National Library of Energy BETA

Sample records for vehicle emission modeling

  1. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01

    Agency; Highway Vehicle Emission Estimates; Office offor Evolving Motor Vehicle Emission Modeling Approachesfor Evolving Motor Vehicle Emission Modeling Approaches

  2. Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models

    E-Print Network [OSTI]

    Younglove, T; Scora, G; Barth, M

    2005-01-01

    Uncertainty in Highway Vehicle Emission Factors,” EmissionPrograms for Effective Vehicle Emission Model DevelopmentU.S. EPA’s Mobile Vehicle Emission Simulator) are becoming

  3. A Statistical Model of Vehicle Emissions and Fuel Consumption

    E-Print Network [OSTI]

    Cappiello, Alessandra

    2002-09-17

    A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

  4. Vehicle Technologies Office Merit Review 2014: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  5. Vehicle Technologies Office Merit Review 2015: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  6. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This

  7. Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This

  8. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    CO 2 , CO, HC and NOx emissions for a single vehicle TRBalthough there are a few NOx emission events that the modelemissions. In regards to NOx emissions, it was noted that

  9. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  10. Neural NetworkBased Modeling and Optimization for Effective Vehicle Emission Testing and

    E-Print Network [OSTI]

    Huang, Yinlun

    Introduction Automotive emission of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) has beenNeural Network­Based Modeling and Optimization for Effective Vehicle Emission Testing and Engine emission testing and engine calibration are the key to achieving emission standards with satisfactory fuel

  11. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  12. Congestion Pricing and Motor Vehicle Emissions: An Initial Review

    E-Print Network [OSTI]

    Guensler, Randall; Sperling, Daniel

    1994-01-01

    CRC-APRAC On Road Vehicle Emissions Workshop. CoordinatingCoast On-Road Motor Vehicle Emission Inventory Process.W.R. Pierson. 1991. Motor Vehicle Emissions Modeling Issues.

  13. Inhalation of Vehicle Emissions in Urban Environments

    E-Print Network [OSTI]

    Marshall, Julian David

    2005-01-01

    distances between vehicles, and emissions from neighboringgasoline on motor vehicle emissions. 2. 6 Volatile organicgasoline on motor vehicle emissions. 1. Mass emission rates.

  14. Incorporating Vehicle Emission Models into the Highway Design Process 

    E-Print Network [OSTI]

    Ko, Myung-Hoon

    2012-02-14

    ?. ........................................................................................... 80 xii Page Figure 5.6 EMFs of fuel consumption and emissions by design categories ........... 83 Figure 5.7 Fuel consumption and emissions by K on vertical curves .................... 87 Figure 5.8 Fuel consumption... Figure 7.1 US 101 route evaluated with real geometric data ................................. 111 Figure 7.2 EMFs from actual vertical grades selected relative to the hypothetical condition of the good design...

  15. Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy Vehicle Technologies OfficeforLife

  16. Modeling Traffic Flow Emissions

    E-Print Network [OSTI]

    Cappiello, Alessandra

    2002-09-17

    The main topic of this thesis is the development of light-duty vehicle dynamic emission models and their integration with dynamic traffic models. Combined, these models

  17. Effects of Vehicle Speed and Engine Load on Motor Vehicle Emissions

    E-Print Network [OSTI]

    Kean, Andrew J.; Harley, Robert A.; Kendall, Gary R.

    2003-01-01

    Engine Load on Motor Vehicle Emissions ANDREW J. KEAN, † R Oknowledge regarding vehicle emissions, but questions remainbetween on-road vehicle emissions and changes in vehicle

  18. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    Motor-vehicle flows Uranium enrichment Agriculture Fuel production Nitrogen deposition Multi-modal emissions Corn-ethanol

  19. Exposure to motor vehicle emissions: An intake fraction approach

    E-Print Network [OSTI]

    Marshall, Julian D.

    2002-01-01

    on California Light-Duty Vehicle Emissions." EnvironmentalGasoline on Motor Vehicle Emissions. 2. Volatile OrganicGasoline on Motor Vehicle Emissions. I. Mass Emission

  20. MOBILE4. 1: Highway-vehicle mobile-source emission-factor model (Apple MacIntosh version) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    MOBILE4.1 is the latest revision to EPA's highway vehicle mobile source emission factor model. Relative to MOBILE4, it contains numerous revisions and provides the user with additional options for modeling highway vehicle emission factors. it will calculate emission factors for hydrocarbons (HC), carbon monoxide, (CO), and oxides of nitrogen (NOx) from highway motor vehicles. It calculates emission factors for eight individual vehicle types, in two regions of the country (low and high altitude). The emission factors depend on various conditions such as ambient temperature, fuel volatility, speed, and mileage accrual rates. It will estimate emission factors for any calendar year between 1960 and 2020 inclusive. The 25 most recent model years are considered in operation in each calendar year. EPA is requiring that states and others preparing emission inventories for nonattainment areas for CO and ozone to use MOBILE4.1 in the development of the base year 1990 emission inventories required under the Clean Air Act of 1990.

  1. Winter Motor-Vehicle EMISSIONS in

    E-Print Network [OSTI]

    Denver, University of

    Winter Motor-Vehicle EMISSIONS in Yellowstone National Park A ir-pollution emissions from off- road recreational vehicles have ris- en in national importance, even as emissions from these vehicles have declined of lawsuits, a new study shows that reductions in snowmobile emissions highlight the need for the snowcoach

  2. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Regulations for Low-Emission Vehicles and Clean Fuels: FinalAmendments to the Zero-Emissions Vehicle Requirements, Marchauthority to regulate vehicle emissions. California is not

  3. Comparison of Particle Sizing Instrument Technologies for Vehicle Emissions Testing

    E-Print Network [OSTI]

    Chen, Vincent

    2014-01-01

    Technologies for Vehicle Emissions Testing A ThesisTechnologies for Vehicle Emissions Testing by Vincent Chen9 Figure 3-1. Schematic diagram of vehicle emissions

  4. Intake fraction of nonreactive vehicle emissions in US urban areas

    E-Print Network [OSTI]

    Marshall, Julian D.; Teoh, Soon-Kay; Nazaroff, William W.

    2006-01-01

    and trends in motor vehicle emissions to monthly urbanExposure to motor vehicle emissions: An intake fractionpollutants: Motor vehicle emissions in the South Coast Air

  5. Intake fraction of nonreactive vehicle emissions in US urban areas

    E-Print Network [OSTI]

    Marshall, J D; Teoh, S K; Nazaroff, William W

    2005-01-01

    fraction of nonreactive vehicle emissions JD Marshall et al.and trends in motor vehicle emissions to monthly urbanExposure to motor vehicle emissions: An intake fraction

  6. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Reactivity Scale for Low- Emission Vehicles and Clean Fuelsgas, and electricity. Vehicle emission estimates includedtype in controlling vehicle emissions. DedLicated methanol

  7. Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  8. Emissions from US waste collection vehicles

    SciTech Connect (OSTI)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-05-15

    Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  9. Reducing Vehicle Emissions to Meet Environmental Goals | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Emissions to Meet Environmental Goals Reducing Vehicle Emissions to Meet Environmental Goals Now that both gasoline and diesel vehicles have been cleaned up, it's time to...

  10. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

  11. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  12. An Emission Saved is an Emission Earned: An Empirical Study of Emission Banking for Light-Duty Vehicle Manufacturers

    E-Print Network [OSTI]

    Rubin, Jonathan D.; Kling, Catherine

    1993-01-01

    System for Light-Duty Vehicle Emission Control," Ph.D.the same number of vehicles and emissions in each category.estimates for vehicle emissions, unpublished manuscript,

  13. Trends in on-road vehicle emissions of ammonia

    E-Print Network [OSTI]

    Kean, A.J.

    2009-01-01

    Gasoline on Motor Vehicle Emissions: Mass Emission Rates.Trends in On-Road Vehicle Emissions of Ammonia A.J. Kean 1 ,94720 Abstract Motor vehicle emissions of ammonia have been

  14. Vehicle Technologies Office Merit Review 2015: Joint Development and Coordination of Emissions Control Data and Models

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about joint...

  15. A Fuel-Based Motor Vehicle Emission Inventory

    E-Print Network [OSTI]

    Singer, Brett C.; Harley, Robert A.

    1996-01-01

    R.E. Measurement On-Road of Vehicle Emission Factors in TheFourth CRC on-road vehicle emissions workshop, San Diego,On-Road Motor Vehicle Emissions (BURDENTF); Mobile Source

  16. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  17. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

  18. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  19. International Conference 'Transport and Air Pollution' 2008, Graz EMISSION FACTOR MODELLING FOR LIGHT VEHICLES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - 16th International Conference 'Transport and Air Pollution' 2008, Graz EMISSION FACTOR in Europe: The European MEET (Methodologies for Estimating air pollutant Emissions from Transport) project. Transport and Air Pollution, Graz : Austria (2008)" #12;- 2 - 16th International Conference 'Transport

  20. Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1999-01-01

    gasoline on motor vehicle emissions. 2. Volatile organicOn Motor Vehicle Emissions 1. Mass Emission Rates ThomasW.the effect of phase RFGon vehicle emissions, including cold-

  1. ESTIMATING FUEL CONSUMPTION AND VEHICLE TAIL-PIPE EMISSIONS AT SIGNALISED INTERSECTIONS

    E-Print Network [OSTI]

    Hellinga, Bruce

    ESTIMATING FUEL CONSUMPTION AND VEHICLE TAIL-PIPE EMISSIONS AT SIGNALISED INTERSECTIONS Bruce are developed on the basis of emission measurements made on vehicles driving that specific cycle. The US EPA modelling, in which individual vehicle behaviour is represented and emissions are estimated over each time

  2. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Conditions on Vehicle Emissions and Fuel Economy. ” SocietyGM Canada), 2005. “Vehicle Emissions & Fuels. ” http://downward trend in vehicle emissions is shown as vehicles

  3. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Conditions on Vehicle Emissions and Fuel Economy. ” SocietyGM Canada), 2005. “Vehicle Emissions & Fuels. ” http://downward trend in vehicle emissions is shown as vehicles

  4. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  5. Intake fraction of primary pollutants: motor vehicle emissions in the South Coast Air Basin

    E-Print Network [OSTI]

    Marshall, J D; Riley, W J; McKone, T E; Nazaroff, William W

    2003-01-01

    gasoline on motor vehicle emissions: 2. volatile organicgasoline on motor vehicle emissions: 1. mass emission rates.Exposure to Motor Vehicle Emissions: An Intake Fraction

  6. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  7. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  8. Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves 

    E-Print Network [OSTI]

    Gu, Chaoyi

    2013-07-31

    Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. ...

  9. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect (OSTI)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  10. On-Road Motor Vehicle Emissions Measurements

    E-Print Network [OSTI]

    Denver, University of

    On-Road Motor Vehicle Emissions Measurements Worldwide -------- www.feat.biochem.du.edu Sajal S but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department(tons/day) RSD IM MOBILE5b #12;Implications · RSD method ideal for realistic on-road mobile source emissions

  11. Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1999-01-01

    California reformulated gasoline on motor vehicle emissions.Impact of California Reformulated Gasoline OIl Motor Vehicleprogress, increased vehicle Gasoline Motor on Vehicle travel

  12. VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD

    E-Print Network [OSTI]

    Frey, H. Christopher

    VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD OBSERVATIONS AT SIGNALIZED between vehicle emissions and traffic control measures is an important step toward reducing the potential roadway design and traffic control, have the ability to reduce vehicle emissions. However, current vehicle

  13. Emissions from the European Light Duty Diesel Vehicle During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the European Light Duty Diesel Vehicle During DPF Regeneration Events Emissions from the European Light Duty Diesel Vehicle During DPF Regeneration Events Repeated partial...

  14. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  15. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    category includes California-owned power plants out- sideCalifornia Air ResourcesBoard, "Uncontrolled and controlled power-plantsCalifornia. First, we include emissions from out-state coal power plants.

  16. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    of Alternative Fuel Vehicles: Emissions, Energy, and Costof Transport, Vehicle Emissions Trends, Organization forvehicles) Motor-vehicle emissions (light-duty and heavy-

  17. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy Edward

    1999-01-01

    to costs for vehicles and emissions. Also, infrastructureN.E. Delucchi (1997) Vehicle Emissions: Author Estimatec (restrictions on motor vehicle emissions and drew attention

  18. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy E.

    1999-01-01

    to costs for vehicles and emissions. Also, infrastructure3,2321a Delucchi (1997) Vehicle Emissions: Author Estimate‘restrictions on motor vehicle emissions and drew attention

  19. Characterizing the Effects of Driver Variability on Real-World Vehicle Emissions

    E-Print Network [OSTI]

    Holmén, Britt; Niemeier, Debbie

    1998-01-01

    D. H. (1995) On-road vehicle emissions: regulations, costs,L. (1996) Motor vehicle emissions variability. Journal ofections on controlling vehicle emissions. Science 261, 37±

  20. Trends in Exhaust Emissions from In-Use California Light-Duty Vehicles, 1994-2001

    E-Print Network [OSTI]

    Kean, Andrew J.; Sawyer, Robert F.; Harley, Robert A.; Kendall, Gary R.

    2002-01-01

    efforts to control motor vehicle emissions have been made inVOC) [1]. Motor vehicle emissions are particularlythe concentrations of vehicles, emissions, and people are

  1. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01

    on-road motor vehicle emissions (BURDEN7F). Mobile Sourcespeciation profile for vehicle emissions agrees with cold=Light-Duty Vehicle Emissions Thomas W. Kirchstetter Brett C°

  2. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    of Alternative Fuel Vehicles: Emissions, Energy, and Costof Transport, Vehicle Emissions Trends, Organization forvehicles) Motor-vehicle emissions (light-duty and heavy-

  3. Light-Duty Vehicle Exhaust Emission Control Cost Estimates Using a Part-Pricing Approach

    E-Print Network [OSTI]

    Wang, Quanlu; Kling, Catherine; Sperling, Daniel

    1993-01-01

    System for Light-Duty Vehicle: Emission Control," Ph.D.reductions motor in vehicle emissions have that Today’scorresponding to consumers vehicle emission one path over

  4. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2006-01-01

    in the history of vehicle emissions regulation: the Zero-adopt and implement motor vehicle emission standards, in-useCalifornia and Federal vehicle emission standards to that

  5. Inhalation of motor vehicle emissions: effects of urban population and land area

    E-Print Network [OSTI]

    Marshall, Julian D.; McKone, Thomas E.; Deakin, Elizabeth; Nazaroff, William W.

    2006-01-01

    in California light-duty vehicle emissions. Environmentalload on motor vehicle emissions. Environmental Science andpollutants: motor vehicle emissions in the South Coast Air

  6. Advanced Clean Cars Zero Emission Vehicle Regulation

    E-Print Network [OSTI]

    California at Davis, University of

    Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program.4% of Annual Sales in 2025 Projected: ZEVs #12;Advanced Clean Cars Hydrogen Infrastructure · Without infrastructure, the cars won't come · Complementary Policies to support ZEV regulation ­ Clean Fuels Outlet

  7. Fuel-Based On-Road Motor Vehicle Emissions Inventory

    E-Print Network [OSTI]

    Denver, University of

    Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S -legally correct but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department -quite precise Inventory -uncertainty can be estimated Travel Based Model Fuel

  8. Overview of China's Vehicle Emission Control Program: Past Successes...

    Open Energy Info (EERE)

    Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.orgsitesdefaultfilespublications...

  9. System Simulations of Hybrid Electric Vehicles with Focus on Emissions

    Broader source: Energy.gov [DOE]

    Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control.

  10. On-road remote sensing of vehicle emissions in

    E-Print Network [OSTI]

    Denver, University of

    On-road remote sensing of vehicle emissions in the Auckland Region August 2003 Technical 1877353000 www.arc.govt.nz #12;TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region #12;Page i TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region On-road remote sensing

  11. Centre for Low Emission Vehicle Research (CLEVeR)

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Centre for Low Emission Vehicle Research (CLEVeR) www.pvrc.org.uk Powertrain & Vehicle Research Centre #12;Centre for Low Emission Vehicle Research (CLEVeR) The state of the art Chassis Dynamometer · Humiditycontrol · Fullfrontalwidthroadspeedfanforrepresentativevehiclecooling Emissions · 2offHoribaMEXA7000

  12. Inhalation of Vehicle Emissions in Urban Environments Julian David Marshall

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    Inhalation of Vehicle Emissions in Urban Environments by Julian David Marshall B.S.E. (Princeton Spring 2005 #12;3 Inhalation of Vehicle Emissions in Urban Environments Copyright 2005 By Julian David Marshall #12;1 ABSTRACT Inhalation of Vehicle Emissions in Urban Environments by Julian David Marshall

  13. TECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    TECHNICAL PAPER Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions

  14. Modeling the vehicle cycle impacts of hybrid electric vehicles

    SciTech Connect (OSTI)

    Wang, M.Q.; Gaines, L.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1997-03-13

    Pure and hybrid electric vehicles, considered environmentally benign, are being developed to reduce urban air pollutant emissions. The obvious emissions benefit of pure electric vehicles is that they produce no tailpipe emissions. Hybrid electric vehicles have the potential of improving fuel economy and reducing emissions. However, both electric vehicles and hybrid electric vehicles (HEVs) do have their own environmental impacts. In order to quantify the potential benefits from introducing such vehicles, it is necessary to compare their impacts with those from the conventional vehicles they would replace. These impacts include energy use and emissions from the entire energy cycle, including fuel production, vehicle and battery production and recycling, and vehicle operation. Argonne`s previous work in collaboration with other national laboratories analyzed the total energy cycle of electric vehicles; this paper compares energy use and emissions for the total energy cycles of several HEV designs with those from modern conventional vehicles. The estimates presented indicate that use of HEVs can reduce energy use and emissions of greenhouse gases, volatile organic gases, carbon monoxide, and particulate matter smaller than 10 micrometers. HEVs may, in some cases, increase emissions of nitrogen oxides and sulfur oxides. Although some of the HEV designs illustrated in this paper could run a significant proportion of annual miles in all electric operation, no calculation of the emission reductions that result from using electricity from the utility grid is presented in this paper.

  15. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Natural Gas Liquids Natural Gas Vehicle Ammonia Non-methanein emissions for natural gas vehicles (NGVs), emissions for226. Timmons, S. Natural Gas Fuel Effects on Vehicle Exhaust

  17. Effects of Ethanol and Volatility Parameters on Exhaust Emissions of Light-Duty Vehicles

    E-Print Network [OSTI]

    Durbin, T; Miller, J W; Huai, T; Cocker III, D R; Younglove, Y

    2005-01-01

    in-use vehicles ranging from Low-Emission Vehicle (LEV) toSuper-Ultra-Low- Emission Vehicle (SULEV) certification. Thecontent on exhaust emissions from vehicles that can meet

  18. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    by crediting against full fuel cycle emissions from theuse” process fuel -- is the full fuel cycle emission factor,where the full fuel cycle includes emissions from

  19. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  20. Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced heavy...

  1. Vehicle Technologies Office Merit Review 2014: Joint Development and Coordination of Emissions Control Data and Models (CLEERS Analysis and Coordination)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the joint...

  2. Heavy Duty Vehicle In-Use Emission Performance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use Emission Performance Heavy Duty Vehicle In-Use Emission Performance 2003 DEER Conference Presentation: VTT Technical Research Centre of Finland deer2003ikonen.pdf More...

  3. Fuel and emission impacts of heavy hybrid vehicles.

    SciTech Connect (OSTI)

    An, F.; Eberhardt, J. J.; Stodolsky, F.

    1999-03-02

    Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

  4. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.

    2008-01-01

    Changes in motor vehicle emissions on diurnal to decadalof a revised motor vehicle emission inventory. J. Geophys.and trends in motor vehicle emissions to monthly urban

  5. Development of a Microscopic Activity-Based Framework for Analyzing the Potential Impacts of Transportation Control Measures on Vehicle Emissions

    E-Print Network [OSTI]

    Recker, Wilfred W.; Parimi, A.

    2000-01-01

    Control Measures on Vehicle Emissions W. W. Recker and A.the increase in the vehicle emissions and energy consumptionalternatives in reducing vehicle emissions. Subject to this

  6. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  7. A Fuel-Based Approach to Estimating Motor Vehicle Exhaust Emissions

    E-Print Network [OSTI]

    Craig, Brett

    1998-01-01

    study with other on-road vehicle emission data. J. Air Wasteon California light-duty vehicle emissions. Environ. Sci.Sixth CRC 0n-Road Vehicle Emissions Workshop, San Diego, CA,

  8. Marketable Credits for Light-Duty Vehicle Emission Control in California

    E-Print Network [OSTI]

    Wang, Quanlu; Kling, Catherine; Sperling, Daniel

    1992-01-01

    for Light-Duty Vehicle Emission CQntrol, Ph.D dissertation,for Light-Duty Vehicle Emission Control in Califorr6a QuantuSince the beginning of vehicle emission regulation in the

  9. Inhalation of primary motor vehicle emissions: Effects of urban population and land area

    E-Print Network [OSTI]

    Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

    2004-01-01

    and inhalation of motor vehicle emissions JD Marshall et al.pollutants: motor vehicle emissions in the South Coast AirAn on-road motor vehicle emissions inventory for Denver: an

  10. Inhalation of motor vehicle emissions: effects of urban population and land area

    E-Print Network [OSTI]

    Marshall, J D; McKone, T E; Deakin, E; Nazaroff, William W

    2005-01-01

    and inhalation of motor vehicle emissions JD Marshall et al.pollutants: motor vehicle emissions in the South Coast Airand inhalation of motor vehicle emissions JD Marshall et al.

  11. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  12. Vehicle Modeling and Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling and Simulation Vehicle Modeling and Simulation Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda,...

  13. Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

    2010-06-01

    Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

  14. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    C (data from DME, 2001). EF E = the fuel cycle emissionDME = dimethyl ether. The feedstocks from which the fuels

  15. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    SciTech Connect (OSTI)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  16. Houston Zero Emission Delivery Vehicle Deployment Project

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data

    E-Print Network [OSTI]

    Wang, Guihua; Bai, Song; Ogden, Joan M.

    2009-01-01

    distribution of vehicle emissions inventories. Environmentalfor 2005, regional vehicle emissions are disaggregated intodistributions of vehicle emissions/activities and the

  18. Intake fraction of nonreactive vehicle emissions in US urban areas

    E-Print Network [OSTI]

    Marshall, Julian D.; Teoh, Soon-Kay; Nazaroff, William W.

    2006-01-01

    vehicle emission, 1,3-butadiene (characteristic lifetime E6remove a portion of the 1,3-butadiene from ambient air. Ourreactions (as for 1,3- butadiene) and physical removal as

  19. Innovation, Retail Performance and Zero Emission Vehicle Policy

    E-Print Network [OSTI]

    California at Davis, University of

    ;3 "Encourage and support auto dealers to increase sales and leases of ZEVs." (p. 15) " " Why Study the Retail1 Innovation, Retail Performance and Zero Emission Vehicle Policy Eric Cahill Research Briefing Market for Plug-in Electric Vehicles (PEVs)? #12;4 Policy Focus is on Automakers and Consumers Government

  20. Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles

    E-Print Network [OSTI]

    Goldstein, Allen

    Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional

  1. California's Zero Emission Vehicle Program Cleaner air needed

    E-Print Network [OSTI]

    Gille, Sarah T.

    these highly functional vehicles and called for more. The regulation also spurred advances in natural gas allow recharging overnight ­no trips to the gas station as EV drivers wake up each morning with a "full gasoline powered vehicle *** Includes powerplant emissions Studies estimate that EV maintenance will cost

  2. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  3. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710

    E-Print Network [OSTI]

    Hudda, N.; Fruin, S.; Delfino, R. J; Sioutas, C.

    2013-01-01

    determination of vehicle emission factors by fuel useCalifornia Motor Vehicle Emission Factor/Emission InventorySN. Changes in motor vehicle emissions on diurnal to decadal

  4. Energy-consumption and carbon-emission analysis of vehicle and component manufacturing.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Burnham, A.; Wang, M.; Energy Systems

    2010-10-12

    A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The approach is bottom-up, with a special focus on energy consumption and CO{sub 2} emissions. The model is applied to both conventional and advanced vehicles, the latter of which include aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. An important component of the model, a weight-based distribution function of materials and associated transformation processes (casting, stamping, etc.), is developed from the United States Council for Automotive Research Generic Vehicle Life Cycle Inventory Study. As the approach is bottom-up, numerous transformation process data and plant operational data were extracted from the literature for use in representing the many operations included in the model. When the model was applied to conventional vehicles, reliable estimates of cumulative energy consumption (34 GJ/vehicle) and CO{sub 2} emission (2 tonnes/vehicle) were computed for the VMA life-cycle stage. The numerous data sets taken from the literature permitted the development of some statistics on model results. Because the model explicitly includes a greater coverage of relevant manufacturing processes than many earlier studies, our energy estimates are on the higher end of previously published values. Limitations of the model are also discussed. Because the material compositions of conventional vehicles within specific classes (cars, light duty trucks, etc.) are sensibly constant on a percent-by-weight basis, the model can be reduced to a simple linear form for each class dependent only on vehicle weight. For advanced vehicles, the material/transformation process distribution developed above needs to be adjusted for different materials and components. This is particularly so for aluminum-intensive and electric-drive vehicles. In fact, because of their comparatively high manufacturing energy, batteries required for an electric vehicle can significantly add to the energy burden of the VMA stage. Overall, for conventional vehicles, energy use and CO{sub 2} emissions from the VMA stage are about 4% of their total life-cycle values. They are expected to be somewhat higher for advanced vehicles.

  5. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    are for total full fuel cycle emissions. References l.Light Duty Vehicle Full Fuel Cycle Emissions Analysis,AND FUEL ECONOMY FULL FUEL CYCLE EMISSIONS REGULATORY

  6. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  7. CleanFleet. Final report: Volume 7, vehicle emissions

    SciTech Connect (OSTI)

    1995-12-01

    Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

  8. Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of

    E-Print Network [OSTI]

    Gille, Sarah T.

    12/10/01 Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of zero emission vehicles (ZEVs). Specifically, the Air Resources Board mandated that at least 2 percent, 5 percent and 10 percent of new car sales

  9. Emissions Minimization Vehicle Routing Problem Miguel Figliozzi

    E-Print Network [OSTI]

    costs will have a clear economic value, e.g CO2 emissions in $/kg. This research aims to formulate it is likely that GHG emissions will have a monetary cost. Under cap and trade emissions system initiatives is the primary objective or is part of a generalized cost function. In addition, departure times and travel

  10. The development of a prescreening model to identify failed and gross polluting vehicles

    E-Print Network [OSTI]

    Choo, Sangho; Shafizadeh, Kevan; Niemeier, Deb

    2007-01-01

    Seventh CRC On-Road Vehicle Emissions Workshop, San Diego. vehicle emissions. The Rand Journal ofB. 1997. Pro?ling Vehicle Emissions with the High Emitter

  11. Emissions from ethanol- and LPG-fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1995-06-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

  12. Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity

    E-Print Network [OSTI]

    Kirchstetter, Thomas; Singer, Brett; Harley, Robert

    1999-01-01

    California Reformulated Gasoline On Motor Vehicle EmissionsCalifornia Reformulated Gasoline on Motor Vehicle EmmissionsBerkeley Environ. ScLTechnoL gasoline Impact California of

  13. Atmospheric Environment 36 (2002) 51775184 An on-road motor vehicle emissions inventory for Denver

    E-Print Network [OSTI]

    Denver, University of

    2002-01-01

    Atmospheric Environment 36 (2002) 5177­5184 An on-road motor vehicle emissions inventory for DenverNOxÞ to the national emission inventory (USEPA, 2000). Thus, an accurate assessment of emissions from motor vehicles is crucial to under- stand the air quality of a given region. Until recently, motor vehicle emission

  14. Fuel composition effects on natural gas vehicle emission

    SciTech Connect (OSTI)

    Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States)

    1994-12-31

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart & Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level I electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 L MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  15. Fuel composition effects on natural gas vehicle emissions

    SciTech Connect (OSTI)

    Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States); Bailey, B.K.; Colucci, C. [National Renewable Energy Lab., Golden, CO (United States)

    1994-09-01

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  16. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a Vehicle FuelFuelingBiodiesel

  17. Future Emissions Impact On Off-Road Vehicles

    SciTech Connect (OSTI)

    Kirby Baumgard; Steve Ephraim

    2001-04-18

    Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

  18. Investigation of Particle and Gaseous Emissions from Conventional and Emerging Vehicle Technologies Operating on Bio-Fuels

    E-Print Network [OSTI]

    Short, Daniel

    2014-01-01

    D.R. 2009. Real World Vehicle Emissions: A Summary of the 18Research Council On-Road Vehicle Emissions Workshop, JournalAnalysis: Tier 3 Motor Vehicle Emission and Fuel Standards,

  19. Development of a Microscopic Activity-Based Framework for Analyzing the Potential Impacts of Transportation Control Measures on Vehicle Emissions

    E-Print Network [OSTI]

    Recker, Will; Parimi, Arun

    1998-01-01

    Control Measures on Vehicle Emissions Will Recker 1 ArunControl Measures on Vehicle Emissions W. W. Recker and A.the increase in the vehicle emissions and energy consumption

  20. The Crafting of the National Low-Emission Vehicle Program: a Private Contract Theory of Public Rulemaking

    E-Print Network [OSTI]

    Fern, Danielle F.

    1997-01-01

    enforcing its own motor vehicle emission standards. 2 5 Sec-standards for motor vehicle emissions; 90 section 301(a)more stringent motor vehicle emissions standards until the

  1. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art 2003 DEER...

  2. Fact #771: March 18, 2013 California Zero-Emission Vehicle Mandate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: March 18, 2013 California Zero-Emission Vehicle Mandate is Now in Effect Fact 771: March 18, 2013 California Zero-Emission Vehicle Mandate is Now in Effect A waiver granted by...

  3. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control 2012 DOE Hydrogen and Fuel...

  4. Temperature dependence of volatile organic compound evaporative emissions from motor vehicles

    E-Print Network [OSTI]

    Goldstein, Allen

    Temperature dependence of volatile organic compound evaporative emissions from motor vehicles Juli tailpipe sources to motor vehicle volatile organic compound (VOC) emissions. Contributions were determined in a highway tunnel were used to define the composition of running vehicle emissions. The chemical mass balance

  5. Reduction in Vehicle Idling Emissions Using RFID Parking Permits Dawson, Pakes-Ahlman, Graham, Gutierrez, Vilasdaechanont

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    1 Reduction in Vehicle Idling Emissions Using RFID Parking Permits 9/20/13 Dawson, Pakes consumption and vehicle emissions. RFID Background RFID tags contain electronically stored data that can's entrance and exit from parking ramps. Table 1. Average Idle Emission Rates by Pollutant and Vehicle Type

  6. Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air

    E-Print Network [OSTI]

    Denver, University of

    Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air Pollution G A R Y A . B I S H, Denver, Colorado 80208 L E N O R A B O H R E N The National Center for Vehicle Emissions Control & Safety of vehicle emissions information system has been developed which utilizes an innovative variable message sign

  7. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet Fuel toEmissions to

  8. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  9. TEG On-Vehicle Performance & Model Validation

    Broader source: Energy.gov [DOE]

    Details efforts and results of steady-state and transient models validated with bench, engine dynamometer, and on-vehicle tests to measure actual performance

  10. Methanol fuel vehicle demonstration: Exhaust emission testing. Final report

    SciTech Connect (OSTI)

    Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

    1993-07-01

    Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

  11. Full-fuel-cycle approach to vehicle emissions modeling: A case study of gasoline in the southeastern region of the United States

    SciTech Connect (OSTI)

    Bell, S.R.; Gupta, M. [Univ. of Alabama, Tuscaloosa, AL (United States); Greening, L.A. [Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    The use of full-fuel-cycle analysis as a scientific, economic, and policy tool for the evaluation of alternative sources of transportation energy has become increasingly widespread. However, consistent methods for performance of these types of analyses are only now becoming recognized and utilized. The work presented here provides a case study of full-fuel-cycle analysis methods applied to the evaluation of gasoline in the southeastern region of the United States. Results of the study demonstrate the significance of nonvehicle processes, such as fuel refining, in terms of energy expenditure and emissions production. Unique to this work is the application of the MOBILE5 mobile emissions model in the full-fuel-cycle analysis. Estimates of direct and indirect greenhouse gas production are also presented and discussed using the full-fuel-cycle analysis method.

  12. Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2010-01-01

    use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

  13. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  14. A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions by Christopher D. Dresser OF WISCONSIN - MADISON Abstract A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions Christopher-duty diesel vehicles (HDDV) for a ten-state Midwest region (Mississippi Valley Freight Coalition) using

  15. Alternative fuel vehicles: The emerging emissions picture. Interim results, Summer 1996

    SciTech Connect (OSTI)

    1996-10-01

    In this pamphlet, program goal, description, vehicles/fuels tested, and selected emissions results are given for light-duty and heavy-duty vehicles. Other NREL R&D programs and publications are mentioned briefly.

  16. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  17. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  18. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Sperling, D. , 1989. Electric vehicles: performance, life-in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. Random House, New York.

  19. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.Nasar S. A. (1982) electric vehicle technology. John Wiley &batteries fornia. for electric vehicles. Argonne National

  20. On-Road Remote Sensing of Vehicle Exhaust Emissions in Auckland, New Zealand

    E-Print Network [OSTI]

    Denver, University of

    On-Road Remote Sensing of Vehicle Exhaust Emissions in Auckland, New Zealand S. Xie, J. G. Bluett Zealand's vehicle fleet. The remote sensing campaign was implemented to establish the emissions profile of this remote sensing campaign was to redress this knowledge gap, improve understanding of the emissions

  1. The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel

    E-Print Network [OSTI]

    The Economic, Energy, and GHG Emissions Impacts of Proposed 2017­2025 Vehicle Fuel Economy in the passenger vehicle fleet to evaluate the economic, energy use, and greenhouse gas (GHG) emissions impacts analysis need to be related to the economic, technological, and political forces that drive emissions

  2. Integrated Mathematical Modeling Software Series of Vehicle Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road WheelTrack Sprocket Integrated Mathematical Modeling Software...

  3. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

  4. Autonomie Modeling Tool Improves Vehicle Design and Testing,...

    Office of Environmental Management (EM)

    Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel...

  5. A Review of the International Modeling Literature: Transit, Land Use, and Auto Pricing Strategies to Reduce Vehicle Miles Traveled and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Rodier, Caroline J.

    2009-01-01

    California Department of Transportation (Caltrans), California EnergyTransportation Pricing Strategies for California: An Assessment of Congestion, Emissions, Energy,

  6. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    vehicles, E85 (mixture of 85%ethanol and 15%gasoline byemissions from ethanol vehicles opexatlng on E85 were not

  7. Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

  8. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  9. Simultaneous Measurement of On-Road Vehicle Emissions and Traffic Flow Using Remote Sensing and an Area-Wide

    E-Print Network [OSTI]

    Frey, H. Christopher

    1 Simultaneous Measurement of On-Road Vehicle Emissions and Traffic Flow Using Remote Sensing Current practice for estimating vehicle emissions is based upon the use of planning-level vehicle mile input emissions data are based upon dynamometer testing of new vehicles under controlled conditions and

  10. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect (OSTI)

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  11. Modelling and control strategy development for fuel cell electric vehicles

    E-Print Network [OSTI]

    Peng, Huei

    Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

  12. Equivalent circuit modeling of hybrid electric vehicle drive train 

    E-Print Network [OSTI]

    Routex, Jean-Yves

    2001-01-01

    The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool...

  13. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  14. THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT, it is of some interest to explore the inclusion of road transport in emission trading schemes. Starting from

  15. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    SciTech Connect (OSTI)

    Michael Wang

    2012-07-25

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  16. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema (OSTI)

    Michael Wang

    2013-06-05

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  17. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  18. Shaping the Terms of Competition: Environmental Regulation and Corporate Strategies to Reduce Diesel Vehicle Emissions

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Diesel Vehicle Emissions by Christine Bik-Kay Ng B.S., Civil and Environmental Engineering University Strategies to Reduce Diesel Vehicle Emissions by Christine Bik-Kay Ng Submitted to the Engineering Systems. This research explains the conditions under which competitive regulatory strategies are pursued in the diesel

  19. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans...

  20. Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area

    E-Print Network [OSTI]

    Denver, University of

    Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S of obtaining on-road emissions inventories has been developed. This technique calculates emission factors these factors with fuel use data, available from tax records, yields a fuel based emission inventory. We have

  1. Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)

    SciTech Connect (OSTI)

    IMPCO Technologies

    1998-10-28

    This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

  2. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  3. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    E-Print Network [OSTI]

    McGaughey, Alan

    and GHG emissions of electrified vehicles. c We design PHEVs and BEVs and assign vehicles and charging). Passenger vehicles accounted for 9.5% of 2010 US carbon dioxide emissions (US EPA, 2011) and 19% of 2009Optimal design and allocation of electrified vehicles and dedicated charging infrastructure

  4. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    McGaughey, Alan

    T S Electrified vehicle life cycle emissions and cost depend on driving conditions. GHGs can triple in NYC cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20 vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple

  5. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production

    E-Print Network [OSTI]

    Goldstein, Allen

    Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from-based, single vehicle dynamometer testing, and on-road measurements in roadway tunnels.3-12 Emission factors

  6. ANALYTICAL EMISSION MODELS FOR SIGNALISED ARTERIALS Bruce Hellinga, Mohammad Ali Khan, and Liping Fu

    E-Print Network [OSTI]

    Hellinga, Bruce

    ANALYTICAL EMISSION MODELS FOR SIGNALISED ARTERIALS Bruce Hellinga, Mohammad Ali Khan, and Liping for quantifying vehicle tailpipe emissions. In this paper we present non-linear regression models that can be used for emission data is examined using field data. The proposed models have adjusted R 2 values ranging from 0

  7. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  8. A Study of the Emissions Benefits of Commercial Vehicle Lane Management Strategies

    E-Print Network [OSTI]

    than light-duty (LD) vehicles. This research shows that the estimated emissions effects of congestion of a general purpose lane to a truck-only lane may produce more emissions benefits than adding either a truck-only lane or a general purpose lane. Furthermore, the expected emissions benefits from truck-only lane

  9. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures

    E-Print Network [OSTI]

    Elliott, Emily M.

    and d18 O values of natural and anthropogenic NOx emission sources. We report the first d15 N and d18 and vehicle emissions. We provide evidence for passive sampler use to collect NOx for isotope analysis. a r Accepted 7 April 2014 Available online 8 April 2014 Keywords: Nitrogen dioxide NOx Isotope Emission a b

  10. 2015 Approved Vehicles CLASS MAKE/MODEL

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    2015 Approved Vehicles CLASS MAKE/MODEL ELECTRIC HYBRID FLEXFUEL GAS DIESEL FUEL ECONOMY (Electric) FUEL ECONOMY (GAS) FUEL ECONOMY (E85) FUEL ECONOMY (DIESEL) ENERGY IMPACT SCORE (ELECTRIC) ENERGY IMPACT SCORE (GAS) ENERGY IMPACT SCORE (E85) ENERGY IMPACT SCORE (DIESEL) SMALL CAR Ford Focus Electric

  11. Driving down emissions : analyzing a plan for meeting Massachusetts' carbon emission reduction targets for passenger vehicles

    E-Print Network [OSTI]

    Irvin, Elizabeth J. (Elizabeth Joanna)

    2015-01-01

    Massachusetts is one of the US states at the forefront of carbon emission reduction policy, and has the potential to model success to the rest of the country. The state's Global Warming Solutions Act (GWSA) passed in 2008, ...

  12. Frey, H.C., H.W. Choi, E. Pritchard, and J. Lawrence, "In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd Annual Conference and Exhibition, Air &

    E-Print Network [OSTI]

    Frey, H. Christopher

    Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd. 1 In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle Emission Inventory data. An engine load-based model based on vehicle-specific power (VSP) was developed

  13. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  14. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  15. that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows,

    E-Print Network [OSTI]

    Bertini, Robert L.

    that minimizes vehicle emissions during design of routes in congested environments with time emissions, and several laboratory and field methods are available for estimating vehicle emissions rates (1 and then begins to increase again (2); hence, the relationship between emission rates and travel speed

  16. Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using...

  17. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

  18. Vehicle Technologies Office Merit Review 2015: Zero Emission Cargo Transport II

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero emission cargo transport II.

  19. Vehicle Technologies Office Merit Review 2015: Zero Emission Cargo Transport Projects

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero emission...

  20. Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?

    E-Print Network [OSTI]

    Paltsev, S.

    Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

  1. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  2. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

    Broader source: Energy.gov [DOE]

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other.

  3. Modeling and Simulation of Electric and Hybrid Vehicles

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    INVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design of electric and hybrid vehicles. Different modeling methods such as physics-based Resistive Companion Form

  4. Vehicle Technologies Office: Modeling and Simulation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel Efficiency & Emissions » VehicleModeling, Testing,

  5. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  6. Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    The number of all light vehicles sold declined about 18% from 2007 to 2008, while the number of hybrid vehicles sold declined about 11%. Five new hybrid models were sold in 2008; other than those,...

  7. ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO

    E-Print Network [OSTI]

    Denver, University of

    ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO Final Report Prepared for the University of Denver traveled to Monterrey, N.L. Mexico to monitor remotely the carbon monoxide (CO with other cities that have been sampled in Mexico. The on-road emission averages are similar to the latest

  8. Determining the Volatility of Ultrafine (UF) PM Emissions from CNG Vehicles

    E-Print Network [OSTI]

    Determining the Volatility of Ultrafine (UF) PM Emissions from CNG Vehicles Contract#: 500. Limited research has been done to characterize compressed natural gas (CNG) mass emissions and practically no work focused on the determination of the size- segregated volatility of UF particles from CNG engines

  9. In-vehicle mm-Wave Channel Model and Measurement

    E-Print Network [OSTI]

    Zemen, Thomas

    . I. INTRODUCTION The ever increasing vehicle efficiency goes hand in hand with weight savings. OneIn-vehicle mm-Wave Channel Model and Measurement Jiri Blumenstein, Tomas Mikulasek, Roman Marsalek measurements carried out in the intra­ vehicle environment. Channels in the millimeter-wave (MMW) frequency

  10. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  11. In-use vehicle emissions in China: Beijing study

    SciTech Connect (OSTI)

    Oliver, Hongyan H.; Gallagher, Kelly Sims ); Li, Mengliang; Qin, Kongjian; Zhang, Jianwei ); Liu, Huan; He, Kebin )

    2009-05-01

    China's economic boom in the last three decades has spurred increasing demand for transportation services and personal mobility. Consequently, vehicle population has grown rapidly since the early 1990s, especially in megacities such as Beijing, Guangzhou, and Tianjin. As a result, mobile sources have become more conspicuous contributors to urban air pollution in Chinese cities. Tianjin was our first focus city, and the study there took us about two years to complete. Building upon the experience and partnership generated through the Tianjin study, the research team carried out the Beijing study from fall 2007–fall 2008. Beijing was chosen to be our second focus city for several reasons: it has the largest local fleet and the highest percentage of the population owning vehicles among all Chinese cities, and it has suffered from severe air pollution, partially due to the ever-growing population of on-road vehicles.

  12. Real-World Emissions from Model Year 1993, 2000, and 2010 Passenger Cars

    E-Print Network [OSTI]

    Ross, M.

    2010-01-01

    the 5th CRC On-Road Vehicle Emissions Workshop, CoordinatingApproach to Estimating Vehicle Emissions,” Presented at the4th CRC On-Road Vehicle Emission Workshop, March 16-18,

  13. Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels

    SciTech Connect (OSTI)

    Vertin, K.; Glinsky, G.; Reek, A.

    2012-08-01

    The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

  14. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  15. Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions

    E-Print Network [OSTI]

    : gasoline, gasoline-ethanol l'rlends, diesel, biodiesel blends, LPG lquefied petroleurn gas) ancl CNG operating on gasoline arrd a similar non-FF\\-. llir:s rs a in-al ethanol composition blend requires vehicle in the atmosphere. For many r.ears, the primary vehicie fuels used have been gasoline and diesel fuels. These iuels

  16. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  17. Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair of emissions to global climate change. Although electric cars and buses have been the focus of much of electric and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid

  18. Light duty vehicle full fuel cycle emissions analysis. Topical report, April 1993-April 1994

    SciTech Connect (OSTI)

    Darrow, K.G.

    1994-04-01

    The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of California and two time frames, current and year 2000.

  19. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    SciTech Connect (OSTI)

    Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  20. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  1. Ambient temperature and driving cycle effects on CNG motor vehicle emission

    SciTech Connect (OSTI)

    Gabele, P.; Krapp, K.T.; Ray, W.D.; Snow, R.; Crews, W.; Perry, N.; Lanning, J.

    1990-01-01

    This paper describes an emissions study of two vans powered by compressed natural gas (CNG). One van was relatively new, while the other had been driven more than 120,000 mi. The purpose of the study was to obtain emissions information which could be used to predict the impact of CNG use on ambient air quality and air toxic concentrations, and to develop a better understanding of the effect of ambient temperature variations on CNG emissions. Using four different driving cycles, emission tests were carried out at 20{degree}F, 75{degree}F, and 105{degree}F. Test results agree with previous findings that document low emissions of nonmethane hydrocarbons from CNG vehicles. Results also confirm the expectation that CNG emissions are not significantly affected by ambient temperature variations, although an increase in formaldehyde emission was noted for the 20{degree}F cold-start tests.

  2. In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J.edu Abstract A combined simulation and testing approach has been developed to evaluate battery packs in real accelerates battery development cycle, and enables innovative battery design and optimization. Several

  3. Optical and Physical Properties from Primary On-Road Vehicle Particle Emissions And Their Implications for Climate Change

    E-Print Network [OSTI]

    1 Optical and Physical Properties from Primary On-Road Vehicle Particle Emissions between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical size distributions and optical properties were insensitive to increases in relative humidity to values

  4. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  5. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

  6. Motor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbHMontebalito SAPhotoVoltaic Ltd JumpMoteckVehicle

  7. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  8. Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study

    E-Print Network [OSTI]

    Hohl, Carrie

    2012-12-31

    On-road emissions and operating data were collected from a plug-in hybrid electric vehicle (PHEV) over the course of 6months spanning August 2007 through January 2008 providing the first comprehensive on-road evaluation of the PHEV drivetrain...

  9. On-Road Emissions of Motor Vehicles in Brazil: Current Status

    E-Print Network [OSTI]

    Denver, University of

    On-Road Emissions of Motor Vehicles in Brazil: Current Status and Future Possibilities of Denver 2101 E. Wesley Ave. Denver, CO 80208 #12;#12;On-road system Motorcycle system #12;#12;RSD measures pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department -quite precise

  10. 23rd CRC On-Road Vehicle Emissions Workshop San Diego, California

    E-Print Network [OSTI]

    Denver, University of

    .feat.biochem.du.edu Wendy Clark National Renewable Energy Laboratory Golden, CO 80401 Wei Li and Dean Saito South Coast Air of Vehicle Technologies through National Renewable Energy Laboratory South Coast Air Quality Management at two locations in the South Coast Air Basin · To follow HDDT emission changes during this period as new

  11. Measuring congestion and emissions : a network model for Mexico City

    E-Print Network [OSTI]

    Amano, Yasuaki Daniel, 1978-

    2004-01-01

    Congestion is a major problem for the major cities of today. It reduces mobility, slows economic growth, and is a major cause of emissions. Vehicles traveling at slow speeds emit significantly more pollutants than vehicles ...

  12. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  13. Parallel Implementation of a Vehicle-Tire-Terrain Interaction Model

    E-Print Network [OSTI]

    Negrut, Dan

    (VTTIM) · Three components o Vehicle o Tire o Terrain/Soil mechanics · Two interfaces o Vehicle support for ANCF `tire' 9 #12;Types of Soil Mechanics Models · Empirical Methods o WES numerics, Bekker of Tire Models · Rigid o Simple to implement in parallel o Only accurate if deformation of soil is much

  14. Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles by Bernard Michini B;Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles by Bernard Michini Submitted for the degree of Master of Science in Aeronautics and Astronautics Abstract The operation of unmanned aerial

  15. Vehicle Technologies Office Merit Review 2015: Technical Cost Modeling for Vehicle Lightweighting

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by IBIS Associates at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technical cost modeling for...

  16. Vehicle Technologies Office Merit Review 2015: Modeling for Light and Heavy Vehicle Market Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Energetics at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modeling for light and heavy...

  17. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    solely from stored electric energy during the day. With theIn Hybrid Electric Vehicles on Energy and Emissions UsingIn Hybrid Electric Vehicles on Energy and Emissions Using

  18. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

  19. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

  20. Photon emission within the linear sigma model

    E-Print Network [OSTI]

    F. Wunderlich; B. Kampfer

    2014-12-22

    Soft-photon emission rates are calculated within the linear sigma model. The investigation is aimed at answering the question to which extent the emissivities map out the phase structure of this particular effective model of strongly interacting matter.

  1. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  2. Mileage efficiency and relative emission of automotive vehicles

    E-Print Network [OSTI]

    Patankar, Neelesh A

    2015-01-01

    Physics dictates that cars with small mass will travel more miles per gallon (mpg) compared to massive trucks. Does this imply that small cars are more efficient machines? In this work a mileage efficiency metric is defined as a ratio of actual car mileage (mpg) to the mileage of an ideal car. This metric allows comparison of efficiencies of cars with different masses and fuel types. It is as useful to quantify efficiencies of cars as the concept of drag coefficient is to quantify the efficacy of their aerodynamic shapes. Maximum mileage and lowest CO2 emission of conventional gasoline cars, at different driving schedules, is reported based on the concept of an ideal car. This can help put government imposed standards in a rigorous context.

  3. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Cai, Hao; Burnham, Andrew; Wang, Michael; Hang, Wen; Vyas, Anant

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  4. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  5. Application of Finite Mixture Models for Vehicle Crash Data Analysis 

    E-Print Network [OSTI]

    Park, Byung Jung

    2010-07-14

    Developing sound or reliable statistical models for analyzing vehicle crashes is very important in highway safety studies. A difficulty arises when crash data exhibit overdispersion. Over-dispersion caused by unobserved ...

  6. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    California 95616 PHONE: WEB: FAX: http://its.ucdavis.edu/ AVCEM: ADVANCED-VEHICLE COST AND ENERGY-Cost and Energy Use Model Overview of AVCEM Mark A. Delucchi Institute of Transportation Studies ? University of California,

  7. The FreedomCAR & Vehicle Technologies Health Impacts Program- The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4

    SciTech Connect (OSTI)

    McCormick, R. L.; Williams, A.; Ireland, J.; Hayes, R. R.

    2006-10-01

    The objective was to determine if testing entire vehicles, vs. just the engines, on a heavy-duty chassis dynamometer provides a better, measurement of the impact of B20 on emissions.

  9. Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  10. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  11. Measurement of vehicle emissions and the associated dispersion near roadways 

    E-Print Network [OSTI]

    Hlavinka, M. W

    1986-01-01

    Stud&ca 71 CIIAPTER V DA'I'A PROCI'SSI&NG 73 A. Radian DAKI' 73 B. Balcones Computer, C. Balcones Ravv Data, Reduction 74 77 CIIAP'I'ER. Vl. RESULTS 80 A. Analysis of Data Acc?racy Analog Io Dig&tal Converter Meteorological Inst, rurnents... that 4he model is use&i vvilh&n Lli&& speed arid acceleration ranges sp&inned by Ihc modal data. Mass Balance Techni ue '1'l&e calculation of a polluLant einission feel, nr for non-reactive species mav be calculat&d by the use of concentral, ion pro...

  12. CALIFORNIA CLIMATE POLICY MODELING (CCPM) DIALOG Greenhouse Gas Emissions Modeling

    E-Print Network [OSTI]

    California at Davis, University of

    H2 CALIFORNIA CLIMATE POLICY MODELING (CCPM) DIALOG Greenhouse Gas Emissions Modeling ­ California goals of criteria pollutant and GHG emission reduction. · Modelers need to work with policy makers more to policy-makers and stakeholders. 5 #12;Greenhouse Gas Emissions Modeling ­ California 2030 #12;

  13. The Natural Gas Vehicle Challenge `92: Exhaust emissions testing and results

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P. [Argonne National Lab., IL (United States); Zammit, M.G. [Johnson Matthey, Wayne, PA (United States); Davies, J.G.; Salmon, G.S. [General Motors of Canada Ltd., Toronto, ON (Canada); Bruetsch, R.I. [US Environmental Protection Agency (United States)

    1992-11-01

    The Natural Gas Vehicle (NGV) Challenge `92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  14. The Natural Gas Vehicle Challenge '92: Exhaust emissions testing and results

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P. (Argonne National Lab., IL (United States)); Zammit, M.G. (Johnson Matthey, Wayne, PA (United States)); Davies, J.G.; Salmon, G.S. (General Motors of Canada Ltd., Toronto, ON (Canada)); Bruetsch, R.I. (US Environmental Protection Agency (United States))

    1992-01-01

    The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  15. Acknowledgments: NASA Glenn Research Center (Grant #NNC04GB44G) College of Engineering Prof. Martin Abraham NASA envisions employing fuel cells running on jet fuel reformate for its uninhabited aerial vehicles (UAVs), low emission alternative power (LE

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    uninhabited aerial vehicles (UAVs), low emission alternative power (LEAP) missions and for transatlantic

  16. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  17. International Trade in Used Vehicles: The Environmental Consequences of NAFTA

    E-Print Network [OSTI]

    Davis, Lucas

    2009-01-01

    trade  leads  average  vehicle  emissions  to  decrease  in country.  How average  vehicle emissions change in both vehicles  and  vehicle  emissions.   Our  dataset  allows 

  18. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  19. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo

    2006-01-01

    California. ‘ The Role of Electric Vehicles. The Claremontof GM ’s Revolutionary Electric Vehicle. New York: Random1995). Future Drive: Electric Vehicles and Sustainable

  20. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2006-01-01

    in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. New York: Random House.1995). Future Drive: Electric Vehicles and Sustainable

  1. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  2. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

  3. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  4. Modeling of Lean Exhaust Emissions Control Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean Exhaust Emissions Control Systems Modeling of Lean Exhaust Emissions Control Systems 2002 DEER Conference Presentation: National Renewable Energy Laboratory...

  5. Impact of Stops on Vehicle Fuel Consumption and Emissions Hesham Rakha1 and Yonglian Ding2

    E-Print Network [OSTI]

    Rakha, Hesham A.

    chemical compounds that leave the engine through the tail pipe system and crankcase, and evaporative or exhaust emissions). Currently, diesel-powered engines cannot use catalytic oxidizers due to plugging from on a limited number of standard drive cycles. For example, the MOBILE5a model utilizes baseline emission rates

  6. Survey of Emissions Models for Distributed Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models...

  7. Modeling radio communication blackout and blackout mitigation in hypersonic vehicles

    E-Print Network [OSTI]

    Kundrapu, Madhusudhan; Beckwith, Kristian; Stoltz, Peter; Shashurin, Alexey; Keidar, Michael

    2014-01-01

    A procedure for the modeling and analysis of radio communication blackout of hypersonic vehicles is presented. A weakly ionized plasma generated around the surface of a hypersonic reentry vehicle traveling at Mach 23 was simulated using full Navier-Stokes equations in multi-species single fluid form. A seven species air chemistry model is used to compute the individual species densities in air including ionization - plasma densities are compared with experiment. The electromagnetic wave's interaction with the plasma layer is modeled using multi-fluid equations for fluid transport and full Maxwell's equations for the electromagnetic fields. The multi-fluid solver is verified for a whistler wave propagating through a slab. First principles radio communication blackout over a hypersonic vehicle is demonstrated along with a simple blackout mitigation scheme using a magnetic window.

  8. Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change

    SciTech Connect (OSTI)

    Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

    2009-01-23

    During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

  9. Energyenvironment policy modeling of endogenous technological change with personal vehicles

    E-Print Network [OSTI]

    - producing activity (notably fossil fuel consumption) and the level of emissions. They define abatement cost-down modelers focus on estimating aggregate price­quan- tity relationships between the cost of emission to acquiring low-GHG technologies and top- down modelers suggesting price-based policies like taxes

  10. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2011-01-01

    Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

  11. A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCR/DPF Applications/Data-Logger for Vehicle Data Acquisition

    Broader source: Energy.gov [DOE]

    This project describes a novel system of sensors that continuously monitor emissions in real time and a data logger to gather real-time data from a vehicle

  12. Vehicle Technologies Office Merit Review 2014: Robust Nitrogen oxide/Ammonia Sensors for Vehicle on-board Emissions Control

    Broader source: Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about robust...

  13. Vehicle Technologies Office Merit Review 2015: Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about robust...

  14. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  15. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  16. Advanced HD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HD Engine Systems and Emissions Control Modeling and Analysis Advanced HD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  17. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  18. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  19. Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing Mechanism Kaan, LQR, Quadrotor, Tilt-wing, VTOL. I. INTRODUCTION Unmanned aerial vehicles (UAV) designed for various of a new tilt-wing aerial vehicle (SUAVi: Sabanci University Unmanned Aerial Vehicle) that is capable

  20. MODELING REAL-TIME HUMAN-AUTOMATION COLLABORATIVE SCHEDULING OF UNMANNED VEHICLES

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    MODELING REAL-TIME HUMAN-AUTOMATION COLLABORATIVE SCHEDULING OF UNMANNED VEHICLES by ANDREW S, Humans and Automation Laboratory Certified by;3 MODELING REAL-TIME HUMAN-AUTOMATION COLLABORATIVE SCHEDULING OF UNMANNED VEHICLES by Andrew S. Clare

  1. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  2. The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States

    E-Print Network [OSTI]

    Karplus, Valerie

    2012-07-31

    Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

  3. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    OF TECHNOLOGIES FOR HYBRID-ELECTRIC VEHICLES 4.1EnginesG.H. , SIMPLEV: Simple Electric Vehicle Simulation Program-G.H, SIMPLEV: Simple Electric Vehicle Simulation Program-

  4. Lean NOx Trap Modeling in Vehicle Systems Simulations

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Chakravarthy, Veerathu K [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Conklin, Jim [ORNL] [ORNL

    2010-09-01

    A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

  5. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  6. Projections of highway vehicle population, energy demand, and CO{sub 2} emissions in India through 2040.

    SciTech Connect (OSTI)

    Arora, S.; Vyas, A.; Johnson, L.; Energy Systems

    2011-02-22

    This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.

  7. Construction of a driver-vehicle model and identification of the driver model parameters 

    E-Print Network [OSTI]

    Su, Jemeng

    1981-01-01

    CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by , JEMENG SU Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requiremr nt for the degree of MASTER... OF SCIENCE December 1981 Major Subject: Mechanical Engineering CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by JEMENG SU Approved as to style and content by: (Chairman of Committe ) / I...

  8. Biofuels, Climate Policy and the European Vehicle Fleet

    E-Print Network [OSTI]

    Rausch, Sebastian

    We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

  9. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

  10. A simple model of spontaneous emission

    E-Print Network [OSTI]

    Krzysztof Piotr Wójcik

    2012-03-31

    We present a very simple model of a spontaneous emission from a two-level atom, interacting with a field of a finite number of states. Such a process is often said to occur because of the large number of equally-probable states of environment. We show that in our model increasing the number of field states may and may not cause a practically permanent emission, depending on the details of the model. We also describe how irreversibility emerges with growing number of states. Mathematical tools are reduced to a necessary minimum and hopefully can be well understood by undergraduate students.

  11. Vehicle Model Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode& Systems SimulationModel

  12. IEEE Access 2015-000125 1 Abstract--Plug-in hybrid electric vehicles (PHEVs) offer the

    E-Print Network [OSTI]

    Eppstein, Margaret J.

    IEEE Access 2015-000125 1 Abstract-- Plug-in hybrid electric vehicles (PHEVs) offer the potential vehicles (PHEVs); agent-based model; market penetration; electric vehicle adoption; vehicle choice-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce GHG emissions [2

  13. Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge '92

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P.

    1992-01-01

    The Natural Gas Vehicle Challenge '92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  14. Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge `92

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P.

    1992-09-01

    The Natural Gas Vehicle Challenge `92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  15. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    greenhouse gas emissions from the nationwide vehicle fleet. Model the impact of a high level of PHEV adoption on nationwide air quality. Develop a consistent analysis methodology...

  16. Vehicle Technologies Office Merit Review 2015: MA3T—Modeling Vehicle Market Dynamics with Consumer Segmentation

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about MA3T—modeling...

  17. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    motor vehicles ..182 The nuclear fuelcycle .184 Crop production and fertilizer use..186 Corn-ethanol

  18. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    motor vehicles ..182 The nuclear fuelcycle .184 Crop production and fertilizer use..186 Corn-ethanol

  19. Clean Cities 2011 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  20. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  1. Effect of SoyEffect of Soy--Based B20 Biodiesel on Fuel UseBased B20 Biodiesel on Fuel Use and Emissions of 15 Construction Vehiclesand Emissions of 15 Construction Vehicles

    E-Print Network [OSTI]

    Frey, H. Christopher

    Normalized Manifold Absolute Pressure PM(g/gallon) PD B20 Average Fuel-Based NOx Emission Factors for Motor 1b 2 3 Average NOasNO2(g/gallon) Resurfacing Roading Shouldering Average Fuel-Based NOx Emission and Emissions of 15 Construction Vehiclesand Emissions of 15 Construction Vehicles Based on InBased on In

  2. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    E-Print Network [OSTI]

    Vermont, University of

    An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold

  3. Modeling and Control of Unmanned Aerial Vehicles Current Status and Future Directions

    E-Print Network [OSTI]

    Antsaklis, Panos

    Modeling and Control of Unmanned Aerial Vehicles ­ Current Status and Future Directions George have highlighted the potential utility for Unmanned Aerial Vehicles (UAVs). Both fixed wing and rotary Reimann, Panos Antsaklis, Kimon Valavanis, "Modeling and Control of Unmanned Aerial Vehicles­ Current

  4. Modeling design changes in vehicle assembly systems : platform transition strategies and manufacturing flexibility

    E-Print Network [OSTI]

    Wüstemeyer, Christoph

    2014-01-01

    Driven by rising environmental and geopolitical concerns, regulations have been put in place over the last decade to compel car makers to lower the CO2 emissions of their cars. Due to these increasingly stringent vehicle ...

  5. Finding Computationally Inexpensive Methods to Model the Flow Past Heavy Vehicles and the Design of

    E-Print Network [OSTI]

    Jameson, Antony

    save 3.2 billion gallons of diesel per year and prevent 28 million tons of CO2 emissions.3 increases the pressure inside the wake and reduces the overall vehicle drag. Wind tunnel experiments using

  6. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  7. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  8. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    and Greenhouse Gas Emissions from CNG Transit Buses EquippedOxidation Catalyst Effect on CNG Transit Bus Emissions. SAEOxidation Catalyst Effect on CNG Transit Bus Emissions. SAE

  9. Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts

    Reports and Publications (EIA)

    2009-01-01

    This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States.

  10. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,

    E-Print Network [OSTI]

    Denver, University of

    concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing based emission ratio. In effect this technique makes use of CO2, and the other usually minor carbon

  12. YAZDANI BOROUJENI, BEHDAD. Road Grade Quantification Using GPS in On-Board Vehicle Emission Measurements. (Under the direction of H. Christopher Frey.)

    E-Print Network [OSTI]

    Frey, H. Christopher

    that NOx emission rates are 4 times higher when driving on a road with +5 percent grade compared to a flat Emission Measurements. (Under the direction of H. Christopher Frey.) Real-world vehicle tailpipe emissions constitute an important portion of ambient air pollution. NOx , CO2, CO, and hydrocarbons are among the main

  13. Evaluating indoor exposure modeling alternatives for LCA: A case study in the vehicle repair industry

    SciTech Connect (OSTI)

    Demou, Evangelia; Hellweg, Stefanie; Wilson, Michael P.; Hammond, S. Katharine; McKone, Thomas E.

    2009-05-01

    We evaluated three exposure models with data obtained from measurements among workers who use"aerosol" solvent products in the vehicle repair industry and with field experiments using these products to simulate the same exposure conditions. The three exposure models were the: 1) homogeneously-mixed-one-box model, 2) multi-zone model, and 3) eddy-diffusion model. Temporally differentiated real-time breathing zone volatile organic compound (VOC) concentration measurements, integrated far-field area samples, and simulated experiments were used in estimating parameters, such as emission rates, diffusivity, and near-field dimensions. We assessed differences in model input requirements and their efficacy for predictive modeling. The One-box model was not able to resemble the temporal profile of exposure concentrations, but it performed well concerning time-weighted exposure over extended time periods. However, this model required an adjustment for spatial concentration gradients. Multi-zone models and diffusion-models may solve this problem. However, we found that the reliable use of both these models requires extensive field data to appropriately define pivotal parameters such as diffusivity or near-field dimensions. We conclude that it is difficult to apply these models for predicting VOC exposures in the workplace. However, for comparative exposure scenarios in life-cycle assessment they may be useful.

  14. Project Information Form Project Title White Paper on Strategies for Transitioning to Zero-Emission Vehicles--

    E-Print Network [OSTI]

    California at Davis, University of

    health, enhance energy diversity, save consumers money, and promote economic growth. While national (ZEVs) include battery-electric vehicles (BEVs), plug-in hybrid-electric vehicles (PHEVs), and hydrogen fuel-cell-electric vehicles (HFCVs). These technologies can be used in passenger cars, trucks

  15. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    52, 23-37. Lewtas, J. Air Pollution Combustion Emissions:Reference Lewtas, J. Air Pollution Combustion Emissions:

  16. Planning and Control of Electric Vehicles Using Dynamic Energy Capacity Models

    E-Print Network [OSTI]

    Zhang, Wei

    for a large population of Plug-in Electric Vehicles (PEVs) for demand response applications. We consider both costs. I. INTRODUCTION The number of Plug-in Electric Vehicles (PEVs) is ex- pected to be more than onePlanning and Control of Electric Vehicles Using Dynamic Energy Capacity Models Jianzhe Liu*, Sen Li

  17. Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Fainekos, Georgios E.

    Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles Selcuk growing interest in the development of networks of multiple unmanned aerial vehicles (U.A.V.s), as aerial focused on single aerial vehicles. In particular, we have witnessed autonomous or aggressive control

  18. Clean Cities 2014 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  19. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    SciTech Connect (OSTI)

    Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

    2007-11-09

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  20. Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003

    SciTech Connect (OSTI)

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2007-10-01

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  1. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter to Science of 2Model

  2. Vehicle Technologies Office Merit Review 2014: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about parametric...

  3. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    E-Print Network [OSTI]

    Thornhill, D. A.

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

  4. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  5. Modeling aviation's global emissions, uncertainty analysis, and applications to policy

    E-Print Network [OSTI]

    Lee, Joosung Joseph, 1974-

    2005-01-01

    (cont.) fuel burn results below 3000 ft. For emissions, the emissions indices were the most influential uncertainties for the variance in model outputs. By employing the model, this thesis examined three policy options for ...

  6. Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

  7. Vehicle Technologies Office Merit Review 2015: Model Development and Analysis of Clean & Efficient Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

  8. Vehicle Technologies Office Merit Review 2014: Atomistic models of LMRNMC Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about atomistic models...

  9. Modeling the Emission Processes in Blazars

    E-Print Network [OSTI]

    Markus Boettcher

    2006-08-31

    Blazars are the most violent steady/recurrent sources of high-energy gamma-ray emission in the known Universe. They are prominent emitters of electromagnetic radiation throughout the entire electromagnetic spectrum. The observable radiation most likely originates in a relativistic jet oriented at a small angle with respect to the line of sight. This review starts out with a general overview of the phenomenology of blazars, including results from a recent multiwavelength observing campaign on 3C279. Subsequently, issues of modeling broadband spectra will be discussed. Spectral information alone is not sufficient to distinguish between competing models and to constrain essential parameters, in particular related to the primary particle acceleration and radiation mechanisms in the jet. Short-term spectral variability information may help to break such model degeneracies, which will require snap-shot spectral information on intraday time scales, which may soon be achievable for many blazars even in the gamma-ray regime with the upcoming GLAST mission and current advances in Atmospheric Cherenkov Telescope technology. In addition to pure leptonic and hadronic models of gamma-ray emission from blazars, leptonic/hadronic hybrid models are reviewed, and the recently developed hadronic synchrotron mirror model for TeV gamma-ray flares which are not accompanied by simultaneous X-ray flares (``orphan TeV flares'') is revisited.

  10. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    testing over the US06 drive cycle. The US06 cycle containstest (FTP and MEC01 drive cycles) as well as a portion of

  11. Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

    2006-01-01

    testing over the US06 drive cycle. The US06 cycle containstest (FTP and MEC01 drive cycles) as well as a portion of

  12. MOBILE6 Vehicle Emission Modeling Software | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search Name: Lyon-Lincoln ElectricEarthMJMMA GDC

  13. Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced Engine CombustionLocator |Data |Viable|Life Cycle

  14. Vehicle Technologies Office Merit Review 2015: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  15. Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

  16. Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  17. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Commission Neste Oil biomass-to-liquid Natural Gas NaturalGas Liquids Natural Gas Vehicle Ammonia Non-methanerecover valuable natural gas liquids (NGLs), such as ethane,

  18. Vehicle Technologies Office Merit Review 2014: Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

  19. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Restrictions of Car Emissions. ” http://www.metronews.ca/passenger cars and 95% for light trucks from Tier 1 emissionPassenger Cars - With low-GHG MAC Credit GHG Emission Rate (

  20. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Restrictions of Car Emissions. ” http://www.metronews.ca/passenger cars and 95% for light trucks from Tier 1 emissionPassenger Cars - With low-GHG MAC Credit GHG Emission Rate (

  1. Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions

    E-Print Network [OSTI]

    Nielsen, Eric

    2012-12-31

    Increasing energy demands require more energy extraction from fossil fuels. The energy is extracted through combustion and results in mainly CO2 emissions as well as other trace emissions. Reducing energy usage can save money and CO2 emissions...

  2. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    accounted separately), regenerative braking, battery thermalthere is no regenerative braking, and vehicle efficiency,iterative calculations. Regenerative braking is represented

  3. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber

    SciTech Connect (OSTI)

    Gao, Zhiming; Kim, Miyoung; Choi, Jae-Soon; Daw, C Stuart; Parks, II, James E; Smith, David E

    2012-01-01

    We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

  4. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  5. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  6. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  7. Optimal Design and Allocation of Electrified Vehicles and Dedicated Charging Infrastructure for Minimum Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    for Minimum Greenhouse Gas Emissions Submitted for Presentation at the 2011 Annual Meeting to reduce greenhouse gas (GHG) emissions from personal transportation by shifting energy demand from

  8. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    A. Potential Methods for NOx Reduction from Biodiesel. SAECombustion on NOx Emissions and their Reduction Approaches.Combustion on NOx Emissions and their Reduction Approaches.

  9. MODEL PREDICTIVE CONTROL OF A MICROGRID WITH PLUG-IN VEHICLES: ERROR MODELING AND THE ROLE OF PREDICTION HORIZON

    E-Print Network [OSTI]

    Papalambros, Panos

    MODEL PREDICTIVE CONTROL OF A MICROGRID WITH PLUG-IN VEHICLES: ERROR MODELING AND THE ROLE) for a microgrid with plug-in vehicles. A predictive model is de- veloped based on a hub model of the microgrid INTRODUCTION Recently, the control of electrical microgrids has been the focus of research efforts. A microgrid

  10. The sensitivity of modeled ozone to the temporal distribution of point, area, and mobile source emissions in the eastern United States

    E-Print Network [OSTI]

    Stehr, Jeffrey

    February 2009 Received in revised form 12 May 2009 Accepted 22 May 2009 Keywords: Modeling Air pollution Emissions Ozone a b s t r a c t Ozone remains one of the most recalcitrant air pollution problems in the US the emissions of NOx from day to night, for example in electric powered vehicles recharged at night, could have

  11. Vehicle Technologies Office Merit Review 2015: ParaChoice: Parametric Vehicle Choice Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ParaChoice:...

  12. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.

    2014-05-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  13. Analysis of Casualty Risk per Police-Reported Crash for Model Year 2000 to 2004 Vehicles, using Crash Data from Five States

    SciTech Connect (OSTI)

    Wenzel, Tom

    2011-03-20

    In this report we compare two measures of driver risks: fatality risk per vehicle registration-year, and casualty (fatality plus serious injury) risk per police-reported crash. Our analysis is based on three sets of data from five states (Florida, Illinois, Maryland, Missouri, and Pennsylvania): data on all police-reported crashes involving model year 2000 to 2004 vehicles; 2005 county-level vehicle registration data by vehicle model year and make/model; and odometer readings from vehicle emission inspection and maintenance (I/M) programs conducted in urban areas of four of the five states (Florida does not have an I/M program). The two measures of risk could differ for three reasons: casualty risks are different from fatality risk; risks per vehicle registration-year are different from risks per crash; and risks estimated from national data are different from risks from the five states analyzed here. We also examined the effect of driver behavior, crash location, and general vehicle design on risk, as well as sources of potential bias in using the crash data from five states.

  14. Modeling the Emission Processes in Blazars

    E-Print Network [OSTI]

    Böttcher, M

    2006-01-01

    Blazars are the most violent steady/recurrent sources of high-energy gamma-ray emission in the known Universe. They are prominent emitters of electromagnetic radiation throughout the entire electromagnetic spectrum. The observable radiation most likely originates in a relativistic jet oriented at a small angle with respect to the line of sight. This review starts out with a general overview of the phenomenology of blazars, including results from a recent multiwavelength observing campaign on 3C279. Subsequently, issues of modeling broadband spectra will be discussed. Spectral information alone is not sufficient to distinguish between competing models and to constrain essential parameters, in particular related to the primary particle acceleration and radiation mechanisms in the jet. Short-term spectral variability information may help to break such model degeneracies, which will require snap-shot spectral information on intraday time scales, which may soon be achievable for many blazars even in the gamma-ray ...

  15. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    E-Print Network [OSTI]

    Zavala, M.

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies ...

  16. J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria

    E-Print Network [OSTI]

    Boyer, Edmond

    ; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

  17. Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions Aur Abstract The near arrival of electric vehicles on the car market generates a need for new models in order electric cars and petrol-driven ones and in particular which include the respondents' own cars

  18. A NEW APPROACH TO MODELING LARGE-SCALE ALTERNATIVE FUEL AND VEHICLE TRANSITIONS

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    counter-intuitive dynamic: high energy prices can discourage wide scale adoption of alternative fueled 1 A NEW APPROACH TO MODELING LARGE-SCALE ALTERNATIVE FUEL AND VEHICLE TRANSITIONS by Joel to alternative fuels and vehicles will be challenging. New modeling approaches are necessary to supplement

  19. Model of the Air System Transients in a Fuel Cell Vehicle

    E-Print Network [OSTI]

    Kochersberger, Kevin

    Model of the Air System Transients in a Fuel Cell Vehicle by John P. Bird Thesis submitted W. Ellis January 30, 2002 Blacksburg, Virginia Keywords: Fuel Cell, System Modeling, Simulation, Fuel Cell Vehicle #12;1 Abstract This thesis describes a procedure to measure the transient effects

  20. Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle

    SciTech Connect (OSTI)

    1995-07-01

    On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

  1. Investigation of Particle and Gaseous Emissions from Conventional and Emerging Vehicle Technologies Operating on Bio-Fuels

    E-Print Network [OSTI]

    Short, Daniel

    2014-01-01

    20% when testing a GDI turbocharged vehicle with two enginewhen they tested a turbocharged GDI vehicle over the Federalwhen they tested a GDI turbocharged vehicle with two engine

  2. Vehicle Technologies Office Merit Review 2015: Fuel and Lubricant Effects on Emissions Control Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about fuel and...

  3. Vehicle Technologies Office Merit Review 2014: Fuel and Lubricant Effects on Emissions Control Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel and...

  4. Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions

    E-Print Network [OSTI]

    2012-01-01

    volatile organic compound emissions, J. Geophys. Res. -and Morrison, C. L. : The emission of (Z)-3-hexen-1-ol, (Z)-ter- restrial isoprene emission models: sensitivity to

  6. Models Move Vehicle Design Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an entire vehicle. For batteries, it's essential for researchers to be able to predict a specific design's electrochemical and thermal (heat) reactions before they build it. In...

  7. Vehicle Technologies Office Merit Review 2014: Unified Modeling...

    Office of Environmental Management (EM)

    given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  8. Evaluating Air Quality Benefits of Freeway High-Occupancy Vehicle Lanes in Southern California

    E-Print Network [OSTI]

    Boriboonsomsin, K; Barth, M

    2007-01-01

    on Light-Duty Vehicle Emissions: Experimental Study withtheir impacts on vehicle emissions. Four general HOV laneand compared. Vehicle emissions and fuel consumption were

  9. California Motor Vehicle Standards and Federalism: Lessons for the European Union

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    to Reduce Motor Vehicle Emissions in Major Metropolitanin establishing motor vehicle emissions controls. The stateprocess in setting motor vehicle emissions standards has led

  10. Vehicle Technologies Office Merit Review 2014: Consumer-Segmented Vehicle Choice Modeling: the MA3T Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  11. Graduate Opportunities in Atmospheric Modeling to Understand Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Lin, John Chun-Han

    Graduate Opportunities in Atmospheric Modeling to Understand Greenhouse Gas Emissions University://www.atmos.utah.edu/) seeks multiple graduate students to study greenhouse gas emissions associated with urban development greenhouse gas emissions. Samples of guiding questions as part of the projects include: · What can explain

  12. Estimating Emissions in Latin America: An Alternative to Traffic Models

    E-Print Network [OSTI]

    Richner, Heinz

    Estimating Emissions in Latin America: An Alternative to Traffic Models Margarita Ossés de Eicker; Hans Hurni, Centre for Development and Environment (CDE), University of Bern, Switzerland Emissions allow precise estimations of these emissions but are too expensive for a broad application. A simplifed

  13. An Enterprise Decision Model for Optimal Vehicle Design and Technology Valuation

    E-Print Network [OSTI]

    Papalambros, Panos

    engineering simulation to provide a preliminary understanding of the technology's market and design potentialAn Enterprise Decision Model for Optimal Vehicle Design and Technology Valuation by Adam B. Cooper for Optimal Vehicle Design and Technology Valuation by Adam B. Cooper Chair: Panos Y. Papalambros Design

  14. Uncertainty in emissions projections for climate models

    E-Print Network [OSTI]

    Webster, Mort David.; Babiker, Mustafa H.M.; Mayer, Monika.; Reilly, John M.; Harnisch, Jochen.; Hyman, Robert C.; Sarofim, Marcus C.; Wang, Chien.

    Future global climate projections are subject to large uncertainties. Major sources of this uncertainty are projections of anthropogenic emissions. We evaluate the uncertainty in future anthropogenic emissions using a ...

  15. Model Identification for Optimal Diesel Emissions Control

    SciTech Connect (OSTI)

    Stevens, Andrew J.; Sun, Yannan; Song, Xiaobo; Parker, Gordon

    2013-06-20

    In this paper we develop a model based con- troller for diesel emission reduction using system identification methods. Specifically, our method minimizes the downstream readings from a production NOx sensor while injecting a minimal amount of urea upstream. Based on the linear quadratic estimator we derive the closed form solution to a cost function that accounts for the case some of the system inputs are not controllable. Our cost function can also be tuned to trade-off between input usage and output optimization. Our approach performs better than a production controller in simulation. Our NOx conversion efficiency was 92.7% while the production controller achieved 92.4%. For NH3 conversion, our efficiency was 98.7% compared to 88.5% for the production controller.

  16. Well-to-Wheel Energy, Emissions, and Cost Analysis of Electricity and Fuel Used in Conventional and Electrified Vehicles, and Their Connection to a Sustainable Energy Infrastructure

    E-Print Network [OSTI]

    Strecker, Bryan Anthony

    2012-12-31

    's ability to perform proper emissions reductions. This chapter additionally demonstrates an improvement in the fuel use emissions profiles of Argonne National Laboratories' Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model...

  17. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Injection Vehicle Particulate Matter Emissions Investigation of Direct Injection Vehicle Particulate Matter Emissions This study focuses primarily on particulate matter mass...

  18. On the emissions and transport of bromoform: sensitivity to model resolution and emission location

    E-Print Network [OSTI]

    Russo, M. R.; Ashfold, M. J.; Harris, N. R. P.; Pyle, J. A.

    2015-07-31

    stratospheric ozone budget. In a modelling study, we investigate the importance of the regional distribution of the emissions and of model resolution for the transport of bromoform to the TTL. We use two idealised CHBr3 emission fields (one coastal, one...

  19. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements.

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  20. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy E.

    1999-01-01

    gases; NC = natural gas-fired powerplant; O = other fuelpowerplant emissions of criteria pollutants and greenhouse gasespowerplant electricity for BEV recharging is from coal and natural gas

  1. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy Edward

    1999-01-01

    = natural gas-fired powerplant; O = other fuel powerplant. aF = fuel oil-fired powerplant; GHGs = greenhouse gases; NGpowerplant emissions of criteria pollutants and greenhouse gases

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    using an Optical Direct Injection Diesel Engine. 2006, 7,using an Optical Direct Injection Diesel Engine. 2006, 7,Emissions Using an Optical Direct Injection Diesel Engine.

  3. Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program

    SciTech Connect (OSTI)

    George Sverdrup

    1999-06-07

    DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

  4. EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

    E-Print Network [OSTI]

    Kammen, Daniel M.

    fuel passenger cars, light-duty trucks, and heavy-duty vehicles. 1. Introduction The use of energy). In most industrialized countries, trans- portation fuel use produces a major fraction of all energy/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant

  5. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    sulfur diesel fuel is less expensive due to reduced taxes and as such may be prone to illegal use in on-road November 2005; published online 18 January 2006 A remote sensor for measuring on-road vehicles passing of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  6. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    Powerplant Efficiency (%) FF Vehicle Fuel/Technologies gmC02) pp I Llecmcity gmC02 ] j KJ)Fuel gm j Coal Steam Oil Steam GasGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJf°r Usage for Various Powerplant

  7. Modeling Workload Impact in Multiple Unmanned Vehicle Supervisory Control

    E-Print Network [OSTI]

    Donmez, B.D.

    2010-01-01

    Discrete event simulations for futuristic unmanned vehicle (UV) systems enable a cost and time effective methodology for evaluating various autonomy and human automation design parameters. Operator mental workload is an ...

  8. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect (OSTI)

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  9. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  10. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  11. Application for certification, 1991 model-year light-duty vehicles - Sterling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems or exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  12. Smog Check II Evaluation Part II: Overview of Vehicle

    E-Print Network [OSTI]

    Denver, University of

    Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 ___________________________________ 12 7. Emissions of Individual Vehicles Vary from Test to Test ________ 15 8. Total Emissions

  13. Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

  14. A Formal Model for Sustainable Vehicle-to-Grid Mohammad Ashiqur Rahman, Fadi Mohsen, and Ehab Al-Shaer

    E-Print Network [OSTI]

    Wang, Yongge

    Keywords Smart Grid; Plug-in Electric Vehicle; Vehicle-to-Grid; For- mal Model 1. INTRODUCTION Energy increases, the combined storage could pro- vide different electrical (e.g., energy generating capacity

  15. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  16. Integrated motion planning and model learning for mobile robots with application to marine vehicles

    E-Print Network [OSTI]

    Greytak, Matthew B. (Matthew Bardeen)

    2009-01-01

    Robust motion planning algorithms for mobile robots consider stochasticity in the dynamic model of the vehicle and the environment. A practical robust planning approach balances the duration of the motion plan with the ...

  17. Vehicle Technologies Office Merit Review 2015: BatPaC Model Development

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about BatPaC model...

  18. AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    California 95616 PHONE: WEB: FAX: http://its.ucdavis.edu/ AVCEM: ADVANCED-VEHICLE COST AND ENERGY-Cost and Energy Use Model Overview of AVCEM Mark A. Delucchi Institute of Transportation Studies ? University of California,

  19. Modelling Lost Person Behaviour and Intelligent Unmanned Aerial Vehicles in a Wilderness Search and Rescue Scenario 

    E-Print Network [OSTI]

    DeRiggi, John

    2013-01-11

    ’re lost should be reasonable input variables into a model attempting to predict the lost person’s most likely path. Taken a significant step further, if unmanned aerial vehicles enabled with terrain recognition and navigation capabilities derived from...

  20. Climate and energy policy for U.S. passenger vehicles : a technology-rich economic modeling and policy analysis

    E-Print Network [OSTI]

    Karplus, Valerie J

    2011-01-01

    Climate and energy security concerns have prompted policy action in the United States and abroad to reduce petroleum use and greenhouse gas (GHG) emissions from passenger vehicles. Policy affects the decisions of firms and ...

  1. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    with a 10% aromatic, ultra-low sulfur diesel fuel used inequivalent 10% aromatic ultra-low sulfur diesel fuel used inx emissions compared to ultra-low sulfur diesel fuel (ULSD).

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

  3. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01

    matter from on-road gasoline and diesel vehicles.D.H. , Chase, R.E. , 1999b. Gasoline vehicle particle sizeFactors for On-Road Gasoline and Diesel Motor Vehicles

  4. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

    2014-01-14

    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  5. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    SciTech Connect (OSTI)

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E.; Dearth, M.A.

    1997-09-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  6. George Vachtsevanos, Panos Antsaklis, Kimon Valavanis, "Modeling and Control of Unmanned Aerial Vehicles Current Status and Future Directions," Chapter 9, Modeling and Control of Complex Systems, CRC

    E-Print Network [OSTI]

    Antsaklis, Panos

    of Unmanned Aerial Vehicles­ Current Status and Future Directions," Chapter 9, Modeling and Control of Complex of Unmanned Aerial Vehicles­ Current Status and Future Directions," Chapter 9, Modeling and Control of Complex of Unmanned Aerial Vehicles­ Current Status and Future Directions," Chapter 9, Modeling and Control of Complex

  7. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  8. Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is andFederal Test Procedure

  9. Application of positive matrix factorization to on-road measurements for source apportionment of diesel-and gasoline-powered vehicle emissions in Mexico City

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    of diesel- and gasoline-powered vehicle emissions in Mexico City D. A. Thornhill, A. E. Williams, T. B be low. The second figure shows the background versus diesel factors. There may be a slight horizontal factors. In this case, even when the diesel factor's contributions are very high, the background factor

  10. Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas Brian C. McDonald and Drew R. Gentner

    E-Print Network [OSTI]

    Goldstein, Allen

    to estimate long- term trends (1990-2010) in carbon monoxide (CO) emissions from motor vehicles. Non), nitrogen oxides (NOx = NO + NO2), and carbon monoxide (CO) are coemitted with carbon dioxide (CO2) during combustion. These pollutants are important to tropospheric ozone (O3) and secondary organic aerosol (SOA

  11. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    in California Energy Markets, Transportation Research BoardEnergy and Emissions Using One-Day Travel Data UNIVERSITY OF CALIFORNIA TRANSPORTATIONCalifornia Transportation Center UCTC-FR-2010-14 An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy

  12. Energy Management for an Electric Vehicle Based on Combinatorial Modeling

    E-Print Network [OSTI]

    Boyer, Edmond

    energy sources (fuel cells, photovoltaic panels, batteries, supercapacitors) with different of the energy system The energy chain of the vehicle concerned is composed of a Fuel Cell System (FCS) using Toulouse, France Abstract This paper describes the process of electrical energy management and optimization

  13. Vehicle Technologies Office Merit Review 2014: Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Multi-species On-Road Remote Sensing of Vehicle Emissions in Van Nuys, California

    E-Print Network [OSTI]

    Denver, University of

    Report prepared under National Renewable Energy Laboratory Subcontract AEV-8-88609-01 Gary A. Bishop Denver, CO 80208 December 2010 Prepared for: National Renewable Energy Laboratory 1617 Cole Blvd. Golden responsible for 86%, 90% and 72% of the CO, HC and NO emissions respectively. One particularly egregious case

  15. Current Transportation Models Used in the Vehicle Technologies Program

    SciTech Connect (OSTI)

    2009-04-06

    A summary of various transportation models (VISION, TRUCK, GREET, Oil Peaking Model, Feebate Model, Oil Security Metrics Model, ORNL PHEV Choice Model: Version 1, PSAT, PSAT-PRO,

  16. Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications

    E-Print Network [OSTI]

    Bahrami, Majid

    -duty vehicle air conditioning applications Amir Sharafian, Majid Bahrami n Laboratory for Alternative Energy Keywords: Adsorption cooling system Vehicle air conditioning Thermodynamic cycle Fully dynamic modeling a b different operating conditions for light-duty vehicles air conditioning applications. Available ACS

  17. VERIFICATION OF A FINITE ELEMENT MODEL OF AN UNMANNED AERIAL VEHICLE WING TORQUE BOX VIA EXPERIMENTAL MODAL TESTING

    E-Print Network [OSTI]

    Yaman, Yavuz

    VERIFICATION OF A FINITE ELEMENT MODEL OF AN UNMANNED AERIAL VEHICLE WING TORQUE BOX VIA Aeronautical Association, Faculty of Aeronautics and Astronautics, TURKEY KEYWORDS Unmanned Aerial Vehicle Wing (FEM) of an unmanned aerial vehicle wing torque box was verified by the experimental modal testing

  18. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

  19. Vehicle Technologies Office | Department of Energy

    Energy Savers [EERE]

    Station Read more Compare MPG and Emissions for New and Used Vehicles Compare MPG and Emissions for New and Used Vehicles Read more The U.S. Department of Energy's Vehicle...

  20. VISION Model: Description

    SciTech Connect (OSTI)

    2009-01-18

    Description of VISION model, which is used to estimate the impact of highway vehicle technologies and fuels on energy use and carbon emissions to 2050.

  1. The Smart Grid, A Scale Demonstration Model Incorporating Electrified Vehicles

    E-Print Network [OSTI]

    Clemon, Lee; Mattson, Jon; Moore, Andrew; Necefer, Len; Heilman, Shelton

    2011-04-01

    of the energy flow line. This allows for testing and sizing of the battery systems in order to ensure sufficient capacity for storage of renewable sources. Moreover, smart appliances in the future will be able to interact with the grid demonstrating a..., with the advent and commercialization of electrified vehicles, energy demand has the capability to increase dramatically. A sustainable solution via renewable energy technologies can act to offset this increased demand; however, transformers and meters...

  2. Renewable Fuel Vehicle Modeling and Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatoryResidentialRenewable Fuel Vehicle

  3. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    E-Print Network [OSTI]

    Greenblatt, Jeffery B.

    2014-01-01

    diesel fuel would be renewable in 2020) ZEV = zero-emission vehicle (plug-in all-electric, plug-in hybrid

  4. M. KOVA^I^, S. SEN^I^: MODELING OF PM10 EMISSION WITH GENETIC PROGRAMMING MODELING OF PM10 EMISSION WITH GENETIC

    E-Print Network [OSTI]

    Fernandez, Thomas

    M. KOVA^I^, S. SEN^I^: MODELING OF PM10 EMISSION WITH GENETIC PROGRAMMING MODELING OF PM10 EMISSION tools to evaluate the outcomes and costs associated with various emission-reduction strategies. However cannot be implemented through deterministic modeling. The article presents an attempt of PM10 emission

  5. Modeling electron emission and surface effects from diamond cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore »electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity ? is the only parameter varied in the simulations, the value ? = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  6. Modeling electron emission and surface effects from diamond cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrov, D. A. [Tech-X Corp., Boulder, CO (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smithe, D. [Tech-X Corp., Boulder, CO (United States); Cary, J. R. [Tech-X Corp., Boulder, CO (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smedley, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-07

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity ? is the only parameter varied in the simulations, the value ? = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  7. Confronting GRB prompt emission with a model for subphotospheric dissipation

    E-Print Network [OSTI]

    Ahlgren, Björn; Nymark, Tanja; Ryde, Felix; Pe'er, Asaf

    2015-01-01

    The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. Here we fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data we span a physically motivated part of the model's parameter space and create DREAM ($\\textit{Dissipation with Radiative Emission as A table Model}$), a table model for ${\\scriptsize XSPEC}$. We show that this model can describe different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We suggest that the main difference between these two types of bursts is the optical depth at the dissipatio...

  8. Modeling Animal-Vehicle Collisions Using Diagonal Inflated Bivariate Poisson Regression

    E-Print Network [OSTI]

    Washington at Seattle, University of

    1 Modeling Animal-Vehicle Collisions Using Diagonal Inflated Bivariate Poisson Regression of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    How do alternative vehicle emissions compare on a well-to-1970s it established vehicle emissions and building energyplatforms. Well-to-wheels vehicle emissions rates (gCO 2 /

  10. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  11. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  12. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  13. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest; LaClair, Tim J

    2014-01-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  14. A Vehicle to Roadside Communications Architecture for ITS Applications

    E-Print Network [OSTI]

    Lo, Tetiana; Varaiya, Pravin

    2000-01-01

    c_ data_?ow pollution_ incident vehicle_ pollution_ messageEmissions (dfd) vehicle_ pollution_ alert From_ Parking_reference ?ows: • pollution_state_vehicle_log_data •

  15. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions...

  16. Performance targets for electric vehicle batteries

    E-Print Network [OSTI]

    Chang, Michael Tse-Gene

    2015-01-01

    Light-duty vehicle transportation accounted for 17.2% of US greenhouse gas emissions in 2012 [95]. An important strategy for reducing CO? emissions emitted by light-duty vehicles is to reduce per-mile CO? emissions. While ...

  17. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    by 50% and average vehicle emissions rates by up to 35%.compares well-to-wheel vehicle emissions for various vehicleand compares WTW vehicle emissions for various vehicle and

  18. An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

    E-Print Network [OSTI]

    Yeh, Sonia

    2007-01-01

    579–594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.Exhaust emissions from natural gas vehicles: issues related

  19. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  20. Vehicle Modeling and Verification of CNG-Powered Transit Buses

    E-Print Network [OSTI]

    Hedrick, J. K.; Ni, A.

    2004-01-01

    Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

  1. A simple model for amplified spontaneous emission in dyes

    SciTech Connect (OSTI)

    Garrison, J.C.; Hong, Chung Ki; Nathel, H.

    1990-01-09

    Amplified spontaneous emission in dyes is modelled by replacing the actual molecular spectrum by an effective four-level atom which includes the levels involved in pumping and stimulated emission. Propagation of the signal and pump waves is described in the slowly varying envelope approximation. It is shown that the saturation intensity of the signal depends on the pump intensity, and reciprocally that the pump saturation intensity depends on the signal intensity. 1 fig.

  2. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission...

  3. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

  4. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid...

  5. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

  6. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  7. Lifecycle-analysis for heavy vehicles.

    SciTech Connect (OSTI)

    Gaines, L.

    1998-04-16

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

  8. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    E-Print Network [OSTI]

    Locatelli, R.

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model ...

  9. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01

    and Conventional Vans , Electric Vehicle DevelopmentElectric and Hybrid Electric Vehicles (Workshop Proceedings,J. Oros, President, Electric Vehicle Infrastructure, Inc. ,

  10. Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a Comparison between.denis-vidal@math.univ-lille1.fr, ghislaine.joly-blanchard@utc.fr) Abstract: In order to optimize the performance of a diesel problems, modelling errors, Automotive emissions, Diesel engines 1. INTRODUCTION The automotive industry

  11. THE TRAVEL AND ENVIRONMENTAL IMPLICATIONS OF SHARED AUTONOMOUS VEHICLES, USING AGENT-BASED MODEL SCENARIOS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    the rental) like Car2Go and ZipCar have quickly expanded, with the number of U.S. users doubling every one traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying. As of September 2013, Google had logged over 500,000 miles driven on public roadways using cars equipped with self

  12. Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

  13. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  14. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01

    losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

  15. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  16. Vehicle Technologies Office Merit Review 2015: Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development and...

  17. Key words. Emissions markets, Cap-and-trade schemes, Equilibrium models, Environmental MARKET DESIGN FOR EMISSION TRADING SCHEMES

    E-Print Network [OSTI]

    Carmona, Rene

    Key words. Emissions markets, Cap-and-trade schemes, Equilibrium models, Environmental Finance. MARKET DESIGN FOR EMISSION TRADING SCHEMES REN´E CARMONA , MAX FEHR , JURI HINZ , AND ARNAUD PORCHET to help policy makers and regulators understand the pros and the cons of the emissions markets. We propose

  18. Energy Star Concepts for Highway Vehicles

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  19. Analytical modeling of a new disc permanent magnet linear synchronous machine for electric vehicles

    SciTech Connect (OSTI)

    Liu, C.T.; Chen, J.W.; Su, K.S.

    1999-09-01

    This paper develops an analytical approach based on a qd0 reference frame model to analyze dynamic and steady state characteristics of disc permanent magnet linear synchronous machines (DPMLSMs). The established compact mathematical model can be more easily employed to analyze the system behavior and to design the controller. Superiority in operational electromagnetic characteristics of the proposed DPMLSM for electric vehicle (EV) applications is verified by both numerical simulations and experimental investigations.

  20. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    vehicles (EVs) Fuel options: Petroleum Gasoline Diesel E85 with ethanol from Corn Switchgrass for these vehicle types were used ICEV: Gasoline, E85, Diesel HEV: Gasoline, E85, Diesel; Hydrogen FC (250 mi on UDDS) PHEV: Gasoline, E85, Diesel; Hydrogen FC EV (150 mi on UDDS) PHEV configuration options Power

  1. Improved land cover and emission factors for modeling biogenic volatile organic compounds emissions from Hong Kong

    E-Print Network [OSTI]

    Leung, DYC; Wong, P; Cheung, BKH; Guenther, A

    2010-01-01

    organic compounds emissions in Hong Kong. Atmosphericvolatile organic compounds emission inventory for Beijing.volatile organic compound emissions. Journal of Geophysical

  2. Modelling spectral emission from fusion plasmas

    SciTech Connect (OSTI)

    Summers, H. P.; Badnell, N. R.; Foster, A. R.; Giunta, A.; Guzman, F.; Menchero, L.; Nicholas, C. H.; O'Mullane, M. G.; Whiteford, A. D.; Meigs, A.; Contributors, JET-EFDA [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States); Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Association EURATOM-CCFE Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2012-05-25

    The paper is a tribute to Nicol Peacock and has a focus on interests and developments at Culham Laboratory from {approx} 1970 when Nicol led the UKAEA spectroscopy team. The paper charts a little of the evolution of these models and their data through the seventies and eighties on into this century at Culham. The paper concludes with the state of efforts to enable easy, universal access to spectral analysis across the scope of Culham activity, of which it is hoped Nicol would approve.

  3. Modeling the Infrared Emission from the Epsilon Eridani Disk

    E-Print Network [OSTI]

    Li, A; Bendo, G J; Li, Aigen

    2003-01-01

    We model the infrared (IR) emission from the ring-like dust disk around the main-sequence (MS) star Epsilon Eridani, a young analog to our solar system, in terms of a porous dust model previously developed for the extended wedge-shaped disk around the MS star $\\beta$ Pictoris and the sharply truncated ring-like disks around the Herbig Ae/Be stars HR 4796A and HD 141569A. It is shown that the porous dust model with a porosity of $\\simali$90% is also successful in reproducing the IR to submillimeter dust emission spectral energy distribution as well as the 850$\\mum$ flux radial profile of the dust ring around the more evolved MS star Epsilon Eridani. Predictions are made for future {\\it SIRTF} observations which may allow a direct test of the porous dust model.

  4. ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL, TUNING AND SENSITIVITY

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL periods of intense interest in using ethanol as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol

  5. Radio emission from Colliding-Wind Binaries: Observations and Models

    E-Print Network [OSTI]

    S. M. Dougherty; J. M. Pittard; E. P. O'Connor

    2005-10-18

    We have developed radiative transfer models of the radio emission from colliding-wind binaries (CWB) based on a hydrodynamical treatment of the wind-collision region (WCR). The archetype of CWB systems is the 7.9-yr period binary WR140, which exhibits dramatic variations at radio wavelengths. High-resolution radio observations of WR140 permit a determination of several system parameters, particularly orbit inclination and distance, that are essential for any models of this system. A model fit to data at orbital phase 0.9 is shown, and some short comings of our model described.

  6. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  7. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  8. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  9. NREL: Transportation Research - Vehicle Thermal Management Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models and Tools image of

  10. The sensitivity of modeled ozone to the temporal distribution of point, area, and mobile source emissions

    E-Print Network [OSTI]

    Dickerson, Russell R.

    emissions in the eastern United States Patricia Castellanos , Sheryl H. Ehrman* , Jeffrey W. Stehr , Russell pollution problems in the US. Hourly emissions fields used in air quality models (AQMs) generally show less of estimated emissions affects modeled ozone, we analyzed the effects of altering all anthropogenic emissions

  11. SOCIALLY OPTIMAL CHARGING STRATEGIES FOR ELECTRIC VEHICLES

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    SOCIALLY OPTIMAL CHARGING STRATEGIES FOR ELECTRIC VEHICLES ELENA YUDOVINA AND GEORGE MICHAILIDIS Abstract. Electric vehicles represent a promising technology for reducing emissions and dependence. This pa- per studies decentralized policies that assign electric vehicles to a network of charging

  12. Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  13. Vehicle Technologies Office Merit Review 2015: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  14. Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles

    Broader source: Energy.gov [DOE]

    In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many cold/warm starts.

  15. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2010-11-01

    This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

  16. Advanced HD Engine Systems and Emissions Control Modeling and Analysis

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Analysis and calibration of social factors in a consumer acceptance and adoption model for diffusion of diesel vehicle in Europe

    E-Print Network [OSTI]

    Zhang, Qi, S.M. Massachusetts Institute of Technology

    2008-01-01

    While large scale diffusion of alternative fuel vehicles (AFVs) is widely anticipated, the mechanisms that determine their success or failure are ill understood. Analysis of an AFV transition model developed at MIT has ...

  18. Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions; Preprint

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

    2010-12-01

    It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.

  19. Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now

    E-Print Network [OSTI]

    Bertini, Robert L.

    analyzes the impacts of utilization (mileage per year per vehicle) and gasoline prices on vehicle gasoline prices or high utilization, (b) current European carbon dioxide cap-and-trade emissions price (miles per year), and market conditions (fuel prices) on the competitiveness of EVs. This paper

  20. A physics-based emissions model for aircraft gas turbine combustors

    E-Print Network [OSTI]

    Allaire, Douglas L

    2006-01-01

    In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

  1. Modeling water emission from low-mass protostellar envelopes

    E-Print Network [OSTI]

    T. A. van Kempen; S. D. Doty; E. F. van Dishoeck; M. R. Hogerheijde; J. K. Joergensen

    2008-05-06

    Within low-mass star formation, water vapor plays a key role in the chemistry and energy balance of the circumstellar material. The Herschel Space Observatory will open up the possibility to observe water lines originating from a wide range of excitation energies.Our aim is to simulate the emission of rotational water lines from envelopes characteristic of embedded low-mass protostars. A large number of parameters that influence the water line emission are explored: luminosity, density,density slope and water abundances.Both dust and water emission are modelled using full radiative transfer in spherical symmetry. The temperature profile is calculated for a given density profile. The H2O level populations and emission profiles are in turn computed with a non-LTE line code. The results are analyzed to determine the diagnostic value of different lines, and are compared with existing observations. Lines can be categorized in: (i) optically thick lines, including ground-state lines, mostly sensitive to the cold outer part; (ii) highly excited (E_u>200-250 K) optically thin lines sensitive to the abundance in the hot inner part; and (iii) lines which vary from optically thick to thin depending on the abundances. Dust influences the emission of water significantly by becoming optically thick at the higher frequencies, and by pumping optically thin lines. A good physical model of a source, including a correct treatment of dust, is a prerequisite to infer the water abundance structure and possible jumps at the evaporation temperature from observations. The inner warm (T>100 K) envelope can be probed byhighly-excited lines, while a combination of excited and spectrally resolved ground state lines probes the outer envelope. Observations of H218O lines, although weak, provide even stronger constraints on abundances.

  2. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  3. Modeling the fast fill process in natural gas vehicle storage cylinders

    SciTech Connect (OSTI)

    Kountz, K.J.

    1994-09-01

    The on-board storage capacity of natural gas vehicles (NGVs) is a critical issue to the wide spread marketing of these alternate fueled vehicles. Underfilling of NGV cylinders, during fast fill (< 5 min.) charging operations, can occur at fueling stations, at ambient temperatures greater than 50{degrees}F or 60{degrees}F. The resulting reduced driving range of the vehicle is a serious obstacle which the gas industry is striving to overcome, without resorting to unnecessarily high fueling station pressures, or by applying extensive overpressurization of the cylinder during the fueling operation. Undercharged storage cylinders are a result of the elevated temperature which occurs in the NGV storage cylinder, due to compression and other processes which have not, to the author`s knowledge, been analyzed and documented to date. This paper presents a model and solution methodology which quantifies the cylinder undercharging phenomena which occurs during rapid (< 5 min.) fueling. The effects of heat transfer from the cylinder gas to its constraining walls and ambient are considered in the model analysis. The ramifications of the results on fueling station and cylinder designs are discussed. Suggestions are made for controlled experimental programs to verify the theoretical results, and for fueling station design studies which could minimize or eliminate cylinder underfilling.

  4. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when...

  5. Testing the clump model of SiO maser emission

    E-Print Network [OSTI]

    M. D. Gray; R. J. Ivison; E. M. L. Humphreys; J. A. Yates

    1997-12-08

    Building on the detection of J=7-6 SiO maser emission in both the v=1 and v=2 vibrational states towards the symbiotic Mira, R Aquarii, we have used the James Clerk Maxwell Telescope to study the changes in the SiO maser features from R Aqr over a stellar pulsational period. The observations, complemented by contemporaneous data taken at 86 GHz, represent a test of the popular thermal-instability clump models of SiO masers. The `clump' model of SiO maser emission considers the SiO masers to be discrete emitting regions which differ from their surroundings in the values of one or more physical variables (SiO abundance, for example). We find that our observational data are consistent with a clump model in which the appearance of maser emission in the J=7-6 transitions coincides with an outward-moving shock impinging on the inner edge of the maser zone.

  6. Learning, Modeling, and Understanding Vehicle Surround Using Multi-Modal Sensing /

    E-Print Network [OSTI]

    Sivaraman, Sayanan

    2013-01-01

    sion and radar sensor fusion,” Intelligent Transportationa platform for sensor-equipped intelligent vehicles. Basedin multi-sensor acc,” in Intelligent Vehicles Symposium,

  7. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    for fuel cell systems for vehicle applications, Journal ofuse in fuel cell vehicles and other applications has beenin automotive applications, the fuel cell systems has to be

  8. Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling Exercise

    SciTech Connect (OSTI)

    Clarke, Leon E.; Fawcett, Allen; Weyant, John; McFarland, Jim; Chaturvedi, Vaibhav; Zhou, Yuyu

    2014-09-01

    This paper discusses Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling Exercise

  9. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  10. Private Company Uses EERE-Supported Chemistry Model to Substantially...

    Broader source: Energy.gov (indexed) [DOE]

    Lawrence Livermore National Laboratory's Multi-Zone Combustion Model (MCM) to help automotive engineers develop the next generation of high-efficiency, low-emission vehicles....

  11. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. Adaptive PI control of NOx? emissions in a Urea Selective Catalytic Reduction System using system identification models

    E-Print Network [OSTI]

    Ong, Chun Yang

    2009-01-01

    The Urea SCR System has shown great potential for implementation on diesel vehicles wanting to meet the upcoming emission regulations by the EPA. The objective of this thesis is to develop an adaptive controller that is ...

  13. Natural gas vehicle technology and fuel performance evaluation program. Final report, November 1994-May 1997

    SciTech Connect (OSTI)

    Bevilacqua, O.M.

    1997-06-01

    This report presents the results of a comprehensive study which examined the impact of natural gas fuel composition variability on natural gas vehicle (NGV) emissions and performance. This study involved eight light-duty NGVs and five different blends of natural gas. The test vehicles were selected to establish a representative sample of state-of-the-art dedicated and bi-fuel models. Fuel blends included common commercial blends, and other gases representing `fringe` compositions. For each vehicle-fuel combination, the tests measured vehicle tailpipe and modal emissions, fuel economy, and driveability. Results show that the impacts of fuel variability are generally minor.

  14. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect (OSTI)

    Ustohalova, Veronika . E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim; Widmann, Renatus

    2006-07-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  15. Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept

    Broader source: Energy.gov [DOE]

    Experimental results show low-emissions potential - possibly T2/B2 (SULEV) NOx with low-emitting engines and system optimization.

  16. Impact of realistic hourly emissions profiles on air pollutants concentrations modelled with CHIMERE

    E-Print Network [OSTI]

    Menut, Laurent

    Impact of realistic hourly emissions profiles on air pollutants concentrations modelled Keywords: Atmospheric composition European air quality Anthropogenic emissions a b s t r a c t Regional inputs data like anthropogenic surface emissions of NOx, VOCs and particulate matter. These emissions

  17. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  18. Diesel hybridization and emissions.

    SciTech Connect (OSTI)

    Pasquier, M.; Monnet, G.

    2004-04-21

    The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

  19. International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies

    E-Print Network [OSTI]

    Sperling, Daniel; Lipman, Timothy

    2003-01-01

    D. (1995), Future Drive Electric Vehicles and Sustainable1996), "The Case for Electric Vehicles," Sclent~c American,Emissions Impacts of Electric Vehicles," Journal of the Alr

  20. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  1. Identification of powered parafoil-vehicle dynamics from modelling and flight test data 

    E-Print Network [OSTI]

    Hur, Gi-Bong

    2006-08-16

    S consisting of N particles P1,...,PN, suppose that n -m gen- eralized speeds have been introduced, and let vPir denote the rth partial velocity of Pi. Then, if Ri is the resultant of all contact and body forces acting on Pi, then the n -m quantities F1,...,Fn-m...IDENTIFICATION OF POWERED PARAFOIL-VEHICLE DYNAMICS FROM MODELLING AND FLIGHT TEST DATA A Dissertation by GI-BONG HUR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  2. 10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1

  3. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20)...

  4. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    SciTech Connect (OSTI)

    Wood, E.; Burton, E.; Duran, A.; Gonder, J.

    2014-06-01

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

  5. Modelling the non-thermal emission from galaxy clusters

    E-Print Network [OSTI]

    G. Brunetti

    2002-08-03

    We discuss the relevant processes for the relativistic electrons in the ICM and the possible mechanisms responsible for the production of these electrons. We focus on the origin of the radio halos giving some of the observational diagnostics which may help in discriminating among the different models proposed so far. Finally, we briefly discuss the discrepancy between the value of the magnetic field assuming an inverse Compton (IC) origin of the hard X-ray emission (HXR) and that obtained from Faraday Rotation Measurements (RM).

  6. Modeling of Diesel Combustion, Soot and NO Emissions Based on a Modified Eddy Dissipation Concept

    E-Print Network [OSTI]

    Im, Hong G.

    1 Modeling of Diesel Combustion, Soot and NO Emissions Based on a Modified Eddy Dissipation Concept and soot emissions modeling, computational diesel engine simulations, eddy dissipation concept #12 ignition, combustion, NOx and soot emissions over a wide range of operating conditions in a diesel engine

  7. MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE

    E-Print Network [OSTI]

    MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

  8. Quantifying the impact of model errors on topdown estimates of carbon monoxide emissions using satellite observations

    E-Print Network [OSTI]

    Heald, Colette L.

    Quantifying the impact of model errors on topdown estimates of carbon monoxide emissions using use of inverse modeling to better quantify regional surface emissions of carbon monoxide (CO), which to or larger than the combustion source, optimizing the CO from NMVOC emissions on larger spatial scales than

  9. The polarized emissivity of a wind-roughened sea surface: A Monte Carlo model

    E-Print Network [OSTI]

    Theiler, James

    The polarized emissivity of a wind-roughened sea surface: A Monte Carlo model Bradley G. Henderson-infrared emissivity of a wind-roughened sea surface. The model includes the effects of both shadowing and the reflected component of surface emission. By using Stokes vectors to quantify the radiation along a given ray

  10. Astrophysics Research Projects:Astrophysics Research Projects: massive star winds, x-ray emission, theoretical models,massive star winds, x-ray emission, theoretical models,

    E-Print Network [OSTI]

    Cohen, David

    Astrophysics Research Projects:Astrophysics Research Projects: massive star winds, x-ray emission, theoretical models,massive star winds, x-ray emission, theoretical models, spectroscopy, laboratory plasma-drivenhave powerful radiation-driven stellar windsstellar winds.. etaeta CarinaCarina #12;TheThe ChandraChandra X

  11. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2008-01-01

    Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

  12. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx

    Broader source: Energy.gov [DOE]

    Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during cold-start of HEVs and PHEVs over transient driving cycles

  13. On-Road Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving Across the U.S.

    Broader source: Energy.gov [DOE]

    Measuring particle emissions from a 2010 compliant HD Diesel tractor while traveling on-road for 2300 miles found average gravimetric TPM over the entire route to be well below EPA's 2010 PM standard.

  14. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

    E-Print Network [OSTI]

    Guenther, A. B.

    The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic ...

  15. Melbourne Automobile Emissions Study Donald H. Stedman and Yi Zhang

    E-Print Network [OSTI]

    Denver, University of

    -road motor vehicle carbon monoxide (CO) and hydrocarbon (HC) emissions survey in Australia during April of 15,908 vehicles with an average model year of 1983. This report presents the measurement results of the cleanest 70% of the fleet are within the error bars of the FEAT measurement capability. Again it can

  16. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect (OSTI)

    Dr. Atul Jain

    2005-04-17

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and ocean circulations) and then complete research on how this field could be linked to the other factors we need to consider in its dynamics (e.g., land use, ocean and terrestrial carbon sequestration and climate change).

  17. A nanoflare model of quiet Sun EUV emission

    E-Print Network [OSTI]

    Anuschka Pauluhn; Sami K. Solanki

    2006-12-20

    Nanoflares have been proposed as the main source of heating of the solar corona. However, detecting them directly has so far proved elusive, and extrapolating to them from the properties of larger brightenings gives unreliable estimates of the power-law exponent $\\alpha$ characterising their distribution. Here we take the approach of statistically modelling light curves representative of the quiet Sun as seen in EUV radiation. The basic assumption is that all quiet-Sun EUV emission is due to micro- and nanoflares, whose radiative energies display a power-law distribution. Radiance values in the quiet Sun follow a lognormal distribution. This is irrespective of whether the distribution is made over a spatial scan or over a time series. We show that these distributions can be reproduced by our simple model.

  18. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  19. Natural Gas Vehicle Cylinder Safety, Training and Inspection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of natural gas vehicle fuel systems in order to... Help encourage the use of natural gas vehicles in order to... * displace petroleum * lower emissions and greenhouse gases *...

  20. The Path to Low Carbon Passenger Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reducing Vehicle Emissions to Meet Environmental Goals Moving toward a commercial market for hydrogen fuel cell vehicles A View From The Bridge...