Sample records for vehicle efficiency standards

  1. Achieving Vehicle Fuel Efficiency: The CAFE Standards and Abstract: As a series of political objectives converge and call for enhanced domestic automobile

    E-Print Network [OSTI]

    Mauzerall, Denise

    Achieving Vehicle Fuel Efficiency: The CAFE Standards and Beyond Abstract: As a series of political efficiency as part of a greater effort to promote sustainable development. This paper uses China to demonstrate the challenges faced by developing countries and also studies the particular opportunities China

  2. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Energy Savers [EERE]

    Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR...

  3. Energy Efficiency Product Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  4. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    In 2008, New Mexico enacted H.B. 305, the Efficient Use of Energy Act, which created an Energy Efficiency Resource Standard (EERS) for New Mexico’s electric utilities, and a requirement that all ...

  5. Hydrogen Vehicle and Infrastructure Codes and Standards Citations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Codes and Standards Citations Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used...

  6. Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility Presentation given...

  7. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Strategy Phase 2 Demonstrator Vehicle (GDCI) 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: Stop start EMS Control Algorithms Calibration GDi pump...

  8. Energy Efficiency Standards for Appliances

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  9. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  10. 2008 BUILDING ENERGY EFFICIENCY STANDARDS

    E-Print Network [OSTI]

    2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards and consultants. Valerie Hall, Deputy Director of the Energy Efficiency and Renewable Division provided policy

  11. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Vehicle Technologies Office: Materials for High-Efficiency Combustion...

    Office of Environmental Management (EM)

    High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve...

  13. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

  14. Promising Inspection Technique for Vehicle Welding Offers Efficient...

    Office of Environmental Management (EM)

    Promising Inspection Technique for Vehicle Welding Offers Efficient Alternative Promising Inspection Technique for Vehicle Welding Offers Efficient Alternative April 22, 2015 -...

  15. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2...

  16. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    at Wayne State University May 18, 2012 Slide 13 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

  17. Energy Efficiency Standard

    Broader source: Energy.gov [DOE]

    In 2008, Iowa enacted S.B. 2386, which requires the Iowa Utilities Board (IUB) to create energy savings standards (electricity and natural gas) for all rate-regulated utilities. The IUB ordered...

  18. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    The California Legislature emphasized the importance of energy efficiency and established broad goals with the enactment of Assembly Bill 2021 of 2006. The bill calls for a 10% reduction in forec...

  19. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    The California Legislature emphasized the importance of energy efficiency and established broad goals with the enactment of [http://docs.cpuc.ca.gov/word_pdf/FINAL_DECISION/85995.pdf Assembly Bill...

  20. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  1. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  2. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  3. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

  4. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  5. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  6. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems

    SciTech Connect (OSTI)

    Peter J. Blau

    2000-04-26T23:59:59.000Z

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

  7. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov (indexed) [DOE]

    Methods J29311 Digital Communications for Plug-in Electric Vehicles J29314 Broadband PLC Communication for Plug-in Electric Vehicles J29315 Telematics Smart Grid...

  8. Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues

    E-Print Network [OSTI]

    Texas at Austin, University of

    0-5217-P2 Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues Authors: Dr. Khali Persad Dr. C. Michael Walton Shahriyar Hussain Project 0-5217: Vehicle/License Plate. Privacy concerns regarding collection and use of data on vehicle movements are examined in the context

  9. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Vehicle Standards in a Climate Policy Framework WORKING PAPER

    E-Print Network [OSTI]

    Edwards, Paul N.

    limits on tailpipe pollution starting in 1975 (CAA 1970). Following the 1973 oil embargo, the Energy for addressing societal impacts affected by vehicle design since the first automotive air pollution standards were authorized by California's Motor Vehicle Pollution Control Act in 1960. Safety standards were

  11. Appliance and Equipment Energy Efficiency Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  12. PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS

    E-Print Network [OSTI]

    PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS Title 24, Part 6, and Associated400201200415 DAY #12;2013 Building Energy Efficiency Standards Page 1 NOTICE NOTICE This version of the 2013 Building Energy Efficiency Standards is a marked version; that is, it contains underlined or struck

  13. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01T23:59:59.000Z

    Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

  14. Vehicle Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C.; Buttner, W.; Rivkin, C.

    2010-02-01T23:59:59.000Z

    This report identifies gaps in vehicle codes and standards and recommends ways to fill the gaps, focusing on six alternative fuels: biodiesel, natural gas, electricity, ethanol, hydrogen, and propane.

  15. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30T23:59:59.000Z

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  16. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  17. ENERGY EFFICIENCY STANDARDS FOR RESIDENTIALAND

    E-Print Network [OSTI]

    , Manager EFFICIENCYSTANDARDS OFFICE E. Ross Deter. De~utvDirector ENERGY EFFICIENCY DIVISION Kent Smith

  18. Codes and Standards Support Vehicle Electrification

    Broader source: Energy.gov (indexed) [DOE]

    (Ford, GM, Chrysler, BMW) National Labs (INL, PNNL, ORNL) 2 Objectives Address codes and standards requirements to enable wide-spread adoption of electric-drive...

  19. GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Vehicle Mass and Fuel Efficiency Impact Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will improve the energy efficiency of several common household appliances." The 13 SEER central air conditioner standard is predicted to save the nation 4.2 quads (quadrillion...

  2. New Energy Efficiency Standards for Commercial Refrigeration...

    Office of Environmental Management (EM)

    for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

  3. Energy Efficiency Resource Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Washington Program Type Energy Efficiency Resource Standard Provider Washington State Department of Commerce Washington voters passed http:www.secstate.wa.govelections...

  4. Efficient routing algorithms for multiple vehicles with no explicit communications

    E-Print Network [OSTI]

    Savla, Ketan

    1 Efficient routing algorithms for multiple vehicles with no explicit communications Alessandro Arsie Ketan Savla Emilio Frazzoli Abstract In this paper we consider a class of dynamic vehicle routing research area today addresses coordination of several mobile agents: groups of autonomous robots and large

  5. Super-compound Engines Enable Multifuel Vehicles to Match Efficiency

    E-Print Network [OSTI]

    , as well as displace conventional gasoline by using other fuels, such as natural gas. Existing multifuel that have poor light load efficiency. To achieve broader use of natural gas vehicles, these vehicles should-2012-FS-023 bring to market advanced transportation technologies that reduce greenhouse gas emissions

  6. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of| Department of Energy

  7. A study in hybrid vehicle architectures : comparing efficiency and performance

    E-Print Network [OSTI]

    Cotter, Gavin M

    2009-01-01T23:59:59.000Z

    This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

  8. Gasoline Ultra Fuel Efficient Vehicle Program Update

    Broader source: Energy.gov (indexed) [DOE]

    1 Phase 2 2 3 HCCI MCE October 16, 2012 Slide 16 2011 Sonata 6MT, 2.0L GDi Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

  9. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  10. Energy Efficiency Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In April 2009, the legislature passed [http://data.opi.mt.gov/bills/2009/billhtml/SB0049.htm S.B. 49], creating energy efficiency standards for state-owned and state-leased buildings. Energy...

  11. Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    Presentation given by Ohio State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE: energy efficient...

  12. Appliance Efficiency Standards and Price Discrimination

    SciTech Connect (OSTI)

    Spurlock, Cecily Anna

    2013-05-08T23:59:59.000Z

    I explore the effects of two simultaneous changes in minimum energy efficiency and ENERGY STAR standards for clothes washers. Adapting the Mussa and Rosen (1978) and Ronnen (1991) second-degree price discrimination model, I demonstrate that clothes washer prices and menus adjusted to the new standards in patterns consistent with a market in which firms had been price discriminating. In particular, I show evidence of discontinuous price drops at the time the standards were imposed, driven largely by mid-low efficiency segments of the market. The price discrimination model predicts this result. On the other hand, in a perfectly competition market, prices should increase for these market segments. Additionally, new models proliferated in the highest efficiency market segment following the standard changes. Finally, I show that firms appeared to use different adaptation strategies at the two instances of the standards changing.

  13. Roadmap for Testing and Validation of Electric Vehicle Communication Standards

    SciTech Connect (OSTI)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2012-07-12T23:59:59.000Z

    Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  14. Vehicle Technologies Office Merit Review 2015: High-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs Vehicle Technologies Office Merit Review 2015: High-Efficiency High-Density GaN-Based 6.6kW...

  15. Vehicle Cooling Systems: Improvements to efficiently, safely, and inexpensively cool vehicles during prolonged sun exposure

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-07-02T23:59:59.000Z

    Vehicles left in sunny areas can quickly heat up to temperatures as high as 50-70 degrees C (122-158 degrees F) or even up to 121 degrees C (250 degrees F) in certain geographical areas. The windows and windshields of vehicles cause this greenhouse effect. Excess heat damages instrument panels (dash boards) and electronic equipment, causes passenger thermal discomfort, and increases fuel consumption and emissions with heavy air conditioning loads. Scientists at NREL have designed efficient,...

  16. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  17. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  18. ANSI Electric Vehicle Standards Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic FrameworkRoadmap ANSI Electric Vehicle Standards

  19. Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States

    E-Print Network [OSTI]

    Karplus, V.J.

    The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

  20. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  1. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...

    Broader source: Energy.gov (indexed) [DOE]

    Climate Action Plan was announced last year. These efficiency standards cut carbon pollution and save American families and businesses money by saving energy. The new standard...

  2. Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

    E-Print Network [OSTI]

    supply and demand, including renewable energy resources and generating technologies, while representingDistributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity on recycled paper #12;Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

  3. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    SciTech Connect (OSTI)

    Duleep, G.

    2011-02-01T23:59:59.000Z

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  4. When is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon?

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    research field for the vehicle industry. By establishing a platoon of heavy duty vehicles, the fuelWhen is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon? Kuo-Yun Liang Jonas study the problem of when it is beneficial for a heavy duty vehicle to drive faster in order to catch up

  5. Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas

    E-Print Network [OSTI]

    Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate

  6. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Hydrogen and Fuel Cell Vehicles (FCVs) Presentation by Michael Veenstra, Ford Motor Company, at the U.S. Department of Energy's Polymer and Composite Materials Meeting,...

  7. Thermal management concepts for higher efficiency heavy vehicles.

    SciTech Connect (OSTI)

    Wambsganss, M. W.

    1999-05-19T23:59:59.000Z

    Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

  8. Energy 101: Heavy Duty Vehicle Efficiency | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy Duty Vehicle Efficiency Energy 101: Heavy

  9. Powertrain Design for Shell Eco-marathon UrbanConcept Vehicle The team was tasked with designing the powertrain for a highly fuel efficient vehicle. The

    E-Print Network [OSTI]

    Demirel, Melik C.

    Powertrain Design for Shell Eco-marathon UrbanConcept Vehicle Overview The team was tasked with designing the powertrain for a highly fuel efficient vehicle. The vehicle was designed to conform possible fuel efficiency. Finally, the team transported the vehicle to Houston, Texas and successfully

  10. Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  11. Vehicle Technologies Office Merit Review 2015: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  12. Mileage efficiency and relative emission of automotive vehicles

    E-Print Network [OSTI]

    Patankar, Neelesh A

    2015-01-01T23:59:59.000Z

    Physics dictates that cars with small mass will travel more miles per gallon (mpg) compared to massive trucks. Does this imply that small cars are more efficient machines? In this work a mileage efficiency metric is defined as a ratio of actual car mileage (mpg) to the mileage of an ideal car. This metric allows comparison of efficiencies of cars with different masses and fuel types. It is as useful to quantify efficiencies of cars as the concept of drag coefficient is to quantify the efficacy of their aerodynamic shapes. Maximum mileage and lowest CO2 emission of conventional gasoline cars, at different driving schedules, is reported based on the concept of an ideal car. This can help put government imposed standards in a rigorous context.

  13. Energy Efficiency and Sustainable Construction Standards for Public Buildings

    Broader source: Energy.gov [DOE]

    Senate Bill 130 of 2008 established energy efficiency goals for new state building projects. All major facility projects over 10,000 square feet should strive to exceed the efficiency standards of...

  14. automobile efficiency standards: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California) or 916654-5106, or send2005 BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL AND NONRESIDENTIAL BUILDINGS Effective STANDARDSREGULATIONS CALIFORNIA ENERGY...

  15. Energy Efficiency Standards for Refrigerators in Brazil: A Methodology...

    Open Energy Info (EERE)

    Impact Evaluation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Focus...

  16. Energy-Efficient Building Standards for State Facilities

    Broader source: Energy.gov [DOE]

    Via Executive Order 27, Maine requires that construction or renovation of state buildings must incorporate "green building" standards that would achieve "significant" energy efficiency and...

  17. Standard Energy Efficiency Data (SEED) Platform - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation More Documents & Publications Standard Energy Efficiency Database Platform - 2013 BTO Peer Review LBNL SEED: Why Open Source Overview LBNL SEED for Cities Overview...

  18. Energy Efficiency Resource Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    electric utilities to establish programs which save the equivalent of 15% of 2007 electricity consumption and peak electric demand by 2015. The standard also includes an...

  19. Implementable Efficient Time and Energy Consumption Trajectories Design For an Autonomous Underwater Vehicle

    E-Print Network [OSTI]

    Smith, Ryan N.

    Implementable Efficient Time and Energy Consumption Trajectories Design For an Autonomous efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected, their autonomy has become a large research interest. Much research has gone into making autonomous vehicles

  20. Vehicle to Grid Communication Standards Development, Testing and Validation - Status Report

    SciTech Connect (OSTI)

    Gowri, Krishnan; Pratt, Richard M.; Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-09-01T23:59:59.000Z

    In the US, more than 10,000 electric vehicles (EV) have been delivered to consumers during the first three quarters of 2011. A large majority of these vehicles are battery electric, often requiring 220 volt charging. Though the vehicle manufacturers and charging station manufacturers have provided consumers options for charging preferences, there are no existing communications between consumers and the utilities to manage the charging demand. There is also wide variation between manufacturers in their approach to support vehicle charging. There are in-vehicle networks, charging station networks, utility networks each using either cellular, Wi-Fi, ZigBee or other proprietary communication technology with no standards currently available for interoperability. The current situation of ad-hoc solutions is a major barrier to the wide adoption of electric vehicles. SAE, the International Standards Organization/International Electrotechnical Commission (ISO/IEC), ANSI, National Institute of Standards and Technology (NIST) and several industrial organizations are working towards the development of interoperability standards. PNNL has participated in the development and testing of these standards in an effort to accelerate the adoption and development of communication modules.

  1. Energy Efficient Signaling Strategies for Tracking Mobile Underwater Vehicles

    E-Print Network [OSTI]

    Kastner, Ryan

    for underwater vehicles. The beacons may be buoys or vehicles on the surface with access to GPS or they may for tracking vehicles is a recurring cost, we propose to minimize the energy consumption by optimizing method to find the best schedule for beacon transmissions for a fixed signaling rate (or average power

  2. Efficient Techniques for Dynamic Vehicle Anna Petrovskaya and Sebastian Thrun

    E-Print Network [OSTI]

    .stanford.edu Summary. Fast detection of moving vehicles is crucial for safe autonomous ur- ban driving. We present the vehicle detection algorithm developed for our entry in the Urban Grand Challenge, an autonomous driving.S. Government has organized a series of competitions for autonomous vehicles in order to encourage research

  3. Testing and Validation of Vehicle to Grid Communication Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vss055gowri2011p..pdf More Documents & Publications Greenpower Trap Mufflerl System Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency...

  4. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment of EnergyVehicle? |Pickups and Vans|

  5. Vehicle to Grid Communication Standards Development Support | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of| Department

  6. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John F [ORNL

    2014-01-01T23:59:59.000Z

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  7. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Energy Savers [EERE]

    Tolerant Wireless Charging of EVs Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  8. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  9. Energy Efficiency Standards and Labels in North America: Opportunities for Harmonization

    E-Print Network [OSTI]

    Wiel, Stephen

    2008-01-01T23:59:59.000Z

    and Equipment Energy Efficiency Committee. Available fromE. McMahon. 2001. Energy-Efficiency Labels and Standards: ALloyd. 1999. Review of energy efficiency test standards and

  10. Standard Energy Efficiency Data (SEED) Platform Homepage Screenshot

    Broader source: Energy.gov [DOE]

    The Standard Energy Efficiency Data (SEED) Platform™ is an open source software application that helps organizations easily manage data on the energy performance of large groups of buildings. This is a screenshot of the application homepage.

  11. New Energy Efficiency Standards for Metal Halide Lamp Fixtures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce...

  12. New Energy Efficiency Standards for Electric Motors and Walk...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and Freezers...

  13. Codes and Standards Title 24 Energy-Efficient Local Ordinances

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 #12;Energy Cost-Effectiveness Study for Local Green Building Ordinances in Climate Zone 6, 12 Standards. The energy requirements of a local green building ordinance are not legally enforceable untilCodes and Standards Title 24 Energy-Efficient Local Ordinances Title: Climate Zone 6 Energy Cost

  14. Efficient control of an autonomous underwater vehicle while accounting for thruster failure

    E-Print Network [OSTI]

    Smith, Ryan N.

    Efficient control of an autonomous underwater vehicle while accounting for thruster failure Thomas to both time and energy consumption. The main characteristic of our algorithm is that it produces the autonomous underwater vehicle is submerged. Such failures may or may not affect the controllability

  15. A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator

    E-Print Network [OSTI]

    Luskin, Paul (Paul L.)

    2010-01-01T23:59:59.000Z

    The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

  16. City-Car : optimizing vehicle and urban efficiencies through a shared adaptive platform

    E-Print Network [OSTI]

    Lark, William, 1981-

    2005-01-01T23:59:59.000Z

    Research focused on developing an innovative, yet simple automobile platform that maximizes its efficiency through shared convenience. Work was initially put into studying both current vehicles and urban architecture, in ...

  17. Vehicle Technologies Office Merit Review 2015: Ultra Efficient Light Duty Powertrain with Gasoline Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Powertrain at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ultra efficient light duty...

  18. Development of energy-efficiency standards for Indian refrigerators

    SciTech Connect (OSTI)

    Bhatia, P.

    1999-07-01T23:59:59.000Z

    The application of advanced techniques in engineering simulation and economic analysis for the development of efficiency standards for Indian refrigerators is illustrated in this paper. A key feature of this methodology is refrigerator simulation to generate energy savings for a set of energy-efficient design options and life-cycle cost (LCC) analysis with these design options. The LCC of a refrigerator is analyzed as a function of five variables: nominal discount rate, fuel price, appliance lifetime, incremental price, and incremental energy savings. The frequency of occurrence of the LCC minimum at any design option indicates the optimum efficiency level or range. Studies carried out in the US and European Economic Community show that the location of the LCC minimum under different scenarios (e.g., variable fuel price, life-time, discount rate, and incremental price) is quite stable. Thus, an efficiency standard can be developed based on the efficiency value at the LCC minimum. This paper examines and uses this methodology in developing efficiency standards for Indian refrigerators. The potential efficiency standard value is indicated to be 0.65 kWh/day for a 165-liter, CFC-based, manual defrost, single-door refrigerator-freezer.

  19. Codes and Standards Support Vehicle Electrification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |EnergysoilEfficiency,Subpart A -

  20. Codes and Standards to Support Vehicle Electrification | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |EnergysoilEfficiency,Subpart A

  1. Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency

    E-Print Network [OSTI]

    Baumann, Philip Douglas

    1974-01-01T23:59:59.000Z

    CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

  2. Vehicle Technologies Office Merit Review 2015: GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    Presentation given by The Ohio State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE: energy...

  3. Financial Vehicles within an Integrated Energy Efficiency Program...

    Energy Savers [EERE]

    1 Financial mechanisms within Integrated Energy Efficiency Programs Every successful energy efficiency program depends on four functional pillars - Demand Creation - Workforce...

  4. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    s Title 24 Building Energy Efficiency Standards W.J. Fisk,s Title 24 Building Energy Efficiency Standards Report toCommission, 2008 Building energy efficiency standards for

  5. Electric Vehicle Communication Standards Testing and Validation Phase I: SAE J2847/1

    SciTech Connect (OSTI)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2011-09-21T23:59:59.000Z

    Executive Summary Vehicle to grid communication standards are critical to the charge management and interoperability among vehicles, charging stations and utility providers. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee / HomePlug Alliance are developing requirements for communication messages and protocols. While the standard development is in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers and utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified performance requirements and test plan based on possible communication pathways using power line communication over the control pilot and mains. Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This report presents a test plan and results from initial testing of two power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  6. Codes and Standards Title 24 Energy-Efficient Local Ordinances

    E-Print Network [OSTI]

    Codes and Standards Title 24 Energy-Efficient Local Ordinances Title: San Mateo County Green Mateo County Green Building Ordinance Energy Cost-Effectiveness Study December 31, 2009 Report prepared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 #12;Energy Cost-Effectiveness Study for the San Mateo County Green Building Ordinance, 12

  7. 45-Day Language Hearing Agenda Building Energy Efficiency Standards

    E-Print Network [OSTI]

    Shirakh 09:15 AM Revisions to Sections 10-101 ­ 10-114 ­ Energy Building Regulations, All Occupancies Gary45-Day Language Hearing Agenda Building Energy Efficiency Standards Revisions for Residential for Solar Ready Buildings ­ All Occupancies Patrick Saxton 10:35 AM Revisions to Sections 150

  8. Secretary Chu Announces $187 Million to Improve Vehicle Efficiency...

    Office of Environmental Management (EM)

    idling technologies, waste heat recovery to increase engine efficiency, advanced combustion techniques, and powertrain hybridization. The remaining six projects totaling more...

  9. Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425...

    Energy Savers [EERE]

    merit08west.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  10. Impact of Vehicle Efficiency Improvements on Powertrain Design

    Broader source: Energy.gov (indexed) [DOE]

    19M) Volvo Group Truck Technology High Efficiency Combustion - Waste Heat Recovery - Turbo-Compound - Downspeeding - ... Advanced Driver Aids Rolling Resistance Reduction...

  11. Efficiency of appliance models on the market before and after DOE standards

    SciTech Connect (OSTI)

    Meyers, Stephen

    2004-06-15T23:59:59.000Z

    Energy efficiency standards for appliances mandate that appliance manufacturers not manufacture or import models that have a test energy efficiency below a specified level after the standard effective date. Thus, appliance standards set a floor for energy efficiency. But do they also induce more significant changes in the efficiencies that manufacturers offer after the standard becomes effective? To address this question, we undertook an examination of before-standard and after-standard efficiency of models on the market for three products: (1) Refrigerators (1990, 1993, and 2001 standards); (2) Room air conditioners (1990 and 2000 standards); and (3) Gas furnaces (1992 standard).

  12. Global Potential of Energy Efficiency Standards and Labeling Programs

    SciTech Connect (OSTI)

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15T23:59:59.000Z

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.

  13. The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States

    E-Print Network [OSTI]

    Karplus, Valerie

    2012-07-31T23:59:59.000Z

    Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

  14. The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy

    E-Print Network [OSTI]

    Love, Michael Lee

    1982-01-01T23:59:59.000Z

    THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

  15. The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy 

    E-Print Network [OSTI]

    Love, Michael Lee

    1982-01-01T23:59:59.000Z

    THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

  16. Effect of Energy Efficiency Standards on Natural Gas Prices

    SciTech Connect (OSTI)

    Carnall, Michael; Dale, Larry; Lekov, Alex

    2011-07-26T23:59:59.000Z

    A primary justification for the establishment of energy efficiency standards for home appliances is the existence of information deficiencies and externalities in the market for appliances. For example, when a long-term homeowner purchases a new gas-fired water heater, she will maximize the value of her purchase by comparing the life-cycle cost of ownership of available units, including both total installed cost - purchase price plus installation costs - and operating cost in the calculus. Choice of the appliance with the lowest life-cycle costs leads to the most economically efficient balance between capital cost and fuel cost. However, if the purchaser's expected period of ownership is shorter than the useful life of the appliance, or the purchaser does not pay for the fuel used by the appliance, as is often the case with rental property, fuel cost will be external to her costs, biasing her decision toward spending less on fuel efficiency and resulting in the purchase of an appliance with greater than optimal fuel usage. By imposing an efficiency standard on appliances, less efficient appliances are made unavailable, precluding less efficient purchases and reducing fuel usage. The reduction in fuel demanded by residential users affects the total demand for such fuels as natural gas, for example. Reduced demand implies that residential customers are willing to purchase less gas at each price level. That is, the demand curve, labeled D{sub 0} in Figure 1, shifts to the left to D{sub 1}. If there is no change in the supply function, the supply curve will intersect the demand curve at a lower price. Residential demand is only one component of the total demand for natural gas. It is possible that total demand will decline very little if demand in other sectors increases substantially in response to a decline in the price. If demand does decrease, modeling studies generally confirm the intuition that reductions in demand for natural gas will result in reductions in its price as seen at the wellhead (Wiser 2007). The magnitude of the effect on price relative to the demand reduction, and the mechanism through which it occurs, is less well established. This report attempts to quantify the potential effects of reduced demand for natural gas in the residential sector, in response to the implementation of an energy efficiency standard for water heaters.

  17. Electric Vehicle Communications Standards Testing and Validation - Phase II: SAE J2931/1

    SciTech Connect (OSTI)

    Pratt, Richard M.; Gowri, Krishnan

    2013-01-15T23:59:59.000Z

    Vehicle to grid communication standards enable interoperability among vehicles, charging stations and utility providers and provide the capability to implement charge management. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee/HomePlug Alliance are developing requirements for communication messages and protocols. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified vehicle to grid communication performance requirements and developed a test plan as part of SAE J2931/1 committee work. This laboratory test plan was approved by the SAE J2931/1 committee and included test configurations, test methods, and performance requirements to verify reliability, robustness, repeatability, maximum communication distance, and authentication features of power line carrier (PLC) communication modules at the internet protocol layer level. The goal of the testing effort was to select a communication technology that would enable automobile manufacturers to begin the development and implementation process. The EPRI/Argonne National Laboratory (ANL)/Pacific Northwest National Laboratory (PNNL) testing teams divided the testing so that results for each test could be presented by two teams, performing the tests independently. The PNNL team performed narrowband PLC testing including the Texas Instruments (TI) Concerto, Ariane Controls AC-CPM1, and the MAXIM Tahoe 2 evaluation boards. The scope of testing was limited to measuring the vendor systems communication performance between Electric Vehicle Support Equipment (EVSE) and plug-in electric vehicles (PEV). The testing scope did not address PEV’s CAN bus to PLC or PLC to EVSE (Wi-Fi, cellular, PLC Mains, etc.) communication integration. In particular, no evaluation was performed to delineate the effort needed to translate the IPv6/SEP2.0 messages to PEV’s CAN bus. The J2931/1 laboratory test results were presented to the SAE membership on March 20-22, 2012. The SAE committee decided to select HomePlug GreenPHY (HPGP) as the communication technology to use between the PEV and EVSE. No technology completely met all performance requirements. Both the MAXIM Tahoe 2 and TI Concerto met the 100Kbps throughput requirement, are estimated to meet the latency measurement performance, and met the control pilot impairment requirements. But HPGP demonstrated the potential to provide a data throughput rate of 10x of the requirement and either met or showed the potential to meet the other requirements with further development.

  18. Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20HighDepartment

  19. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    Electric Storage Tank Water Heater Efficiency and StandardsElectric Storage Tank Water Heater Efficiency and Standardsresistance storage tank water heaters (geysers), water

  20. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    SciTech Connect (OSTI)

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08T23:59:59.000Z

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  1. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    as furnaces or boilers lose efficiency through heat thatwww.eccj.or.jp Efficiency for both boiler and instantaneousto have same efficiency as Gas Boiler/ Furnace Assumption

  2. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    Efficiency in Electricity Consumption. HWWA , HamburgischesB. Atanasiu (2006). Electricity Consumption and EfficiencyB. Atanasiu (2006). Electricity Consumption and Efficiency

  3. 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department...

    Office of Environmental Management (EM)

    standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. efficiency">Click here to...

  4. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    E-Print Network [OSTI]

    Meyers, Stephen P.

    2008-01-01T23:59:59.000Z

    conducted as part of DOE’s standards rulemaking process.used by DOE and assumed that the standards did cause someDocuments for DOE Energy Efficiency Standards 1. U.S.

  5. State Energy Efficiency Resource Standards: Design, Status, and Impacts

    SciTech Connect (OSTI)

    Steinberg, D.; Zinaman, O.

    2014-05-01T23:59:59.000Z

    An energy efficiency resource standard (EERS) is a policy that requires utilities or other entities to achieve a specified amount of energy savings through customer energy efficiency programs within a specified timeframe. EERSs may apply to electricity usage, natural gas usage, or both. This paper provides an overview of the key design features of EERSs for electricity, reviews the variation in design of EERSs across states, and provides an estimate of the amount of savings required by currently specified EERSs in each state. As of December, 2013, 23 states have active and binding EERSs for electricity. We estimate that state EERSs will require annual electricity savings of approximately 8-11% of total projected demand by 2020 in states with EERSs, however the level of savings targeted by the policies varies significantly across states. In addition to the variation in targeted savings, the design of EERSs varies significantly across states leading to differences in the suite of incentives created by the policy, the flexibility of compliance with the policy, the balance of benefits and costs of the policy between producers and consumers, and the certainty with which the policy will drive long-term savings.

  6. Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank

    E-Print Network [OSTI]

    Bowen, James D.

    Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient of ethanol? A flex-fuel SUV has a 25 gallon tank. Its sustainably-minded owner has decided to use E85 ethanol? 1 yr/person/450pounds of corn * 461 pounds of corn = 1.02 yrs #12;Electric Vehicle Problems 1

  7. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19T23:59:59.000Z

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  8. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31T23:59:59.000Z

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  9. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  10. Vehicle Technologies Office Merit Review 2015: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  11. Vehicle Technologies Office Merit Review 2015: Efficient Rechargeable Li/O2 Batteries Utilizing Stable Inorganic Molten Salt Electrolytes

    Broader source: Energy.gov [DOE]

    Presentation given by Liox at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient rechargeable Li/O2 batteries...

  12. Vehicle Technologies Office Merit Review 2014: High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology

    Broader source: Energy.gov [DOE]

    Presentation given by Envera LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine...

  13. Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  14. Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  15. Vehicle Technologies Office Merit Review 2015: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC-Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  16. Vehicle Technologies Office Merit Review 2015: High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology

    Broader source: Energy.gov [DOE]

    Presentation given by Envera LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine with...

  17. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  18. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  19. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  20. Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

  1. Effect of Energy Efficiency Standards on Natural Gas Prices

    E-Print Network [OSTI]

    Carnall, Michael

    2012-01-01T23:59:59.000Z

    of a recently proposed water heater standard. The resultspurchases a new gas-fired water heater, she will maximizeefficiency standard for water heaters. 1.2 Overview of the

  2. Energy Efficiency and Green Building Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and...

  3. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect (OSTI)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31T23:59:59.000Z

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

  4. New Developments in the Debate on Pavement-Vehicle

    E-Print Network [OSTI]

    de Weck, Olivier L.

    New Developments in the Debate on Pavement-Vehicle Interaction: The Impact of Pavement Design aerodynamics Improve energy efficiency Reduce rolling resistance, including pavement-vehicle interaction #12 standards for big trucks" February 18, 2014 What about fuel efficiency standards for pavements? #12;Slide 5

  5. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    E-Print Network [OSTI]

    Schiller, Steven R.

    2011-01-01T23:59:59.000Z

    Actuarial Pricing Of Energy Efficiency Projects: Lessonsand Effectiveness of Energy Efficiency Programs,” LBNL-ACEEE 2010. “State Energy Efficiency Resource Standard (

  6. Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting

    E-Print Network [OSTI]

    McMahon, James E.; Wiel, Stephen

    2001-01-01T23:59:59.000Z

    International Institute for Energy Conservation, Washington,Analysis of National Energy-Efficiency Standards forLBNL-39700. International Energy Agency (IEA). 1999. Energy

  7. Vehicle Technologies Office Merit Review 2015: Wireless & Conductive Charging Testing to support Code & Standards

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless and...

  8. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    Domestic Electric Storage Water Heater (DESWH) Test Methodsand Renewable Energy (2000). Water Heater Energy StandardsAir Conditioners, Water Heaters, Direct Heating Equipment,

  9. 2013 California Building Energy Efficiency Standards December 2011 CODES AND STANDARDS ENHANCEMENT INITIATIVE (CASE)

    E-Print Network [OSTI]

    ...................................................................................23 4.3.4 The Effect of Non-condensables on Air Conditioner Efficiency

  10. efficient and cheap bounds for (standard) quadratic optimization1

    E-Print Network [OSTI]

    2005-07-08T23:59:59.000Z

    for optimization problems is the availability of good and/or efficiently computable bounds on the optimum value of the problem. This well- known fact has induced ...

  11. New Energy Efficiency Standards for External Power Supplies to...

    Energy Savers [EERE]

    on President Obama's State of the Union address, which called for reducing carbon pollution and helping communities move to greater energy efficiency, the Energy Department...

  12. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    Administration UTE (1999). UTE Uruguay Consumo de Energía387. McNeil, M. (2003). Uruguay Energy Efficiency Project -Administration UTE (1999). UTE Uruguay Consumo de Energía

  13. Upping Efficiency Standards, Lowering Utility Bills | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAX 423DepartmentUpgrade

  14. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    impact of room air conditioners energy labels in Malaysia."of electric Room Air Conditioner." Energy Economics 20Standard Levels for Room Air Conditioners. McNeil, M. A. ,

  15. appliance efficiency standards: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    auditsenergy efficiency. Experience shows that it does little good to provide energy audit McMahon, James E.; Wiel, Stephen 2001-01-01 10 New analysis techniques for estimating...

  16. Fact Sheet: Efficiency Standards for Natural Gas Compressors...

    Broader source: Energy.gov (indexed) [DOE]

    exist in the market today with varying efficiency levels; this is true for the compressors themselves and for the engines or turbines that drive them. DOE plans to examine...

  17. Energy efficiency standards for eight consumer products: public meeting clarification, questions and answers

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    Eighteen corporations and manufacturers provided answers to many questions posed at a public meeting on energy efficiency standards for eight consumer products. Questions on the regulations concerning the manufacturing standards, performance standards, and testing standards are included. Questions were posed about air conditioners, refrigerators, refrigerator-freezers, stoves (ranges), ovens, clothes dryers, oil fired burners, water heaters, furnaces, etc. A presentation containing information pertaining to the values of average annual energy consumption per unit used by DOE in its analysis leading to proposed energy efficiency standards for nine types of consumer products is included. (MCW)

  18. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect (OSTI)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31T23:59:59.000Z

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  19. Codes and Standards Title 24 Energy-Efficient Local Ordinances

    E-Print Network [OSTI]

    94703 (510) 428-0803 Email: mike@gabelenergy.com Report on behalf of: Pacific Gas and Electric Company@pge.com Pacific Gas and Electric Company's Government Partnership Program, Maril Pitcock, 245 Market-Effectiveness Study Prepared for: Pat Eilert Codes and Standards Program Pacific Gas and Electric Company Maril

  20. Codes and Standards Title 24 Energy-Efficient Local Ordinances

    E-Print Network [OSTI]

    ) 428-0803 Email: mike@gabelenergy.com Report on behalf of: Pacific Gas and Electric Company's Codes.com Pacific Gas and Electric Company's Government Partnership Program, Maril Pitcock, 245 Market, San-Effectiveness Study Prepared for: Pat Eilert Codes and Standards Program Pacific Gas and Electric Company Maril

  1. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  2. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Energy Savers [EERE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  3. Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

  4. Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Broader source: Energy.gov [DOE]

    A presentation given by Chrysler at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on its project to research a multi-air and multi-fuel approach to improving engine efficiency.

  5. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  6. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EfficiencyVehicle Technologies Vehicle Technologies Combustion Research Facility (CRF) Vehicle Technology programs at Sandia share a common goal: reducing dependence on...

  9. Energy Department Issues New Appliance Efficiency Standards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEM EducationResiliency | DepartmentEnergy Energy

  10. Delaware's Energy Efficiency Potential and Program Scenarios to Meet Its Energy Efficiency Resource Standard

    E-Print Network [OSTI]

    Delaware, University of

    , state, federal and international agencies and nonprofit organizations. The Center is composed and development, environmental justice, conservation and renewable energy options, integrated resource planningDelaware's Energy Efficiency Potential and Program Scenarios to Meet Its Energy Efficiency Resource

  11. Enforcing Energy-Efficiency Standards | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02 - DecemberEnforcing Energy-Efficiency

  12. Energy Efficiency Resource Standards Resources | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final EnvironmentalCounties, IdahoTechnologiesEnergy EfficiencyAgreementResource

  13. Upping Efficiency Standards, Lowering Utility Bills | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads intoMansoor Ghassem )DepartmentUpping Efficiency

  14. Building Energy Efficiency Standards Approved Default Cool Roof Performance Values for

    E-Print Network [OSTI]

    Building Energy Efficiency Standards Approved Default Cool Roof Performance Values for Low-Sloped Roofs That Use Aggregate As the Surface Layer Aggregate used as the surface layer of low-sloped roofs shall have the default cool roof properties

  15. Estimation of the Energy and Capacity Savings in Texas from Appliance Efficiency Standards

    E-Print Network [OSTI]

    Verdict, M.

    1986-01-01T23:59:59.000Z

    The purpose of this presentation will be to assess the technical potential for energy and capacity savings in Texas by the year 2006 by the statewide adoption of minimum appliance efficiency standards equivalent to those recently adopted...

  16. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  17. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen.

  18. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane.

  19. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas.

  20. National Template: Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for hydrogen.

  1. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel.

  2. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for ethanol.

  3. Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for electric.

  4. Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

  5. Vehicle Technologies Office Merit Review 2014: Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about stretch...

  6. Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  7. Vehicle Technologies Office Merit Review 2015: A Novel Lubricant Formulation Scheme for 2% Fuel Efficiency Improvement

    Broader source: Energy.gov [DOE]

    Presentation given by Northwestern University at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about a novel lubricant...

  8. Vehicle Technologies Office Merit Review 2014: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  9. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  10. Online Optimal Control of Connected Vehicles for Efficient Traffic Flow at Merging Roads

    SciTech Connect (OSTI)

    Rios-Torres, Jackeline [ORNL; Malikopoulos, Andreas [ORNL; Pisu, Pierluigi [Clemson University

    2015-01-01T23:59:59.000Z

    This paper addresses the problem of coordinating online connected vehicles at merging roads to achieve a smooth traffic flow without stop-and-go driving. We present a framework and a closed-form solution that optimize the acceleration profile of each vehicle in terms of fuel economy while avoiding collision with other vehicles at the merging zone. The proposed solution is validated through simulation and it is shown that coordination of connected vehicles can reduce significantly fuel consumption and travel time at merging roads.

  11. Vehicle Technologies Office Merit Review 2015: Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about stretch...

  12. Vehicle Technologies Office Merit Review 2015: Model Development and Analysis of Clean & Efficient Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

  13. Vehicle Technologies Office Merit Review 2015: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  15. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  16. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Energy Efficiency On November 11, 2010, in Solid-State Lighting Vehicle Technologies Energy Efficiency News Energy Frontier Research Center for Solid-State...

  17. Design and Implementation of Time Efficient Trajectories for an Underwater Vehicle

    E-Print Network [OSTI]

    Smith, Ryan N.

    : Autonomous Underwater Vehicles, Optimal Control, Numerical Algorithm, Trajectory Planning. 1 Introduction- trol strategies that govern their motions. Traditionally, autonomous underwa- ter vehicles (AUV's) have. This is a first step toward minimizing a combination of both time and energy consumption along a given trajectory

  18. Vehicles StorageDispensing Infrastructure NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    American Gas Association Materials testing standards API American Petroleum Institute Equipment standards) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed to prepare for the commercialization of alternative fuel vehicle technologies. This graphic

  19. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    SciTech Connect (OSTI)

    Meyers, Stephen P.; McMahon, James; Atkinson, Barbara

    2008-05-08T23:59:59.000Z

    This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.

  20. EA-1872: Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Broader source: Energy.gov [DOE]

    This EA evaluated the environmental impacts of a proposal to amend the current rule for commercial and high-rise multi-family residential buildings, 10 CFR 433 “Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings,” to replace ASHRAE Standard 90.1-2004 with the more stringent ASHRAE Standard 90.1-2007, incorporated by reference. This EA also evaluated the environmental impacts with regard to low-rise residential buildings; this rulemaking updated 10 CFR 435 Subpart A, “Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings,” to replace the International Energy Conservation Code (IECC) 2004 with the more stringent IECC 2009, incorporated by reference. This EA was completed as DOE/EA-1871.

  1. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15T23:59:59.000Z

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  2. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck - powertrain...

  3. Modular Lorentz force actuators for efficient biomimetic propulsion of Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Church, Joseph Christopher

    2014-01-01T23:59:59.000Z

    In this thesis, we developed a highly scalable design for modular Lorentz force actuators for use in segmented flexible-hull undersea vehicles such as the RoboTuna being developed at Franklin W, Olin College of Engineering. ...

  4. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  5. New analysis techniques for estimating impacts of federal appliance efficiency standards

    SciTech Connect (OSTI)

    McMahon, James E.

    2003-06-24T23:59:59.000Z

    Impacts of U.S. appliance and equipment standards have been described previously. Since 2000, the U.S. Department of Energy (DOE) has updated standards for clothes washers, water heaters, and residential central air conditioners and heat pumps. A revised estimate of the aggregate impacts of all the residential appliance standards in the United States shows that existing standards will reduce residential primary energy consumption and associated carbon dioxide (CO{sub 2}) emissions by 89 percent in 2020 compared to the levels expected without any standards. Studies of possible new standards are underway for residential furnaces and boilers, as well as a number of products in the commercial (tertiary) sector, such as distribution transformers and unitary air conditioners. The analysis of standards has evolved in response to critiques and in an attempt to develop more precise estimates of costs and benefits of these regulations. The newer analysis elements include: (1) valuing energy savings by using marginal (rather than average) energy prices specific to an end-use; (2) simulating the impacts of energy efficiency increases over a sample population of consumers to quantify the proportion of households having net benefits or net costs over the life of the appliance; and (3) calculating marginal markups in distribution channels to derive the incremental change in retail prices associated with increased manufacturing costs for improving energy efficiency.

  6. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect (OSTI)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01T23:59:59.000Z

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  7. Revised: March 6, 2013 2013 Residential Building Energy Efficiency Standards Measures Summary

    E-Print Network [OSTI]

    1 Revised: March 6, 2013 2013 Residential Building Energy Efficiency Standards Measures; allows Smart Vents and Night Breeze as alternatives in CZs 814. (Section 150.1(c)12) 4. Adding for all residential buildings including kitchens, bathrooms, dining rooms, utility rooms, garages, hall

  8. Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting

    SciTech Connect (OSTI)

    McMahon, James E.; Wiel, Stephen

    2001-02-16T23:59:59.000Z

    Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and the United Nations Foundation (UNF) recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This guidebook was prepared over the course of the past year with significant contribution from the authors and reviewers mentioned previously. Their diligent participation has made this the international guidance tool it was intended to be. The lead authors would also like to thank the following individuals for their support in the development, production, and distribution of the guidebook: Marcy Beck, Elisa Derby, Diana Dhunke, Ted Gartner, and Julie Osborn of Lawrence Berkeley National Laboratory as well as Anthony Ma of Bevilacqua-Knight, Inc. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards-setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsors to distribute copies of this book worldwide at no charge for the general public benefit. The guidebook is also available on the web at www.CLASPonline.org and can be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

  9. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs...

  10. Realized and prospective impacts of U.S. energy efficiency standards for residential appliances: 2004 update

    SciTech Connect (OSTI)

    Meyers, Stephen; McMahon, James; McNeil, Michael

    2005-06-24T23:59:59.000Z

    This study estimated energy, environmental and consumer economic impacts of U.S. federal residential energy efficiency standards that became effective in the 1988-2001 period or will take effect by the end of 2007. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. We estimate that the considered standards will reduce residential primary energy consumption and CO{sub 2} emissions in 2020 by 8% compared to the levels expected without any standards. They will save a cumulative total of 34 quads by 2020, and 54 quads by 2030. The estimated cumulative net present value of consumer benefit amounts to $93 billion by 2020, and grows to $125 billion by 2030. The overall benefit/cost ratio of cumulative consumer impacts is 2.45 to 1. While the results of this study are subject to a fair degree of uncertainty, we believe that the general conclusions--DOE's energy efficiency standards save significant quantities of energy (and associated carbon emissions) and reduce consumers' net costs--are robust.

  11. Optimization of induction motor efficiency. Volume 3. Experimental comparison of three-phase standard motors with Wanlass motors. Final report

    SciTech Connect (OSTI)

    Fuchs, E.F.

    1985-12-01T23:59:59.000Z

    Researchers conducted comprehensive laboratory tests to evaluate the effectiveness of the Wanlass connection in improving motor efficiency. On the basis of these tests, they found no reason to conclude that such a connection is more efficient than the standard connection.

  12. Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2006-12-01T23:59:59.000Z

    This document presents the qualitative comparison of DOE’s formal determination of energy savings of ANSI/ASHRAE/IESNA Standard 90.1-2004. The term “qualitative” is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOE’s determination. The quantitative comparison will be based on whole building simulation of selected building prototypes in selected climates. This document presents a comparison of the energy efficiency requirements in ANSI/ASHRAE/IESNA 90.1-1999 (herein referred to as Standard 90.1-1999) and ANSI/ASHRAE/IESNA 90.1-2004 (herein referred to as Standard 90.1-2004). The comparison was done through a thorough review of all addenda to Standard 90.1-1999 that were included in the published ANSI/ASHRAE/IESNA Standard 90.1-2001 (herein referred to as Standard 90.1-2001) and also all addenda to Standard 90.1-2001 that were included in the published Standard 90.1-2004. A summary table showing the impact of each addendum is provided. Each addendum to both Standards 90.1-1999 and 90.1-2001 was evaluated as to its impact on the energy efficiency requirements of the standard (greater efficiency, lesser efficiency) and as to significance. The final section of this document summarizes the impacts of the various addenda and proposes which addenda should be included in the companion quantitative portion of DOE’s determination. Addenda are referred to with the nomenclature addendum 90.1-xxz, where “xx” is either “99” for 1999 or “01” for 2001, and z is the ASHRAE letter designation for the addendum. Addenda names are shown in bold face in text. DOE has chosen not to prepare a separate evaluation of Standard 90.1-2001 as that standard does not appear to improve energy efficiency in commercial buildings. What this means for the determination of energy savings for Standard 90.1-2004 is that the baseline standard for comparison is Standard 90.1-1999 and all addenda to both Standards 90.1-1999 and 90.1-2001 must be considered to determine the overall change in efficiency between Standard 90.1-1999 and Standard 90.1-2004.

  13. If Cars Were More Efficient Would We Use Less Fuel?

    E-Print Network [OSTI]

    Small, Kenneth A.; Dender, Kurt Van

    2007-01-01T23:59:59.000Z

    Efficient, Would We Use Less Fuel? B Y K E N N E T H A . S Mtask: just increase vehicle fuel efficiency, also known asexisting Corporate Average Fuel Economy (CAFE) standards.

  14. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect (OSTI)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13T23:59:59.000Z

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  15. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  16. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    E-Print Network [OSTI]

    Wenzel, Thomas P

    2010-01-01T23:59:59.000Z

    on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

  17. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  18. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  19. Realized and projected impacts of U.S. federal efficiency standards for residential appliances

    SciTech Connect (OSTI)

    Meyers, Stephen; McMahon, James; McNeil, Michael; Liu, Xiaomin

    2002-06-01T23:59:59.000Z

    This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2001 period or will take effect by the end of 2007. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products. We estimate that the considered standards will reduce residential primary energy consumption and CO{sub 2} emissions in 2020 by 8-9% compared to the levels expected without any standards. They will save a cumulative total of 25-30 quads by the year 2015, and 60 quads by 2030. The estimated cumulative net present value of consumer benefit amounts to nearly $80 billion by 2015, and grows to $130 billion by 2030. The overall benefit/cost ratio of cumulative consumer impacts in the 1987-2050 period is 2.75:1. The cumulative cost of DOE's program to establish and implement the standards is in the range of $200-250 million.

  20. International Review of the Development and Implementation of Energy Efficiency Standards and Labeling Programs

    SciTech Connect (OSTI)

    Zhou, Nan; Zheng, Nina; Fridley, David

    2012-02-28T23:59:59.000Z

    Appliance energy efficiency standards and labeling (S&L) programs have been important policy tools for regulating the efficiency of energy-using products for over 40 years and continue to expand in terms of geographic and product coverage. The most common S&L programs include mandatory minimum energy performance standards (MEPS) that seek to push the market for efficient products, and energy information and endorsement labels that seek to pull the market. This study seeks to review and compare some of the earliest and most well-developed S&L programs in three countries and one region: the U.S. MEPS and ENERGY STAR, Australia MEPS and Energy Label, European Union MEPS and Ecodesign requirements and Energy Label and Japanese Top Runner programs. For each program, key elements of S&L programs are evaluated and comparative analyses across the programs undertaken to identify best practice examples of individual elements as well as cross-cutting factors for success and lessons learned in international S&L program development and implementation. The international review and comparative analysis identified several overarching themes and highlighted some common factors behind successful program elements. First, standard-setting and programmatic implementation can benefit significantly from a legal framework that stipulates a specific timeline or schedule for standard-setting and revision, product coverage and legal sanctions for non-compliance. Second, the different MEPS programs revealed similarities in targeting efficiency gains that are technically feasible and economically justified as the principle for choosing a standard level, in many cases at a level that no product on the current market could reach. Third, detailed survey data such as the U.S. Residential Energy Consumption Survey (RECS) and rigorous analyses provide a strong foundation for standard-setting while incorporating the participation of different groups of stakeholders further strengthen the process. Fourth, sufficient program resources for program implementation and evaluation are critical to the effectiveness of standards and labeling programs and cost-sharing between national and local governments can help ensure adequate resources and uniform implementation. Lastly, check-testing and punitive measures are important forms of enforcement while the cancellation of registration or product sales-based fines have also proven effective in reducing non-compliance. The international comparative analysis also revealed the differing degree to which the level of government decentralization has influenced S&L programs and while no single country has best practices in all elements of standards and labeling development and implementation, national examples of best practices for specific elements do exist. For example, the U.S. has exemplified the use of rigorous analyses for standard-setting and robust data source with the RECS database while Japan?s Top Runner standard-setting principle has motivated manufacturers to exceed targets. In terms of standards implementation and enforcement, Australia has demonstrated success with enforcement given its long history of check-testing and enforcement initiatives while mandatory information-sharing between EU jurisdictions on compliance results is another important enforcement mechanism. These examples show that it is important to evaluate not only the drivers of different paths of standards and labeling development, but also the country-specific context for best practice examples in order to understand how and why certain elements of specific S&L programs have been effective.

  1. Will cheap gas and efficient cars imperil air-quality goals under relaxed emission standards

    SciTech Connect (OSTI)

    LaBelle, S.J.; Saricks, C.L.; Moses, D.O.

    1983-04-01T23:59:59.000Z

    Long-term trends, to the year 2000, of urban household travel were forecast for prototype metropolitan areas under several sets of energy prices, auto fuel economy, and emission standards. Dramatic improvements in air quality were forecast due to redistribution of travel and lowered emissions. The exception to this trend to rapidly growing cities, such as those in the west and southwest experiencing sprawl development that characterized many urbanized areas in the industrial northeast and midwest during the 1950's and 1960's. In one test city, where the rate of urbanization has slowed significantly, analysis indicated that relaxation of the light-duty-vehicle NO/sub x/ standard from 1.0 gm/mi to 2.0 gm/mi would not severely threaten attainment of the ambient NO/sub x/ standards by 1987 owing to redistribution of population and activities. The difference in total energy impacts was determined to be negligible, assuming moderate increase in petroleum prices through 1995 (3.1%/year). In another policy test, without changing emission standards, an increase in fuel price of 3.75%/year from 1980 to 2000 reduced travel and provided a 4% decrease in energy use and a corresponding decrease in CO, HC and NO/sub x/. Virtually all of the reduction in travel and emissions was due to non-work travel, which fell 9%. The price increase damped the increase in auto travel per person that would occur as autos become cheaper to operate and as household wealth increases, making the answer to the title a cautious yes, given steady or slowly rising fuel prices.

  2. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  3. User`s guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package

    SciTech Connect (OSTI)

    Marr, W.W.

    1995-01-01T23:59:59.000Z

    EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

  4. Vehicle Technologies Office Merit Review 2014: Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.

    E-Print Network [OSTI]

    Standards for Resi- dential Buildings. Data gathered in the field on lighting, heat- ing, ventilationThe Issue Energy-efficiency standards for homes have the potential to reduce energy consumption standards, but little data is available on the actu- al energy performance of new homes. The Solution

  6. EcoCAR 2: Racing Towards Vehicle Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJune 30, 2015Vehicles|EcoCAR 2:Year

  7. Table 5.5. U.S. Vehicle Fuel Efficiency by Model Year, 1994

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle Fuel Consumption. U.S..

  8. Vehicle Technologies Office | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Efficient Vehicle Technologies Secretary Moniz Announces 55 M to Advance Fuel Efficient Vehicle Technologies Energy Secretary Moniz spoke at the Washington Auto Show,...

  9. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Broader source: Energy.gov [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

  10. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  11. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01T23:59:59.000Z

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  12. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    SciTech Connect (OSTI)

    Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

    2011-06-01T23:59:59.000Z

    Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The Life-Cycle Cost (LCC) calculation examines costs and benefits from the perspective of the individual household; and (2) The National Perspective projects the total national costs and benefits including both financial benefits, and energy savings and environmental benefits. The national perspective calculations are called the National Energy Savings (NES) and the Net Present Value (NPV) calculations. PAMS also calculate total emission mitigation and avoided generation capacity. This paper describes the data and methodology used in PAMS and presents the results of the proposed phase out of incandescent bulbs in Chile.

  13. The Vehicle Technologies Market Report

    E-Print Network [OSTI]

    The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

  14. Estimate of Technical Potential for Minimum Efficiency Performance Standards in 13 Major World Economies

    E-Print Network [OSTI]

    Letschert, Virginie

    2013-01-01T23:59:59.000Z

    achievable energy-efficient designs, based on emergingachievable energy- efficient designs, based on efficientdesign that achieves high energy efficiency by combining the most efficient

  15. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck – development and...

  16. Comparative Analysis of Control Techniques for Efficiency Improvement in Electric Vehicles

    E-Print Network [OSTI]

    energy efficient and less polluting drive-train alternative to conventional internal combustion engine, University of Biskra, Biskra, Algeria Abstract--This paper presents system analysis, modeling and simulation dynamics and system architecture. Simulation tests have been carried out on a 37-kW EV that consists

  17. ISSUANCE 2015-02-03: Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period

  18. Appendices to: Compliance by Design: Industry Response to Energy Efficiency Standards

    E-Print Network [OSTI]

    Fowlie, Meredith

    Converter, Gear Box, Final Drive, and Differential modules. The Combustion Engine module calculates the fuel. Whitefoot, Meredith Fowlie, and Steven J. Skerlos Appendix A. Engineering vehicle simulations using AVL of powertrain systems, simulation methods, and engine instrumentation and test systems. The vehicle simulation

  19. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    Covary, and Xia, “Energy Efficiency Country Study: Republicand Energy, “Energy Efficiency Strategy of the Republic ofin support of the Super-efficient Equipment and Appliance

  20. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    administrators of energy efficiency programs: Can evaluationMechanisms to Promote Energy Efficiency: Case Study of a2009c. Financial impact of energy efficiency under a federal

  1. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    a comprehensive energy efficiency business model on utilitya comprehensive energy efficiency business model on utilityframework of the energy efficiency business model. The

  2. In 1991 UC Irvine adopted standards to outperform California's Title 24 Energy Efficiency Standards by 30 percent, use 100 percent reclaimed water, CO2 sensing for

    E-Print Network [OSTI]

    Rose, Michael R.

    in Sacramento. · Nine buildings at UC Irvine bear the U.S. Green Building Council's Leadership in Energy· In 1991 UC Irvine adopted standards to outperform California's Title 24 Energy Efficiency, and no rainforest hardwoods · UC Irvine's Smart Labs Initiative, which reduces energy consumption in new

  3. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    SciTech Connect (OSTI)

    Schiller Consulting, Inc.; Schiller, Steven R.; Goldman, Charles A.; Galawish, Elsia

    2011-02-04T23:59:59.000Z

    This report is a scoping study that identifies issues associated with developing a national evaluation, measurement and verification (EM&V) standard for end-use, non-transportation, energy efficiency activities. The objectives of this study are to identify the scope of such a standard and define EM&V requirements and issues that will need to be addressed in a standard. To explore these issues, we provide and discuss: (1) a set of definitions applicable to an EM&V standard; (2) a literature review of existing guidelines, standards, and 'initiatives' relating to EM&V standards as well as a review of 'bottom-up' versus 'top-down' evaluation approaches; (3) a summary of EM&V related provisions of two recent federal legislative proposals (Congressman Waxman's and Markey's American Clean Energy and Security Act of 2009 and Senator Bingaman's American Clean Energy Leadership Act of 2009) that include national efficiency resource requirements; (4) an annotated list of issues that that are likely to be central to, and need to be considered when, developing a national EM&V standard; and (5) a discussion of the implications of such issues. There are three primary reasons for developing a national efficiency EM&V standard. First, some policy makers, regulators and practitioners believe that a national standard would streamline EM&V implementation, reduce costs and complexity, and improve comparability of results across jurisdictions; although there are benefits associated with each jurisdiction setting its own EM&V requirements based on their specific portfolio and evaluation budgets and objectives. Secondly, if energy efficiency is determined by the US Environmental Protection Agency to be a Best Available Control Technology (BACT) for avoiding criteria pollutant and/or greenhouse gas emissions, then a standard can be required for documenting the emission reductions resulting from efficiency actions. The third reason for a national EM&V standard is that such a standard is likely to be required as a result of future federal energy legislation that includes end-use energy efficiency, either as a stand-alone energy-efficiency resource standard (EERS) or as part of a clean energy or renewable energy standard. This study is focused primarily on this third reason and thus explores issues associated with a national EM&V standard if energy efficiency is a qualifying resource in federal clean energy legislation. Developing a national EM&V standard is likely to be a lengthy process; this study focuses on the critical first step of identifying the issues that must be addressed in a future standard. Perhaps the most fundamental of these issues is 'how good is good enough?' This has always been the fundamental issue of EM&V for energy efficiency and is a result of the counter-factual nature of efficiency. Counter-factual in that savings are not measured, but estimated to varying degrees of accuracy by comparing energy consumption after a project (program) is implemented with what is assumed to have been the consumption of energy in the absence of the project (program). Therefore, the how good is good enough question is a short version of asking how certain does one have to be of the energy savings estimate that results from EM&V activities and is that level of certainty properly balanced against the amount of effort (resources, time, money) that is utilized to obtain that level of certainty. The implication is that not only should energy efficiency investments be cost-effective, but EM&V investments should consider risk management principles and thus also balance the costs and value of information derived from EM&V (EM&V should also be cost-effective).

  4. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  5. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

  6. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  7. Vehicle Technologies Office Merit Review 2015: DOE's Effort to...

    Office of Environmental Management (EM)

    DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics Vehicle Technologies Office Merit Review 2015: DOE's Effort to Improve Heavy Vehicle Fuel...

  8. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

  9. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced Research Fellow A vehicles powertrain is a complex combination of interacting sub-systems which include complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task

  10. Vehicle Technologies Office Merit Review 2014: Lubricant Formulations to Enhance Engine Efficiency (LFEEE) in Modern Internal Combustion Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  11. Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about clean...

  12. Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

  13. Efficiency of appliance models on the market before and after DOE standards

    E-Print Network [OSTI]

    Meyers, Stephen

    2004-01-01T23:59:59.000Z

    AHAM Directory Compared to DOE Standards June July 2002 2001Directory Compared to1990 DOE Standard March1991 Oct 1987Directory Compared to 2000 DOE Standard Sept 2001 March 1991

  14. Pounds That Kill: The External Costs of Vehicle MICHAEL L. ANDERSON

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    ), likely in response to rising gasoline prices and the passage of the Corporate Average Fuel Efficiency (CAFE) standard. As gasoline prices fell in the late-1980s, however, average vehicle weight began of research examines the effects of CAFE and gasoline prices on consumers' vehicle choices (Portney, Parry

  15. GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge

    E-Print Network [OSTI]

    INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY MANAGE- MENT GRIDGREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts-55080 #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting

  16. Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for...

    Broader source: Energy.gov (indexed) [DOE]

    Agency's (EPA's) top ten most fuel efficient vehicles list is comprised entirely of electric vehicles. Electric vehicles are highly efficient so it is not surprising to see...

  17. International Review of the Development and Implementation of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    Energy Efficiency (E3), 2006, “The MEPS and Energy Labeling Process in AustraliaEnergy Efficiency Harmonization. ” CLASP Report (Draft) 2.2 AustraliaEnergy Efficiency and Conservation Authority play direct role in the management of Australia’

  18. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    Comparison of National Energy Management Standards, prepared2007, Industrial Energy Management: Issues Paper, preparedMeeting: Using Energy Management Standards to stimulate

  19. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    energy efficiency business model on utility earnings EES w/energy efficiency business model on utility ROE EES w/RPCSticks: A Comprehensive Business Model for the Successful

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01T23:59:59.000Z

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  1. Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan

    2004-01-01T23:59:59.000Z

    R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

  2. Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan C.

    2004-01-01T23:59:59.000Z

    R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

  3. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  4. Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity

    E-Print Network [OSTI]

    Rausch, Sebastian

    2012-07-17T23:59:59.000Z

    We examine the efficiency and distributional impacts of greenhouse gas policies directed toward the electricity

  5. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  6. Vehicle Technologies Office Merit Review 2014: Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Codes and Standards DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards Merit review of DOE Vehicle Technologies Program research efforts...

  8. EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

  9. Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  10. Vehicle Technologies Office Merit Review 2015: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  11. Vehicle Technologies Office Merit Review 2014: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a multiair/multifuel approach to...

  12. Energy-Efficiency Labels and Standards: A Guidebook forAppliances, Equipment, and Lighting - 2nd Edition

    SciTech Connect (OSTI)

    Wiel, Stephen; McMahon, James E.

    2005-04-28T23:59:59.000Z

    Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and several other organizations identified on the cover of this guidebook recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This second edition of the guidebook was prepared over the course of the past year, four years after the preparation of the first edition, with a significant contribution from the authors and reviewers mentioned previously. Their diligent participation helps maintain this book as the international guidance tool it has become. The lead authors would like to thank the members of the Communications Office of the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory for their support in the development, production, and distribution of the guidebook. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsor to distribute copies of this book worldwide, at no charge, for the general public benefit. The guidebook is also available on the web at www.clasponline.org and may be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

  13. Fact #750: October 22, 2012 Electric Vehicle Energy Requirements...

    Broader source: Energy.gov (indexed) [DOE]

    efficiencies of electric vehicles can vary significantly; however, compared with conventional vehicles, they are very efficient-converting about 60% of the energy from the grid to...

  14. Estimate of Technical Potential for Minimum Efficiency Performance Standards in 13 Major World Economies

    E-Print Network [OSTI]

    Letschert, Virginie

    2013-01-01T23:59:59.000Z

    efficiency Australia best available technology business as usual Brazil Bottom-Up EnergyAustralia South Africa Reference U.S. DOE, 2010a Solar Water Heater LBNL assumption EER – energy-efficiency

  15. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2013-01-01T23:59:59.000Z

    Retail Data Brazil – International Energy Initiative Life-business as usual Brazil Bottom-Up Energy Analysis Systemfor setting energy efficiency standards in Brazil:The case

  16. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01T23:59:59.000Z

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  17. Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector

    E-Print Network [OSTI]

    Koomey, J.G.

    2010-01-01T23:59:59.000Z

    due to refrigerator and water heater standards dominateAir Conditioners, Water Heaters, Direct Heating Equipment,according to the type of water heater used in the home.

  18. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2012-01-01T23:59:59.000Z

    Standard for Residential Lighting in Chile, 2010 USResidential General Service Lighting in Chile Virginie E.focus on a regulation for lighting that would ban the sale

  19. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    with the ISO quality (ISO 9001:2008) and environmental (ISOsystem standards such as ISO 9001 and ISO 14001 have somemanagement practices (ISO 9001) and environmental management

  20. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    Thinking Globally: How ISO 50001 – Energy Management canThinking Globally: How ISO 50001 – Energy Management canOrganization for Standardization (ISO) has identified energy

  1. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  2. Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition

    E-Print Network [OSTI]

    Wiel, Stephen; McMahon, James E.

    2005-01-01T23:59:59.000Z

    Sectoral Trends in Global Energy Use a n d Greenhouse Gas1998. “The Role of Building Energy Efficiency in ManagingDirectorate General for Energy. Danish Energy Management.

  3. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    integration of energy management into business practices. ItIndustrial Energy Efficiency The principal business of anIn addition, business metrics such as energy performance

  4. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01T23:59:59.000Z

    regarding energy efficiency; • Limited awareness of theof awareness and the corresponding failure to manage energyawareness within the corporate management culture of the potential for energy

  5. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01T23:59:59.000Z

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  6. How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Water Heaters With Input Ratings Above 75,000 Btu per Hour, Circulating and Instantaneous” [ANSI Z21.10.3a] American National StandardsWater Heaters With Input Ratings Above 75,000 Btu Per Hour, Circulating and Instantaneous” [ANSI Z21.10.3a] American National Standards

  7. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    business model for energy efficiency Historically, utilities in Arizona have been allowed to recover prudently incurred EE program costs;costs. We presented a comprehensive business model to achieve aggressive energyCosts Net Benefits Figure 1 Flowchart for analyzing impacts of portfolio of energy efficiency programs on stakeholders Model Inputs Business-

  8. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    None

    2010-09-14T23:59:59.000Z

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  9. International Comparison of Energy Labeling and Standards for Energy Efficient and Green Buildings 

    E-Print Network [OSTI]

    Hennicke, P.; Shrestha, S.; Schleicher, T.

    2011-01-01T23:59:59.000Z

    This paper discusses the approaches of the European Union, Germany and India to reduce GHG- emissions and mitigate climate change impacts from buildings through the establishment of energy performance standards and green building...

  10. PROJECTED REGIONAL IMPACTS OF APPLIANCE EFFICIENCY STANDARDS FOR THE U.S. RESIDENTIAL SECTOR

    E-Print Network [OSTI]

    of California Berkeley, CA 94720, USA http://enduse.lbl.gov/projects/standards.html February 1998 This work 1990 to 2010. Even if fuel and electricity prices decline substantially by 2010, as some industry

  11. Approaches to representing aircraft fuel efficiency performance for the purpose of a commercial aircraft certification standard

    E-Print Network [OSTI]

    Yutko, Brian M. (Brian Matthew)

    2011-01-01T23:59:59.000Z

    Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft C02 emissions and ...

  12. International Comparison of Energy Labeling and Standards for Energy Efficient and Green Buildings

    E-Print Network [OSTI]

    Hennicke, P.; Shrestha, S.; Schleicher, T.

    2011-01-01T23:59:59.000Z

    This paper discusses the approaches of the European Union, Germany and India to reduce GHG- emissions and mitigate climate change impacts from buildings through the establishment of energy performance standards and green building...

  13. Approaches to Representing Aircraft Fuel Efficiency Performance for the Purpose of a Commercial Aircraft Certification Standard

    E-Print Network [OSTI]

    Yutko, Brian

    2011-06-27T23:59:59.000Z

    Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft CO2 emissions and ...

  14. How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    efficiency of commercial water heaters and hot water supplyheat pump water heaters). http://edocket.access.gpo.gov/2004/CSA 4.3- 2004 Gas Water Heaters - Volume III, Storage

  15. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    Republic of South Africa, “National Energy Act 34 of 2008. ”water heaters in South Africa,” J. Energy South. Afr. , vol.Energy Efficiency Country Study: Republic of South Africa,”

  16. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    As-Usual; DSM=Demand Side Management; EE=Energy Efficiency;of the demand side management (DSM) portfolio – projectedshareholder returns. 11 4.2 Demand side management portfolio

  17. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  18. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  19. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  20. CA Statewide Codes and Standards Program Title 24 Local Energy Efficiency Ordinances

    E-Print Network [OSTI]

    Market, San Francisco, Room 687, CA 94105 (415) 973-9944 Email: MxWL@pge.com #12;LEGAL NOTICE This report Zone 3 Energy Cost-Effectiveness Study Prepared for: Pat Eilert Codes and Standards Program Pacific Gas and Electric Company Maril Pitcock Government Partnership Program Pacific Gas and Electric Company Prepared by

  1. Summary of 2008 Building Energy Efficiency Standards Changes Summary of Changes For

    E-Print Network [OSTI]

    procedure and update outdoor lighting power densities, require outdoor lighting to meet Title 24 standards Requirements for Lighting Systems and Equipment related to Luminaire Power determination, sign lighting, multipurpose rooms less than 1,000 sf, classrooms, and conference rooms (§132(d)) · Revising the Lighting Power

  2. Developing an Efficient Surveillance Scheme for Assessing Compliance with Air Quality Standards

    E-Print Network [OSTI]

    Washington at Seattle, University of

    of a component of a major pollution sources, like a power plant or oil re neries; or an increase in the level compliance with air quality standards. Since many countries maintain online surveillance of air pollution. This work proposes a three-step procedure for implementing the SR scheme to air pollution data. The rst step

  3. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located within the Vehicle Technologies Office (VTO), within the Office of Energy Efficiency and Renewable Energy (EERE). The Office reports to the Deputy Assistant Secretary for...

  4. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

  5. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  6. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    small business fleets like Manhattan Beer Distributors adopt fuel efficient vehicle technology -- reducing costs and pollution in the process. March 15, 2011 Efficient...

  7. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    efficiency resources as part of an RES compliance strategy). Energy efficiency with a comprehensive business model:

  8. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    SciTech Connect (OSTI)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10T23:59:59.000Z

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  9. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.

    2013-01-01T23:59:59.000Z

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

  10. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles: Preprint

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.

    2013-03-01T23:59:59.000Z

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

  11. Sandia National Laboratories: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Vehicle Technologies On November 9, 2010, in Vehicle Technology programs at Sandia share a common goal: reducing dependence on petroleum-based fuels and...

  12. Statistical sampling method for releasing decontaminated vehicles

    SciTech Connect (OSTI)

    Lively, J.W.; Ware, J.A. [Rust Geotech, Grand Junction, CO (United States)

    1996-06-01T23:59:59.000Z

    Earth moving vehicles (e.g., dump trucks, belly dumps) commonly haul radiologically contaminated materials from a site being remediated to a disposal site. Traditionally, each vehicle must be surveyed before being released. The logistical difficulties of implementing the traditional approach on a large scale demand that an alternative be devised. A statistical method (MIL-STD-105E, {open_quotes}Sampling Procedures and Tables for Inspection by Attributes{close_quotes}) for assessing product quality from a continuous process was adapted to the vehicle decontamination process. This method produced a sampling scheme that automatically compensates and accommodates fluctuating batch sizes and changing conditions without the need to modify or rectify the sampling scheme in the field. Vehicles are randomly selected (sampled) upon completion of the decontamination process to be surveyed for residual radioactive surface contamination. The frequency of sampling is based on the expected number of vehicles passing through the decontamination process in a given period and the confidence level desired. This process has been successfully used for 1 year at the former uranium mill site in Monticello, Utah (a CERCLA regulated clean-up site). The method forces improvement in the quality of the decontamination process and results in a lower likelihood that vehicles exceeding the surface contamination standards are offered for survey. Implementation of this statistical sampling method on Monticello Projects has resulted in more efficient processing of vehicles through decontamination and radiological release, saved hundreds of hours of processing time, provided a high level of confidence that release limits are met, and improved the radiological cleanliness of vehicles leaving the controlled site.

  13. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Energy Savers [EERE]

    and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The...

  14. Autonomie Modeling Tool Improves Vehicle Design and Testing,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel...

  15. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    SciTech Connect (OSTI)

    Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

    2010-05-03T23:59:59.000Z

    The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar magnitude.

  16. Status of cool roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem; Levinson, Ronnen

    2008-01-01T23:59:59.000Z

    CEC. 2006. 2005 Building energy efficiency standards forwidely used building energy efficiency standards, includingstrip mall. Building energy efficiency standards typically

  17. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01T23:59:59.000Z

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  18. Vehicle Technologies Office: US DRIVE Materials Technical Team...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle efficiency regardless of the vehicle size or propulsion system employed. This roadmap lays out the future direction for this research. U.S. DRIVE Materials Technical Team...

  19. Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office (VTO) supports the development of individual fuel-efficient technologies, as well as the work to integrate them into a vehicle.

  20. The robust vehicle routing problem with time windows

    E-Print Network [OSTI]

    2012-09-25T23:59:59.000Z

    Sep 25, 2012 ... This paper demonstrates how to efficiently solve the vehicle routing ... Much research has been performed on vehicle routing problems, not the ...

  1. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  2. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    2009. The 2009 State Energy Efficiency Scorecard. ACEEEof Ratepayer-Funded Energy Efficiency in the U.S.. Therenewable energy and energy efficiency into a sustainable

  3. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01T23:59:59.000Z

    like condensing boilers have efficiency depending on supplymodel condensing boilers whose efficiency depends on supplyfan for boilers and furnaces. Most of ACM efficiency data

  4. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    2009. The 2009 State Energy Efficiency Scorecard. ACEEEand cost-effective energy-efficiency investment. Energyenergy sources and energy efficiency policy review: The

  5. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    E-Print Network [OSTI]

    Schiller, Steven R.

    2011-01-01T23:59:59.000Z

    Actuarial Pricing Of Energy Efficiency Projects: Lessonsand Effectiveness of Energy Efficiency Programs,” LBNL-of Ratepayer-Funded Energy Efficiency in the U.S." The

  6. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    of various energy efficiency business models on utilityContribution of energy efficiency business models to after-Table 2. Energy efficiency business models analyzed for

  7. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01T23:59:59.000Z

    requirements for energy-efficient design and construction,technologies used for energy-efficient design. Being able toand engineers design energy efficient buildings. Currently

  8. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    E-Print Network [OSTI]

    Schiller, Steven R.

    2011-01-01T23:59:59.000Z

    Efficiency and Renewable Energy (EERE) Weatherization &Energy Efficiency and Renewable Energy (EERE) 2006. "GuideEnergy Efficiency and Renewable Energy (EERE) 2007. "Impact

  9. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    E-Print Network [OSTI]

    Schiller, Steven R.

    2011-01-01T23:59:59.000Z

    to consider the benefits and risks of energy efficiency andUnfortunately, for energy efficiency, risk management isis perhaps the principal risk of energy efficiency. 25 We

  10. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08T23:59:59.000Z

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  11. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    SciTech Connect (OSTI)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-03-28T23:59:59.000Z

    California has been using DOE-2 as the main building energy analysis tool in the development of building energy efficiency standards (Title 24) and the code compliance calculations. However, DOE-2.1E is a mature program that is no longer supported by LBNL on contract to the USDOE, or by any other public or private entity. With no more significant updates in the modeling capabilities of DOE-2.1E during recent years, DOE-2.1E lacks the ability to model, with the necessary accuracy, a number of building technologies that have the potential to reduce significantly the energy consumption of buildings in California. DOE-2's legacy software code makes it difficult and time consuming to add new or enhance existing modeling features in DOE-2. Therefore the USDOE proposed to develop a new tool, EnergyPlus, which is intended to replace DOE-2 as the next generation building simulation tool. EnergyPlus inherited most of the useful features from DOE-2 and BLAST, and more significantly added new modeling capabilities far beyond DOE-2, BLAST, and other simulations tools currently available. With California's net zero energy goals for new residential buildings in 2020 and for new commercial buildings in 2030, California needs to evaluate and promote currently available best practice and emerging technologies to significantly reduce energy use of buildings for space cooling and heating, ventilating, refrigerating, lighting, and water heating. The California Energy Commission (CEC) needs to adopt a new building energy simulation program for developing and maintaining future versions of Title 24. Therefore, EnergyPlus became a good candidate to CEC for its use in developing and complying with future Title 24 upgrades. In 2004, the Pacific Gas and Electric Company contracted with ArchitecturalEnergy Corporation (AEC), Taylor Engineering, and GARD Analytics to evaluate EnergyPlus in its ability to model those energy efficiency measures specified in both the residential and nonresidential Alternative Calculation Method (ACM) of the Title-24 Standards. The AEC team identified gaps between EnergyPlus modeling capabilities and the requirements of Title 24 and ACMs. AEC's evaluation was based on the 2005 version of Title 24 and ACMs and the version 1.2.1 of EnergyPlus released on October 1, 2004. AEC's evaluation is useful for understanding the functionality and technical merits of EnergyPlus for implementing the performance-based compliance methods described in the ACMs. However, it did not study the performance of EnergyPlus in actually making building energy simulations for both the standard and proposed building designs, as is required for any software program to be certified by the CEC for use in doing Title-24 compliance calculations. In 2005, CEC funded LBNL to evaluate the use of EnergyPlus for compliance calculations by comparing the ACM accuracy test runs between DOE-2.1E and EnergyPlus. LBNL team identified key technical issues that must be addressed before EnergyPlus can be considered by the CEC for use in developing future Nonresidential Title-24 Standards or as an ACM tool. With Title 24 being updated to the 2008 version (which adds new requirements to the standards and ACMs), and EnergyPlus having been through several update cycles from version 1.2.1 to 2.1, it becomes crucial to review and update the previously identified gaps of EnergyPlus for use in Title 24, and more importantly to close the gaps which would help pave the way for EnergyPlus to be adopted as a Title 24 compliance ACM. With this as the key driving force, CEC funded LBNL in 2008 through this PIER (Public Interest Energy Research) project with the overall technical goal to expand development of EnergyPlus to provide for its use in Title-24 standard compliance and by CEC staff.

  12. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  13. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31T23:59:59.000Z

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

  14. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  15. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  16. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    In 2007, the Minnesota legislature passed the Next Generation Energy Act (NGEA), which requires both electric and natural gas investor-owned utilities to reduce energy sales, and spend a minimum ...

  17. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity...

  18. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    In 2007, the Minnesota legislature passed the Next Generation Energy Act (NGEA), which requires both electric and natural gas investor-owned utilities to reduce energy sales by 1.5% of average...

  19. Energy Efficiency Standard

    Broader source: Energy.gov [DOE]

    The 2007 Illinois Power Agency Act (IPAA) requires both electric and natural gas utilities establish annual energy-savings goals and reduce energy delivered and peak demand. Utilities are required...

  20. CAFE Standards (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Pursuant to the Presidents announcement of a National Fuel Efficiency Policy, the National Highway Traffic Safety Administration (NHTSA) and the EPA have promulgated nationally coordinated standards for tailpipe Carbon Dioxide (CO2)-equivalent emissions and fuel economy for light-duty vehicles (LDVs), which includes both passenger cars and light-duty trucks. In the joint rulemaking, the Environmental Protection Agency is enacting CO2-equivalent emissions standards under the Clean Air Act (CAA), and NHTSA is enacting companion Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act of 2007.

  1. Vehicle Technologies Office: AVTA- All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  2. Armored Vehicle 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  3. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan

    2010-06-01T23:59:59.000Z

    Since the late 1970s, energy labeling programs and mandatory energy performance standards have been used in many different countries to improve the efficiency levels of major residential and commercial equipment. As more countries and regions launch programs covering a greater range of products that are traded worldwide, greater attention has been given to harmonizing the specific efficiency criteria in these programs and the test methods for measurements. For example, an international compact fluorescent light (CFL) harmonization initiative was launched in 2006 to focus on collaboration between Australia, China, Europe and North America. Given the long history of standards and labeling programs, most major energy-consuming residential appliances and commercial equipment are already covered under minimum energy performance standards (MEPS) and/or energy labels. For these products, such as clothes washers and CFLs, harmonization may still be possible when national MEPS or labeling thresholds are revised. Greater opportunity for harmonization exists in newer energy-consuming products that are not commonly regulated but are under consideration for new standards and labeling programs. This may include commercial products such as water dispensers and vending machines, which are only covered by MEPS or energy labels in a few countries or regions. As China continues to expand its appliance standards and labeling programs and revise existing standards and labels, it is important to learn from recent international experiences with efficiency criteria and test procedures for the same products. Specifically, various types of standards and labeling programs already exist in North America, Europe and throughout Asia for products in China's 2010 standards and labeling programs, namely clothes washers, water dispensers, vending machines and CFLs. This report thus examines similarities and critical differences in energy efficiency values, test procedure specifications and other technical performance requirements in existing international programs in order to shed light on where Chinese programs currently stands and considerations for their 2010 programs.

  4. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Automotive and other vehicle bodies are generally formed out of sheet steel, although there is a trend toward more plastic and aluminum

  6. Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles

    SciTech Connect (OSTI)

    Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

    2010-01-01T23:59:59.000Z

    As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

  7. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  8. Energy Department Invests More Than $55 Million to Advance Efficient...

    Energy Savers [EERE]

    Invests More Than 55 Million to Advance Efficient Vehicle Technologies Energy Department Invests More Than 55 Million to Advance Efficient Vehicle Technologies August 15, 2014 -...

  9. EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

  10. ENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE

    E-Print Network [OSTI]

    Rainforth, Emma C.

    MAINTENANCE Standard Operating Procedure: Vehicle Maintenance I. Introduction and Purpose This SOP containsENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE: VEHICLE operations within Ramapo College. III. Standards and Specifications Conduct vehicle maintenance operation

  11. ENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE

    E-Print Network [OSTI]

    Rainforth, Emma C.

    ENVIRONMENTAL HEALTH AND SAFETY RAMAPO COLLEGE OF NEW JERSEY STANDARD OPERATING PROCEDURE: VEHICLE FUELING Standard Operating Procedure: Vehicle Fueling I. Introduction and Purpose Vehicle and equipment maintenance yards with fueling, including mobile fueling operations. III. Standards and Specifications (for

  12. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    accounted separately), regenerative braking, battery thermalthere is no regenerative braking, and vehicle efficiency,iterative calculations. Regenerative braking is represented

  13. Vehicle Technologies Office Merit Review 2014: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2014: Significant...

  14. Vehicle Technologies Office Merit Review 2015: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2015: Significant Enhancement of Computational...

  15. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

  17. Supertruck - Improving Transportation Efficiency through Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  18. Issuance 2014-11-21:Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans: Availability of the Preliminary Technical Support Document, Notice of Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans: Availability of the Preliminary Technical Support Document, Notice of Comment Period Extension

  19. Exploratory Study: Vehicle Mileage Fees in Texas

    E-Print Network [OSTI]

    Powered Vehicles in Texas Estimated Fleetwide Fuel Efficiency of Gasoline Powered Vehicles in Texas 20 25 gy, gy f , gy 90% 100% Other (EV, Plugin 70% 80% Hybrid, CNG, LPG, Fuel Cell) Electric Gasoline 10% 20% Conventional Passenger Vehicles 0% 2010 2015 2020 2025 2030 2035 #12;Projected Fuel Tax

  20. Vehicle Technologies Office Merit Review 2015: Class 8 Truck...

    Office of Environmental Management (EM)

    Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Presentation given by DTNA...

  1. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  2. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  3. Vehicle Technologies Office Merit Review 2014: Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel effects...

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    1998b). Distributed Small-scale CHP on a Large ManufacturingCADDET). (1998). Free CHP Saves Energy for VehicleCombined heat and power (CHP) CHP combined with absorption

  5. Vehicle Technologies Office Merit Review 2014: Development of Modified PAG (polyalkylene glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of modified...

  6. Vehicle Technologies Office Merit Review 2015: Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about fuel effects on...

  7. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar International Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck –...

  8. Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins SuperTruck program technology...

  9. Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

  10. Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Peterbilt at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the technology and system level...

  11. Vehicle Technologies Office Merit Review 2015: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined experimental and...

  12. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  13. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  14. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  15. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    E-Print Network [OSTI]

    Schiller, Steven R.

    2011-01-01T23:59:59.000Z

    rebatesincentives/ief/ PJM Forward Market Operations 2010. "PJM Manual 18B: Energy Efficiency Measurement &Independent System Operator 13 and PJM Regional Transmission

  16. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    business model for energy efficiency inclusive of both a lost fixed costand energy costs. The Benefits Calculator uses inputs provided in the Utility Characterization to produce a “business-cost recovery: Impact on stakeholders under federal CERES ..9 3.3 Energy efficiency with a comprehensive business

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    American Council for an Energy Efficient Economy, WashingtonCashes in on Energy Efficient Inverter Technology. National$200,000 per Year with Energy-Efficient Motors. Case Study

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%flue gas by 1% increases boiler efficiency by 2.5%. Boiler -Conservation and Boiler Plant Efficiency Advancements. In:

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency created1996). Energy Saved by Raising Employees’ Awareness. Case

  20. The standardization of {sup 63}Ni by liquid scintillation spectrometry with {sup 3}H-standard efficiency tracing: A new calibration and review of data from calibrations over the past 27 years

    SciTech Connect (OSTI)

    Zimmerman, B.E.; Colle, R.

    1995-12-31T23:59:59.000Z

    A new calibration of the low-energy (66.945 + 0.004 keV) beta-particle emitter {sup 63}Ni has recently been performed at NIST using 4{pi}B liquid scintillation (LS) spectrometry with the CIE-MAT/NIST {sup 3}H-standard efficiency tracing method. Results of the calibration, including a thorough uncertainty analysis, are given. The standards prepared during this study are gravimetrically related to two others which have been calibrated at NIST. The first calibration (in 1968) was based on microcalorimetry using an assumed average beta-particle decay energy. The second (1984) was performed with the CIEMAT/NIST {sup 3}H-standard efficiency tracing method and LS spectrometry. Careful reanalysis of these experimental data using the latest available nuclear data have allowed for the first experimental determination of the half-life of {sup 63}Ni by radioactive decay. Based on these three values, a half-life of 101.06 + 1.97 a has been determined. Combining this new value and data from other half-life measurements, the {sup 63}Ni half-life has been critically evaluated, resulting in a recommended value of 101.1 + 1.4 a. A review of NBS/NIST standardizations of {sup 63}Ni over the past 27 years has been performed and the results reported. Despite the length of time over which these calibrations were performed and the fact that different methods were used (microcalorimetry and LS spectrometry), excellent agreement exists between the three standards.

  1. Technical support document: Energy efficiency standards for consumer products: Refrigerators, refrigerator-freezers, and freezers including draft environmental assessment, regulatory impact analysis

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Energy Policy and Conservation Act (P.L. 94-163), as amended by the National Appliance Energy Conservation Act of 1987 (P.L. 100-12) and by the National Appliance Energy Conservation Amendments of 1988 (P.L. 100-357), and by the Energy Policy Act of 1992 (P.L. 102-486), provides energy conservation standards for 12 of the 13 types of consumer products` covered by the Act, and authorizes the Secretary of Energy to prescribe amended or new energy standards for each type (or class) of covered product. The assessment of the proposed standards for refrigerators, refrigerator-freezers, and freezers presented in this document is designed to evaluate their economic impacts according to the criteria in the Act. It includes an engineering analysis of the cost and performance of design options to improve the efficiency of the products; forecasts of the number and average efficiency of products sold, the amount of energy the products will consume, and their prices and operating expenses; a determination of change in investment, revenues, and costs to manufacturers of the products; a calculation of the costs and benefits to consumers, electric utilities, and the nation as a whole; and an assessment of the environmental impacts of the proposed standards.

  2. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    E-Print Network [OSTI]

    Schiller, Steven R.

    2011-01-01T23:59:59.000Z

    efficiency measures. These guidelines generally derive fromguidelines for verifying the persistence energy savings from conservation measures.and- guidelines Northwest Regional Technical Forum Website. "Northwest Regional Technical Forum (RTF) - Pacific Northwest Deemed Measure

  3. SAE Standards Support

    SciTech Connect (OSTI)

    Gowri, Krishnan

    2012-11-01T23:59:59.000Z

    This report summarizes PNNL activities in FY 2012 in support of the following two vehicle communication standards activities: • Technical support to SAE, ANSI and NIST technical working groups. PNNL actively contributed to the use case development, harmonization, and evaluation of the SAE standards activities for vehicle to grid communication • Tested and validated a set of potential technologies for meeting SAE communication requirements and provided recommendations for technology choices.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Australia. Heat was recovered at relatively high efficiencies, although it is not specified how much energy

  5. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Performance and testing data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  6. 978-3-901882-46-3 c 2012 IFIP Green Move: towards next generation sustainable smartphone-based vehicle sharing

    E-Print Network [OSTI]

    Cugola, Gianpaolo

    efficient with respect to traditional Internal Combustion Engine (ICE) vehicles. EVs, however, face some

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  11. February 22, 2012 Use of Small Vehicles on Sidewalks

    E-Print Network [OSTI]

    Dyer, Bill

    February 22, 2012 Use of Small Vehicles on Sidewalks Introduction: Facility Services is committed our older, larger, and less efficient vehicles with smaller, more efficient ones. These smaller vehicles limit our environmental impact by reducing raw material and energy needed for manufacturing

  12. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01T23:59:59.000Z

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  13. A Model for Analyzing Components of Uncertainty Encountered in {sup 3}H-Standard Efficiency Tracing in 4{pi}{beta} Liquid Scintillation Counting

    SciTech Connect (OSTI)

    Brian E. Zimmerman; R. Colle

    2000-11-12T23:59:59.000Z

    Over the past decade, uniform conventions for assessing and reporting measurement uncertainties have been adopted by nearly every international metrological organization, as well as by many scientific and engineering associations and principal laboratories. This uncertainty approach is available as guidelines published by the International Organization for Standardization (ISO) and is used by the National Institute of Standards and Technology (NIST) for the dissemination of all of its standards, calibrations, and measurement results. One of the most widely used techniques for the radioactivity standardizations at NIST is liquid scintillation (LS) spectrometry, mainly through the use of a {sup 3}H-standard efficiency tracing technique that has come to be known as the CIEMAT/NIST method. Although the method is relatively simple in concept and implementation, correct analysis of the uncertainties involved in applying the method using ISO guidelines is not. An initial requirement for a proper uncertainty analysis is the development of a model that explicitly specifies the relationship between the different input and output variables involved in the measurement that lead to an uncertainty in the final certified activity. The approach taken in this analysis is based on the fact that use of black-box computer codes as an integral part of the calculation of a final value makes a formal mathematical expression of the measurement model difficult, if not impossible. Therefore, many of the uncertainty components were estimated by propagating the uncertainty from each of the respective components through the data reduction equations using a spreadsheet.

  14. EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

  15. Coordinated Vehicle Platoon Control: Weighted and Constrained Consensus and Communication Network Topologies

    E-Print Network [OSTI]

    Zhang, Hongwei

    Coordinated Vehicle Platoon Control: Weighted and Constrained Consensus and Communication Network a new method for enhancing highway safety and efficiency by coordinated control of vehicle platoons. One performance. Vehicle deployment is formulated as a weighted and constrained consensus control problem

  16. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  17. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  18. FUEL ECONOMY AND CO2 EMISSIONS STANDARDS, MANUFACTURER PRICING STRATEGIES, AND FEEBATES

    SciTech Connect (OSTI)

    Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL; Bunch, Dr David S. [University of California, Davis] [University of California, Davis

    2012-01-01T23:59:59.000Z

    Corporate Average Fuel Economy (CAFE) standards and CO2 emissions standards for 2012 to 2016 have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting new standards, as well as the impact of feebate policies. The analysis is carried out by means of a dynamic optimization model that simulates manufacturer decisions with the objective of maximizing social surplus while simultaneously considering consumer response and meeting CAFE and emissions standards. The results indicate that technology adoption plays the major role and that the provision of compliance flexibility and the availability of cost-effective advanced technologies help manufacturers reduce the need for pricing to induce changes in the mix of vehicles sold. Feebates, when implemented along with fuel economy and emissions standards, can bring additional fuel economy improvement and emissions reduction, but the benefit diminishes with the increasing stringency of the standards.

  19. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01T23:59:59.000Z

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  20. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  1. Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles

    E-Print Network [OSTI]

    California at Davis, University of

    Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University;Cluster Strategy => GOOD FUELING CONVENIENCE W/ SPARSE EARLY NETWORK (Vehicles Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels

  2. 10850 Federal Register / Vol. 71, No. 42 / Friday, March 3, 2006 / Rules and Regulations number of registered vehicles. In the

    E-Print Network [OSTI]

    of registered vehicles. In the United States, there are over 230,000,000 registered vehicles. In 2005, about 12,700 vehicles were imported into the U.S. by RIs. Approximately 99 percent of the imported vehicles vehicles have not been high theft line vehicles subject to the Theft Prevention Standard. Of those

  3. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  4. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011

    SciTech Connect (OSTI)

    Satchwell, Andrew; Cappers, Peter; Goldman, Charles

    2011-03-22T23:59:59.000Z

    Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.

  5. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2012-08-01T23:59:59.000Z

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    with absorption cooling District heating Alternative fuelsvery efficiently. District heating or a locally producedcooling (DOE, 2003b). District heating. District heating

  7. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  12. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  13. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  14. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  15. Argonne Facilitation of PHEV Standard Testing Procedure (SAE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) 2009 DOE Hydrogen Program and Vehicle...

  16. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  17. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  18. Study of long term options for electric vehicle air conditioning

    SciTech Connect (OSTI)

    Dieckmann, J.; Mallory, D. [Little (Arthur D.), Inc., Cambridge, MA (United States)

    1991-07-01T23:59:59.000Z

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  19. Study of long term options for electric vehicle air conditioning

    SciTech Connect (OSTI)

    Dieckmann, J.; Mallory, D. (Little (Arthur D.), Inc., Cambridge, MA (United States))

    1991-07-01T23:59:59.000Z

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  20. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on any vehicle type or engine configuration. How the specific fuel and emissions control systems work together determines compliance with EPA emissions standards for a...

  1. Alternative Fuels and Advanced Vehicles Data Center - Codes and...

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources AgencyCompany...

  2. Safety, codes and standards for hydrogen installations :

    SciTech Connect (OSTI)

    Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

    2014-04-01T23:59:59.000Z

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  3. HEV, PHEV, BEV Test Standard Validation

    Broader source: Energy.gov (indexed) [DOE]

    BEV Test Standard Validation 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Michael Duoba Argonne National Laboratory Sponsored by Lee Slezak...

  4. AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    accounted separately), regenerative braking, battery thermalthere is no regenerative braking, and vehicle efficiency,iterative calculations. Regenerative braking is represented

  5. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011

    E-Print Network [OSTI]

    Satchwell, Andrew

    2011-01-01T23:59:59.000Z

    framework of the energy efficiency business model in furthera comprehensive energy efficiency business model on utilitya comprehensive energy efficiency business model on utility

  6. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  7. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01T23:59:59.000Z

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  8. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2011-06-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  9. Sandia National Laboratories: fuel-cell electric vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel-cell electric vehicle High-Efficiency Solar Thermochemical Reactor for Hydrogen Production On July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI),...

  10. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty vehicles....

  11. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy...

  12. Vehicle Technologies Office Merit Review 2014: A Combined Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes Vehicle Technologies Office Merit Review 2014: A Combined Experimental and Modeling Approach...

  13. Vehicle Technologies Office Merit Review 2014: DC Fast Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE...

  14. Wireless Plug-in Electric Vehicle (PEV) Charging

    Broader source: Energy.gov (indexed) [DOE]

    efficiency in a test and demonstration vehicle - Loosely coupled magnetic resonant transformers having air core cannot meet health and safety targets, therefore, novel soft...

  15. Vehicle Technologies Office Merit Review 2014: A Materials Approach...

    Office of Environmental Management (EM)

    to Fuel-Efficient Tires Presentation given by PPG Industries at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  16. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain and Vehicle Development - A Look Toward 2020 Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine...

  17. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

    2011-11-01T23:59:59.000Z

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

  18. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Broader source: Energy.gov (indexed) [DOE]

    850 Wm 2 of sun emulation The more efficient the vehicle the higher the impact of climate control on energy consumption and range 20 o F cold start has the largest cold...

  19. Vehicle assisted harpoon breaching tool

    DOE Patents [OSTI]

    Pacheco, James E. (Albuquerque, NM); Highland, Steven E. (Albuquerque, NM)

    2011-02-15T23:59:59.000Z

    A harpoon breaching tool that allows security officers, SWAT teams, police, firemen, soldiers, or others to forcibly breach metal doors or walls very quickly (in a few seconds), without explosives. The harpoon breaching tool can be mounted to a vehicle's standard receiver hitch.

  20. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  1. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  2. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  3. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  4. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing...

  5. Apps for Vehicles: What is OpenXC and how is it different than...

    Open Energy Info (EERE)

    a standard across all vehicles sold in North America since 1996, but the standard message set primarily concerns the emissions powertrain. The rest of the diagnostic messages...

  6. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards & Labeling Programs for Copy Machines, External Power Supplies, LED Displays, Residential Gas Cooktops and Televisions

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01T23:59:59.000Z

    References Australia Equipment Energy Efficiency Committee.Energy Efficiency Marking Level 5 requirements. Lastly, ENERGY STAR, California MEPS, Australia

  7. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling EfficientState Electric Vehicle Workplace

  8. Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004

    SciTech Connect (OSTI)

    Zolot, M.; Markel, T.; Pesaran, A.

    2007-01-01T23:59:59.000Z

    This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

  9. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov (indexed) [DOE]

    requirements. Transportable test fixture will be operated in a certified EMC chamber near ANL. Accomplishment: SAE J2990 FirstSecond Responder Guideline, Creation...

  10. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  11. Fuel-Efficient Distributed Control for

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Fuel-Efficient Distributed Control for Heavy Duty Vehicle Platooning ASSAD ALAM Licentiate Thesis in Automatic Control Stockholm, Sweden 2011 #12;Fuel-Efficient Distributed Control for Heavy Duty Vehicle, vehicles can semi-autonomously travel at short intermediate spacings, effectively reducing congestion

  12. Standard 90, the planning

    SciTech Connect (OSTI)

    Not Available

    1985-10-01T23:59:59.000Z

    In order to understand the current proposed ANS/ASHRAE/IES Standard 90.1 Energy Efficient Design of New Non-Residential Buildings and New High-Rise, Residential Buildings, this article offers background on the initial Standard, the organization of the Standard committee, and the objectives established for the proposed Standard 90.1.

  13. Appliance Efficiency Regulations

    Broader source: Energy.gov [DOE]

    Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  14. OPTIMAL DESIGN OF HYBRID FUEL CELL VEHICLES

    E-Print Network [OSTI]

    Jeongwoo Han; Michael Kokkolaras; Panos Papalambros

    Fuel cells are being considered increasingly as a viable alternative energy source for automobiles because of their clean and efficient power generation. Numerous technological concepts have been developed and compared in terms of safety, robust operation, fuel economy, and vehicle performance. However, several issues still exist and must be addressed to improve the viability of this emerging technology. Despite the relatively large number of models and prototypes, a model-based vehicle design capability with sufficient fidelity and efficiency is not yet available in the literature. In this article we present an analysis and design optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrating a fuel cell vehicle simulator with a physics-based fuel cell model. The integration is achieved via quasi-steady fuel cell performance maps, and provides the ability to modify the characteristics of fuel cell systems with sufficient accuracy (less than 5 % error) and efficiency (98 % computational time reduction on average). Thus, a vehicle can be optimized subject to constraints that include various performance metrics and design specifications so that the overall efficiency of the hybrid fuel cell vehicle can be improved by 14 % without violating any constraints. The obtained optimal fuel cell system is also compared to other, not vehicle-related, fuel cell systems optimized for maximum power density or maximum efficiency. A tradeoff between power density and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency because it operates in a wider current region. When optimizing the fuel cell

  15. Evolution of cool-roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem

    2008-01-01T23:59:59.000Z

    CEC. 2006. 2005 Building Energy Efficiency Standards foraddress cool roofs in building energy-efficiency standardsin its “Title 24” Building Energy Efficiency Standards for

  16. Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and

    E-Print Network [OSTI]

    the impacts of utilization (mileage per year per vehicle) and gasoline prices on vehicle purchasing decisions increase the rate of purchases of hybrid or electric vehicles in scenarios with high gasoline prices efficient vehicles such as hybrid and electric vehicles are purchased only in scenarios with high gasoline

  17. Low floor mass transit vehicle

    DOE Patents [OSTI]

    Emmons, J. Bruce (Beverly Hills, MI); Blessing, Leonard J. (Rochester, MI)

    2004-02-03T23:59:59.000Z

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  18. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  19. Stranded Vehicles: How Gasoline Taxes Change the Value of Households' Vehicle Assets

    E-Print Network [OSTI]

    Rothman, Daniel

    of increases in gasoline prices varies across income, geography, and political affiliation. One standard that changes in gasoline prices can have sizable effects on the market value of vehicles. In this paper in gasoline prices affect the value of the vehicles that people own and how this varies across demographic

  20. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  1. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  2. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011

    E-Print Network [OSTI]

    Satchwell, Andrew

    2011-01-01T23:59:59.000Z

    Business Model for the Successful Achievement of Energy Efficiency ResourceBusiness Model for the Successful Achievement of Energy Efficiency Resourcebusiness model on utility ROE 13   Table 1. Lifetime savings, resource costs and benefits of alternative energy efficiency

  3. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  4. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  5. Compliance by Design: Industry Response to Energy Efficiency By KATE S. WHITEFOOT, MEREDITH FOWLIE, AND STEVEN J. SKERLOS*

    E-Print Network [OSTI]

    Fowlie, Meredith

    1 Compliance by Design: Industry Response to Energy Efficiency Standards* By KATE S. WHITEFOOT, MEREDITH FOWLIE, AND STEVEN J. SKERLOS* Policies designed to improve industrial environmental performance for household appliances, lighting products, light-duty and heavy-duty vehicles. How firms respond

  6. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011

    E-Print Network [OSTI]

    Satchwell, Andrew

    2011-01-01T23:59:59.000Z

    of the energy efficiency business model in further detail.7   4.3 Business Modelenergy efficiency business model on utility earnings .

  7. Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency

    E-Print Network [OSTI]

    Ridgway, Paul

    2010-01-01T23:59:59.000Z

    graphite formulations in particular, are the current standard for battery anodes in electric vehicle lithium-ion batteries (

  8. Effect of Vehicle Mobility on Connectivity of Vehicular Ad Hoc Networks

    E-Print Network [OSTI]

    Zhou, Xiangyun "Sean"

    Effect of Vehicle Mobility on Connectivity of Vehicular Ad Hoc Networks Salman Durrani, Xiangyun equivalent speed parameter and develop an analytical model to explain the effect of vehicle mobility vehicle speed and it decreases as the standard deviation of the vehicle speed increases. Using

  9. Coordination of Multiple Vehicles for Area Coverage Tasks Garrett Winward Nicholas S. Flann

    E-Print Network [OSTI]

    Flann, Nicholas

    vehicles is path planning. Path planning involves determining the shortest or most fuel efficient routeCoordination of Multiple Vehicles for Area Coverage Tasks Garrett Winward Nicholas S. Flann if multiple vehicles are involved. To use a team of automated vehicles safely and effectively they must

  10. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  11. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01T23:59:59.000Z

    electric trains, low emission vehicles, energy-efficient textile manufacturing equipment, solar power systems,

  12. Overview oi the DOE High Efficiency Engine Technologies R&D

    Broader source: Energy.gov (indexed) [DOE]

    Engine R&D Subprogram Vehicle Technologies Program Overview of the DOE High Efficiency Engine Technologies R&D Presented at the 2010 DOE Hydrogen Program and Vehicle...

  13. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Office of Environmental Management (EM)

    and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  14. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  15. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  16. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  17. > 070131-073Vehicle

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    on collaborative control ofAutonomous Underwater Vehicles (AUV), Unmanned Aerial Vehicles (UAV) and Autonomous. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus Terms-Autonomous Surface Vehicles, ocean robotics, marine science operations, unmanned survey vessels. I

  18. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  19. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Broader source: Energy.gov [DOE]

    Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These...

  20. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

  1. High Efficiency Engine Systems Development and Evaluation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Engine Systems Development and Evaluation High Efficiency Engine Systems Development and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  2. US Department of Energy Office of Energy Efficiency and Renewable...

    Open Energy Info (EERE)

    economy, protect the environment, and reduce dependence on foreign oil. Energy Efficiency Panels.jpg EERE's energy efficiency program focuses on Homes, Buildings, Vehicles,...

  3. Tailored Materials for High Efficiency CIDI Engines (Caterpillar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  4. An integrated approach towards efficient, scalable, and low cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient,...

  5. An integrated approach towards efficient, scalable, and low cost...

    Energy Savers [EERE]

    An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and low...

  6. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  7. AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    -to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

  8. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22T23:59:59.000Z

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  9. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    E-Print Network [OSTI]

    Fridley, David

    2010-01-01T23:59:59.000Z

    Australia uses a national test procedure based on IEC 60456 for its MEPS and mandatory energy and water efficiencyEnergy Star revisions. In 2005, Australia adopted mandatory water efficiency

  10. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  11. The impact of mass decompounding on assessing the value of vehicle lightweighting

    E-Print Network [OSTI]

    Bjelkengren, Catarina

    2008-01-01T23:59:59.000Z

    Among consumers and manufacturers alike, there is an increasing realization about the need for fuel efficient vehicles. One effective way to accomplish this is through vehicle lightweighting, which can be achieved by ...

  12. Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles 

    E-Print Network [OSTI]

    Kader, Michael Kirk

    2013-01-18T23:59:59.000Z

    Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other...

  13. Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles

    E-Print Network [OSTI]

    Kader, Michael Kirk

    2013-01-18T23:59:59.000Z

    Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other...

  14. Multiple-vehicle resource-constrained navigation in the deep ocean

    E-Print Network [OSTI]

    Reed, Brooks Louis-Kiguchi

    2011-01-01T23:59:59.000Z

    This thesis discusses sensor management methods for multiple-vehicle fleets of autonomous underwater vehicles, which will allow for more efficient and capable infrastructure in marine science, industry, and naval applications. ...

  15. Comparative analysis of selected fuel cell vehicles

    SciTech Connect (OSTI)

    NONE

    1993-05-07T23:59:59.000Z

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  16. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  17. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    to maximize usage, educating the public and coordinating with utilities. The Vehicle Technologies Office is partnering with city governments, local organizations, and...

  18. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  20. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Environmental Management (EM)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...