Organic Compounds Emitted from Tire Dust, Paved Road Dust, and Brake Lining Wear Dust.

Cass, G.R.

1997-02-01T23:59:59.000Z

147

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network [OSTI]

for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

Michalek, Jeremy J.

148

240 Int. J. Electric and Hybrid Vehicles, Vol. 2, No. 3, 2010 Simulation and analysis of powertrain hybridisation  

E-Print Network [OSTI]

systems, including hybrid electric and hydraulic vehicles, fuel cells and hydrogen. John Shepherd, particularly to autonomous vehicles. He also has a long-standing interest in the modelling of dynamic systems240 Int. J. Electric and Hybrid Vehicles, Vol. 2, No. 3, 2010 Simulation and analysis of powertrain

Cambridge, University of

149

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle  

E-Print Network [OSTI]

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing and hybrid driving mode. During the pure electric driving mode, the vehicle is only powered by the battery

Mi, Chunting "Chris"

150

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

SciTech Connect (OSTI)

Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

2009-04-10T23:59:59.000Z

151

Vehicle and Systems Simulation and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10 DOE Vehicle09 DOE

152

A digital computer simulation of vehicle merging and weaving on a freeway segment  

E-Print Network [OSTI]

A DIGITAL CO~ SIMULATION OF VEHICLE MERGING AND WEAVING ON A FREEHAY SEGbBZZ A Thesis by THOMAS CHILTON MESEROLE Submitted to the Graduate College of the Texas AR? University in partial fulfillment of the requirements i' or the degree... of MASTER OF SCIENCE August 1966 Major Subject: Computer Science A DIGITAL COMPUTER SIMULATION OF VEHICLE MERGING AND WEAVING ON A FREEWAY S~ A Thesis by THOMAS CHILTON MESEROLE Approved $o style and content by: rman of' Commit ee Hea of spar ment...

Meserole, Thomas Chilton

1966-01-01T23:59:59.000Z

153

Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change  

SciTech Connect (OSTI)

During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

2009-01-23T23:59:59.000Z

154

Vehicle Technologies Office Merit Review 2014: Robust Nitrogen oxide/Ammonia Sensors for Vehicle on-board Emissions Control  

Broader source: Energy.gov [DOE]

Presentation given by Los Alamos National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about robust...

155

Simulation of vehicle traffic on an automatic highway system.  

SciTech Connect (OSTI)

A traffic simulator has been developed at Argonne National Laboratory to study highway traffic under various degrees of automation. The key components of this simulator include a global and a local Expert Driver Model, a human factor study, and a graphical user interface. Furthermore, an Autonomous Intelligent Cruise Control, which is based on a neural network controller, is described and results for two typical driving scenarios are given.

Hanebutte, U.; Doss, E.; Ewing, T.; Tentner, A.; Technology Development

1998-01-01T23:59:59.000Z

156

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

producing zero emissions. . The EPRI studies mentioned abovetwo technical reports, EPRI (2007) published Environmentalsport utility vehicles (EPRI, 2002) An 80% required safety

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

157

Paper No. ISOPE-2008-TPC442 First author's last (family) name: Parodi Total number of pages 8 Communications within Thetis, a Real Time Multi-vehicles Hybrid Simulator  

E-Print Network [OSTI]

Communications within Thetis, a Real Time Multi-vehicles Hybrid Simulator Olivier Parodi, Vincent Creuze, Bruno The purpose of this paper is to present the communications aspect in Thetis, a real time multi-vehicles hybrid simulator for heterogeneous vehicles. This simulator allows hardware in loop (HIL) simulations including

Paris-Sud XI, Université de

158

MODELICA LIBRARY FOR SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1  

E-Print Network [OSTI]

MODELICA LIBRARY FOR SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1 Niklas, a model library is developed in the modelling language Modelica. The library contains a mixture of models library are presented. The Modelica language is used to build models with a modular structure. Figure 1

Johansson, Karl Henrik

159

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

cell vehicles (a) Direct hydrogen fuel cell vehicles withoutApplication to Direct Hydrogen Fuel Cell Vehicles, Researchconsidered: (a) Direct hydrogen fuel cell vehicles (FCVs)

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

160

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment  

Broader source: Energy.gov [DOE]

Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network [OSTI]

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

162

A Gaussian process-based approach for handling uncertainty in vehicle dynamics simulation.  

SciTech Connect (OSTI)

Advances in vehicle modeling and simulation in recent years have led to designs that are safer, easier to handle, and less sensitive to external factors. Yet, the potential of simulation is adversely impacted by its limited ability to predict vehicle dynamics in the presence of uncertainty. A commonly occurring source of uncertainty in vehicle dynamics is the road-tire friction interaction, typically represented through a spatially distributed stochastic friction coefficient. The importance of its variation becomes apparent on roads with ice patches, where if the stochastic attributes of the friction coefficient are correctly factored into real time dynamics simulation, robust control strategies could be designed to improve transportation safety. This work concentrates on correctly accounting in the nonlinear dynamics of a car model for the inherent uncertainty in friction coefficient distribution at the road/tire interface. The outcome of this effort is the ability to quantify the effect of input uncertainty on a vehicle's trajectory and the associated escalation of risk in driving. By using a space-dependent Gaussian process, the statistical representation of the friction coefficient allows for consistent space dependence of randomness. The approach proposed allows for the incorporation of noise in the observed data and a nonzero mean for inhomogeneous distribution of the friction coefficient. Based on the statistical model considered, consistent friction coefficient sample distributions are generated over large spatial domains of interest. These samples are subsequently used to compute and characterize the statistics associated with the dynamics of a nonlinear vehicle model. The information concerning the state of the road and thus the friction coefficient is assumed available (measured) at a limited number of points by some sensing device that has a relatively homogeneous noise field (satellite picture or ground sensors, for instance). The methodology proposed can be modified to incorporate information that is sensed by each individual car as it advances along its trajectory.

Schmitt, K.; Madsen, J.; Anitescu, M.; Negrut, D.; Mathematics and Computer Science; Univ. of Wisconsin at Madison

2009-01-01T23:59:59.000Z

163

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles . Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

164

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

165

Simulation And Visualization Of Automated Guided Vehicle Systems In A Real Production Environment  

E-Print Network [OSTI]

Low-cost Automated Guided Vehicle Systems (AGVS) play an increasing role for the automation of production plants. For complex installations, a simulation of the transport system should be performed during the planning phase in order to check for possible problems and to optimize parameters. During operation of complex AGVS a visualization of the whole system is desirable in order to allow a continuous monitoring. Since most of the relevant tasks have to be performed for simulation and visualization as well, we constructed an integrated tool which is able to deal with both jobs. As an example for operation of the simulation tool, results are presented for the calculation of the number of vehicles for optimal performance of an AGVS given a layout and a transport matrix. OVERVIEW As mentioned above, low-cost Automated Guided Vehicle Systems (AGVS) play an increasing role for the automation of production plants since they can be used as a flexible assembly line (Muller 1993). In recent yea...

Axel Hoff; Holger Vogelsang; Uwe Brinkschulte; Oliver Hammerschmidt

1997-01-01T23:59:59.000Z

166

Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,  

E-Print Network [OSTI]

Motor Vehicle Fleet Emissions by OP-FTIR K I M B E R L Y S . B R A D L E Y , K E V I N B . B R O O concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing

Denver, University of

167

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

Direct hydrogen fuel cell vehicles without energy storage.hydrogen fuel cell vehicles (FCVs) without energy storage (hydrogen fuel cell vehicles (FCVs) without energy storage

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

168

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

169

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

170

Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles  

SciTech Connect (OSTI)

The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

2012-03-30T23:59:59.000Z

171

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003  

SciTech Connect (OSTI)

We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

2007-11-09T23:59:59.000Z

172

Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003  

SciTech Connect (OSTI)

We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

2007-10-01T23:59:59.000Z

173

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network [OSTI]

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

174

Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

Thornhill, D. A.

175

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

ed petroleum gas, compressed natural gas, electricity, and to supply compressed natural gas and electricity though.category are compressed natural gas vehicles, hydrogen

Collantes, Gustavo

2006-01-01T23:59:59.000Z

176

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

petroleum gas, compressed natural gas, electricity, and to supply compressed natural gas and electricity though.category are compressed natural gas vehicles, hydrogen

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

177

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

* 53% NO x sensors that meet stringent vehicle requirements are not available: a) Cost (Complex sensors compared to the automotive sensor) b) Sensitivity (Need 5ppm or...

178

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

complete NO x sensors that meet stringent vehicle requirements are not available: a) Cost (Complex sensors compared to the automotive sensor) b) Sensitivity (Need 5ppm or...

179

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

that strongly supported electricdrive vehicles, was workingbattery developers, and electric-drive components industry).on attributes of the electric drive system that would help

Collantes, Gustavo

2006-01-01T23:59:59.000Z

180

Vehicle Technologies Office Merit Review 2014: Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

182

Carbon 40 (2002) 429436 Quantum-mechanical simulations of field emission from carbon  

E-Print Network [OSTI]

Carbon 40 (2002) 429­436 Quantum-mechanical simulations of field emission from carbon nanotubes *A simulations of field emission from 2-nm long open (5,5), closed (5,5) and open (10,0) carbon nanotubes recently where the carbon nanotubes [1,2], a vast literature has appeared on field-emission current from

Mayer, Alexandre

183

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

184

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

185

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

186

SIMULATIONS OF TRANSPORT AND FIELD-EMISSION PROPERTIES OF MULTI-WALL CARBON NANOTUBES  

E-Print Network [OSTI]

SIMULATIONS OF TRANSPORT AND FIELD-EMISSION PROPERTIES OF MULTI-WALL CARBON NANOTUBES Alexandre- emission properties of multi-wall carbon nanotubes. The structure considered for the transport properties-saturation of the dangling bonds still improves the emission. I. INTRODUCTION Carbon nanotubes show interesting field-emission

Mayer, Alexandre

187

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

of Biodiesel and Second Generation Biofuels on NOx Emissionsof Biodiesel and Second Generation Biofuels on NOx EmissionsBiodiesel and Second Generation Biofuels on NO x Emissions

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

188

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Emissions Comparisons from Alternative Fuel Buses and DieselEmissions Comparisons from Alternative Fuel Buses and Dieselof Biodiesel as an Alternative Fuel for Current and Future

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

189

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

May 13 - 16, Appendix I Fuel cell hybrid vehicles with load510 cm 2 ) Appendix II Fuel cell vehicles with power assistcm 2 ) Appendix III Fuel cell vehicles with load leveling

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

190

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

May 13 - 16, Appendix I Fuel cell hybrid vehicles with loadarea: 510 cm 2 ) Appendix II Fuel cell vehicles with powerarea: 510 cm 2 ) Appendix III Fuel cell vehicles with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

191

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network [OSTI]

4.2 Hybrid Vehicle Price Decreases due to Learning-by-Doing4.3.1 Tax Incentives for Hybrid Vehicles . . . . . .Predicted percentage of hybrid vehicle sales with different

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

192

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

considered: (a) Direct hydrogen fuel cell vehicles (FCVs)has focused mainly on hydrogen fuel cells and batteries.are considered: Direct hydrogen fuel cell vehicles (FCVs)

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

193

Determining the Volatility of Ultrafine (UF) PM Emissions from CNG Vehicles  

E-Print Network [OSTI]

. Limited research has been done to characterize compressed natural gas (CNG) mass emissions and practically

194

Vehicle Technologies Office Merit Review 2014: CFD Simulations and Experiments to Determine the Feasibility of Various Alternate Fuels for Compression Ignition Engine Applications  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CFD simulations...

195

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Broader source: Energy.gov (indexed) [DOE]

testing does not in any way reflect the properties of the vehicle itself (weight, aerodynamic drag, design of the driveline etc.) - no requirements to report fuel economy VTT...

196

Vehicle Technologies Office Merit Review 2014: Fuel and Lubricant Effects on Emissions Control Technologies  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel and...

197

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Now, a portion of the 10% EV sales mandate can be composeda small percentage of EV sales with the ZEV mandate). Withsale of more high-profit, light-duty trucks and sport-utility vehicles under CAFE regulations. EV

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

198

Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration  

Broader source: Energy.gov [DOE]

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

199

J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria  

E-Print Network [OSTI]

; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

Boyer, Edmond

200

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

natural gas engines are predominately unburned fuel, therefore, the non-methane hydrocarbon fraction of THC exhaust emissions typically trends

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

202

HOT SPOT ANALYSIS OF REAL WORLD VEHICLE EMISSIONS BASED UPON A PORTABLE ON-BOARD  

E-Print Network [OSTI]

emissions of carbon monoxide (CO), nitric oxide (NO), hydrocarbons (HC), and carbon dioxide (CO2, and open loop/closed loop flag were also recorded using the OEM-2100TM . This paper presents examples percent of nitrogen oxides (NOx) emissions, 77 percent of carbon monoxide (CO) emissions, and 25 percent

Frey, H. Christopher

203

Consumer Vehicle Choice Model Documentation  

SciTech Connect (OSTI)

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle. Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2012-08-01T23:59:59.000Z

204

Smog Check II Evaluation Part II: Overview of Vehicle  

E-Print Network [OSTI]

Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 4. The Vehicle Fleet Is Dominated by Newer Vehicles______________ 8 5. More Recent Vehicle Models

Denver, University of

205

An Interactive, physics-based unmanned ground vehicle simulator leveraging open source gaming technology: Progress in the development and application of the virtual autonomous navigation environment (VANE) desktop  

E-Print Network [OSTI]

It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ...

Kewlani, Gaurav

206

ELECTRICAL SIMULATION METHODOLOGY DEDICATED TO EMC DIGITAL CIRCUITS EMISSIONS ANALYSIS ON PCB  

E-Print Network [OSTI]

ELECTRICAL SIMULATION METHODOLOGY DEDICATED TO EMC DIGITAL CIRCUITS EMISSIONS ANALYSIS ON PCB Jean integrated on closer structures, and the upsurge of electric/electromagnetic couplings in a large frequency optimise an electrical models library dedicated to the simulations of EMC emissions of digital integrated

Paris-Sud XI, Université de

207

Simulations of field emission from a semiconducting ,,10,0... carbon nanotube  

E-Print Network [OSTI]

Simulations of field emission from a semiconducting ,,10,0... carbon nanotube A. Mayera three-dimensional simulations of field emission from an ideal open 10,0 carbon nanotube without of carbon atoms and by repeating periodically a basic unit of the nanotube, band-structure effects

Mayer, Alexandre

208

Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions  

E-Print Network [OSTI]

their net CO2 emissions when a full life cycle analysis is considered, although some fuel system problems may arise with higher biofuel blends especially in cold weather....

Nielsen, Eric

2012-12-31T23:59:59.000Z

209

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

x emissions from biodiesel in newer engine technologies in afeedstock, biodiesel blend level, engine technology, andBiodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

210

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

feedstock, biodiesel blend level, engine technology, andx emissions from biodiesel in newer engine technologies in aBiodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

211

Simulation Evaluation of Green Driving Strategies Based on Inter-Vehicle Communications  

E-Print Network [OSTI]

green driving strategies for different market penetration rates and communicationGreen Driving Strategies Based on Inter-Vehicle CommunicationsGREEN DRIVING STRATEGIES BASED ON INTER-VEHICLE COMMUNICATIONS

Yang, Hao; Yuan, Daji; Jin, W L; Saphores, Jean-Daniel M

2010-01-01T23:59:59.000Z

212

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

a small percentage of EV sales with the ZEV mandate). WithNow, a portion of the 10% EV sales mandate can be composedSales - High Produciton Volume Scenario Subcompact Vehicle Chassis Manufacturing Costs GM Ovonics Projection of Selling Prices of NiMH EV

Lipman, Timothy E.

1999-01-01T23:59:59.000Z

213

Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles  

E-Print Network [OSTI]

D R.L. Polk & Co. , 2006. Hybrid Vehicle Registrations Morecapital cost of the hybrid vehicle, subsidy providedfor the hybrid vehicle, horsepower of the hybrid vehicle,

Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

2009-01-01T23:59:59.000Z

214

Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

215

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network [OSTI]

assume energy prices, environmental awareness, demographicsconstant environmental awareness and energy price increaseschanges in energy price, environmental awareness or vehicle

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

216

Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.  

SciTech Connect (OSTI)

The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

2010-03-31T23:59:59.000Z

217

The `neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies  

E-Print Network [OSTI]

-electric vehicles and hydrogen fuel cell vehicles. The results support the relevance of a range of vehicle of clean technologies over the long-run. Expert opinion or qualitative market analyses have tended, and require credible information to support the design of effective policies that minimize societal costs over

218

Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan  

E-Print Network [OSTI]

Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

Nishimura, Eriko

2011-01-01T23:59:59.000Z

219

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

220

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives  

SciTech Connect (OSTI)

Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

Giorgio Rizzoni

2005-09-30T23:59:59.000Z

222

Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles  

E-Print Network [OSTI]

D. Carbonyl and nitrogen dioxide emissions from gasoline-in the exhaust to nitrogen dioxide (NO 2 ). NO 2 in turn ispollutants such as nitrogen dioxide (NO 2 ), nitrous acid (

Millstein, Dev E.; Harley, Robert A

2010-01-01T23:59:59.000Z

223

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

224

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. Effects of Fuel Ethanol Use on Fuel-Cycle

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

225

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. Effects of Fuel Ethanol Use on Fuel-Cycle

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

226

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

matter from on-road gasoline and diesel vehicles.D.H. , Chase, R.E. , 1999b. Gasoline vehicle particle sizeFactors for On-Road Gasoline and Diesel Motor Vehicles

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

227

Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system  

DOE Patents [OSTI]

A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

2014-01-14T23:59:59.000Z

228

Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238  

SciTech Connect (OSTI)

Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E. [Oak Ridge National Lab., TN (United States); Dearth, M.A. [Ford Motor Co., Dearborn, MI (United States). Environmental Research Consortium

1997-09-01T23:59:59.000Z

229

Vehicle Technologies Office Merit Review 2014: Improved Solvers for Advanced Engine Combustion Simulation  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

230

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

Vehicles Using Supercapacitors -- Device Characteristics,With the emergence of large supercapacitors (also know asin conjunction with supercapacitors can create high power

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

231

Vehicle Technologies Office Merit Review 2014: SPR Process Simulation, Analyses, and Development for Magnesium Joints  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SPR...

232

Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

233

Vehicle Technologies Office Merit Review 2014: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about large eddy...

234

Vehicle Technologies Office Merit Review 2014: Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications  

Broader source: Energy.gov [DOE]

Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

235

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model  

E-Print Network [OSTI]

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model Uwe earth system model con- sisting of an atmospheric general circulation model, an ocean general

Winguth, Arne

236

Application of positive matrix factorization to on-road measurements for source apportionment of diesel-and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

of diesel- and gasoline-powered vehicle emissions in Mexico City D. A. Thornhill, A. E. Williams, T. B be low. The second figure shows the background versus diesel factors. There may be a slight horizontal factors. In this case, even when the diesel factor's contributions are very high, the background factor

Meskhidze, Nicholas

237

Well-to-Wheel Energy, Emissions, and Cost Analysis of Electricity and Fuel Used in Conventional and Electrified Vehicles, and Their Connection to a Sustainable Energy Infrastructure  

E-Print Network [OSTI]

produced in creating the electricity through a full Life Cycle Analysis. As a result, proper comparison of electrified and conventional vehicles must include a complete Well-to-Wheel (WtW) study including the emissions generated through production and use...

Strecker, Bryan Anthony

2012-12-31T23:59:59.000Z

238

Temperature dependence of volatile organic compound evaporative emissions from motor vehicles  

E-Print Network [OSTI]

gasoline samples collected at Sacramento area service stations. Vapor-liquid equilibrium relationships were summer 2001. Additional gasoline- related VOC emissions not shown in Figure 1 occur at service stations gasoline permeation through rubber and plastic components of the fuel system. [3] EMFAC [California Air

Silver, Whendee

239

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network [OSTI]

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

240

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles: Preprint  

SciTech Connect (OSTI)

Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

Neubauer, J.; Wood, E.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles  

SciTech Connect (OSTI)

Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

Neubauer, J.; Wood, E.

2013-01-01T23:59:59.000Z

242

2008 Annual Merit Review Results Summary - 14. Vehicle Systems...  

Broader source: Energy.gov (indexed) [DOE]

14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation DOE Vehicle Technologies Annual Merit Review 2008meritreview14.p...

243

Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study  

E-Print Network [OSTI]

and willingness to forgive my work responsibilities, ultimately, allowed me to complete my dissertation. Time is a sacred resource, and if you had not been so generous with yours and mine, I might still be working on Chapter 3. Thank you for giving me more....3.1 Statistical Results 360 9.3.2 EM vs. dICE Use Between Operating Modes. 364 9.4 Pollutant Emissions... 377 9.5 Concluding Remarks. 400 CHAPTER 10: Diesel Internal Combustion Engine Use in PHEV...

Hohl, Carrie

2012-12-31T23:59:59.000Z

244

A versatile simulation tool for the design and verification of military vehicle power systems  

E-Print Network [OSTI]

modes of operation and system scenarios) and system performance in a dynamic, realistic environment. This thesis proposes a new tool to analyze and design military vehicle platforms: the Advanced Mobile Integrated Power System (AMPS). This tool is useful...

Lipscomb, Melissa Anne

2005-11-01T23:59:59.000Z

245

Vehicle Technologies Office Merit Review 2014: Evaluation of VTO Benefits Using Large Scale Simulation  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the evaluation of...

246

A discrete event simulation model for unstructured supervisory control of unmanned vehicles  

E-Print Network [OSTI]

Most current Unmanned Vehicle (UV) systems consist of teams of operators controlling a single UV. Technological advances will likely lead to the inversion of this ratio, and automation of low level tasking. These advances ...

McDonald, Anthony D. (Anthony Douglas)

2010-01-01T23:59:59.000Z

247

Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle  

E-Print Network [OSTI]

mproving the performance of modular, low-cost autonomous underwater vehicles (AUVs) in such applications as long-range oceanographic survey, autonomous docking, and shallow-water mine countermeasures requires improving the ...

Prestero, Timothy (Timothy Jason), 1970-

2001-01-01T23:59:59.000Z

248

Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)  

SciTech Connect (OSTI)

NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2009-06-01T23:59:59.000Z

249

Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models  

E-Print Network [OSTI]

vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners...

Schultz, Grant George

2004-09-30T23:59:59.000Z

250

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

reason for downsizing the fuel cell is cost rather than fuelthe fuel cell as a means of reducing system cost. Thecost, vehicle performance, and fuel economy potential. Figure 3 illustrates schematically the fuel cell

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

251

Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J. Lijewski  

E-Print Network [OSTI]

Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J nitrogen emissions. The simulation shows how the cellular burn- ing structures characteristic of lean premixed hydrogen combustion lead to enhancements in the NOx emissions from these flames. Analysis

Bell, John B.

252

Transfer-matrix simulations of field emission from bundles of open and closed ,,5,5... carbon nanotubes  

E-Print Network [OSTI]

Transfer-matrix simulations of field emission from bundles of open and closed ,,5,5... carbon simulations of field emission from bundles of metallic 5,5 carbon nanotubes, which are either ideally open.35.Kt, 03.65.Nk I. INTRODUCTION Carbon nanotubes show interesting field-emission proper- ties

Mayer, Alexandre

253

Phase-resolved optical emission of dusty rf discharges: Experiment and simulation  

SciTech Connect (OSTI)

The spectral emission of atoms in a dusty radio frequence (rf) discharge plasma in argon and helium has been measured with a gated ICCD camera. The spatially and temporally resolved emission/excitation of the argon and helium atoms during the rf cycle in the dusty discharge was compared to the dust-free case. In the bulk plasma above the dust cloud, the emission is clearly enhanced in the dusty discharge with respect to the pure discharge, whereas in the sheath the emission is reduced. In addition, the emission of a dusty argon plasma is studied via particle-particle particle-mesh (P{sup 3}M) simulations. The rf dynamics with a single dust particle trapped in the sheath was calculated. Like in the experiment the dust modifies the atomic emission. The spatiotemporal excitation pattern of the experiment is reproduced and a detailed understanding of the difference in excitation of the discharge with and without dust is presented.

Melzer, Andre; Huebner, Simon; Lewerentz, Lars; Schneider, Ralf [Institut fuer Physik, Ernst-Moritz-Arndt-Universiaet, D-17489 Greifswald (Germany); Matyash, Konstantin [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Ikkurthi, Ramana [Institute for Plasma Research, Bhat, Ghandinagar, Gujarat (India)

2011-03-15T23:59:59.000Z

254

Simulations of pressure fluctuations and acoustic emission in hydraulic fracturing  

SciTech Connect (OSTI)

We consider a two-dimensional lattice model to describe the opening of a crack in hydraulic fracturing. In particular, we consider that the material only breaks under tension and the fluid has no pressure drop inside the crack. For the case in which the material is completely homogeneous (no disorder), we present results for pressure and elastic energy as a function of time and compare our findings with some analytic results from continuum fracture mechanics. Then we investigate fracture processes in strongly heterogeneous cohesive environments. We determine the cumulative probability distribution for breaking events of a given energetical magnitude (acoustic emission). Further, we estimate the probability distribution of emission free time intervals. Finally, we determine the fractal dimension(s) of the cracks.

Tzschichholz, F.; Herrmann, H.J. [Division of Physics and Mechanics, School of Technology, Aristotele University of Thessaloniki, 54006 Thessaloniki (Greece)] [Division of Physics and Mechanics, School of Technology, Aristotele University of Thessaloniki, 54006 Thessaloniki (Greece); [HLRZ, Kernforschungsanlage Juelich, Postfach 1913, 5170 Juelich (Germany); [P.M.M.H. (CNRS, URA 857), Ecole Superieuree de Physique et de Chimie Industrielle de la Ville de Paris, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)

1995-03-01T23:59:59.000Z

255

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

256

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles (Presentation)  

SciTech Connect (OSTI)

This presentation discusses a method of accounting for realistic levels of driver aggression to higher-level vehicle studies, including the impact of variation in real-world driving characteristics (acceleration and speed) on vehicle energy consumption and different powertrains (e.g., conventionally powered vehicles versus electrified drive vehicles [xEVs]). Aggression variation between drivers can increase fuel consumption by more than 50% or decrease it by more than 20% from average. The normalized fuel consumption deviation from average as a function of population percentile was found to be largely insensitive to powertrain. However, the traits of ideal driving behavior are a function of powertrain. In conventional vehicles, kinetic losses dominate rolling resistance and aerodynamic losses. In xEVs with regenerative braking, rolling resistance and aerodynamic losses dominate. The relation of fuel consumption predicted from real-world drive data to that predicted by the industry-standard HWFET, UDDS, LA92, and US06 drive cycles was not consistent across powertrains, and varied broadly from the mean, median, and mode of real-world driving. A drive cycle synthesized by NREL's DRIVE tool accurately and consistently reproduces average real-world for multiple powertrains within 1%, and can be used to calculate the fuel consumption effects of varying levels of driver aggression.

Neubauer, J.; Wood, E.

2013-05-01T23:59:59.000Z

257

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

258

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel...  

Energy Savers [EERE]

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Vehicle Technologies Office Merit Review 2014:...

259

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

SciTech Connect (OSTI)

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

260

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

262

Motor Vehicle Emission Simulator (MOVES) 2010: User Guide (EPA-420-B-09-041)  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronic InputNuclear Approved:the other

263

Motor Vehicle Emission Simulator (MOVES) 2010: User Guide (EPA-420-B-09-041)  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronic InputNuclear Approved:the other

264

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

265

Vehicle Technologies Office Merit Review 2014: Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

266

NREL: Vehicles and Fuels Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D...

267

Vehicle Technologies Office Merit Review 2014: Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

268

Vehicle Technologies Office Merit Review 2014: Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters  

Broader source: Energy.gov [DOE]

Presentation given by National Institute of Standards and Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

269

Model based pavement-vehicle interaction simulation for life cycle assessment of pavements  

E-Print Network [OSTI]

Responsible for about a third of the annual energy consumption and greenhouse gas (GHG) emissions, the U.S. transportation Network needs to attain a higher level of sustainability. This is particularly true for the roadway ...

Akbarian, Mehdi

2012-01-01T23:59:59.000Z

270

Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes  

SciTech Connect (OSTI)

We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL; Franzese, Oscar [ORNL] [ORNL

2014-01-01T23:59:59.000Z

271

Three-dimensional simulations of field emission through an oscillating barrier from a ,,10,0... carbon nanotube  

E-Print Network [OSTI]

of field emission through an oscillating barrier from an ideal open 10,0 carbon nanotube without adsorption is an extension of our previous investigations of field emission from carbon nanotubes12­14 to include pho- tonicThree-dimensional simulations of field emission through an oscillating barrier from a ,,10

Mayer, Alexandre

272

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

using supercapacitors than batteries. The simulation resultsload-level control for batteries because of the lower lossesthe DC/DC converter and batteries, but load level control is

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

273

Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation  

SciTech Connect (OSTI)

Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

Wood, E.; Burton, E.; Duran, A.; Gonder, J.

2014-06-01T23:59:59.000Z

274

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

275

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

276

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

of Conventional vs. Hybrid Vehicles, paper to be presented15 Table 10 Hybrid Vehicle Sales to Date - North America &Power Projections of Hybrid Vehicle Characteristics (1999-

Burke, Andy

2004-01-01T23:59:59.000Z

277

The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

278

Vehicle Technologies Office Merit Review 2014: Joint Development and Coordination of Emissions Control Data and Models (CLEERS Analysis and Coordination)  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the joint...

279

Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

280

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

Burke, Andy

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

282

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

283

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

Not Available

2014-05-01T23:59:59.000Z

284

SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1 Niklas Pettersson, Karl Henrik Johansson  

E-Print Network [OSTI]

in the modelling language Modelica. The library contains a mixture of models developed from physical principles: Automotive Control, Energy Management Systems, Computer Simulation, Modelica. 1 This work is supported the ideas behind development and maintenance of a comprehensive model library are presented. The Modelica

Johansson, Karl Henrik

285

Vehicle Fuel Economy Improvement through Thermoelectric Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

286

Simulating Human Reasoning in Mine-Like Object Inspection Assignments for a Formation of Unmanned Underwater Vehicles  

E-Print Network [OSTI]

of a fleet of unmanned underwater vehicles. Learning from the complexities involved in information processing in real life scenarios, decision making processes by a fleet of unmanned underwater vehicles can planner for a decentralized fleet of unmanned underwater vehicles was implemented, followed by a look

Idaho, University of

287

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

288

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

Whitney, K.

2014-05-01T23:59:59.000Z

289

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

290

Impact of Mexico City emissions on regional air quality from MOZART-4 simulations  

E-Print Network [OSTI]

2006 campaign: Mexico City emissions and their transport andtransport and photochemical aging of Mexico City emissions

2010-01-01T23:59:59.000Z

291

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network [OSTI]

converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

292

10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1-in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum

Kammen, Daniel M.

293

Generic vehicle speed models based on traffic simulation: Development and application  

SciTech Connect (OSTI)

This paper summarizes the findings of a research project to develop new methods of estimating speeds for inclusion in the Highway Performance Monitoring System (HPMS) Analytical Process. The paper focuses on the effects of traffic conditions excluding incidents (recurring congestion) on daily average ed and excess fuel consumption. A review of the literature revealed that many techniques have been used to predict speeds as a function of congestion but most fail to address the effects of queuing. However, the method of Dowling and Skabardonis avoids this limitation and was adapted to the research. The methodology used the FRESIM and NETSIM microscopic traffic simulation models to develop uncongested speed functions and as a calibration base for the congested flow functions. The chief contributions of the new speed models are the simplicity of application and their explicit accounting for the effects of queuing. Specific enhancements include: (1) the inclusion of a queue discharge rate for freeways; (2) use of newly defined uncongested flow speed functions; (3) use of generic temporal distributions that account for peak spreading; and (4) a final model form that allows incorporation of other factors that influence speed, such as grades and curves. The main limitation of the new speed models is the fact that they are based on simulation results and not on field observations. They also do not account for the effect of incidents on speed. While appropriate for estimating average national conditions, the use of fixed temporal distributions may not be suitable for analyzing specific facilities, depending on observed traffic patterns. Finally, it is recommended that these and all future speed models be validated against field data where incidents can be adequately identified in the data.

Margiotta, R.; Cohen, H.; Elkins, G.; Rathi, A.; Venigalla, M.

1994-12-15T23:59:59.000Z

294

Simulation of Prompt Emission from GRBs with a Photospheric Component and its Detectability By GLAST  

SciTech Connect (OSTI)

The prompt emission from gamma-ray bursts (GRBs) still requires a physical explanation. Studies of time-resolved GRB spectra, observed in the keV-MeV range, show that a hybrid model consisting of two components, a photospheric and a non-thermal component, in many cases fits bright, single-pulsed bursts as well as, and in some instances even better than, the Band function. With an energy coverage from 8 keV up to 300 GeV, GLAST will give us an unprecedented opportunity to further investigate the nature of the prompt emission. In particular, it will give us the possibility to determine whether a photospheric component is the determining feature of the spectrum or not. Here we present a short study of the ability of GLAST to detect such a photospheric component in the sub-MeV range for typical bursts, using simulation tools developed within the GLAST science collaboration.

Battelino, Milan; Ryde, Felix; /Stockholm Observ.; Omodei, Nicola; /INFN, Pisa; Longo, Francesco; /U. Trieste /INFN, Trieste

2011-11-29T23:59:59.000Z

295

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003  

E-Print Network [OSTI]

Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

2008-01-01T23:59:59.000Z

296

Optical and Physical Properties from Primary On-Road Vehicle Particle Emissions And Their Implications for Climate Change  

E-Print Network [OSTI]

, 2008). Many global climate models take particulate mass emissions from inventories, assume a size not always yield satisfactory results. In one study the amount of BC in current aerosol inventories had

297

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

of Ultracapacitor-Battery Energy Storage Systems GainingFerdowsi, A New Battery/Ultracapacitor Energy Storage Systemthe vehicle. The energy storage and battery weight for AER

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

298

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable costand Fuel Cell Electric Vehicle Symposium GHG emissions rate (CO 2 -eq/kWh) Cost

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

299

Molecular dynamics simulations of coherent optical photon emission from shock waves in Evan J. Reed,1,2,  

E-Print Network [OSTI]

Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals, 013904 2006 . In this work, we present analysis and molecular dynamics simulations of shock waves subject to a shock wave or solitonlike propagating excitation E. J. Reed et al., Phys. Rev. Lett. 96

Soljaèiæ, Marin

300

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

PHEV impact on wind energy market (Short et al. , 2006) andVehicles in California Energy Markets, TransportationElectric Vehicles on Wind Energy Markets, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mechanical analysis and simulation of in-motion vehicle scales. Final report/project accomplishments summary, CRADA Number 95-KCP-1013  

SciTech Connect (OSTI)

A mechanical analysis and simulation was conducted on a weigh-in-motion vehicle scale used to weight motor trucks traveling at speeds of 2 to 45 mph. The objective of this project was to develop a detailed understanding of weigh-in-motion vehicle scale operation and system response to dynamic loading. AlliedSignal FM and T worked together with Cardinal Scale Manufacturing Company as a design team to determine the scale structure`s resonant frequency, determine a relationship between static and dynamic weights, determine variables that have significant influence on the accuracy of the scale, and design an algorithm that can be used to optimize the performance and simulate the operation of the scale. This project provided a detailed understanding of the weigh-in-motion scale operation and system response to dynamic loading. Weigh-in-motion scale engineers will use this knowledge to improve current scales and design new, improved scales. The project was completed as scheduled.

Hower, B.

1997-02-01T23:59:59.000Z

302

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network [OSTI]

same circumstances. iii ALTERNATIVE FUEL VEHICLES: THE CASEDoug; Chelius, Michael, Alternative Fuel Vehicle Programs:Conventional and Alternative Fuel Response Simulator: A

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

303

Simulations of transport and field-emission properties of carbon nanotubes Laboratoire de Physique du Solide, Facultes Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61,  

E-Print Network [OSTI]

Simulations of transport and field-emission properties of carbon nanotubes A. Mayera) Laboratoire. INTRODUCTION Carbon nanotubes show interesting field-emission proper- ties such as low extraction fields, high the transfer-matrix methodology17­19 already used to simulate field emission from carbon nanotubes,7,8,20­22 we

Mayer, Alexandre

304

Cost Effectiveness of Technology Solutions for Future Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Effectiveness of Technology Solutions for Future Vehicle Systems Cost Effectiveness of Technology Solutions for Future Vehicle Systems Explores the economics of CO2 emission...

305

Environmental Assessment of Plug-In Hybrid Electric Vehicles...  

Energy Savers [EERE]

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

306

Vehicle Technologies Office Merit Review 2014: Robust Nitrogen...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Merit Review 2014: Robust Nitrogen oxideAmmonia Sensors for Vehicle on-board Emissions Control Vehicle Technologies Office Merit Review 2014: Robust Nitrogen...

307

The FreedomCAR & Vehicle Technologies Health Impacts Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The FreedomCAR & Vehicle Technologies Health Impacts...

308

Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...  

Broader source: Energy.gov (indexed) [DOE]

emissions regulations. 2009advcombustionengine.pdf More Documents & Publications Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report Vehicle...

309

Vehicle Electrification is Key to Reducing Petroleum Dependency...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas...

310

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman, Gary Bishop, Allison Peddle, University of Denver Department of Chemistry and Biochemistry Denver CO 80208. www.feat.biochem.du.edu  

E-Print Network [OSTI]

On-Road Motor Vehicle Emissions including Ammonia, Sulfur Dioxide and Nitrogen Dioxide Don Stedman Nitrogen dioxide: Less than 5% of the NOx BUT with an outstanding peak for the 2007 MY in Fresno 0. Nitrogen dioxide: less than 5% of NOx except the Fresno fleet containing the 2007 Sprinter ambulances. #12;

Denver, University of

311

Liu, Z., H.C. Frey, Y. Cao, and B. Deshpande, "Modeling of In-vehicle PM2.5 Exposure Using the Stochastic Human Exposure and Dose Simulation Model," Paper 2009-A-238-AWMA, Proceedings, 102nd  

E-Print Network [OSTI]

the Stochastic Human Exposure and Dose Simulation Model," Paper 2009-A-238-AWMA, Proceedings, 102nd Annual of In-vehicle PM2.5 Exposure Using the Stochastic Human Exposure and Dose Simulation Model Paper: 2009-A in the current version of Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM) for in

Frey, H. Christopher

312

Simulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand Canyon and other Class I Areas  

E-Print Network [OSTI]

Simulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand to simulate the proposed and existing power plant plumes during January 2001. Four-km MM5 wind fields were the region. During these stagnation events, emissions from the three simulated power plants mixed together

Fischer, Emily V.

313

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

314

Prediction of Carbon Monoxide and Hydrocarbon Emissions in Isooctane HCCI Engine Combustion Using Multi-Zone Simulations  

SciTech Connect (OSTI)

Homogeneous Charge Compression Ignitions (HCCI) engines show promise as an alternative to Diesel engines, yet research remains: development of practical HCCI engines will be aided greatly by accurate modeling tools. A novel detailed chemical kinetic model that incorporates information from a computational fluid mechanics code has been developed to simulate HCCI combustion. This model very accurately predicts many aspects of the HCCI combustion process. High-resolution computational grids can be used for the fluid mechanics portion of the simulation, but the chemical kinetics portion of the simulation can be reduced to a handful of computational zones (for all previous work 10 zones have been used). While overall this model has demonstrated a very good predictive capability for HCCI combustion, previous simulations using this model have tended to underpredict carbon monoxide emissions by an order of magnitude. A factor in the underprediction of carbon monoxide may be that all previous simulations have been conducted with 10 chemical kinetic zones. The chemistry that results in carbon monoxide emissions is very sensitive to small changes in temperature within the engine. The resolution in temperature is determined directly by the number of zones. This paper investigates how the number of zones (i.e. temperature resolution) affects the model's prediction of hydrocarbon and carbon monoxide emissions in an HCCI engine. Simulations with 10, 20, and 40 chemical kinetic zones have been conducted using a detailed chemical kinetic mechanism (859 species, 3606 reactions) to simulate an isooctane fueled HCCI engine. The results show that 10-zones are adequate to resolve the hydrocarbon emissions, but a greater numbers of zones are required to resolve carbon monoxide emissions. Results are also presented that explore spatial sources of the exhaust emissions within the HCCI engine combustion chamber.

Flowers, D; Aceves, S M; Martinez-Frias, J; Dibble, R

2002-05-02T23:59:59.000Z

315

Plugging Vehicles into Clean Energy October, 2012  

E-Print Network [OSTI]

Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

California at Davis, University of

316

Electric and Hydrogen Vehicles Past and Progress  

E-Print Network [OSTI]

status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

Kammen, Daniel M.

317

Vehicle Modeling and Simulation  

Broader source: Energy.gov (indexed) [DOE]

(L100km) NEDC Tunedline Route-Based Controlline NEDC Tunedpoint Route-Based Controlpoint -2% -2% Same RBC scheduling provides consistent savings across the range of...

318

MCNP Simulation to Hard X-Ray Emission of KSU Dense Plasma Focus Machine  

E-Print Network [OSTI]

The MCNP program used to simulate the hard x-ray emission from KSU dense plasma focus device, an electron beam spectrum of maximum energy 100 keV was used to hit anode target. The bremsstrahlung radiation was measured using the F2 tally functions on the chamber walls and on a virtual sphere surrounding the machine, the radiation spectrum was recorded for various anode materials like tungsten, stainless steel and molybdenum. It was found that tungsten gives the best and the most intense radiation for the same electron beam. An aluminum filter of thickness 2mm and 4mm was used to cutoff the lower energy band from the x-ray spectrum. It was found that the filters achieved the mission and there is no distinct difference in between.

Mohamed, Amgad E

2015-01-01T23:59:59.000Z

319

Simulation of the single-vibronic-level emission spectrum of HPS  

SciTech Connect (OSTI)

We have computed the potential energy surfaces of the X{sup ~1}A{sup ?} and A{sup ~1}A{sup ??} states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and FranckCondon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.

Mok, Daniel K. W., E-mail: bcdaniel@polyu.edu.hk, E-mail: epl@soton.ac.uk; Chau, Foo-tim [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong)] [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong); Lee, Edmond P. F., E-mail: bcdaniel@polyu.edu.hk, E-mail: epl@soton.ac.uk [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong) [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom (Hong Kong); School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Dyke, John M. [School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)] [School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

2014-05-21T23:59:59.000Z

320

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofApplication on Direct Hydrogen Fuel Cell Vehicles, 2008. Acsystem for direct hydrogen fuel cell vehicles Fig. 3 Driver

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vehicle Technologies Office | Department of Energy  

Office of Environmental Management (EM)

Read more Buying a New Car? Buying a New Car? Compare gas mileage, emissions, air pollution ratings, and safety data for new and used vehicles. Read more The Vehicle...

322

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

Technologies to Reduce CO2 Emissions of New Light- Dutyreduce their CO2 emissions. The emerging technologiessignificantly reduce their CO2 emissions. These technologies

Burke, Andy

2004-01-01T23:59:59.000Z

323

Clean Cities Offers Fleets New Tool to Evaluate Benefits of Alternative Fuel Vehicles  

Broader source: Energy.gov [DOE]

The AFLEET Tool allows fleets to calculate payback periods and emissions benefits of alternative fuel vehicles.

324

Plug-in electric vehicle introduction in the EU  

E-Print Network [OSTI]

Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

Sisternes, Fernando J. de $q (Fernando Jos Sisternes Jimnez)

2010-01-01T23:59:59.000Z

325

Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens  

E-Print Network [OSTI]

Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs, glacial, Last Glacial Maximum (LGM), methane (CH4), peatland, wetland. Summary · Wetlands were the largest (n = 8 per treatment) and measured gaseous CH4 flux, pore water dissolved CH4 and volatile fatty acid

Gauci, Vincent

326

Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC...  

Broader source: Energy.gov (indexed) [DOE]

Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions...

327

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

328

Vehicle Technologies Office Merit Review 2014: Advanced Heavy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

329

Vehicle Technologies Office: Directions in Engine-Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference The...

330

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Resources Board (CARB), battery and fuel cell EDVs are considered Zero Emission Vehicles (ZEV), hybrids for carrying power from hybrid and fuel cell vehicles to the grid. Implications for current industry directions

Firestone, Jeremy

331

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

SciTech Connect (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

332

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

333

Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation  

SciTech Connect (OSTI)

Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known signal-to-noise problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

2014-03-14T23:59:59.000Z

334

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

of a typical Internal Combustion Engine (ICE) vehicle and awhile an Internal Combustion Engine (ICE) suppliesoff and the internal combustion engine starts to operate.

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

335

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

by adding additional batteries to the design, allowing theincreases. Advanced Batteries for Electric-Drive Vehicles (generally require larger batteries with correspondingly

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

336

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network [OSTI]

LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

337

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

338

Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Results of...

339

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

340

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Miniature Autonomous Robotic Vehicle (MARV)  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

1996-12-31T23:59:59.000Z

342

Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste  

SciTech Connect (OSTI)

Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The Point Defect Model (PDM) is directly applied as the theoretical assessment method for describing the passive film formed on iron/steels. The PDM is used to describe general corrosion in the passive region of iron. In addition, previous work suggests that pit formation is due to the coalescence of cation vacancies at the metal/film interface which would make it possible to use the PDM parameters to predict the onset of pitting. This previous work suggests that once the critical vacancy density is reached, the film ruptures to form a pit. Based upon the kinetic parameters derived for the general corrosion case, two parameters relating to the cation vacancy formation and annihilation can be calculated. These two parameters can then be applied to predict the transition from general to pitting corrosion for iron/mild steels. If cation vacancy coalescence is shown to lead to pitting, it can have a profound effect on the direction of future studies involving the onset of pitting corrosion. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool f

Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

2008-01-15T23:59:59.000Z

343

INVESTIGATING THE RELIABILITY OF CORONAL EMISSION MEASURE DISTRIBUTION DIAGNOSTICS USING THREE-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS  

SciTech Connect (OSTI)

Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph (EIS) on board Hinode and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using three-dimensional radiative MHD simulations. We produce synthetic observables from the models and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the 'true' distributions from the model, we assess the limitations of the diagnostics as a function of the plasma parameters and the signal-to-noise ratio of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with significantly different density overlap along the line of sight. When using AIA synthetic data the derived EMDs reproduce the true EMDs much less accurately, especially for broad EMDs. The differences between the two instruments are due to the: (1) smaller number of constraints provided by AIA data and (2) broad temperature response function of the AIA channels which provide looser constraints to the temperature distribution. Our results suggest that EMDs derived from current observatories may often show significant discrepancies from the true EMDs, rendering their interpretation fraught with uncertainty. These inherent limitations to the method should be carefully considered when using these distributions to constrain coronal heating.

Testa, Paola [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan [Lockheed Martin Solar and Astrophysics Laboratory, Org. A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo; Carlsson, Mats, E-mail: ptesta@cfa.harvard.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

2012-10-10T23:59:59.000Z

344

E-Print Network 3.0 - aircraft emissions simulation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute of Technology (MIT) Collection: Engineering 49 Inverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific Summary:...

345

Clean Cities 2011 Vehicle Buyer's Guide  

SciTech Connect (OSTI)

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

346

Clean Cities 2014 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

Not Available

2013-12-01T23:59:59.000Z

347

Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and CO, compared to diesel vehicles, while meeting certification requirements deer11johnson.pdf More Documents & Publications Vehicle Emissions Review - 2012 Emissions Control...

348

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

mercury emissions gm/day Reference COAL-FIRED POWER PLANTScoal-fired power plants and chlor- shale alkali and within the range of emissionscoal-fired power plant boilers. Table 9 compares standards and guidelines for gaseous and aqueous mercury emissions

Fox, J. P.

2012-01-01T23:59:59.000Z

349

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

Vehicle (BEV) with an electric motor capable of supplyingmode operation uses the electric motor to run during low-PHEV x can be run on the electric motor only for the first x

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

350

Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

351

Predicting the stellar and non-equilibrium dust emission spectra of high-resolution simulated galaxies with DART-Ray  

E-Print Network [OSTI]

We describe the calculation of the stochastically heated dust emission using the 3D ray-tracing dust radiative transfer code DART-Ray, which is designed to solve the dust radiative transfer problem for galaxies with arbitrary geometries. In order to reduce the time required to derive the non-equilibrium dust emission spectra from each volume element within a model, we implemented an adaptive SED library approach, which we tested for the case of axisymmetric galaxy geometries. To show the capabilities of the code, we applied DART-Ray to a high-resolution N-body+SPH galaxy simulation to predict the appearance of the simulated galaxy at a set of wavelengths from the UV to the sub-mm. We analyse the results to determine the effect of dust on the observed radial and vertical profiles of the stellar emission as well as on the attenuation and scattering of light from the constituent stellar populations. We also quantify the proportion of dust re-radiated stellar light powered by young and old stellar populations, bo...

Natale, Giovanni; Tuffs, Richard J; Debattista, Victor P; Fischera, Jrg; Grootes, Meiert W

2015-01-01T23:59:59.000Z

352

Reducing emissions from deforestation--The ``combined incentives'' mechanism and empirical simulations  

E-Print Network [OSTI]

Reducing emissions from deforestation--The ``combined incentives'' mechanism and empirical throughout a century of climate-change (Gullison et al., 2007). The financial rationale for deforestation be sufficient to greatly reduce deforestation (Stern, 2007). For political and methodological reasons

Vermont, University of

353

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

M. and Chang, B. , 1974; Mercury Monitor for Ambient Air,E. Poulson INTRODUCTION Mercury emissions from fossil-fuelHarley, R. A. , 1973; Mercury Balance on a Large Pulverized

Fox, J. P.

2012-01-01T23:59:59.000Z

354

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

355

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

internal combustion engine is working, it reasonably can be assumed to have similar emissionInternal Combustion Engine (ICE) supplies additional power for high- speed/power operation. Although some studies capture emission

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

356

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

357

Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas Brian C. McDonald and Drew R. Gentner  

E-Print Network [OSTI]

suggest rates of reduction in NMHC versus CO emissions may differ somewhat. Emission ratios of CO), nitrogen oxides (NOx = NO + NO2), and carbon monoxide (CO) are coemitted with carbon dioxide (CO2) during which are mostly diesel powered. Emission reduction measures in the U.S. have been implemented over

Cohen, Ronald C.

358

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

359

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

360

Topology-Based Vehicle Systems Modelling.  

E-Print Network [OSTI]

??The simulation tools that are used to model vehicle systems have not been advancing as quickly as the growth of research and technology surrounding the (more)

Yam, Edward

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers [EERE]

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

362

2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...  

Broader source: Energy.gov (indexed) [DOE]

Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

363

Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRFChem simulations  

E-Print Network [OSTI]

; Ghude et al., 2008]. Thermal power plants are the largest consumer of coal in India [Garg et al., 2001 and WRFChem simulations Sachin D. Ghude,1,2 Gabriele G. Pfister,2 Chinmay Jena,1 R.J. van der A,3 Louisa K tropospheric NO2 column retrievals over the Indian region, with tropospheric NO2 columns simulated

Haak, Hein

364

The Greenhouse Gases, Regulated Emissions, and Energy Use in...  

Open Energy Info (EERE)

of a variety of vehicle, fuel, and technology choices. Overview Measures the petroleum displacement and greenhouse gas emissions of medium and heavy-duty vehicles and...

365

Effect of SoyEffect of Soy--Based B20 Biodiesel on Fuel UseBased B20 Biodiesel on Fuel Use and Emissions of 15 Construction Vehiclesand Emissions of 15 Construction Vehicles  

E-Print Network [OSTI]

Effect of SoyEffect of Soy--Based B20 Biodiesel on Fuel UseBased B20 Biodiesel on Fuel Use Tests with B20 Biodiesel ­ Based on Regular NCDOT Duty Schedule Overview of Study Design for Field for Other Pollutants B20 Biodiesel Tier 0Tier 0 VehicleVehicle Tier 1Tier 1 Tier 2Tier 2 Tier 3Tier 3 0 40

Frey, H. Christopher

366

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

SciTech Connect (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

367

Commercial Vehicle Classification using Vehicle Signature Data  

E-Print Network [OSTI]

Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

2008-01-01T23:59:59.000Z

368

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

2007) Impacts of Electric-drive Vehicles on California'sInteractions between electric-drive vehicles and the powerin emissions found for electric- drive vehicles is a result

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

369

The future of electric two-wheelers and electric vehicles in China  

E-Print Network [OSTI]

SAE Hybrid Vehicle Symposium, San Diego CA, 1314 February.emissions from a plug-in hybrid vehicle (PHEV) in China has2008. Nissans Electric and Hybrid Electric Vehicle Program.

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

370

Mack LNG vehicle development  

SciTech Connect (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

371

Biofuels, Climate Policy and the European Vehicle Fleet  

E-Print Network [OSTI]

We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

Rausch, Sebastian

372

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

373

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,E . 1977; Mercury in Oil Shale from the Mahogany Zone the

Fox, J. P.

2012-01-01T23:59:59.000Z

374

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . 1977; Mercury in Oil Shale from the Mahogany Zone

Fox, J. P.

2012-01-01T23:59:59.000Z

375

Vehicle Technologies Office Merit Review 2013: Accelerating Predictive...  

Broader source: Energy.gov (indexed) [DOE]

3: Accelerating Predictive Simulation of IC Engines with High Performance Computing Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines...

376

Vehicle Technologies Office Merit Review 2014: Accelerating Predictive...  

Broader source: Energy.gov (indexed) [DOE]

4: Accelerating Predictive Simulation of IC Engines with High Performance Computing Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines...

377

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

378

TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND  

E-Print Network [OSTI]

#12;#12;TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND EMISSIONS STUDY: PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current Diesel Idling Emissions Factors

379

Post Doctoral Research Fellowship Simulating the greenhouse gas emission from boreal region reservoirs  

E-Print Network [OSTI]

of greenhouse gases from northern boreal reservoirs as part of a Natural Sciences and Engineering Research modified the DeNitrification-DeComposition (DNDC) model to simulate the exchange of CO2 between boreal by the creation of reservoirs for the production of hydro-electricity. We have recently developed a water column

380

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

382

Vehicle Technologies Office Merit Review 2014: Development and...  

Energy Savers [EERE]

Long-Term Energy and GHG Emission Macroeconomic Accounting Tool Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

383

Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Improved Energy Efficiency and Reduced Emissions in Engines Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

384

Assessment of Future Vehicle Transportation Options and Their...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the United States while simultaneously reducing GHGs through the expanded use of renewable electricity-fueled transportation and reduced emissions per vehicle-mile (VMT). On a...

385

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

386

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

387

Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules  

SciTech Connect (OSTI)

High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities.

Marhauser, Frank; Johnson, Rolland; Rodriguez, Rodolfo; Degtiarenko, Pavel; Hutton, Andrew; Kharashvili, George; Reece, Charles; Rimmer, Robert

2013-09-01T23:59:59.000Z

388

Evaluation of Partial Oxidation Reformer Emissions  

SciTech Connect (OSTI)

In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

Unnasch, Stefan; Fable, Scott; Waterland, Larry

2006-01-06T23:59:59.000Z

389

Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong  

E-Print Network [OSTI]

Chemistry and Physics Vehicular emission of volatile organicY. , and Huang, Y. S. : Emission factors and characteristicslight-duty vehicle emissions, Environ. Sci. Technol. , 30,

2009-01-01T23:59:59.000Z

390

Planning an itinerary for an electric vehicle  

E-Print Network [OSTI]

The steady increase in oil prices and awareness regarding environmental risks due to carbon dioxide emissions are promoting the current interest in electric vehicles. However, the current relatively low driving range ...

Chale-Gongora, Hugo G.

391

Ultracapacitor Boosted Fuel Cell Hybrid Vehicle  

E-Print Network [OSTI]

With the escalating number of vehicles on the road, great concerns are drawn to the large amount of fossil fuels they use and the detrimental environmental impacts from their emissions. A lot of research and development have been conducted...

Chen, Bo

2010-01-14T23:59:59.000Z

392

Autonomous vehicles  

SciTech Connect (OSTI)

There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

1996-08-01T23:59:59.000Z

393

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

394

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

SciTech Connect (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-04-15T23:59:59.000Z

395

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

396

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

397

Lie Group Integrators for Animation and Control of Vehicles  

E-Print Network [OSTI]

.8 [Simulation and Modeling]: Animation 1. INTRODUCTION A vehicle is an actuated mechanical system that moves animation for which a plethora of techniques are available. Additionally, human familiarity with vehicles simulation appears simple: a vehicle is easily modeled by its pose in the world and a set of internal

Desbrun, Mathieu

398

Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid  

E-Print Network [OSTI]

tool, and its application to the design of a power management control algorithm. The hybrid electric to improve vehicle fuel economy significantly, compared with the original vehicle, powered only by a diesel engine. Keywords: electric vehicles, electric-vehicle simulation, hybrid electric vehicles, hybrid

Peng, Huei

399

Solar Flare Chromospheric Line Emission: Comparison Between IBIS High-resolution Observations and Radiative Hydrodynamic Simulations  

E-Print Network [OSTI]

Solar flares involve impulsive energy release, which results in enhanced radiation in a broad spectral and at a wide height range. In particular, line emission from the chromosphere (lower atmosphere) can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results can be extremely valuable, but has not been attempted so far. We present in this paper such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope's (DST) Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 that we have modeled with the radiative hydrodynamic code RADYN (Carlsson & Stein 1992, 1997; Abbett & Hawley 1999; Allred et al. 2005). We obtained images and spectra of the flaring region with IBIS in H$\\alpha$ 6563 \\AA\\ and Ca II 8542 \\AA, and with the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) in X-rays. The latter was used to infer the non-thermal elect...

da Costa, Fatima Rubio; Petrosian, Vah; Dalda, Alberto Sainz; Liu, Wei

2014-01-01T23:59:59.000Z

400

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Three-Dimensional Composite Nanostructures for Lean NOx Emission Control 2010 DOE Vehicle Technologies and...

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Low-Cost Continuous Emissions Monitoring System for Mobile...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition A Low-Cost Continuous Emissions...

402

Review of SCR Technologies for Diesel Emission Control: Euruopean...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

403

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

404

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

405

The Large Scale Roll-Out of Electric Vehicles  

E-Print Network [OSTI]

the emissions reduction targets. Within the transport sector, electric vehicles (EV) are considered as one of the important mitigation options. However the effect of EVs on emissions and the electricity sector is subject to debate. We use scenario analysis...

Talaei, Alireza; Begg, Katherine; Jamasb, Tooraj

2012-10-26T23:59:59.000Z

406

Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th  

E-Print Network [OSTI]

the Alternative Fuel Data Center (AFDC) of the U.S. Department of Energy.4 Carbon dioxide (CO2), CO, and nitricZhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA

Frey, H. Christopher

407

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

SciTech Connect (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

408

Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.  

E-Print Network [OSTI]

Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

Cheah, Lynette W. (Lynette Wan Ting)

2010-01-01T23:59:59.000Z

409

MONTE CARLO SIMULATIONS OF THE PHOTOSPHERIC EMISSION IN GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

We studied the decoupling of photons from ultra-relativistic spherically symmetric outflows expanding with constant velocity by means of Monte Carlo simulations. For outflows with finite widths we confirm the existence of two regimes: photon-thick and photon-thin, introduced recently by Ruffini et al. (RSV). The probability density function of the last scattering of photons is shown to be very different in these two cases. We also obtained spectra as well as light curves. In the photon-thick case, the time-integrated spectrum is much broader than the Planck function and its shape is well described by the fuzzy photosphere approximation introduced by RSV. In the photon-thin case, we confirm the crucial role of photon diffusion, hence the probability density of decoupling has a maximum near the diffusion radius well below the photosphere. The time-integrated spectrum of the photon-thin case has a Band shape that is produced when the outflow is optically thick and its peak is formed at the diffusion radius.

Begue, D.; Siutsou, I. A.; Vereshchagin, G. V. [University of Roma ''Sapienza'', I-00185, p.le A. Moro 5, Rome (Italy)

2013-04-20T23:59:59.000Z

410

Fuel Cell Vehicles and Hydrogen in Preparing for market launch  

E-Print Network [OSTI]

Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

California at Davis, University of

411

Prospects on fuel economy improvements for hydrogen powered vehicles.  

SciTech Connect (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

412

Vehicle Technologies Office: AVTA - Electric Vehicle Community...  

Broader source: Energy.gov (indexed) [DOE]

Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

413

Vehicle Technologies Office: Advanced Vehicle Testing Activity...  

Energy Savers [EERE]

initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

414

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

Whitney, K.; Shoffner, B.

2014-06-01T23:59:59.000Z

415

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

416

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

417

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

418

Lifecycle-analysis for heavy vehicles.  

SciTech Connect (OSTI)

Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

Gaines, L.

1998-04-16T23:59:59.000Z

419

A hybrid vehicle evaluation code and its application to vehicle design  

SciTech Connect (OSTI)

This report describes a hybrid vehicle simulation model, which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates interactively, with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This report also documents the application of the code to a hybrid vehicle that operates with a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine-generator efficiency, flywheel efficiency, and flywheel energy and power capacities.

Aceves, S.M.; Smith, J.R.

1994-07-15T23:59:59.000Z

420

978-3-901882-46-3 c 2012 IFIP Green Move: towards next generation sustainable smartphone-based vehicle sharing  

E-Print Network [OSTI]

efficient with respect to traditional Internal Combustion Engine (ICE) vehicles. EVs, however, face some their overall greenhouse gas emissions by 60-80% compared to 1990. Yet, the continuing growth in emissions due vehicles (EV). In fact, EVs are almost entirely Zero Emission Vehicles (ZEV); hence, their widespread use

Cugola, Gianpaolo

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles  

E-Print Network [OSTI]

Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

Berry, Irene Michelle

2010-01-01T23:59:59.000Z

422

Advanced Collaborative Emissions Study (ACES) NETL Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NETL Agreement 13919 Advanced Collaborative Emissions Study (ACES) NETL Agreement 13919 Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

423

FUEL ECONOMY AND CO2 EMISSIONS STANDARDS, MANUFACTURER PRICING STRATEGIES, AND FEEBATES  

SciTech Connect (OSTI)

Corporate Average Fuel Economy (CAFE) standards and CO2 emissions standards for 2012 to 2016 have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting new standards, as well as the impact of feebate policies. The analysis is carried out by means of a dynamic optimization model that simulates manufacturer decisions with the objective of maximizing social surplus while simultaneously considering consumer response and meeting CAFE and emissions standards. The results indicate that technology adoption plays the major role and that the provision of compliance flexibility and the availability of cost-effective advanced technologies help manufacturers reduce the need for pricing to induce changes in the mix of vehicles sold. Feebates, when implemented along with fuel economy and emissions standards, can bring additional fuel economy improvement and emissions reduction, but the benefit diminishes with the increasing stringency of the standards.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL; Bunch, Dr David S. [University of California, Davis] [University of California, Davis

2012-01-01T23:59:59.000Z

424

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

425

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

426

Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.  

SciTech Connect (OSTI)

Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

Burnham, A.; Wang, M. Q.; Wu, Y.

2006-12-20T23:59:59.000Z

427

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

428

Vehicle Technologies Office: Integration and Validation  

Broader source: Energy.gov [DOE]

Once vehicle components and subsystems prove out in the initial modeling and simulation research phases, it is time to build, integrate, and validate prototypes of those components and subsystems....

429

Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

simulation and analysis technical team every other month * Testing results and life-cycle costs are used by vehicle modelers * Partnering with private sector testers provides...

430

Thermal Control of Power Electronics of Electric Vehicles with...  

Broader source: Energy.gov (indexed) [DOE]

RelevanceObjectives Objectives: * Explore the potential of nucleate boiling for vehicle power electronics cooling. * Conduct numerical heat transfer simulations. * Experimentally...

431

Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Session VTO Analysis Activities: AMR Plenary Overview Ward Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

432

Vehicle Technologies Office Merit Review 2014: Development of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High...

433

Light-Duty Lean GDI Vehicle Technology Benchmark  

Broader source: Energy.gov (indexed) [DOE]

dynamometer * Milestone 2 - September 30, 2010 : - Finalize performanceemissions maps and make available with simulation example to Vehicle Systems team 5 Managed by...

434

Energy Star Concepts for Highway Vehicles  

SciTech Connect (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

435

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network [OSTI]

Distributed Generation, Plug-in Electric Vehicles (PEVs), Energy Management, Multi-Building Modeling and Simulation Introduction The Green Islands

Mendes, Goncalo

2013-01-01T23:59:59.000Z

436

Hydrogen-Enhanced Natural Gas Vehicle Program  

SciTech Connect (OSTI)

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

437

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect (OSTI)

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

438

Predicting Vehicle Crashworthiness: Validation of Computer Models for  

E-Print Network [OSTI]

Predicting Vehicle Crashworthiness: Validation of Computer Models for Functional and Hierarchical. Cafeo, Chin-Hsu Lin, and Jian Tu Abstract The CRASH computer model simulates the effect of a vehicle colliding against different barrier types. If it accurately represents real vehicle crash- worthiness

Berger, Jim

439

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

440

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

442

Design of a fuzzy controller for energy management of a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the design of a control scheme based on Fuzzy Logic to minimize automobile fuel consumption and exhaust emissions while maximizing battery state of charge (SOC) for hybrid vehicles. The advantages the hybrid vehicle has over...

Estrada Gutierrez, Pedro Cuauhtemoc

1997-01-01T23:59:59.000Z

443

Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis  

E-Print Network [OSTI]

The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

Karplus, Valerie Jean

2008-01-01T23:59:59.000Z

444

Abstract--GATE, the Geant4 Application for Tomographic Emission, is a simulation platform developed for PET and  

E-Print Network [OSTI]

for PET and SPECT. It combines a powerful simulation core (the Geant4 toolkit) and a large range-animal PET scanner configuration. Simulated resolution curves and reconstructed images are shown for rotating PET scanners. Lastly, we present comparisons of simulated point-spread functions and spectra

Paris-Sud XI, Université de

445

On-Road Particle Matter Emissions from a MY 2010 Compliant HD...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving Across the U.S. On-Road Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving...

446

Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems  

E-Print Network [OSTI]

cost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or enginecost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or engine

Griswold, Julia Baird

2013-01-01T23:59:59.000Z

447

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network [OSTI]

Motor Vehicle Growth, Oil Demand and CO2 Emissions through61 4.3.2 Crude Oil Demand and TradeMotor Vehicle Growth, Oil Demand and CO2 Emissions through

G. Fridley, David

2010-01-01T23:59:59.000Z

448

Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

2012-08-10T23:59:59.000Z

449

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

450

Air Emissions and Oil Displacement Benefits  

E-Print Network [OSTI]

battery packs allow vehicles to travel longer distance on electric power instead of gasoline may (1) produce fewer greenhouse gas emissions when powered by electricity instead of gasoline emissions relative to HEVs, depending on electricity source. Plug-in vehicles with large battery packs

Michalek, Jeremy J.

451

Vehicle Standards in a Climate Policy Framework WORKING PAPER  

E-Print Network [OSTI]

action to raise Corporate Average Fuel Economy (CAFE) standards and issue vehicle greenhouse gas (GHG) emissions standards both in California and federally. At the same time, U.S. policy makers are moving toward a national program to limit GHG emissions economy wide. The most robust strategy entails capping emissions

Edwards, Paul N.

452

City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program  

SciTech Connect (OSTI)

The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

None

2013-12-31T23:59:59.000Z

453

Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

454

US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"  

SciTech Connect (OSTI)

The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

William E. Wallace

2006-09-30T23:59:59.000Z

455

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

456

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 Provide Clean Air Grow the Clean Energy Economy Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles Established the Northeast Electric Vehicle Network through

California at Davis, University of

457

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

2013-01-01T23:59:59.000Z

458

6, 57735796, 2006 Vehicular emissions  

E-Print Network [OSTI]

be partly responsible for lower CO2 and higher CO and NO emission factors. Also, a fast reduction the emission (in g/km) of key and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO, NMHC, dur-10 of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO20 and CO2

Paris-Sud XI, Université de

459

urrent practice in the vehicle dynamics and control community is to validate detailed  

E-Print Network [OSTI]

the cost and inherent danger in testing aggressive vehicle controllers using full-sized vehicles, a scaleC urrent practice in the vehicle dynamics and control community is to validate detailed simulation results using a full-sized vehicle. For university-based research, this ap- proach is often prohibitively

Brennan, Sean

460

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Measuring congestion and emissions : a network model for Mexico City  

E-Print Network [OSTI]

Congestion is a major problem for the major cities of today. It reduces mobility, slows economic growth, and is a major cause of emissions. Vehicles traveling at slow speeds emit significantly more pollutants than vehicles ...

Amano, Yasuaki Daniel, 1978-

2004-01-01T23:59:59.000Z

462

Vehicle Technologies Office: Multi-Year Program Plan 2011-2015...  

Energy Savers [EERE]

undertaken to help meet the Administrations goals for reductions in oil consumption and carbon emissions from the ground transport vehicle sector of the economy....

463

AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-  

E-Print Network [OSTI]

-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

Miller, Jeffrey A.

464

Winter Motor-Vehicle EMISSIONS in  

E-Print Network [OSTI]

in November 2000 via an environmental impact study decision that only allowed snowcoach use (4, 5 (1). Yellowstone National Park in the U.S. has a long history of balancing tourist access OF DENVER JOHN D. RAY NATIONAL PARK SERVICE APRIL 15, 2006 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 2505 #12

Denver, University of

465

Sandia National Laboratories: zero-emission vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sources andwind energy

466

Vehicle Emissions Review - 2011 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrierof Energy1

467

Vehicle Emissions Review - 2012 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrierof Energy12

468

Alternative Fuels Data Center: Propane Vehicle Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative Fuels DataConversions to someone

469

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect (OSTI)

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

470

Optimized control studies of a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the development of a control scheme to maximize automobile fuel economy and battery state-of-charge (SOC) while meeting exhaust emission standards for parallel hybrid electric vehicles, which are an alternative to conventional...

Bougler, Benedicte Bernadette

1995-01-01T23:59:59.000Z

471

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles  

E-Print Network [OSTI]

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles Angela M. Monateri at the infrared image from an automobile. ·The camera was set up with a FEAT 3000 unit to compare emissions vs

Denver, University of

472

Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes strategies to reduce petroleum through the use of alternative fuels in vehicles, as well as guidance and best practices for each strategy.

473

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

474

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

475

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

476

2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle  

E-Print Network [OSTI]

1 2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use of Automotive Engineers, Inc. ABSTRACT A hybrid electric vehicle simulation tool (HE-VESIM) has been developed global crude oil supplies stimulate research aimed at new, fuel-efficient vehicle technologies. Hybrid-electric

Peng, Huei

477

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

478

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

479

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

480

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

Note: This page contains sample records for the topic "vehicle emission simulator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

482

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

483

Simulating Electron Transport and Synchrotron Emission in Radio Galaxies: Shock Acceleration and Synchrotron Aging in Three-Dimensional Flows  

E-Print Network [OSTI]

We present the first three-dimensional MHD radio galaxy simulations that explicitly model transport of relativistic electrons, including diffusive acceleration at shocks as well as radiative and adiabatic cooling in smooth flows. We discuss three simulations of light Mach 8 jets, designed to explore the effects of shock acceleration and radiative aging on the nonthermal particle populations that give rise to synchrotron and inverse-Compton radiations. We also conduct detailed synthetic radio observations of our simulated objects. We have gained several key insights from this approach: 1. The jet head in these multidimensional simulations is extremely complex. The classical jet termination shock is often absent, but motions of the jet terminus spin a ``shock-web complex'' within the backflowing jet material of the head. 2. Understanding the spectral distribution of energetic electrons in these simulations relies partly upon understanding the shock-web complex, for it can give rise to distributions that confound interpretation in terms of the standard model for radiative aging of radio galaxies. 3. The magnetic field outside of the jet itself becomes very intermittent and filamentary in these simulations, yet adiabatic expansion causes most of the cocoon volume to be occupied by field strengths considerably diminished below the nominal jet value. Thus population aging rates vary considerably from point to point.

I. L. Tregillis; T. W. Jones; Dongsu Ryu

2001-04-18T23:59:59.000Z

484

Int. J. of Heavy Vehicle Systems, Vol. 11, Nos 3/4, 2004 403 Simulation-based optimal design of heavy trucks by  

E-Print Network [OSTI]

attributes according to a dual-use philosophy. Emphasis is given to fuel economy, ride, and mobility. This article builds on previous work and focuses on recent efforts to refine the applied methodologies and draw economy, ride quality, and mobility characteristics. Simulation

Papalambros, Panos

485

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

486

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

487

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

488

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

for Multiplexed Electric Vehicle Charging, US20130154561A1,Chynoweth, Intelligent Electric Vehicle Charging System,of RFID Mesh Network for Electric Vehicle Smart Charging

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

489

Coordinating Automated Vehicles via Communication  

E-Print Network [OSTI]

1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

Bana, Soheila Vahdati

2001-01-01T23:59:59.000Z

490

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

491

Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Sport Utility Vehicle Meeting Tier 2 Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103) Diesel Engine Emission...

492

Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A...  

Energy Savers [EERE]

Well-to-Wheels Analysis of Advanced FuelVehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis...

493

Design of Integrated Laboratory and Heavy-Duty Emissions Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Integrated Laboratory and Heavy-Duty Emissions Testing Center Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Both simulated and actual diesel emissions...

494

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

Yang, Zong-Liang

495

Impacts of urban transportation mode split on CO{sub 2} emissions in Jinan, China.  

SciTech Connect (OSTI)

As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation - in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions - approximately 50% of the BAU scenario emissions.

He, D.; Meng, F.; Wang, M.; He, K. (Energy Systems); (Energy Foundation); (Tsinghua Univ.)

2011-04-01T23:59:59.000Z

496

A hybrid vehicle evaluation code and its application to vehicle design. Revision 2  

SciTech Connect (OSTI)

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates power train dimensions, fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a range of 480 km (300 miles), with a predicted gasoline equivalent fuel efficiency of 33.7 km/liter (79.3 mpg).

Aceves, S.M.; Smith, J.R.

1994-12-13T23:59:59.000Z

497

A hybrid vehicle evaluation code and its application to vehicle design. Revision 1  

SciTech Connect (OSTI)

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0--96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a predicted range of 480 km (300 miles), with a gasoline equivalent fuel efficiency of 34.2 km/liter (80.9 mpg).

Aceves, S.M.; Smith, J.R.

1994-09-15T23:59:59.000Z

498

Intelligent pothole repair vehicle  

E-Print Network [OSTI]

This thesis presents an endeavor to design and construct a prototype of an automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The IPRV is capable of automatically detecting and filling potholes on road surfaces...

Minocher Homji, Ruzbeh Adi

2006-10-30T23:59:59.000Z

499

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

500

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David