National Library of Energy BETA

Sample records for vehicle days driven

  1. National Alternative Vehicle (AFV) Day Odyssey

    Office of Energy Efficiency and Renewable Energy (EERE)

    National Alternative Fuel Vehicle (AFV) Day Odyssey is a biennial event dedicated to promoting cleaner choices in transportation.

  2. Green Week 2011 Day 4: NNSA Highlights Energy Efficient Vehicles...

    National Nuclear Security Administration (NNSA)

    Green Week 2011 Day 4: NNSA Highlights Energy Efficient Vehicles Throughout NNSA April 21, 2011 WASHINGTON, D.C. - This week, the National Nuclear Security Administration (NNSA) is ...

  3. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOE Patents [OSTI]

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  4. Fact #732: June 18, 2012 Days to Turn Trend by Vehicle Class | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: June 18, 2012 Days to Turn Trend by Vehicle Class Fact #732: June 18, 2012 Days to Turn Trend by Vehicle Class "Days to turn" is an automotive industry term that refers to the number of days that vehicles stay in dealer inventories before they are sold (i.e., the time a vehicle stays on the dealer's lot). There are many factors that influence this number including fuel prices, the economy, and supply disruptions. The figure below shows that the days to turn by vehicle

  5. Solar panel driven air purging apparatus for motor vehicles

    SciTech Connect (OSTI)

    Bobier, J.A.; Brown, G.E.

    1992-02-18

    This patent describes improvement in a motor vehicle having an enclosable cabin an internal combustion engine, a battery, an ignition switch having an on position for enabling the internal combustion engine and an off position, an electric motor coupled in driving relationship with an air circulating fan for circulating air through the cabin. The improvement comprises: a solar panel mounted upon the vehicle having a panel output exhibiting variable voltage levels including a peak voltage level and substantially constant current; a power transfer regulator for transferring power form the panel to the motor when enabled, including: energy storage means connectable across the panel output and chargeable by the current to variable charge levels; solid-state switch means connected in energy transfer relationship with the energy storage means and actuable between conducting and non-conducting states when the power transfer regulator is enabled; inductor means connected with the solid-state switch means and connectable with the electric motor for conveying current thereto from the panel and the energy storage means when the solid-state switch means is in the conducting state.

  6. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect (OSTI)

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

  7. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect (OSTI)

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without a home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.

  8. Vehicles

    Broader source: Energy.gov [DOE]

    Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy. The Energy Department works to develop transportation technologies that will reduce our dependence on foreign oil.

  9. Chapter 3. Vehicle-Miles Traveled

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important...

  10. Optima Stakeholder Listening Day

    Broader source: Energy.gov [DOE]

    he Department of Energy’s Bioenergy Technologies and Vehicle Technologies Offices (BETO and VTO) are co-hosting a stakeholder Listening Day to help shape a major new Sustainable Transportation initiative: Co-optimization of Fuels and Engines (Optima).

  11. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  12. labor day

    National Nuclear Security Administration (NNSA)

    0%2A en Labor Day Weekend 2015 http:nnsa.energy.govbloglabor-day-weekend-2015

    Labor Day is dedicated to the achievements of American workers and the contributions they made...

  13. Data Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day Data Day NERSC is hosting a series of data-centric events, called Data Day. Data Day 2016 August 22nd - 23rd, 2016 Wang Hall (LBNL Building 59) and Building 50 AuditoriumLawrence Berkeley National Laboratory This summer, NERSC will host a brand new, data-centric event, Data Day. The main event will take place on August 22, followed by a half-day hackathon on August 23. The goal: to bring together researchers who use, or are interested in using, NERSC systems for data-intensive work. On

  14. Pi Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    digits of in decimal form. Some people are campaigning to replace Pi Day with Tau Day, June 28. Can you figure out why? Pi is the ratio of the circumference of a circle...

  15. National Hydrogen and Fuel Cell Day

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us on Thursday, October 8, in celebrating the first National Hydrogen and Fuel Cell Day! In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization...

  16. Lorraine Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lorraine Day, Ph.D. Title: Safety Officer Adjunct Professor in Nuclear Science Center Office Tel. : (225) 578-4616 Pager: 952-5892...

  17. Lorraine Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lorraine Day, Ph.D. Title: Safety Officer (Safety Program Administrator) Adjunct Professor in Nuclear Science Center Office Tel. : (225) 578-4616...

  18. Earth Day | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Day

  19. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric

  20. CEMI Days

    SciTech Connect (OSTI)

    2015-07-01

    CEMI Days are an important channel of engagement between DOE and the manufacturing industry to identify challenges and opportunities for increasing U.S. manufacturing competitiveness. CEMI Days that are held at manufacturing companies’ facilities can include tours of R&D operations or other points of interest determined by the host company.

  1. Optima Stakeholder Listening Day Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda 16-17 June 2015 Maxwell Conference Room - Energy Systems Integration Facility National Renewable Energy Laboratory, Golden, Colorado Day 1 Half-day: 11:00 - 17:30 11:00 Arrival, lunch (available for purchase, pre-order required), and networking 12:00 Introduction 12:20 Overview of the Optima initiative 13:00 Listening Day goals 13:45 Break 14:15 Working Session 1: Scoping new horizons for fuels and vehicles 15:45 Break 16:15 Working Session 2: Fuel and vehicle interactions - Thrust 1

  2. Memorial Day

    Broader source: Energy.gov [DOE]

    Three years after the Civil War ended, on May 5, 1868, the head of an organization of Union veterans, the Grand Army of the Republic (GAR), established Decoration Day as a time for the nation to decorate the graves of the war dead with flowers. Maj. Gen. John A. Logan declared that Decoration Day should be observed on May 30. It is believed that date was chosen because flowers would be in bloom all over the country.

  3. Kuhio Day

    Broader source: Energy.gov [DOE]

    Prince Kuhio Day is an official State of Hawaii holiday and it honors Hawaiian Prince Jonah Kuhio Kalanianaole Piikoi. It takes place every year on March 26, the birthday of the prince. Prince Kuhio was born on March 26, 1871 and he died on January 7, 1922.

  4. Duty Cycle Analysis & Tools: Maximizing Vehicle Performance (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2009-10-28

    Shows that the benefits of using hybrid vehicle trucks in fleets depends on the duty cycle, or how the vehicles will be driven (e.g., stop and go) over a particular route (e.g., urban or rural).

  5. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  7. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  8. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  9. NREL: Learning - Fuel Cell Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Photo showing a silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. ...

  10. Co-Optima Stakeholder Listening Day

    Broader source: Energy.gov [DOE]

    he Department of Energy’s Bioenergy Technologies and Vehicle Technologies Offices (BETO and VTO) are co-hosting a stakeholder Listening Day to help shape a major new Sustainable Transportation initiative: Co-optimization of Fuels and Engines (Optima).

  11. Models Move Vehicle Design Forward

    Broader source: Energy.gov [DOE]

    These days, modeling software is as important to building a car as welding equipment. The Energy Department’s Vehicle Technologies Office is working to make these models as useful and accurate as possible so that manufacturers can build the next-generation of fuel efficient and advanced technology vehicles.

  12. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Vehicle Education Efforts...

  13. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  15. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  16. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  17. Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles that the primary vehicle travels in a day. In a six-vehicle household, the sixth vehicle travels fewer than five miles a day. Daily Vehicle

  18. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  19. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  20. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as ...

  1. Earth Day 2016

    Broader source: Energy.gov [DOE]

    Earth Day 2016 event details and links. Earth Day video montage and Earth Day Nationals video link. Earth Day photo contest.

  2. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  3. Fact #908: January 18, 2016 Light Vehicle Sales Rise for Five...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The months with the highest sales per day are March, May, August, and December. Light Vehicle Sales per Day, 2010-2015 Light vehicles sales per day from 2019 to 2015. Total Light ...

  4. Sustainable Transportation Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Day Sustainable Transportation Day June 22, 2015 11:00AM to 5:00PM EDT U.S. Department of Energy 1000 Independence Ave., SW Washington, D.C. 20585 Join us for Sustainable Transportation Day, an afternoon on the grounds of the Forrestal Building in Washington D.C., with U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewabel Energy's (EERE's) Bioenergy Technologies Office, Fuel Cell Technologies Office, and Vehicle Technologies Office. Mingle with

  5. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  9. Unmanned Aerospace Vehicle Workshop

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  10. Laboratory to change vehicle traffic-screening regimen at vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inspection station Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and won't be staffed by a Laboratory protective force officer. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  11. Earth Day, Every Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Week festivities at our headquarters here in Washington, D.C. throughout this week. This year's theme is "Earth Day, Every Day Changing Behavior to Reduce DOE's Carbon Footprint." ...

  12. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  13. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as gasoline-fueled vehicles. Vehicle ...

  14. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  15. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  16. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  17. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  18. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  19. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  20. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company anderson_bioenergy_2015.pdf (217.53 KB) More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Vehicle Technologies Office Merit Review 2016: Overview of

  1. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  3. Smithsonian's Museum Day September

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day is a day when museums and cultural institutions across the nation open their doors free of charge to Smithsonian magazine subscribers and Smithsonian.com visitors. A...

  4. Sustainable Transportation Day 2015 at the Energy Department

    Broader source: Energy.gov [DOE]

    Energy Department-supported technologies such as the Freightliner SuperTruck, 3D-printed Shelby Cobra and fuel cell vehicles were on display outside our headquarters as part of Sustainable Transportation Day on Monday, June 22, 2015.

  5. Co-Optima Stakeholder Listening Day | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) co-hosted the Optima Stakeholder Listening Day on June 16-17, ...

  6. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  7. Vehicle Technologies Office: AVTA- Plug-in Electric Vehicle On-Road Demonstration Data

    Broader source: Energy.gov [DOE]

    Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office invested $400 million in 18 projects (including the EV Project and Chargepoint America) to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10 educational and workforce development projects. As the largest deployment and evaluation of PEVs and charging infrastructure ever, these projects collected data on nearly 6 million charging events and more than 100 million all-electric miles driven.

  8. Data Day 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day » Data Day 2016 Data Day 2016 August 22nd - 23rd, 2016 Wang Hall (LBNL Building 59) and Building 50 Auditorium Lawrence Berkeley National Laboratory This summer, NERSC will host a brand new, data-centric event, Data Day. The main event will take place on August 22, followed by a half-day hackathon on August 23. The goal: to bring together researchers who use, or are interested in using, NERSC systems for data-intensive work. On August 22, a full day of talks and tutorials will get you up

  9. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  10. Vehicle Technologies Office: Natural Gas Vehicle Research and...

    Office of Environmental Management (EM)

    Alternative Fuels Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) ...

  11. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office ...

  12. DOE Catalyst Demo Day

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy is organizing Catalyst Demo Day at the Franklin Institute in Philadelphia to showcase the next big startups in building energy efficiency and solar energy. Demo Day...

  13. Postdoc Research Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Day Postdoc Research Day Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality...

  14. Postdoc Research Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Day Postdoc Research Day Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Postdoc Program Office Email Postdoc Research Day 2016 At Postdoc Research Day 2016, 70 postdocs showcased their research. The Judging Panel included Dr. Thomas Bowles, former Chief Scientist and Chief Science Officer Los Alamos National Laboratory; Dr. Kim Budil, the Vice

  15. Argonne's Earth Day 2011

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne celebrated Earth Day on April 21, 2011 with an event that featured green activities and information booths.

  16. Smithsonian's Museum Day September

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 September 21, 2010 LOS ALAMOS, New Mexico, September 21, 2010-Los Alamos National Laboratory's Bradbury Science Museum is participating for the sixth year in the Smithsonian's Museum Day on Saturday, September 25. Sponsored by Smithsonian Media, Museum Day is a day when participating museums and cultural institutions across the nation open their doors free of charge to anyone presenting a Smithsonian Museum Day ticket. "The Bradbury Science Museum already has a free-admission policy, but

  17. NanoDays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NanoDays NanoDays WHEN: Apr 03, 2015 10:00 AM - Apr 12, 2015 5:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury Science INTERNAL: Calendar Login NanoDays - April 3-12, 2015 Event Description NanoDays is a nationwide festival of educational programs about nanoscale science and engineering and its potential impact on the future. The Bradbury Science Museum celebrates NanoDays during Spring Break week, April

  18. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  19. National Day of Remembrance

    SciTech Connect (OSTI)

    2010-01-01

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  20. Conflict Resolution Day

    Broader source: Energy.gov [DOE]

    Conflict Resolution Day takes a look at mediation, conciliation, negotiation, arbitration, the ombudsman, and facilitation to resolve conflict in the workplace. Employees and contractors are...

  1. NanoDays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NanoDays NanoDays WHEN: Mar 24, 2016 10:00 AM - Apr 03, 2016 5:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description NanoDays is a national festival of educational programs about nanoscale science and engineering and it's potential impact on the future. The Bradbury Science Museum will celebrate NanoDays over local spring break, March 24 - April 3, 2016. At the

  2. Celebrating Pi Day

    Broader source: Energy.gov [DOE]

    We are celebrating this Pi Day with a brief overview of the irrational and transcendental number known as Pi, with baked homophone.

  3. National Day of Remembrance

    ScienceCinema (OSTI)

    None

    2013-03-01

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  4. Happy Earth Day 2011!

    Broader source: Energy.gov [DOE]

    Check out these resources from the Department of Energy to help you celebrate, get in the Earth Day spirit, and take action.

  5. Earth Day 2016

    Broader source: Energy.gov [DOE]

    April 22, 2016 is the forty-sixth anniversary of the founding of Earth Day which marked the beginning of the modern environmental movement. The Office of Environment, Health, Safety and Security (AU) is leading DOE’s coordinated Earth Day celebrations at the Forrestal DOE Headquarters Building in Washington, D.C.

  6. 12 Days of Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Days of Energy Savings 12 Days of Energy Savings December 24, 2012 - 9:30am Addthis Day 12: Drive Your Way to Fuel Savings 1 of 12 Day 12: Drive Your Way to Fuel Savings Save money on fuel costs by emptying your car after all your shopping trips -- an extra 100 pounds in your vehicle could increase gas costs by up to $.08 a gallon. Image: Sarah Gerrity, Energy Department Day 11: Plug Holiday Decorations into Power Strips 2 of 12 Day 11: Plug Holiday Decorations into Power Strips Stop phantom

  7. 12 Days of Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12 Days of Energy Savings 12 Days of Energy Savings Addthis Day 12: Drive Your Way to Fuel Savings 1 of 12 Day 12: Drive Your Way to Fuel Savings Save money on fuel costs by emptying your car after all your shopping trips -- an extra 100 pounds in your vehicle could increase gas costs by up to $.08 a gallon. Image: Sarah Gerrity, Energy Department Day 11: Plug Holiday Decorations into Power Strips 2 of 12 Day 11: Plug Holiday Decorations into Power Strips Stop phantom loads -- which cost

  8. FY2014 Vehicle and Systems Simulation and Testing Annual Progress Report

    SciTech Connect (OSTI)

    2015-03-01

    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  9. Heavy Vehicle Simulator

    SciTech Connect (OSTI)

    2015-03-09

    Idaho National Laboratory Heavy Vehicle Simulator located at the Center for Advanced Energy Studies.

  10. Propane Vehicle Basics

    Broader source: Energy.gov [DOE]

    There are more than 147,000 on-road propane vehicles in the United States. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce fewer harmful emissions.

  11. Bandwidth Historical Peak Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bandwidth Historical Peak Days Bandwidth Historical Peak Days These plots show yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer

  12. Holocaust Days of Remembrance

    Broader source: Energy.gov [DOE]

    The United States Congress established the Days of Remembrance as our nation’s annual commemoration of the Holocaust and created the United States Holocaust Memorial Museum as a permanent living...

  13. HOLOCAUST REMEMBRANCE DAY

    Broader source: Energy.gov [DOE]

    The United States Congress established the Days of Remembrance as our nation’s annual commemoration of the Holocaust and created the United States Holocaust Memorial Museum as a permanent living memorial to the victims.

  14. EERE INDUSTRY DAY

    Office of Energy Efficiency and Renewable Energy (EERE)

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  15. IT Job Shadow Day

    Broader source: Energy.gov [DOE]

    IT Job Shadow Day aims to educate and engage high school students in a variety of information technology careers within the federal government. Participating students will shadow federal technology professionals at federal workplaces.

  16. National Bioenergy Day 2014

    Broader source: Energy.gov [DOE]

    Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

  17. Data Privacy Day

    Broader source: Energy.gov [DOE]

    Respecting Privacy, Safeguarding Data and Enabling Trust is the theme for Data Privacy Day (DPD), an international effort held annually on January 28 to create awareness about the importance of privacy and protecting personal information.

  18. All-terrain vehicle

    SciTech Connect (OSTI)

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  19. Lab celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab celebrates Earth Day Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Lab celebrates Earth Day Multiple activities focus on environmental protection. May 1, 2013 A team from Industrial Hygiene and Safety during the Great Garbage Grab A team from Industrial Hygiene and Safety during the Great Garbage Grab. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus

  20. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  1. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  2. Tape Mounts Last 30 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tape Mounts Last 30 Days Tape Mounts Last 30 Days Daily Tape Mounts

  3. Sustainable Transportation Day Drives Innovation Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sustainable Transportation Day Drives Innovation Forward Sustainable Transportation Day Drives Innovation Forward June 24, 2015 - 3:29pm Addthis Sustainable Trucking 1 of 13 Sustainable Trucking The Freightliner SuperTruck stopped by Energy Department headquarters as part of Sustainable Transportation Day on Monday, June 22, 2015. The Energy Department-supported truck has achieved a fuel efficiency of 12.2 miles per gallon, more than double that of the baseline vehicle. Image: Matt

  4. Fuel Cell Electric Vehicles (FCEVs) to Be Displayed on June 22 During

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Day | Department of Energy Electric Vehicles (FCEVs) to Be Displayed on June 22 During Sustainable Transportation Day Fuel Cell Electric Vehicles (FCEVs) to Be Displayed on June 22 During Sustainable Transportation Day June 16, 2015 - 12:40pm Addthis On June 22, the Office of Energy Efficiency and Renewable Energy's (EERE's) Fuel Cell, Bioenergy, and Vehicle Technologies Offices will host a Sustainable Transportation Day showcasing EERE's strategic investments in

  5. Electric drive mechanism for vehicles

    SciTech Connect (OSTI)

    Bader, C.

    1983-06-21

    An electric drive mechanism is disclosed for vehicles, especially buses with overhead trolley routes, which routes are provided with relatively short interruptions in the overhead trolley. The drive mechanism includes a flywheel two externally excited electric motors which are adapted to be switched over from prime mover operation to generator operation, and which motors are effective as a ward-leonard drive during flywheel operation. The first electric motor is constructed for half of a maximum drive power and the second electric motor is likewise constructed for half or for square root 2/2 times the maximum drive power. Both electric motors are connected electrically in parallel during operation from the main electrical supply. The first and second motors are electrically connected in parallel during operation of the vehicle from the main electrical supply when a change-speed transmission is provided for connecting a drive shaft of one of the motors with driven vehicle wheels. A planetary gear transmission and a further transmission are provided for mechanically connecting the drive shaft of one of the motors with the second motor and with the flywheel.

  6. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry ... The standard procedures and test specifications are used to test and collect data from ...

  7. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011

  8. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012

  9. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011o.pdf (335.31 KB

  10. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  11. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  12. NUG 2013 Business Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Business Day NUG 2013 Business Day NUG Business Meeting Agenda Tuesday, February 12, 2013 NERSC Oakland Scientific Facility 8:30 - Working Breakfast: Welcome and Introductions -- Stephane Ethier 9:00 - NERSC Accomplishments and Plans -- Francesca Verdier 9:30 - Department of Energy Update -- Dave Goodwin 9:45 - NERSC's New Building Update -- Brent Draney 10:00 - Edison Update -- Richard Gerber, Tina DeClerck, Zhengji Zhao 10:30 - Break 10:45 - The NERSC 8 Procurement -- Katie Antypas 11:15 -

  13. Day/Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn Levy About Us Dawn Levy - Oak Ridge National Laboratory Dawn Levy is a science writer at Oak Ridge National Laboratory, one of the Department of Energy's 17 National Laboratories. She covers physics, chemistry and materials science. Most Recent This New Plastic Is 50% Renewable April 18

    Day 1 at 2014 ARPA-E Innovation Summit Day 1 at 2014 ARPA-E Innovation Summit February 24, 2014 - 6:52pm Addthis Through its PETRO program, ARPA-E is working to develop non-food crops that directly

  14. Science and Technology Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Day Science and Technology Day February 24, 2015 Tuesday, Feb. 24 Berkeley Lab Building 50 Auditorium Attendance is open to anyone. Remote streaming is available at hosting.epresence.tv/lbl (Broadcast only) Time Title Speaker 8:15 Registration 8:55 Welcome Sudip Dosanjh, NERSC Director 9:00 The Year in Science at NERSC Richard Gerber, NERSC Senior Science Advisor 9:30 Science Keynote: Efficient modeling of laser-plasma accelerators using the ponderomotive-based code

  15. Pi Day on Monday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pi Day on Monday Pi Day on Monday WHEN: Mar 14, 2016 1:00 PM - 5:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Come "around" for this once-time-a-year event. Stop by on Monday, March 14 (or 3.14 in geek-speak) during our regular hours from 1 to 5 p.m. to learn fascinating and fun facts about circles-that shape you see everyday but don't notice. In

  16. National Bioenergy Day 2015

    Broader source: Energy.gov [DOE]

    Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the third annual National Bioenergy Day on October 22, 2014. This is an opportunity to showcase bioenergy facilities and the bioenergy supply chain around the United States. The Bioenergy Technologies Office (BETO) will celebrate National Bioenergy Day with an educational display about the bioenergy supply chain and the bioeconomy in the lobby of the Energy Department’s Forrestal building in downtown Washington, D.C.

  17. Hawai'i's Evolution: Hawai'i Powered. Technology Driven. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Outlines Hawaii's energy and transportation goals and the implementation of electric vehicles (EV) and electric vehicle infrastructure since HCEI began in 2008. Includes information about Hawaii's role in leading the nation in available EV charging infrastructure per capita; challenges for continuing to implement EV technology; features on various successful EV users and

  18. Voltage Vehicles | Open Energy Information

    Open Energy Info (EERE)

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  19. Fleet Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Vehicles General Information: The Materials and Transportation Fleet Vehicle section provides acquisition, utilization and maintenance records, and disposal of vehicles used...

  20. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel ...

  1. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  4. Advanced Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Advanced Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  6. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  10. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  11. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  12. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  13. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  14. How much are Chevrolet Volts in The EV Project driven in EV Mode?

    SciTech Connect (OSTI)

    John Smart

    2013-08-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how many miles are driven in EV mode, how far vehicles are driven between charging events, and how much energy is charged from the electric grid per charging event.

  15. Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan

  16. VEHICLE FOR SLAVE ROBOT

    DOE Patents [OSTI]

    Goertz, R.C.; Lindberg, J.F.

    1962-01-30

    A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

  17. Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Howell Acting Director, Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting VEHICLE TECHNOLOGIES OFFICE June 8, 2015 2  Transportation is responsible for 69% of U.S. petroleum usage  28% of GHG emissions  On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles  16.4M LDVs sold in 2014  240 million light-duty vehicles on the road in the U.S.  10-15 years for annual sales penetration  10-15

  18. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012o.pdf (1.42 MB

  20. Hybrid vehicle assessment. Phase I. Petroleum savings analysis

    SciTech Connect (OSTI)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H.

    1984-03-01

    This report presents the results of a comprehensive analysis of near-term electric-hybrid vehicles. Its purpose was to estimate their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles were first modeled. The projected US fleet composition was estimated, and conceptual hybrid vehicle designs were conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates were then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of several conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle-mission-battery combination. A discussion of lessons learned during the construction and test of the General Electric Hybrid Test Vehicle is also presented. Conclusions and recommendations are presented, and development recommendations are identified.

  1. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

    SciTech Connect (OSTI)

    Brooker, A.; Gonder, J.; Wang, L.; Wood, E.; Lopp, S.; Ramroth, L.

    2015-05-04

    The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles to provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).

  2. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  3. Multiple-degree-of-freedom vehicle

    DOE Patents [OSTI]

    Borenstein, Johann

    1995-01-01

    A multi-degree-of-freedom vehicle employs a compliant linkage to accommodate the need for a variation in the distance between drive wheels or drive systems which are independently steerable and drivable. The subject vehicle is provided with rotary encodes to provide signals representative of the orientation of the steering pivot associated with each such drive wheel or system, and a linear encoder which issues a signal representative of the fluctuations in the distance between the drive elements. The wheels of the vehicle are steered and driven in response to the linear encoder signal, there being provided a controller system for minimizing the fluctuations in the distance. The controller system is a software implementation of a plurality of controllers, operating at the chassis level and at the vehicle level. A trajectory interpolator receives x-displacement, y-displacement, and .theta.-displacement signals and produces to the vehicle level controller trajectory signals corresponding to interpolated control signals. The x-displacement, y-displacement, and .theta.-displacement signals are received from a human operator, via a manipulable joy stick.

  4. Proceedings, Dean's Day 1999

    SciTech Connect (OSTI)

    Zanner, M.A.

    1999-03-01

    On January 14--15, 1999, Sandia National Laboratories sponsored Deans Day, a conference for the Deans of Engineering and other executive-level representatives from 29 invited universities. Through breakout sessions and a wrap-up discussion, university and Sandia participants identified activities to further develop their strategic relationships. The four primary activities are: (A) concentrate joint efforts on current and future research strengths and needs; (B) attract the best students (at all grade levels) to science and engineering; (C) promote awareness of the need for and work together to influence a national science and technology R and D policy; and (D) enable the universities and Sandia to be true allies, jointly pursuing research opportunities and funding from government agencies and industry.

  5. SUSTAINABILITY NEWS DOE HQ Celebrates Earth Day 2013

    Energy Savers [EERE]

    DOE HQ Celebrates Earth Day 2013 DOE headquarters is celebrating Earth Day 2013 (April 22) with a full week of festivities. Events will be held April 22-25 at the Forrestal building and April 29-May 2 at the Germantown building. Activities include a photo contest, an environmental film series, a showcase of alternative fuel vehicles, and displays from green exhibitors. For more information and a list of events, visit DOE Earth Week's Powerpedia page at https://

  6. Co-Optima Stakeholder Listening Day Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optima Stakeholder Listening Day Summary Report Sponsored jointly by the Vehicle Technologies Office and the Bioenergy Technologies Office Hosted by the National Renewable Energy Laboratory June 16-17, 2015 Golden, Colorado CO-OPTIMA STAKEHOLDER LISTENING DAY SUMMARY REPORT Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009_merit_review_1.pdf (888.1 KB) More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials

  8. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Medium and Heavy Duty Vehicle Data and Results Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data and Results The Vehicle Technologies Office supports work to collect extensive data on light-duty, medium-duty and heavy-duty vehicles through the Advanced Vehicle Testing Activity (AVTA). Idaho National Laboratory and the National Renewable Energy Laboratory (NREL) test and evaluate medium and heavy-duty fleet vehicles that use hybrid

  9. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation and Testing | Department of Energy 0 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development merit review results 2010_amr_01.pdf (1.46 MB) More Documents & Publications 2010 Annual Merit Review Results Summary 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies DOE Vehicle

  10. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  11. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  12. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  13. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  14. Energy 101: Electric Vehicles

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  15. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  16. Ford's CNG vehicle research

    SciTech Connect (OSTI)

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  17. Railway vehicle body structures

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  18. Integrated Vehicle Thermal Management

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Advanced Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Science-Driven Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 1-1 Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 Contributors Paul Adams, LBNL (Advanced Light Source) Shane Canon, ORNL (NLCF) Steven Carter, ORNL (NLCF) Brent Draney, LBNL (NERSC) Martin Greenwald, MIT (Magnetic Fusion Energy) Jason Hodges, ORNL (Spallation

  2. Municipal waste to vehicle fuel

    SciTech Connect (OSTI)

    Henrich, R.A.

    1981-01-01

    The use of water as a scrubbing agent for biogas from wastewater treatment plants and landfills is described. The purified gas containing 98% CH/sub 4/ is a viable and potentially cost-effective fuel for traction. A biogas-purification process (the Binax system), delivery of the gas, quality and economics of the purified gas, the Binax design specifications, and a vehicle-conversion system to operate on gasoline or CH/sub 4/ are discussed. Biogas manufacture from wastewater-treatment plants is generally approximately 0.25 -3 cubic ft/capita-day depending on digester design and operating efficiency, solid removal efficiency (primary treatment vs. secondary treatment), and on the amount of industrial and agricultural waste flowing into the facilities. A treatment facility serving a population of 100,000 might produce 50,000-300,000 cubic ft digester gas/day.

  3. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  4. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Energy Savers [EERE]

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and ...

  5. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown ... Population and Vehicle Growth Comparison, 1950-2012 Graph showing population and vehicle ...

  6. American Electric Vehicles Inc | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV)...

  7. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  8. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  9. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  10. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle Technologies Office overview. 02_howell_plenary_2015_amr.pdf (3.45 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016:

  11. Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009_avtae_hvso.pdf (22.02 MB) More Documents & Publications Well-to-Wheels Analysis

  12. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Systems Annual Progress Report Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric

  13. Vehicle Technologies Office: Key Activities in Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Vehicle Technologies Office » Vehicle Technologies Office: Key Activities in Vehicles Vehicle Technologies Office: Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean

  14. Vehicle Technologies Office: Natural Gas Vehicle Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (R&D) | Department of Energy Alternative Fuels » Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Natural gas offers opportunities for reducing the use of petroleum in transportation, especially in medium- and heavy-duty vehicles. These fleets, which include a variety of vehicles such as transit buses, refuse haulers, delivery trucks, and long-haul trucks, currently

  15. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Technologies Introduction Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's) vehicle research programs, and identifies major opportunities for improving vehicle efficiencies. The effort evaluates and validates the integration of technologies, provides component and vehicle benchmarking, develops and validates heavy hybrid

  16. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Advanced Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced

  17. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will play a key role in the country's transportation future. In fact, transitioning to a mix of plug-in

  18. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data | Department of Energy Consumer Vehicle Technology Data Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer vehicle technology data. van003_singer_2015_o.pdf (546.73 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Consumer

  19. Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?

    SciTech Connect (OSTI)

    Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

    2008-09-01

    Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

  20. Vehicle Technologies Office Merit Review 2014: Improving Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE ...

  1. Vehicle Technologies Office Merit Review 2016: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  2. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report ... FY 2013 annual report focuses on the following areas: ... Technologies Office: 2015 Vehicle Systems Annual ...

  3. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  4. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development merit review results PDF icon 2010amr01.pdf More Documents & ...

  5. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  6. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  7. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many ...

  8. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  9. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  10. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  11. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  12. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  13. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    were imputed as disposed vehicles. To impute vehicle stock changes in the 1991 RTECS, logistic regression equations were used to compute a predicted probability (or propensity)...

  14. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    more fuel-efficient vehicles, and the implementation of Corporate Average Fuel Economy (CAFE) 6 standards. Figure 13. Average Fuel Efficiency of All Vehicles, by Model Year 6...

  15. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  16. Multi-Material Lightweight Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    * Ford 2,773,175 Partners * Vehma International * Ford Motor Company This presentation ... and test the vehicle, c) demonstrate integration of the light weight material vehicle ...

  17. Pi Day of the Century

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Pi Event Description A special day celebrating this once-in-a-century occasion. Pi Day is an annual celebration...

  18. Aggregate Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Last 8 Days Aggregate Transfers Last 8 Days These plots show the aggregate bandwidth statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) Last edited: 2011-04-04 10:44:03

  19. Transfer Activity Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Last 8 Days Transfer Activity Last 8 Days These graphs show the transfer activity statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems)

  20. Concurrent Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Last 8 Days Concurrent Transfers Last 8 Days These plots show the concurrent transfers statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Last

  1. Blast resistant vehicle seat

    SciTech Connect (OSTI)

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  2. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  3. ETA-TP014 Appendix A: Day 1 Range and Charge Data Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Day 1 Range and Charge Data Sheet Page 2 of 2 20 Segment Number % of TP4 Range Distance Required (miles) Segment Speed (mph) Initial SOC Time Start Time End Miles Driven Final ...

  4. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  5. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  6. Come see the Next Generation of Vehicles on Sustainable Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Day-June 22, 2015 | Department of Energy Come see the Next Generation of Vehicles on Sustainable Transportation Day-June 22, 2015 Come see the Next Generation of Vehicles on Sustainable Transportation Day-June 22, 2015 June 18, 2015 - 1:05pm Addthis Drivers can learn about fuel efficiency in the Green Racing Simulator which models a hybrid race car. Photo: courtesy of Argonne National Laboratory Drivers can learn about fuel efficiency in the Green Racing Simulator which models a hybrid race

  7. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the ... from how they work to the different types of systems to the future of the technology. ...

  8. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to lead the efforts of the Vehicle...

  9. Vehicle Technologies Program Implementation

    SciTech Connect (OSTI)

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  10. Vehicle Technologies Program Overview

    SciTech Connect (OSTI)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  11. TRACKED VEHICLE Rev 75

    SciTech Connect (OSTI)

    Raby, Eric Y.

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  12. TRACKED VEHICLE Rev 75

    Energy Science and Technology Software Center (OSTI)

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parametersmore » of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.« less

  13. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  14. Hybrid vehicle control

    SciTech Connect (OSTI)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  15. Vehicle speed control device

    SciTech Connect (OSTI)

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  16. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Testing | Department of Energy Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Vehicle & Systems Simulation & Testing Program. vsst_overview_amr_2014_061114.pdf (3.12 MB) More Documents

  17. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010_vsst_report.pdf (25.23 MB)

  18. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2012 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012_vsst_report.pdf (32.4

  19. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013_vsst_report.pdf

  20. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical

  1. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  2. Vehicle Technologies Office: Moving America Forward with Clean Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving America Forward with Clean Vehicles Vehicle Technologies Office: Moving America Forward with Clean Vehicles The U.S. Department of Energy's Vehicle Technologies Office supports research, development (R&D), and deployment of efficient and sustainable highway transportation technologies that will improve fuel economy and enable America to use less petroleum. These technologies, which include plug-in electric vehicles (also known as PEVs or electric cars),

  3. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  4. Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. Photo of the front and part of the side of a bus parked at the curb of a city street with

  5. NOVA-NREL Optimal Vehicle Acquisition Analysis (Brochure)

    SciTech Connect (OSTI)

    Blakley, H.

    2011-03-01

    Federal fleet managers face unique challenges in accomplishing their mission - meeting agency transportation needs while complying with Federal goals and mandates. Included in these challenges are a variety of statutory requirements, executive orders, and internal goals and objectives that typically focus on petroleum consumption and greenhouse gas (GHG) emissions reductions, alternative fuel vehicle (AFV) acquisitions, and alternative fuel use increases. Given the large number of mandates affecting Federal fleets and the challenges faced by all fleet managers in executing day-to-day operations, a primary challenge for agencies and other organizations is ensuring that they are as efficient as possible in using constrained fleet budgets. An NREL Optimal Vehicle Acquisition (NOVA) analysis makes use of a mathematical model with a variety of fleet-related data to create an optimal vehicle acquisition strategy for a given goal, such as petroleum or GHG reduction. The analysis can helps fleets develop a vehicle acquisition strategy that maximizes petroleum and greenhouse gas reductions.

  6. George Washington Carver Recognition Day

    Broader source: Energy.gov [DOE]

    In commemoration of George Washington Carver’s life and work, Congress declared January 5 as George Washington Carver Recognition Day.

  7. 2016 CSP Summit Day 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below are links to the agenda, presentations, and plenary sessions from the first day of the 2016 SunShot CSP Summit.

  8. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  9. Pi Day of the Century

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pi Day of the Century Pi Day of the Century WHEN: Mar 14, 2015 11:00 AM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Pi Event Description A special day celebrating this once-in-a-century occasion. Pi Day is an annual celebration commemorating the mathematical constant π, a never-ending, transcendental number representing the ratio of a circle's circumference to its

  10. ALS Holds Annual Safety Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Holds Annual Safety Day ALS Holds Annual Safety Day Print by Scott Taylor, ALS Safety Manager Andrew Doran cleans equipment housing at Beamline 12.2.2. The ALS held its annual safety day on Monday, June 13 for all ALS and associated staff. The day started with an all-hands meeting, beginning with presentations by ALS Director Roger Falcone and LBNL Environmental Health and Safety Division Director (and former ALS Safety Manager) Jim Floyd. Both discussed the importance of the incorporation

  11. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  12. Property:DayQuantity | Open Energy Information

    Open Energy Info (EERE)

    are not known. Acceptable units (and their conversions) are: 1 day,Day,days,Days,DAY,DAYS,d,D 24 hour,hours,Hour,Hours,hr,hrs,HOUR,HOURS,HR,HRS 1440 minute,minutes,Minute,Minutes,m...

  13. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Driven Rankine Cycle for a Heavy Duty Diesel Engine Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine Presents progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust deer11_singh.pdf (2.07 MB) More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

  14. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buoyancy-Driven Ventilation of Hydrogen from Buildings C. Dennis Barley, Keith Gawlik, Jim Ohi, Russell Hewett National Renewable Laboratory U.S. DOE Hydrogen Safety, Codes & Standards Program Presented at 2 nd ICHS, San Sebastián, Spain September 11, 2007 NREL/PR-550-42289 Scope of Work * Safe building design * Vehicle leak in residential garage * Continual slow leak * Passive, buoyancy-driven ventilation (vs. mechanical) * Steady-state concentration of H 2 vs. vent size Prior Work *

  15. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  16. Vehicle Technologies Office Merit Review 2016: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking (L1&L2) | Department of Energy Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2016: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems vs030_stutenberg_2016_o_web.pdf (3.46 MB) More Documents & Publications Vehicle

  17. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H.; McCallen, David B.

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  18. Innovation in Electric Vehicle Technology? Easy as A123 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy in Electric Vehicle Technology? Easy as A123 Innovation in Electric Vehicle Technology? Easy as A123 May 2, 2011 - 3:45pm Addthis A123 battery in passenger vehicle application | Photo Courtesy of A123 Systems A123 battery in passenger vehicle application | Photo Courtesy of A123 Systems Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program Two weeks ago, I had the pleasure of visiting the great state of Michigan to participate in a two-day workshop entitled,

  19. Fact #908: January 18, 2016 Light Vehicle Sales Rise for Five Consecutive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Years | Department of Energy 8: January 18, 2016 Light Vehicle Sales Rise for Five Consecutive Years Fact #908: January 18, 2016 Light Vehicle Sales Rise for Five Consecutive Years SUBSCRIBE to the Fact of the Week The sales of light vehicles are higher in 2015 than any of the past five years - a 50% growth from 2010. In fact, from 2010 to 2015, light vehicle sales have grown every year. The months with the highest sales per day are March, May, August, and December. Light Vehicle Sales per

  20. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S.; Hodgson, Jeffrey W.

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  1. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  2. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    SciTech Connect (OSTI)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  3. Vehicles Data Challenge | OpenEI Community

    Open Energy Info (EERE)

    Apps for Vehicles Challenge has begun contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge **Update: Visit the Apps for Vehicles page for all...

  4. US Ethanol Vehicle Coalition | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition is the...

  5. Vehicle and Fuel Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative-fuel-vehicle availability Balancing vehicle-type availability with the types of vehicles required to conduct LM work Our mission requires fieldwork and support at sites ...

  6. Solar Electrical Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electrical Vehicles Jump to: navigation, search Name: Solar Electrical Vehicles Place: Westlake Village, California Zip: 91361 Sector: Solar, Vehicles Product: US-based...

  7. EVI Electric Vehicles International | Open Energy Information

    Open Energy Info (EERE)

    EVI Electric Vehicles International Jump to: navigation, search Name: EVI (Electric Vehicles International) Place: Stockton, California Product: California-based Electric Vehicle...

  8. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  9. Miles Electric Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

  10. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction ...

  11. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an entire vehicle each time a component is changed Vehicle and Component Benchmarking Conducting vehicle benchmarking and testing activities that provide data critical...

  12. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  13. Wave-driven

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    driven dynamo action in spherical magnetohydrodynamic systems K. Reuter, 1 F. Jenko, 1 A. Tilgner, 2 and C. B. Forest 3 1 Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, D-85748 Garching, Germany 2 Institute of Geophysics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 3 Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706, USA ͑Received 22 September 2009; published 11 November

  14. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development and Deployment | Department of Energy Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment June 25, 2014 - 11:33am Addthis The DOE's Vehicle Technologies Office supports a variety of research, development, and deployment efforts in partnership with our national laboratories and private partners. The success of these projects relies on the hard work and

  15. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Data and Reports | Department of Energy Community and Fleet Readiness Data and Reports Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge, requires understanding both their technical and market barriers. Municipalities and organizations are working to overcome

  20. Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool | Department of Energy Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation

  1. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. EERE Days at Stanford University

    Broader source: Energy.gov [DOE]

    The Department of Energy hosts the Office of Energy Efficiency and Renewable Energy (EERE) Days at Stanford University to engage students and faculty on key energy issues aligned with EERE’s...

  6. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  7. Vehicle Technologies Program Results

    SciTech Connect (OSTI)

    2009-06-19

    The Vehicle Technologies Program's progress is closely monitored by both internal and external organizations. The Program's results are detailed in a wide range of documents and tools that can be accessed through the PIR website. Descriptions of these materials are provided on this program results page.

  8. Vehicle fuel system

    DOE Patents [OSTI]

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  9. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  10. Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  11. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing ...

  12. Intra-site Secure Transport Vehicle test and evaluation

    SciTech Connect (OSTI)

    Scott, S.

    1995-07-01

    In the past many DOE and DoD facilities involved in handling nuclear material realized a need to enhance the safely and security for movement of sensitive materials within their facility, or ``intra-site``. There have been prior efforts to improve on-site transportation; however, there remains a requirement for enhanced on-site transportation at a number of facilities. The requirements for on-site transportation are driven by security, safety, and operational concerns. The Intra-site Secure Transport Vehicle (ISTV) was designed to address these concerns specifically for DOE site applications with a standardized vehicle design. This paper briefly reviews the ISTV design features providing significant enhancement of onsite transportation safety and security, and also describes the test and evaluation activities either complete of underway to validate the vehicle design and operation.

  13. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    SciTech Connect (OSTI)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  14. Fuel Cell Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be used in vehicles to provide electricity for propulsion as well as for a car's electric and electronic ...

  15. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  16. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  17. Venezuela natural gas for vehicles project

    SciTech Connect (OSTI)

    Marsicobetre, D.; Molero, T.

    1998-12-31

    The Natural Gas for Vehicles (NGV) Project in Venezuela describes the development and growth of the NGV project in the country. Venezuela is a prolific oil producer with advanced exploration, production, refining and solid marketing infrastructure. Gas production is 5.2 Bscfd. The Venezuelan Government and the oil state owned company Petroleos de Venezuela (PDVSA), pursued the opportunity of using natural gas for vehicles based on the huge amounts of gas reserves present and produced every day associated with the oil production. A nationwide gas pipeline network crosses the country from south to west reaching the most important cities and serving domestic and industrial purposes but there are no facilities to process or export liquefied natural gas. NGV has been introduced gradually in Venezuela over the last eight years by PDVSA. One hundred forty-five NGV stations have been installed and another 25 are under construction. Work done comprises displacement or relocation of existing gasoline equipment, civil work, installation and commissioning of equipment. The acceptance and usage of the NGV system is reflected in the more than 17,000 vehicles that have been converted to date using the equivalent of 2,000 bbl oil/day.

  18. Idling Reduction for Personal Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    - Idling Reduction for Personal Vehicles Idling your vehicle-running your engine when you're not driving it-truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does. Researchers estimate that idling from heavy-duty and light- duty vehicles combined wastes about 6 billion gallons of

  19. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. ANSI Electric Vehicle Standards Roadmap

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking (L1&L2) | Department of Energy Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced technology vehicle lab benchmarking (L1&L2). vss030_stutenberg_2015_o.pdf (3.5 MB) More Documents

  4. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traveled (eVMT): On-road Results and Analysis | Department of Energy Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle Mile Traveled (eVMT): on-road results and

  5. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  6. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  7. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

    2007-08-01

    When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

  8. Muscle-driven nanogenerators

    DOE Patents [OSTI]

    Wang, Zhong L.; Yang, Rusen

    2011-03-01

    In a method of generating electricity, a plurality of living cells are grown on an array of piezoelectric nanowires so that the cells engage the piezoelectric nanowires. Induced static potentials are extracted from at least one of the piezoelectric nanowires when at least one of the cells deforms the at least one of the piezoelectric nanowires. A cell-driven electrical generator that includes a substrate and a plurality of spaced-apart piezoelectric nanowires disposed on the substrate. A plurality of spaced-apart conductive electrodes interact with the plurality of piezoelectric nanowires. A biological buffer layer that is configured to promote growth of cells is disposed on the substrate so that cells placed on the substrate will grow and engage the piezoelectric nanowires.

  9. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  10. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  11. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  12. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  13. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  14. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  15. hybrid vehicle systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicles systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's vehicle research programs, and identifies major opportunities for improving vehicle efficiencies. Hybrid and Vehicle Systems: http://www1.eere.energy.gov/vehiclesandfuels/technologies/systems

  16. Alternative Fuel Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle & Fueling Infrastructure Deployment Barriers & the Potential Role of Private Sector Financial Solutions April 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions (C2ES) and the National Association of State Energy Officials (NASEO) would like to thank the U.S. Department of Energy for providing financial support for this report. C2ES would also like to thank the following for their substantial input: Jay Albert, Ken Berlin, Ken Brown, David Charron, William

  17. Electric Vehicle Battery Performance

    Energy Science and Technology Software Center (OSTI)

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  18. Vehicle Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Merit Review and Peer Evaluation Meeting Christy Cooper Acting Director Vehicle Technologies Office June 6, 2016 2 Today: * What's new in VTO * Priorities and Initiatives * Hot Off the Press! 3 Analysis Jacob Ward Rachael Nealer Communications and Education Connie Bezanson Budget Cindy McMullen Office Administration Bernadette Jackson Operations Supervisor Christy Cooper Director Christy Cooper (Acting) Hybrid Electric Systems Program Manager David Howell Materials Technology Program

  19. Household vehicles energy consumption 1994

    SciTech Connect (OSTI)

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  20. Earth Day: Leading by Example

    Broader source: Energy.gov [DOE]

    We’re not just interested in talking the talk at the Energy Department, it’s important to us to walk the walk. To do that, we’re working every day across the country to make our operations more sustainable and efficient. Take these employees, for example.

  1. Use of hydrides in motor vehicles

    SciTech Connect (OSTI)

    Toepler, J.; Bernauer, O.; Buchner, H.

    1980-09-01

    Results of research on hydrogen driven vehicles and hydride storage tanks are presented, along with a detailed discussion of the operational possibilities of low temperature hydrides, such as TiFe-H2, and of high temperature hydrides, such as Mg2Ni-H4. Attention is given to their cyclization stability and thermal conductivity. Heat storage and heat recovery with the aid of hydrides are discussed, and a theoretical hydride storage capacity of a Mg-Ni-alloy is presented. It was concluded that all hydride tanks will be 10 to 20 times heavier than the conventional gasoline tank. The problems of tank weight and gasoline shortage can be solved by a combination hydrogen/gasoline fuel. Existing energy infrastructures must be utilized, as the setting up of a hydrogen infrastructure is, at the present time, both technically and economically unfeasible.

  2. High reduction transaxle for electric vehicle

    DOE Patents [OSTI]

    Kalns, Ilmars

    1987-01-01

    A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

  3. PHEVs are More about the grid than the vehicles

    SciTech Connect (OSTI)

    2009-01-15

    Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

  4. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles

    SciTech Connect (OSTI)

    Prohaska, Robert; Duran, Adam; Ragatz, Adam; Kelly, Kenneth

    2015-05-03

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy's (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  5. A high capability teleoperated vehicle for hazardous applications

    SciTech Connect (OSTI)

    Dudar, A.M.; Witherspoon, R.L.

    1995-09-01

    The Robotics Development Group at the Savannah River Site is developing a high performance teleoperated vehicle for use in radioactive and hazardous environments. The three-wheeled vehicle incorporates a highly dexterous 6 degree-of-freedom (DOF), hydraulically-powered manipulator made by Schilling Development, Inc. The teleoperator is called Little MoRT (MObile Radio-controlled Teleoperator) and is a modified version of a commercially available, battery-powered, warehouse vehicle. Little MoRT is controlled remotely by a universal robot controller either through a radio frequency link or a tethered cable. Six video cameras and a microphone provide the operator with audio-visual feedback of the vehicle and its surrounding environment. The vehicle also incorporates a hydraulic power unit consisting of a propane-driven engine for powering the Schilling manipulator. Little MoRT is capable of operating in outdoor as well as indoor environments and is well suited for decontamination and decommissioning activities such as dismantling, sorting, and surveying of radioactive waste.

  6. NREL Efforts Push Hydrogen Vehicles Further Along - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efforts Push Hydrogen Vehicles Further Along November 17, 2015 Woman stands outside in front of a podium next to a hydrogen fueling pump. NREL Associate Laboratory Director Barb Goodman at the dedication ceremony for the new hydrogen fueling station at NREL. Photo by Ellen Jaskol The inaugural National Hydrogen and Fuel Cell Day, held in October, was too new for Hallmark to make a card for the occasion. But at the Energy Department's National Renewable Energy Laboratory (NREL), the day was cause

  7. New Calculator Helps You Buy the Energy-Saving Vehicle of Your Dreams

    Broader source: Energy.gov [DOE]

    Every day, people across America are making the choice to buy energy-efficient vehicles that save energy and money, protect the environment, and help reduce America’s dependence on foreign oil.

  8. U.S.-China Electric Vehicle and Battery Technology Workshop

    Broader source: Energy.gov [DOE]

    DOE's Office of Policy and International Affairs and China's Ministry of Science and Technology convened a 3-day workshop at Argonne National Laboratory that brought together more than 100 U.S. and Chinese experts from government, industry, and academia to discuss progress made in the electric vehicle industry to date and opportunities for increased collaboration.

  9. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers dramatically increase the energy efficiency of their operations and reduce costs. Each project will advance transformational technologies and materials that can benefit a broad cross-section of the domestic economy. This event created a platform for inter-agency and industry networking and also raised awareness among congressional staff and private investors.

  10. Argonne's 2012 Earth Day Event

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  11. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Workforce Development Day ∎ Tuesday, October 22, 2013 Nuclear Medicine Topics:  Pathways of Practice in Nuclear Medicine  Radiopharmacy  Patient Care  Medical Imaging & Computers Moderator: Deborah M. Gibbs, MEd, PET, CNMT Lead Nuclear Medicine / PET Facility Administrator Georgia Regents University Panel Members: Jim Corley, MS, RPh- Associate Professor Georgia Regents University George David, MS, FAAPM- Medical Physicist Georgia Regents University Dr. Gregory

  12. The early days of incineration

    SciTech Connect (OSTI)

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  13. The ARM unpiloted aerospace vehicle (UAV) program

    SciTech Connect (OSTI)

    Sowle, D.

    1995-09-01

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  14. Convergence of Vehicle and Infrastructure Data for Traffic and Demand Management

    SciTech Connect (OSTI)

    Young, Stanley E.

    2015-11-16

    The increasing availability of highly granular, vehicle trajectory data combined with ever increasing stores of roadway sensor data has provided unparalleled observability into the operation of our urban roadway networks. These data sources are quickly moving from research and prototype environments into full-scale commercial deployment and data offerings. The observability gained allows for increased control opportunities to enhance transportation mobility, safety and energy efficiency. The National Renewable Energy Laboratory (NREL) is involved in three initiatives to leverage these data for positive outcomes: 1) In 2015 NREL, in cooperation with industry and university partners, was awarded an ARPA-E research grant to research a control architecture to incentivize individual travelers toward more sustainable travel behavior. Based on real-time data on the traveler's destination and state of the system, the traveler is presented with route and/or mode choices and offered incentives to accept sustainable alternatives over less-sustainable ones. The project tests the extent to which small incentives can influence, or tip the balance toward more sustainable travel behavior. 2) Although commercial sources of travel time and speed have emerged in recent years based on vehicle probe data, volume estimates continue to rely primarily on historical count data factored for the time of day, day of week, and season of year. Real-time volume flows would enable better tools, simulation in the loop, and ultimately more effective control outcomes. NREL in cooperation with the University of Maryland and industry traffic data providers (INRIX, HERE and TomTom), are attempting to accelerate the timeframe to a viable real-time vehicle volume data feed based on probe data. 3) Signal control on urban arterials for years has had to rely on models rather than measured data to assess performance. High-resolution controller data and low-cost re-identification data now allows for direct

  15. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  16. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C.

    1997-01-01

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  17. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  18. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Energy Savers [EERE]

    EV batter- ies are charged by plugging the vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection ...

  19. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing Advanced Vehicle Benchmarking of HEVs and PHEVs

  20. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle...

    Energy Savers [EERE]

    Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  1. Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  3. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  4. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan

    Broader source: Energy.gov [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness.

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  7. TCM exemptions to promote alternative-fuel vehicles: The good, the bad, and the ugly

    SciTech Connect (OSTI)

    Mintz, M.

    1994-02-01

    This document consists of viewgraphs from a presentation on transportation control measures (TCM) to facilitate the use of alternative-fuel vehicles (AFV). Types of TCMs that pertain to AFV exemptions are: parking fees and restrictions, high occupancy vehicle lanes, fuel taxes, and possibly congestion pricing and time-of-day and day-of-week restrictions. The degree to which these measures will impact AFV production by the year 2010 is predicted.

  8. Mack LNG vehicle development

    SciTech Connect (OSTI)

    Southwest Research Institute

    2000-01-05

    The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

  9. Hybrid vehicle motor alignment

    SciTech Connect (OSTI)

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  10. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to share

  11. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle

  12. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC » Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to

  13. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  14. Idling Reduction for Personal Vehicles

    SciTech Connect (OSTI)

    2015-05-07

    Fact sheet on reducing engine idling in personal vehicles. Idling your vehicle--running your engine when you're not driving it--truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does.

  15. Salinity driven oceanographic upwelling

    DOE Patents [OSTI]

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  16. Salinity driven oceanographic upwelling

    DOE Patents [OSTI]

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  17. Neutrino Physics AAPT Strand Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics AAPT Strand Day NSTA Regional, 2005 Jocelyn Monroe, Columbia University 1. What Is a Neutrino Anyway? 2. The Question Of Neutrino Mass 3. Searching For Neutrino Oscillations 4. Where Are We Now? ν Neutrinos, they are very small. They have no charge and have no mass And do not interact at all. The earth is just a silly ball To them, through which they simply pass... ...And pierce the lover and his lass From underneath the bed- you call It wonderful; I call it crass. J from ``Cosmic

  18. Heavy Duty Vehicle Modeling & Simulation

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  19. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  20. Plug IN Hybrid Vehicle Bus

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  2. economic hydrogen fuel cell vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  3. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  4. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  5. AVTA Vehicle Component Cost Model

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. Vehicle Technologies Program Merit Review

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    a comparison between the 1991 and previous years RTECS designs; (2) the sample design; (3) the data-collection procedures; (4) the Vehicle Identification Number (VIN); (5)...

  8. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  9. List of Other Alternative Fuel Vehicles Incentives | Open Energy...

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana)...

  10. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  11. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. Advanced Technology Vehicles Manufacturing Incentive Program (1.49 MB) More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  12. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008

    Broader source: Energy.gov [DOE]

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

  13. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  14. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    U.S. Energy Information Administration (EIA) Indexed Site

    Provider Fleet Vehicles Fleet Vehicle Miles Traveled Propane Provider Survey In the analysis of annual vehicle miles traveled, the diesel vehicles tended to stand out. On...

  15. GATE: Energy Efficient Vehicles for Sustainable Mobility | Department...

    Broader source: Energy.gov (indexed) [DOE]

    GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle ...

  16. Electric Vehicle Preparedness - Task 2: Identification of Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Collectively, battery electric vehicles and plug-in hybrid electric vehicles are known ... Truck (8500 pounds < GVWR) Medium Truck Heavy Truck % of Vehicles Number of Vehicles Figure ...

  17. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  18. 1997 hybrid electric vehicle specifications

    SciTech Connect (OSTI)

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  19. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  1. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  2. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect (OSTI)

    Thomas, Janice; Ervin, Frank

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  3. Celebrate Earth Day! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savers Facebook pages, our Earth Day poll provides another opportunity for you to interact with us. Log on to our Earth Day Web site and tell us how you'll recognize Earth Day,...

  4. CEMI Days Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CEMI Days Factsheet CEMI Days Factsheet CEMI Days factsheet.pdf (507.22 KB) More Documents & Publications Introduction to CEMI Fact Sheet Amped Up! Volume 1, No.2 CEMI Southeast Regional Summit Agenda

  5. Alternative Fuels Vehicle Group | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Group Jump to: navigation, search Name: Alternative Fuels Vehicle Group Place: New York, New York Zip: 28 West 25th Street Sector: Vehicles Product: Focussed on news and...

  6. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  7. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect (OSTI)

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  8. Earth Day Coalition | Open Energy Information

    Open Energy Info (EERE)

    Day Coalition Jump to: navigation, search Name: Earth Day Coalition Address: 3606 Bridge Avenue, Suite 4 Place: Cleveland, Ohio Zip: 44113 Coordinates: 41.4829135, -81.7117416...

  9. MDM Tech Day Presentation | Department of Energy

    Energy Savers [EERE]

    MDM Tech Day Presentation MDM Tech Day Presentation More Documents & Publications Slide 1 Microsoft Word - MRContingencyProtocolEMFINAL.docx UPF R&OM Management...

  10. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  11. Alternative Fuels Data Center: Natural Gas Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles on Digg Find

  12. Alternative Fuels Data Center: Propane Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share

  13. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center:

  14. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric

  15. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  16. Alternative Fuels Data Center: Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More

  17. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  18. Vehicle Technologies Office: Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries » Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) cars, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas

  19. Vehicle Model Validation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vssp_17_rousseau.pdf (1.54 MB) More Documents & Publications Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Autonomie Plug&Play Software Architecture Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and

  20. Vehicle Technologies Office: Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Events Vehicle Technologies Office: Events The Vehicle Technologies Office holds a number of events to advance research, development and deployment of vehicles that can reduce the use of petroleum in transportation. The Vehicle Technologies Office holds an Annual Merit Review and Peer Evaluation each year, where advanced vehicle technologies projects funded by VTO are presented and reviewed for their merit. The Merit Review presentations and reports from past years

  1. The Electric Vehicle Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: The Electric Vehicle Company Product: Holding company of battery-powered electric automobile manufacturers. References: The Electric Vehicle...

  2. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  3. Hitachi Electric Vehicle Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Ltd Jump to: navigation, search Name: Hitachi Electric Vehicle, Ltd Place: Japan Product: String representation "A Japan-based c ... le automobiles." is too long....

  4. Vehicle Technologies Office: Integration, Validation and Testing...

    Energy Savers [EERE]

    Integration Laboratory to integrate, validate, and test advanced vehicle technologies. ... To integrate and test vehicle components and subsystems, DOE's national laboratories use ...

  5. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures HICEV Technical ...

  6. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy Savers [EERE]

    Electric Drive Technologies Annual Progress Report Vehicle ... FY14EDTAnnualReport.pdf (15.14 MB) More Documents & Publications Vehicle Technologies Office: 2015 ...

  7. Vehicle Technologies Office Merit Review 2014: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: ... DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual ...

  8. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation ... DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual ...

  9. Collaborative Military Vehicle Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Military Vehicle Design Click to email this to a friend (Opens in new ... Collaborative Military Vehicle Design Charles (Burt) Theurer 2012.04.09 I wanted to ...

  10. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Environmental Management (EM)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April ...

  11. NREL: Transportation Research - Vehicle Thermal Management Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a test pad to conduct vehicle thermal soak testing and stationary heating, ventilation, and air conditioning (HVAC) load testing on light-, medium-, and heavy-duty vehicles. ...

  12. ,"Nevada Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Vehicle Fuel Consumption ... 1:24:58 AM" "Back to Contents","Data 1: Nevada Natural Gas Vehicle Fuel Consumption ...

  13. Vehicle Technologies Office News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    winners of the Energy Department's latest advanced vehicle technology competition. Meet five of the teams and learn about their unique approaches to building innovative vehicles...

  14. National Template: Hydrogen Vehicle and Infrastructure Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) National Template: Hydrogen Vehicle and Infrastructure Codes and ...

  15. Other Alternative Fuel Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Jump to: navigation, search TODO: Add description List of Other Alternative Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherAlternati...

  16. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  17. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    vehicle type, and vehicle model year. "600" - represents a "match" based on EIA expert analysis using subject matter experience, in conjunction with past RTECS. Additionally,...

  18. Biodiesel Basics (Fact Sheet), Vehicle Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Fact sheet providing questions and answers on ...

  19. EKO Vehicles Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Pvt Ltd Place: Bangalore, Karnataka, India Product: India-based manufacturer of electric scooters. References: EKO Vehicles Pvt Ltd1 This article is a stub. You can...

  20. Vehicle Cooling Systems - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements to efficiently, safely, and inexpensively cool vehicles during prolonged sun exposure National Renewable Energy Laboratory Contact NREL About This Technology Vehicles ...

  1. WIPP Receives New Emergency Response Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 19, 2015 WIPP Receives New Emergency Response Vehicle WIPP recently placed a new emergency response vehicle into service. The new fire engine "Engine 24" will enhance...

  2. NEV America: Neighborhood Electric Vehicle Technical Specification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to provide for independent assessment of Neighborhood Electric Vehicles (NEVs). ... (35) Vehicles using HIGH VOLTAGE traction systems shall be equipped with a key ...

  3. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on ...

  4. List of Vehicles Incentives | Open Energy Information

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Fuels Loan Program (Kansas) State Loan Program Kansas...

  5. NDMV - Longer Combination Vehicle (LCV) Permit Application |...

    Open Energy Info (EERE)

    Vehicle (LCV) Permit Application Abstract This form is the Nevada Department of Motor Vehicles LCV Application. Form Type ApplicationNotice Form Topic Longer Combination...

  6. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption ... 12:00:27 PM" "Back to Contents","Data 1: Virginia Natural Gas Vehicle Fuel Consumption ...

  7. ,"Oklahoma Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Consumption ... 12:00:19 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Vehicle Fuel Consumption ...

  8. ,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Vehicle Fuel Consumption ... 7:09:38 AM" "Back to Contents","Data 1: Kansas Natural Gas Vehicle Fuel Consumption ...

  9. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moniz Discusses Advanced Technology Vehicle Manufacturing Loans Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans April 2, 2014 - 4:37pm Addthis NEWS MEDIA ...

  10. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption ... 7:09:42 AM" "Back to Contents","Data 1: Minnesota Natural Gas Vehicle Fuel Consumption ...

  11. ,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Consumption ... 7:09:53 AM" "Back to Contents","Data 1: Texas Natural Gas Vehicle Fuel Consumption ...

  12. Application of Roll-Isolated Inertial Measurement Units to the Instrumentation of Spinning Vehicles

    SciTech Connect (OSTI)

    BEADER,MARK E.

    2000-12-01

    Roll-isolated inertial measurement units are developed at Sandia for use in the instrumentation, guidance, and control of rapidly spinning vehicles. Roll-isolation is accomplished by supporting the inertial instrument cluster (gyros and accelerometers) on a single gimbal, the axis of which is parallel to the vehicle's spin axis. A rotary motor on the gimbal is driven by a servo loop to null the roll gyro output, thus inertially stabilizing the gimbal and instrument cluster while the vehicle spins around it. Roll-isolation prevents saturation of the roll gyro by the high vehicle spin rate, and vastly reduces measurement errors arising from gyro scale factor and alignment uncertainties. Nine versions of Sandia-developed roll-isolated inertial measurement units have been flown on a total of 27 flight tests since 1972.

  13. Vehicle Technologies Office Merit Review 2016: Connected and Automated Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Analysis

  14. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Advanced Vehicles Data Center (AFDC) Web site at www.afdc.energy.gov. ... Fuel Converters on its Web site at www.epa.govotaqcertdearmfr cisd0602.pdf. ...

  15. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel ...

  16. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    The following set of reports (part of the medium and heavy-duty truck data) describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was ...

  17. Cover Page of Household Vehicles Energy Use: Latest Data & Trends

    Gasoline and Diesel Fuel Update (EIA)

    Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

  18. Deputy Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to help lead the efforts of the Vehicle...

  19. Electric Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Tesla: In January 2010, the Department of Energy issued a 465 million loan to Tesla Motors to produce specially designed, all-electric plug-in vehicles and to develop a ...

  20. Electric vehicles | Open Energy Information

    Open Energy Info (EERE)

    existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not...

  1. 2013 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary; Moore, Sheila A

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  2. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  3. 2014 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  4. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  5. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T.; Klingler, Kerry M.; Bauer, Scott G.

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  6. Announcing the Apps for Vehicles Challenge

    Broader source: Energy.gov [DOE]

    Today the Vehicle Technologies Program is launching the Apps for Vehicles Challenge, which is looking for the best business plans, app ideas and product designs that use open vehicle data to help vehicle owners save fuel, save money and stay safe.

  7. Method and system for vehicle refueling

    DOE Patents [OSTI]

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  8. Method and system for vehicle refueling

    DOE Patents [OSTI]

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  9. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt071_vss_cesiel_2011_o.pdf (760.6 KB) More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  10. Flex Fuel Vehicle Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ft_13_yilmaz.pdf (1.31 MB) More Documents & Publications Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

  11. Quadrennial Technology Review Vehicle Efficiency and Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Documents | Department of Energy Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents (6.05 MB) More Documents & Publications QTR Public Webinar 2 Quadrennial Technology Review Workshop Portfolios Quadrennial

  12. Specialty Vehicles and Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Power Efficient Simple Clean Today Industrial Power Efficient Simple Clean Today Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching

  13. Optical guidance system for industrial vehicles

    DOE Patents [OSTI]

    Dyer, Robert D.; Eschbach, Eugene A.; Griffin, Jeffrey W.; Lind, Michael A.; Buck, Erville C.; Buck, Roger L.

    1990-01-01

    An automatically guided vehicle system for steering a vehicle. Optical sensing detects an image of a segment of track mounted above the path of the vehicle. Electrical signals corresponding to the position of the track are generated. A control circuit then converts these signals into movements for the steering of the vehicle.

  14. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  15. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize

  16. Alternative Fuels Data Center: Propane Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane

  17. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles | Department of Energy Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles This report, titled "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" is based

  18. Light Duty Vehicle Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Pathways Light Duty Vehicle Pathways Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. lightduty_vehicle_studies.pdf (561.55 KB) More Documents & Publications Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010 CAAFI Progress Update Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles

  19. Vehicle Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Transportation » Vehicle Technologies Office Vehicle Technologies Office DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency Read more News from the Vehicles Technologies Office News from the Vehicles Technologies Office Read more Find a Charging or Alternative Fueling Station Find a Charging or Alternative Fueling Station Read more Compare MPG and Emissions for New and Used Vehicles Compare

  20. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  1. Vehicle Technologies Office: Lubricants Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lubricants Research and Development Vehicle Technologies Office: Lubricants Research and Development Investigating technologies such as lubricants that will improve the efficiency of today's vehicles is essential, as most vehicles are on the road for more than 15 years before they are retired. The Vehicle Technologies Office (VTO) supports research and development (R&D) on lubricants that can improve the efficiency of vehicles with internal combustion engines.

  2. Vehicle Technologies Office: Transportation System Analytical Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Transportation System Analytical Tools Vehicle Technologies Office: Transportation System Analytical Tools The Vehicle Technologies Office (VTO) has supported the development of a number of software packages and online tools to model individual vehicles and the overall transportation system. Most of these tools are available for free or a nominal charge. Modeling tools that simulate entire vehicles and

  3. Vehicle Technologies Office: Workforce Development and Professional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and Professional Education The Vehicle Technologies Office (VTO) invests in both research to develop cleaner, safer, more affordable vehicles and education to ensure a strong workforce that can develop, build, repair, and respond to these vehicles. VTO helps to develop the nation's workforce

  4. Vehicles Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation » Vehicles Success Stories Vehicles Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing energy-efficient and environmentally friendly vehicle and fuel technologies translate into cleaner cars on the road today and more efficient cars in the years to come. Explore EERE's vehicle technologies success stories below. July 26, 2016 EERE Success Story-Multi-Material Lightweight Vehicle Helps Bring Technologies to Market

  5. Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Honda Accord Hybrid 2013 Chevrolet Malibu Eco 2013 Ford Cmax Hybrid 2013 Honda CIvic Hybrid 2013 Volkswagen Jetta Hybrid 2011 Hyundai Sonata 2010 Ford Fusion Hybrid 2010 Honda CR-Z 2010 Honda Insight 2010 Mercedes S400h BlueHybrid 2010 Toyota Prius Plug-In Hybrid Electric Vehicles Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory

  6. vehicle technologies office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Office The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the U.S. Department of Energy has reduced the costs of producing electric vehicle batteries by more than 35%. DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as

  7. Vehicle Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation » Vehicle Technologies Office Vehicle Technologies Office DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency Read more News from the Vehicles Technologies Office News from the Vehicles Technologies Office Read more Find a Charging or Alternative Fueling Station Find a Charging or Alternative Fueling Station Read more Compare MPG and Emissions for New and Used Vehicles Compare MPG and

  8. Housing assembly for electric vehicle transaxle

    DOE Patents [OSTI]

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  9. Take Our Daughters to Work Day 2016

    Broader source: Energy.gov [DOE]

    April 28 was Take Our Daughters and Sons to Work Day. At the U.S. Department of Energy, proud parents brought their children to participate in a day full of activities.

  10. DOE Co-Spnsors Earth Day Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Co-Sponsors Earth Day Activities Free trees and native plants are available to the first participants at the Idaho Falls Earth Day festivities in Tautphaus Park. There are a...

  11. Earth Day 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This year, we're celebrating Earth Day all week long. It's Earth Week on Energy.gov We're focusing on climate change, highlighting Earth Day events and sharing ways Americans ...

  12. I/O Statistics Last 30 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Last 30 Days These plots show the daily statistics for the last 30 days for the storage systems at NERSC in terms of the amount of data transferred and the number of files...

  13. National Day of Remembrance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remembrance National Day of Remembrance December 10, 2014 - 11:56am Addthis Mr. David Klaus, Deputy Under Secretary for Management and Performance, speaking at the October 31, 2014 National Remembrance Day event. Mr. David Klaus, Deputy Under Secretary for Management and Performance, speaking at the October 31, 2014 National Remembrance Day event. On July 9, 2014, the U.S. Senate announced the passage of S. Res. 417, a Senate resolution designating October 30, 2014, as a National Day of

  14. Innovative Manufacturing Initiatives Recognition Day Agenda ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Manufacturing Initiatives Recognition Day Agenda imirecogitiondayagenda.pdf (76.67 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition ...

  15. U32: Vehicle Stability and Dynamics: Longer Combination Vehicles

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Broshears, Eric; Chitwood, Caleb; Colbert, Jameson; Hathaway, Richard; Keil, Mitch; LaClair, Tim J; Pape, Doug; Patterson, Jim; Pittro, Collin

    2011-01-01

    This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a single semitrailer. The goal was to measure and model the behavior of LCVs in simple maneuvers. Example maneuvers tested and modeled were single and double lane changes, a gradual lane change, and a constant radius curve. In addition to test track data collection and a brief highway test, two computer models of LCVs were developed. One model is based on TruckSim , a lumped parameter model widely used for single semitrailer combinations. The other model was built in Adams software, which more explicitly models the geometry of the components of the vehicle, in terms of compliant structural members. Among other results, the models were able to duplicate the experimentally measured rearward amplification behavior that is characteristic of multi-unit combination vehicles.

  16. I/O Statistics Last 30 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I/O Statistics Last 30 Days I/O Statistics Last 30 Days These plots show the daily statistics for the last 30 days for the storage systems at NERSC in terms of the amount of data transferred and the number of files transferred. Daily I/O Volume Daily I/O Count

  17. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Boundy, Robert Gary; Diegel, Susan W

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  18. Energy Management for Motor-Driven Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY Energy Management for Motor Driven Systems The energy savings network-plug into it Energy Management for Motor-Driven Systems Prepared by Gilbert A. McCoy and John G. ...

  19. Dynamic driving cycle analyses using electric vehicle time-series data

    SciTech Connect (OSTI)

    Staackmann, M.; Liaw, B.Y.; Yun, D.Y.Y.

    1997-12-31

    Dynamic analyses of time-series data collected from real-world driving-cycle field testing of electric vehicles is providing evidence that certain driving-cycle conditions can significantly impact vehicle performance. In addition, vehicle performance results derived from time-series data show relationships that help to characterize driving cycles. Such findings confirm the advantages of time-series data over statistical data, in allowing correlation of vehicle performance characteristics with driving cycles. The driving-cycle vehicle performance analyses were performed using time-series data collected at the Electric and Hybrid Vehicle (EHV) National Data Center (NDC). A total of 71 EHVs are registered in the NDC and over 4,000 trips files have already been uploaded into the NDC database, as of may 1997. Numerous EHVs on multiple trips have been analyzed over the past two years. This paper presents the results of time-series data collected and analyzed for two specific vehicles of the overall program, to illustrate the value of time-series data. The data were analyzed to establish criteria for defining different driving cycles for the day-to-day trips made by vehicles in the program. The authors examined specific parameters such as average vehicle speed, number of stops during a trip, average distance traveled between stops, vehicle acceleration, and average DC kWh consumed per kilometer. Correlation among various parameters is presented in relationship to three driving cycles (highway, suburban, and urban), along with suggested ranges of parametric values defining the regimes of the different cycles.

  20. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  1. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  2. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  3. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  4. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  5. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  6. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  7. Electric Vehicle Service Personnel Training Program

    SciTech Connect (OSTI)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  8. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Connected and Automated Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connected and Automated Vehicles Chapter 8: Technology Assessments Introduction to Connected and Automated Vehicles Summary Connected vehicles are able to communicate with other vehicles and infrastructure automatically to improve transportation system function. Vehicle automation refers to the ability of a vehicle to operate with reduced or without direct human operation. Using a combination of advanced sensors and controls, sophisticated learning algorithms, and GPS and mapping technologies,

  9. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYBRID AND VEHICLE SYSTEMS TECHNOLOGIES Vehicle and system research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's) vehicle research programs, and identifies major opportunities for improving vehicle efficiencies. The effort evaluates and validates the integration of technologies, provides component and vehicle benchmarking, develops and validates heavy hybrid propulsion technologies,

  10. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  11. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  12. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  13. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  14. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  15. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Fuel Efficient Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions performance improvements compared to a production baseline vehicle. deer12_confer.pdf (1.38 MB) More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle

  16. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  17. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference between the empty weight of the vehicle and the GVW is not significantly different (1,000 to 1,500 lbs). The largest trucks and tractor-trailers,

  18. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  19. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  20. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  1. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  2. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  3. Micro-unmanned aerodynamic vehicle

    DOE Patents [OSTI]

    Reuel, Nigel; Lionberger, Troy A.; Galambos, Paul C.; Okandan, Murat; Baker, Michael S.

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  4. Vehicle barrier with access delay

    DOE Patents [OSTI]

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  5. Vehicle Technologies Program Funding Opportunities

    SciTech Connect (OSTI)

    2011-12-13

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) provides funding opportunities for advanced vehicle technology projects that are aimed at removing technical and cost barriers. Much of the funding available to the Vehicle Technologies Program is distributed to private firms, educational institutions, nonprofit organizations, state and local governments, Native American organizations, and individuals, through competitive solicitations. DOE is strongly committed to partnerships to help ensure the eventual market acceptance of the technologies being developed. New solicitations are announced regularly.

  6. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  7. Low floor mass transit vehicle

    DOE Patents [OSTI]

    Emmons, J. Bruce; Blessing, Leonard J.

    2004-02-03

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  8. Energy efficiency of electric vehicles at the 1994 American Tour de Sol

    SciTech Connect (OSTI)

    Quong, S.; Duoba, M.; Buitrago, C.; LeBlanc, N.; Larsen, R.

    1994-11-01

    In 1994, the US Department of Energy, through Argonne National Laboratory`s Center for Transportation Research, sponsored energy-efficiency data collection from student, private, and professional electric vehicles during the American Tour de Sol (ATdS). The ATDS is a multiple-day road rally event, from New York City to Philadelphia. During each leg of the event, kilowatt-hour meters measured the efficiency of the electric vehicles (EVs), which averaged from 5.68 to 65.74 km/kWh. In addition to daily energy-usage measurements, some vehicles used a data-acquisition unit to collect second-by-second information. This showed, in one case, that 21% of the total energy was captured in regenerative braking. Some of the vehicles were also tested on a dynamometer for energy-efficiency, acceleration, and steady-state power ratings. This paper also compares the energy efficiency of the vehicles during the road rally to the dynamometer results. In almost all vehicles, there was an increase in energy efficiency when the vehicle was traveling over the road, due to the non-transient duty cycle and efficient driving techniques. The dynamometer testing also showed that some EVs are equal to or better than gasoline vehicles in performance and efficiency.

  9. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  10. Pihsiang Electric Vehicle Manufacturing Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name: Pihsiang Electric Vehicle Manufacturing Co Ltd Place: Taiwan Sector: Vehicles Product: Taiwan-based maker of...

  11. Suzhou Eagle Electric Vehicle Manufacturing Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name: Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Place: Suzhou, China Sector: Vehicles...

  12. Vehicle Technologies Office Merit Review 2014: Wireless Charging...

    Broader source: Energy.gov (indexed) [DOE]

    wireless charging. vss103jones 2014o.pdf (4.04 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Wireless Charging of Electric Vehicles Vehicle ...

  13. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  14. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Fact 591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Seven vehicles were tested by ...

  15. 2011 Annual Merit Review Results Report - Hybrid and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Technologies 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research ...

  16. 2008 Annual Merit Review Results Summary - 14. Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation DOE Vehicle Technologies Annual Merit Review 2008meritreview14.pd...

  17. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report - Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research ...

  18. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities ...

  19. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities ...

  20. Shanghai Fuel Cell Vehicle Powertrain Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Vehicle Powertrain Co Ltd Jump to: navigation, search Name: Shanghai Fuel Cell Vehicle Powertrain Co Ltd Place: Shanghai Municipality, China Sector: Vehicles Product: A...