Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Constant Speed for Processing  

Science Journals Connector (OSTI)

Synduction motor combines constant speed of synchronous motor with ruggedness of induction motor ... CONVENTIONAL SYNCHRONOUS ELECTRIC MOTORS operate at constant speed, regardless of load and voltage—frequency is the determining factor. ...

1956-04-23T23:59:59.000Z

2

Control device for vehicle speed  

SciTech Connect (OSTI)

This patent describes a control device for vehicle speed comprising: a throttle driving means operatively coupled to a throttle valve of a vehicle; a set switch means for commanding memorization of the vehicle speed; a resume switch means for commanding read of the vehicle speed; a vehicle speed detecting means for generating a signal in accordance with the vehicle speed; a vehicle speed memory; an electronical control means for memorizing in the vehicle speed memory vehicle speed information corresponding to the signal obtained from the vehicle speed detecting means in response to actuation of the set switch means. The control means is also for reading out the content of the vehicle speed memory in response to actuation of the resume switch means to control the throttle driving means in accordance with the read-out content; a power supply means for supplying power to the electronical control means; and a power supply control switch means for controlling supply of power to the electronical control means in response to the state of at least one of the set switch means and the resume switch means and the state of the electronical control means. The improvement described here comprises the electronical control means sets the power supply control switch means into such a state that supply of power to the electronical control means is turned OFF, when vehicle speed information is not memorized in the vehicle speed memory.

Kawata, S.; Hyodo, H.

1987-03-03T23:59:59.000Z

3

Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle and Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle and Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed

4

Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Limited Speed Vehicle Limited Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Limited Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Limited Speed Vehicle Access to Roadways A limited speed vehicle is defined as a vehicle that is capable of

5

Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Inspection Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Inspection Exemption Low-speed vehicles are exempt from annual state vehicle inspections.

6

Alternative Fuels Data Center: Low-Speed Vehicle Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Definition to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Definition on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Definition on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Definition on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Definition on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Definition on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Definition A low-speed vehicle is defined as a limited use automobile or truck that has a maximum speed greater than 20 miles per hour (mph) but not more than

7

Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: February 6, 0: February 6, 2006 Maximum Speed Limits by State, 2005 to someone by E-mail Share Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Facebook Tweet about Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Twitter Bookmark Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Google Bookmark Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Delicious Rank Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on Digg Find More places to share Vehicle Technologies Office: Fact #410: February 6, 2006 Maximum Speed Limits by State, 2005 on AddThis.com...

8

Cosmological Constant and the Speed of Light  

E-Print Network [OSTI]

By exploring the relationship between the propagation of electromagnetic waves in a gravitational field and the light propagation in a refractive medium, it is shown that, in the presence of a positive cosmological constant, the velocity of light will be smaller than its special relativity value. Then, restricting again to the domain of validity of geometrical optics, the same result is obtained in the context of wave optics. It is argued that this phenomenon and the anisotropy in the velocity of light in a gravitational field are produced by the same mechanism.

W. R. Esposito Miguel; J. G. Pereira

2000-06-28T23:59:59.000Z

9

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a self-propelled motor vehicle that

10

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle, other than

11

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle, other than

12

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle with an

13

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle, including a neighborhood electric vehicle, is defined

14

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled vehicle that can reach

15

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled electric vehicle that has

16

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled vehicle with a maximum

17

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled vehicle that is capable of

18

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways A low-speed vehicle is defined as a four-wheeled electric vehicle capable

19

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles are only allowed access to roadways with speeds limits

20

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only be used on roads that have a posted speed limit

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles are only permitted on highways with speed limits up to

22

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only travel on roadways with a posted speed limit of

23

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only be used on roadways with posted speed limits of

24

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may operate on streets with posted speed limits of 35

25

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may not operate on roads with posted speed limits of

26

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only travel on roadways with a posted speed limit of

27

Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed  

Broader source: Energy.gov [DOE]

Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per...

28

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only operate on private and public roads and streets

29

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles are only permitted to operate on roadways with posted

30

The Speed of Light and the Fine Structure Constant  

E-Print Network [OSTI]

The fine structure constant $\\alpha $ includes the speed of light as given by $\\alpha =\\frac{e^{2}}{4\\pi \\epsilon_{0}c\\hbar}$. It is shown here that, following a $TH\\epsilon \\mu $ formalism, interpreting the permittivity $\\epsilon_{0}$ and permeabiliy $\\mu_{0}$ of free space under Lorentz local and position invariance, this is not the case. The result is a new expression as $\\alpha =\\frac{e^{2}}{4\\pi \\hbar}$ in a new system of units for the charge that preserves local and position invariance. Hence, the speed of light does not explicitly enter in the constitution of the fine structure constant. The new expressions for the Maxwell's equations are derived and some cosmological implications discussed.

Antonio Alfonso-Faus

2000-08-04T23:59:59.000Z

31

Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Roadway Access Study to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Roadway Access Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Roadway Access Study A committee composed of members of the New Hampshire Legislature must study

32

Alternative to the principle of constant speed of light  

E-Print Network [OSTI]

To consider a medium carrying light and electromagnetic waves is impossible, when this medium shall have properties according to the principle of constant speed of light, that is, isotropy of speed of light in every system of reference. Therefore, with principle of constant speed of light abandoned, the so-called medium synchronization of clocks is defined, yielding isotropy solely in the system at rest and anisotropy in all moving systems. From medium synchronization the appropriate coordinate transformation is developed, the so-called medium transformation, a Galilean type of transformation, thus maintaining simultaneity between all participant systems of reference and changing the form of Maxwells equations to the extended Maxwell equations. Despite the fact that medium transformation violates Lorentz invariance and the principle of relativity, it is demonstrated that the results from medium transformation and extended Maxwell equations are fully compliant with observable phenomena. Moreover, it is shown that the concept of a medium, a preferred frame of reference, is compatible not only with medium transformation, but also with Lorentz transformation and with theory of special relativity, so it is quite possible now to consider a realistic medium. Finally, a discrepancy is exposed within theory of special relativity, giving rise to assume a preferred frame of reference even in special relativity.

Herbert Weiss

2006-06-28T23:59:59.000Z

33

Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Electric Low-Speed Electric Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Electric Vehicle Access to Roadways

34

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways -  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways - Prudence Island to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways - Prudence Island on AddThis.com... More in this section... Federal State

35

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

36

Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Medium-Speed Electric Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search

37

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

38

Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low- and Medium-Speed Low- and Medium-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

39

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

40

Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Medium-Speed Electric Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low- and Medium-Speed Low- and Medium-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low- and Medium-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

42

Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control  

SciTech Connect (OSTI)

The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at high speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.

Lawler, J.S.

2000-06-23T23:59:59.000Z

43

Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: April 18, 1: April 18, 2011 Average Truck Speeds to someone by E-mail Share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Facebook Tweet about Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Twitter Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Google Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Delicious Rank Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Digg Find More places to share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on AddThis.com... Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major

44

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle  

E-Print Network [OSTI]

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle Haider N. Arafat-- A dynamic model is developed for a small, high- speed autonomous underwater vehicle. The vehicle has manner: 1) Wind angle and angle : From u = V cos , v = V sin sin , and w = V sin cos , we have tan

Virginia Tech

45

Variable Speed Drive (VSD) Applications in Dual-Duct Constant Volume Systems  

E-Print Network [OSTI]

Models have been developed for static pressure and potential supply fan energy savings by using variable speed drive (VSD) in dual-duct constant volume systems. Experiments have been performed using a full size dual-duct constant volume system...

Joo, I.; Liu, M.; Conger, K.; Wang, G.

2002-01-01T23:59:59.000Z

46

Low-Speed Electric Vehicles: Coming to a Neighborhood Near You? |  

Broader source: Energy.gov (indexed) [DOE]

Low-Speed Electric Vehicles: Coming to a Neighborhood Near You? Low-Speed Electric Vehicles: Coming to a Neighborhood Near You? Low-Speed Electric Vehicles: Coming to a Neighborhood Near You? October 6, 2009 - 6:00am Addthis John Lippert In an earlier job, I was a contractor supporting the Navy and Marine Corps Energy Awareness Program. Half of the ground fleet-as well as half of the personal vehicles-on one of the Navy bases I visited were electric golf carts. [See Navy Develops Green Island Program to Improve Base Life beginning on page 13. (PDF 8.9 MB). Download Adobe Reader.] Soon after my visit, the base added low-speed electric cars and trucks, also known as neighborhood electric vehicles or NEVs. I interviewed the ground transportation fleet maintenance staff and was impressed with their electric vehicle program. Though low-tech, it made good economic and

47

42 ITE Journal / January 2009 Vehicle Tracking and Speed  

E-Print Network [OSTI]

Me events recorded by a video detection systeM, a vehicle-tracking algorithM was developed to track vehicles recognized the lack of vehicle tracking capabilities in most commercial video detection systems. Efforts have Detection Systems Most coMMercially available video detection systeMs are unable to differentiate turning

Tian, Zong Z.

48

An Online Mechanism for Multi-Speed Electric Vehicle Charging  

E-Print Network [OSTI]

range of such vehicles, and EVs are expected to represent close to 10% of all vehicle sales by 2020 in electric vehicles (EVs). New hybrid de- signs, equipped with both an electric motor and an internal- nisms to schedule the charging of EVs, such that the local constraints of the distribution network

Southampton, University of

49

A constant-mass fuel delivery system for use in underwater autonomous vehicles  

E-Print Network [OSTI]

This thesis describes the design and assembly of two constant-mass fuel tanks to be used in autonomous underwater vehicles (AUVs). The fuel tanks are part of a power supply designed to increase AUV endurance without limiting ...

Saxton-Fox, Theresa Ann

2012-01-01T23:59:59.000Z

50

The creation of fiberglass tanks and parts for autonomous underwater vehicle constant buoyancy power supply  

E-Print Network [OSTI]

The purpose of this thesis was to construct and seal air and containment tanks and other parts for a constant buoyancy power supply for an Autonomous Underwater Vehicle, or AUV. While multiple materials and techniques were ...

Sack, Jean H. (Jean Hope)

2013-01-01T23:59:59.000Z

51

Vehicle Technologies Office Merit Review 2014: High Speed Joining...  

Energy Savers [EERE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

52

A Comparison of Vehicle Speed at Day and Night Rural Horizontal Curves  

E-Print Network [OSTI]

This thesis documents the linear mixed model developed for vehicle speed along two-lane two-way rural horizontal curves in the outside lane. Speed data at each curve was collected at four points along the curve including the midpoint of the curve...

Quaium, Ridwan B.

2010-07-14T23:59:59.000Z

53

On-board prediction of future speed profile for energy management of hybrid electric vehicles  

Science Journals Connector (OSTI)

Vehicular communications could be exploited for energy management of vehicles. We propose a system which provides that a vehicle estimates its future speed profile gathering status messages broadcasted by the surrounding vehicles and/or the infrastructure and inputting them in a traffic simulator used as a predictor. The system has been validated by simulation considering an urban scenario inspired to the Ecotekne campus at the University of Salento and a Manhattan scenario, very challenging in relation to the prediction of the speed profile. Simulation results have shown that the prediction error is quite low for the first scenario. In the Manhattan scenario, the error is quite high in case each vehicle limits itself to send messages only to its neighbours and does not transmit the information regarding its route. However, the error can be significantly reduced if route information is broadcasted and the infrastructure relays the messages transmitted by vehicles. The proposed system has been tested in the Ecotekne campus.

Giovanni Ciccarese; Teresa Donateo; Cosimo Palazzo

2012-01-01T23:59:59.000Z

54

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect (OSTI)

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

55

Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control -- Part I: Theory and Simulation  

SciTech Connect (OSTI)

An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speed range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.

Lawler, J.S.

2001-10-29T23:59:59.000Z

56

Low speed engine for supersonic and hypersonic vehicles  

SciTech Connect (OSTI)

This patent describes a jet engine suitable for use in an aircraft in a range of speeds from zero to hypersonic flight. It comprises: a duct having a relatively small diameter mixing zone and a relatively large diameter combustion zone located down stream from the mixing zone; a secondary injector positioned between the primary injector and the combustion zone, supply means for supplying a fuel rich injectant to the primary injector so that the primary injector forces the injectant into the duct.

Klees, G.W.; Sloan, M.L.; Thornock, R.L.

1992-07-14T23:59:59.000Z

57

Speed-and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles based on Real-World Speed Profiles  

E-Print Network [OSTI]

06-1096 Speed- and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles based on Real-World Speed Profiles By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction demand and land use models such as TransCAD, TranPlan or TRANUS produce average link speed and link VMT

Frey, H. Christopher

58

A Model of Varying Fine Structure Constant and Varying Speed of Light  

E-Print Network [OSTI]

The recent evidence for a cosmological evolution of the fine structure constant \\alpha=e^2/\\hbar c found from an analysis of absorption systems in the spectra of distant quasars, is modelled by a cosmological scenario in which it is assumed that only the speed of light varies. The model fits the spectral line data and can also lead to a solution of the initial value problems in cosmology.

J. W. Moffat

2001-09-20T23:59:59.000Z

59

On-vehicle emission measurement of a light-duty diesel van at various speeds at high altitude  

Science Journals Connector (OSTI)

Abstract As part of the research on the relationship between the speed of a vehicle operating at high altitude and its contaminant emissions, an on-vehicle emission measurement of a light-duty diesel van at the altitudes of 1000 m, 2400 m and 3200 m was conducted. The test vehicle was a 2.8 L turbocharged diesel Ford Transit. Its settings were consistent in all experiments. Regulated gaseous emissions, including CO, HC and NOx, together with particulate matter was measured at nine speeds ranged from 10 km h?1 to 90 km h?1 with 10 km h?1 intervals settings. At each speed, measurement lasted for at least 120 s to ensure the sufficiency and reliability of the collected data. The results demonstrated that at all altitudes, CO and HC emissions decreased as the vehicle speed increased. However both \\{NOx\\} and PM increased with vehicle speed. In terms of the effects of altitude, an increase in CO, HC and PM was observed with the rising of altitude at each vehicle speed. \\{NOx\\} behaved different: emission of \\{NOx\\} initially increased as the vehicle was raised from 1000 m to 2400 m, but it decreased when the vehicle was further elevated to 3200 m.

Xin Wang; Hang Yin; Yunshan Ge; Linxiao Yu; Zhenxian Xu; Chenglei Yu; Xuejiao Shi; Hongkun Liu

2013-01-01T23:59:59.000Z

60

that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows,  

E-Print Network [OSTI]

that minimizes vehicle emissions during design of routes in congested environments with time emissions, and several laboratory and field methods are available for estimating vehicle emissions rates (1 and then begins to increase again (2); hence, the relationship between emission rates and travel speed

Bertini, Robert L.

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass  

SciTech Connect (OSTI)

This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

2014-10-01T23:59:59.000Z

62

Optimal Design of a High-Speed On/Off Valve for a Hydraulic Hybrid Vehicle Application  

E-Print Network [OSTI]

Coefficient 0.6 same none eq Fluid Bulk Modulus 3.7 x 108 1.2 x 109 Pa Pc Check Valve Cracking Pressure 3.2 NOptimal Design of a High-Speed On/Off Valve for a Hydraulic Hybrid Vehicle Application Michael of Minnesota, Minneapolis, MN, USA ABSTRACT Control of hydraulic systems using high-speed on/off valves has

Li, Perry Y.

63

Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation  

SciTech Connect (OSTI)

Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

Wood, E.; Burton, E.; Duran, A.; Gonder, J.

2014-06-01T23:59:59.000Z

64

Resonant Vibrations Resulting from the Re-Engineering of a Constant-Speed 2-Bladed Turbine to a Variable-Speed 3-Bladed Turbine  

SciTech Connect (OSTI)

The CART3 (Controls Advanced Research Turbine, 3-bladed) at the National Wind Technology Center has recently been converted from a 2-bladed constant speed machine to a 3-bladed variable speed machine designed specically for controls research. The purpose of this conversion was to develop an advanced controls field-testing platform which has the more typical 3-bladed configuration. A result of this conversion was the emergence of several resonant vibrations, some of which initially prevented operation of the turbine until they could be explained and resolved. In this paper, the investigations into these vibrations are presented as 'lessons-learned'. Additionally, a frequency-domain technique called waterfall plotting is discussed and its usefulness in this research is illustrated.

Fleming, P.; Wright, A. D.; Finersh, L. J.

2010-12-01T23:59:59.000Z

65

Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain  

SciTech Connect (OSTI)

The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

Bahman Habibzadeh

2010-01-31T23:59:59.000Z

66

Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system  

SciTech Connect (OSTI)

This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

1989-04-01T23:59:59.000Z

67

Fuzzy Logic of Speed and Steering Control System for Three Dimensional Line Following of an Autonomous Vehicle  

E-Print Network [OSTI]

... This paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic [8] [9] approach for steering and speed control [37], a FL approach for ultrasound sensing and an overall expert system for guidance. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test bed has been constructed in university of Cincinnati using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised through a multi-axis motion controller. The obstacle avoidance system is based on a microcontroller interfaced with ultrasonic transducers. This micro-controller independently handles all timing and distance calculations and sends distance information back to the fuzzy logic controller via the serial ...

Shukla, Shailja

2010-01-01T23:59:59.000Z

68

Assessing Benefits in Vehicle Speed and Lateral Position when Chevrons with Full Retroreflective Sign Posts are Implemented on Rural Horizontal Curves  

E-Print Network [OSTI]

Driving a horizontal roadway curve requires a change in vehicle alignment and a potential reduction in speed. Curves may present a challenging situation during adverse conditions or to inattentive drivers. Chevron signs provide advanced warning...

Re, Jonathan M.

2010-01-16T23:59:59.000Z

69

Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

70

Exhaust emissions of volatile organic compounds of powered two-wheelers: Effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation  

Science Journals Connector (OSTI)

Abstract Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1–C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ? 50 cm3) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm3). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of \\{PTWs\\} in urban areas, was significant: 30–51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30–40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic \\{VOCs\\} show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50–80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted.

M. Antonietta Costagliola; Fabio Murena; M. Vittoria Prati

2014-01-01T23:59:59.000Z

71

Effectiveness of speed trailers on low-speed urban roadways  

E-Print Network [OSTI]

documents the effectiveness of speed trailers for reducing speeds on low-speed urban roadways. At each test site, vehicle speeds were collected at upstream, trailer, and downstream locations using piezoelectric sensors. Vehicles were "tracked" along...

Perrillo, Kerry Victoria

2012-06-07T23:59:59.000Z

72

Passivity Analysis and Design of Passivity-Based Controllers for Trajectory Tracking at High Speed of Autonomous Vehicles  

E-Print Network [OSTI]

of Autonomous Vehicles Gilles Tagne, Reine Talj and Ali Charara Abstract-- Autonomous intelligent vehicles of intelligent vehicles, with the aim of minimizing the lateral displacement of the autonomous vehicle competitions have been organized all around the world to favor the development of autonomous intelligent ve

Paris-Sud XI, Université de

73

A Multivariate Analysis of Freeway Speed and Headway Data  

E-Print Network [OSTI]

key process is the generation of entry vehicle speeds and vehicle arrival times. It is helpful to find desirable mathematical distributions to model individual speed and headway values, because the individual vehicle speed and arrival time...

Zou, Yajie

2013-11-11T23:59:59.000Z

74

INTRODUCTION Whether from traveling in a vehicle or from racing across the playground at recess, the concept of speed is one  

E-Print Network [OSTI]

in steps that are factors of 10.) Finally, the notion of a maximum speed (the speed of light) is introduced. The primary points covered in the poster are: · Speed is a measurement of the distance an object travels. · Nothing can travel faster than the speed of light. Even the speed of the Earth in its orbit is much slower

75

Measured speed versus true speed  

E-Print Network [OSTI]

The theoretical predictions, derived from the Lorentz and the Tangherlini transformations, for the one-way speed of any physical entity are confronted with the corresponding expressions for the one-way measured speed obtained from a gedanken experiment. The experiment demonstrates that, for an inertial frame $K'$ in motion relative to an inertial frame $K$ where the one-way speed of light is isotropic, even the special theory of relativity renders the one-way speed of light as function of the velocity of $K'$ in agreement with the Tangherlini transformations. However, the two-way speed of light remains constant for all inertial frames, in agreement with the two-way experimental techniques. This implies that there must exist \\emph{one and only one} inertial frame where the one-way speed of light is isotropic. These investigations also show how we can determine, with certain restrictions, the true speed of a physical entity and of the true speed of $K'$ relative to $K$.

Israel Perez

2010-05-10T23:59:59.000Z

76

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

77

Quantifying the benefits of vehicle pooling with shareability networks  

Science Journals Connector (OSTI)

...wasted time and fuel caused by congestion...of Collaborative Consumption ( HarperCollins...factor of speed and engine load, which are...vehicle emissions and fuel consumption in urban driving...vehicle speed and engine load on motor vehicle...

Paolo Santi; Giovanni Resta; Michael Szell; Stanislav Sobolevsky; Steven H. Strogatz; Carlo Ratti

2014-01-01T23:59:59.000Z

78

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

79

Analysis of data from electric and hybrid electric vehicle student competitions  

SciTech Connect (OSTI)

The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

Wipke, K.B. [National Renewable Energy Lab., Golden, CO (United States); Hill, N.; Larsen, R.P. [Argonne National Lab., IL (United States)

1994-01-01T23:59:59.000Z

80

Effects on speed and safety of point-to-point speed enforcement systems: Evaluation on the urban motorway A56 Tangenziale di Napoli  

Science Journals Connector (OSTI)

Abstract In this paper, we evaluated the effects on speed and safety of the point-to-point (P2P) speed enforcement system activated on the urban motorway A56 in Italy. The P2P speed enforcement is a relatively new approach to traffic law enforcement that involves the calculation of the average speed over a section. To evaluate the speed effects, we performed a before–after analysis of speed data investigating also effects on non-compliance to speed limits. To evaluate the safety effects, we carried out an empirical Bayes observational before-and-after study. The P2P system led to very positive effects on both speed and safety. As far as the effects on the section average travel speeds, the system yielded to a reduction in the mean speed, the 85th percentile speed, the standard deviation of speed, and the proportion of drivers exceeding the speed limits, exceeding the speed limits more than 10 km/h, and exceeding the speed limits more than 20 km/h. The best results were the decrease of the speed variability and the reduction of the excessive speeding behaviour. The decrease in the standard deviation of speed was 26% while the proportion of light and heavy vehicles exceeding the speed limits more than 20 km/h was reduced respectively by 84 and 77%. As far as the safety effects, the P2P system yielded to a 32% reduction in the total crashes, with a lower 95% confidence limit of the estimate equal to 22%. The greatest crash reductions were in rainy weather (57%), on wet pavement (51%), on curves (49%), for single vehicle crashes (44%), and for injury crashes (37%). It is noteworthy that the system produced a statistically significant reduction of 21% in total crashes also in the part of the motorway where it was not activated, thus generating a significant spillover effect. The investigation of the effects of the P2P system on speed and safety over time allowed to develop crash modification functions where the relationship between crash modification factors and speed parameters (mean speed, 85th percentile speed, and standard deviation of speed) was expressed by a power function. Crash modification functions show that the effect of speed on safety is greater on curves and for injury crashes. Even though the study results show excellent outcomes, we must point out that the crash reduction effects decreased over time and speed, speed variability, and non-compliance to speed limits significantly increased over time. To maintain its effectiveness over time, P2P speed enforcement must be actively managed, i.e. constantly monitored and supported by appropriate sanctions.

Alfonso Montella; Lella Liana Imbriani; Vittorio Marzano; Filomena Mauriello

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development and Use of a Computer Program “Hyper-N” to Predict the Performance of Air Vehicles Traveling at Hypersonic Speeds.  

E-Print Network [OSTI]

??Abstract The main objective of this thesis was to develop a method than can be used to approximate the pressure forces on air vehicles traveling… (more)

Baalla, Younes

2010-01-01T23:59:59.000Z

82

AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

83

Electric motor with controllable speed and torque  

Science Journals Connector (OSTI)

The proposed electric motor is characterized by controllable speed and torque ... shaft, at constant rotor speed. In this motor, the torque at the output shaft increases...

R. G. Khadeev

2011-01-01T23:59:59.000Z

84

Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: October 5, 1: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed to someone by E-mail Share Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Facebook Tweet about Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Twitter Bookmark Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Google Bookmark Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Delicious Rank Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Digg Find More places to share Vehicle Technologies Office: Fact #591:

85

Assessing vehicle detection utilizing video image processing technology  

E-Print Network [OSTI]

. Autoscope - 45 mph 45 52 56 Table 10. Mean Passenger Car Speeds - Radar Gun vs. Autoscope - 55 mph . . . . . 60 Table 11. Percent Difference Between the Mean Radar Gun Speed and the Unadjusted Mean Autoscope Speed Table 12. Vehicle Speed Calculation...

Hartmann, Duane E

2012-06-07T23:59:59.000Z

86

An evaluation of inductance loop detectors for speed measurement accuracy  

E-Print Network [OSTI]

. The lag time from the presence of a vehicle at an inductance loop to the actual detection of a vehicle varies. As the lag time varies so does the accuracy of speed measurement. Vehicle size, vehicle speed, detector type, detector sensitivity...

Cronin, Brian Patrick

2012-06-07T23:59:59.000Z

87

Modular Traffic Sign Recognition applied to on-vehicle real-time visual detection of American and European speed limit signs  

E-Print Network [OSTI]

We present a new modular traffic signs recognition system, successfully applied to both American and European speed limit signs. Our sign detection step is based only on shape-detection (rectangles or circles). This enables it to work on grayscale images, contrary to most European competitors, which eases robustness to illumination conditions (notably night operation). Speed sign candidates are classified (or rejected) by segmenting potential digits inside them (which is rather original and has several advantages), and then applying a neural digit recognition. The global detection rate is ~90% for both (standard) U.S. and E.U. speed signs, with a misclassification rate 150 minutes of video. The system processes in real-time ~20 frames/s on a standard high-end laptop.

Moutarde, Fabien; Herbin, Anne; Chanussot, Lowik

2009-01-01T23:59:59.000Z

88

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

89

Path Planning Algorithms for Multiple Heterogeneous Vehicles  

E-Print Network [OSTI]

Unmanned aerial vehicles (UAVs) are becoming increasingly popular for surveillance in civil and military applications. Vehicles built for this purpose vary in their sensing capabilities, speed and maneuverability. It is therefore natural to assume...

Oberlin, Paul V.

2010-01-16T23:59:59.000Z

90

Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Medium-Speed and Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Digg

91

Full Hybrid: Low Speed  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

highlighted Cruising button Passing button Braking button Stopped button highlighted Cruising button Passing button Braking button Stopped button LOW SPEED For initial acceleration and slow-speed driving, as well as reverse, the electric motor uses electricity from the battery to power the vehicle. If the battery needs to be recharged, the generator starts the engine and converts energy from the engine into electricity, which is stored in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is moving at a low speed. There are arrows flowing from the battery to the electric motor to the power split device to the front wheels. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is moving at a low speed. There are arrows flowing from the battery to the electric motor to the power split device to the front wheels.

92

Dynamometer testing of the U.S. Electricar Geo Prizm conversion electric vehicle  

SciTech Connect (OSTI)

A Geo Prizm electric vehicle conversion by U.S. Electricar was tested in the INEL HEV Laboratory over several standard driving regimes. The vehicle, owned by the Los Angeles Department of Water and Power (LADWP), was loaned to the INEL for performance testing under a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy (DOE) and the California Air Resources Board (CARB). The Prizm conversion is the fourth vehicle in the planned test series. A summary of the test results is presented as Table ES-1. For the LA-92 and the Highway Fuel Economy Test cycles, the driving cycle ranges were 71 and 95 km, respectively. The net DC energy consumption during these cycles was measured at 199 and 154 W-h/km, respectively. During the constant-current-discharge test, the vehicle was driven 150 km at an average steady speed of 43 km/h. Energy consumption at various steady-state speeds, averaged over two tests, was approximately 108 W-h/km at 40 km/hr and 175 W-h/km at 96 km/h at 80T state-of-charge (SOC). Gradeability-at-speed tests indicated that the vehicle can be driven at 80 km/h up a simulated 5% grade for periods up to 15 minutes beginning at an initial 100% SOC, and 3 minutes beginning at 80% battery depth-of-discharge (DOD). Maximum-effort vehicle acceleration times were determined at five different battery DODs and speeds from 24 to 104 km/h. The acceleration is approximately linear up to 48 km/h, with no DOD effect; at higher speeds the curve becomes non-linear, and the effect of DOD becomes increasingly evident. Gradeability at each of these speeds was also determined, showing a decrease from the initial 26% at 24 km/h to 4% at 104 km/h.

Richardson, R.A.; Yarger, E.J.; Cole, G.H.

1996-04-01T23:59:59.000Z

93

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

94

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

95

Renewable variable speed hybrid system   

E-Print Network [OSTI]

At present many remote and Island communities rely solely on diesel powered generators to provide electricity. Diesel fuel is both expensive and polluting and the constant speed operation of the diesel engine is inefficient. ...

Stott, Paul Anthony

2010-01-01T23:59:59.000Z

96

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

again 95 o F environment requires a constant AC compressor load that impacts the energy usage across all vehicle types on hot and cold starts Accomplishments: Quantified...

97

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

Mara, L.M.

1998-05-05T23:59:59.000Z

98

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

Mara, Leo M. (Livermore, CA)

1998-01-01T23:59:59.000Z

99

Electric vehicle drive train with rollback detection and compensation  

DOE Patents [OSTI]

An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

Konrad, Charles E. (Roanoke, VA)

1994-01-01T23:59:59.000Z

100

Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle  

Science Journals Connector (OSTI)

The particulate emissions generated from a side-mounted 2.4 L gasoline direct injection (GDI) engine were evaluated using a metal foam-type gasoline particulate filter (GPF), placed on the downstream of a three-way catalyst. An ULEV legislation-compliant light-duty vehicle was tested under the new European driving cycle (NEDC) and at constant-speed driving conditions. Particle number (PN) concentrations, particulate size distribution and the filtration efficiency of the GPF were evaluated with the condensation particle counter (CPC) and the differential mobility spectrometer (DMS). The PN emissions for the entire NEDC were 1.17E+12 N/km for the base GDI vehicle and 4.99E+11 N/km for the GPF-equipped GDI vehicle, and the filtration efficiency of the GPF was 57%. In particular, the number of sub-23 nm particles formed in the GDI vehicle was substantially reduced, with 97% efficiency. The pressure drop in the metal foam-type GPF was constrained to be below 1.0 kPa at a 120 km/h vehicle speed, and as a result, the fuel economy and the CO2 emission for the GPF-applied vehicle were equivalent to those for the base vehicle.

Kwanhee Choi; Juwon Kim; Ahyun Ko; Cha-Lee Myung; Simsoo Park; Jeongmin Lee

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hybrid Vehicles: Cut Pollution & Save Money  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Alternatives to internal combustion engines have been tried over the years, but none have outlasted or replaced the gasoline- or diesel-powered internal combustion engine. The Stanley brothers produced steam-powered automobiles between 1902 and 1927, but even their aggressive advertising campaign could not halt the popularity of the "internal explosion engine," as they called it. Chrysler experimented with turbine-powered vehicles from 1954 to 1979, but abandoned the effort because of difficulties matching the stop-and-go requirements of an automobile with the constant-speed preference of a turbine. Presently, several automotive companies are doing research on fuel cells, which combine hydrogen or methane with oxygen to create electricity without combustion, but the technology is still a few years away from being economically feasible. Electric vehicles have been around for nearly a century, but because of limited energy-storage capacity (batteries) and the resulting limitations on range and power, they have never been popular as replacements for internal combustion engine powered vehicles. In early 2007, an entrepreneur in San Jose, California, announced the introduction of an all-electric sports car.

102

Attribute-based Vehicle Search in Crowded Surveillance Videos  

E-Print Network [OSTI]

of vehicle characteristics (such as color, direction of travel, speed, length, height, etc.) and the system and environmental factors. This is achieved through a novel multi-view vehicle detection approach which relies is changed to allow the detection of different vehicle types. Once a vehicle is detected and tracked over

Davis, Larry

103

Ride-through for Autonomous Vehicles Aaron Kane and Philip Koopman  

E-Print Network [OSTI]

expected control system transients. Testing these principles on an autonomous utility vehicle resulted on an autonomous vehicle resulted in improved detection of speed safety threshold violations and shorter shutdown, or a top vehicle speed might be set based on the maximum speed rating of tires). Safety-critical systems o

Paris-Sud XI, Université de

104

Speed estimation using single loop detector outputs  

E-Print Network [OSTI]

...................................................................................10 2.1 Introduction ........................................................................................10 2.2 Vehicle Detectors ...............................................................................10 2.3 Description of the Speed....4 Hourly traffic volumes from the IH-35 test bed in Austin on Oct. 27, 2004 38 Fig 3.5 Layout of the simulated freeway section ...................................................... 41 Fig. 4.1 Average vehicle lengths over time...

Ye, Zhirui

2009-05-15T23:59:59.000Z

105

Speed estimation using single loop detector outputs  

E-Print Network [OSTI]

...................................................................................10 2.1 Introduction ........................................................................................10 2.2 Vehicle Detectors ...............................................................................10 2.3 Description of the Speed....4 Hourly traffic volumes from the IH-35 test bed in Austin on Oct. 27, 2004 38 Fig 3.5 Layout of the simulated freeway section ...................................................... 41 Fig. 4.1 Average vehicle lengths over time...

Ye, Zhirui

2008-10-10T23:59:59.000Z

106

Electric vehicles: Top speed at Lords  

Science Journals Connector (OSTI)

... What will the House of Lords make of the electric car, the topic on which the Select Committee on Science and Technology appointed in January ...

Judy Redfearn

1980-06-19T23:59:59.000Z

107

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

108

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

109

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

110

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

111

On fuel-optimal velocity control of a motor vehicle  

Science Journals Connector (OSTI)

This paper presents the motor vehicle velocity control that, under certain well-defined conditions, ensures a minimum fuel consumption. To this purpose, a vehicle with a stepped mechanical transmission is considered, assuming that the gear is unchanged during the movement. The optimal control problem is formulated for different cases and solved by applying Pontryagin's maximum principle. Whenever there is a singular solution, it is shown to correspond to the uniform motion law. The optimal velocity controls include the following phases that may be combined in different ways: deceleration without engine shut-off (null engine power), strong decelerative braking, constant speed movement and full-throttle acceleration. Examples are presented by using the experimental data on engine fuel consumption. The stress falls on the significant reductions in fuel consumption that can be achieved compared to uniform motion.

A.P. Stoicescu

1995-01-01T23:59:59.000Z

112

Magnetically Coupled Adjustable Speed Motor Drives  

Broader source: Energy.gov [DOE]

Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump. This tip sheet describes the advantages of magnetically coupled ASDs and provides suggested actions.

113

Measuring the Impacts of Speed Reduction Technologies  

E-Print Network [OSTI]

-Seoud, Edward Anderson #12;Background Identified as a problem area Sharp curve & excessive speed High crash;Comparison of Mean Zones - Southbound, Commercial Vehicles 45 46 47 48 49 50 51 52 53 54 55 -1300 -1100 -900-70 Speed Category Before After #12;At nearest rest area

Bertini, Robert L.

114

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

115

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2  

E-Print Network [OSTI]

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2 , Sofiane for presizing the power of an electric vehicle traction motor. Based on the vehicle desired performances motor, power presizing, driving cycle. Nomenclature EV = Electric Vehicle; V = Vehicle speed; Vb

Paris-Sud XI, Université de

116

Constant voltage ultracapacitor  

Science Journals Connector (OSTI)

Ultracapacitors have attracted lots of attention recently due to their growing use in hybrid vehicles and in energy storage applications for the smart grid. A very undesirable feature of ultracapacitors is the fact that the voltage drops as the capacitor is discharged. DC-DC converters are employed at present to convert the voltage of the ultracapacitor to constant voltage; however these converters typically do not operate if the voltage of the ultracapacitor drops below 1?V. In addition DC-DC converters suffer from well-known size/efficiency tradeoffs. This paper introduces a novel new ultracapacitor that is characterized by constant voltage. The new ultracapacitor does not utilize familiar energy conversion principles. Rather operation depends on an embedded electromechanical system that actually alters the capacitance of the ultracapacitor as the device is discharged. Due to a simple proportionality relationship between charge capacitance and voltage the voltage remains constant. Theoretical and experimental investigations have shown that the embedded mechanism for altering the capacitance has an efficiency of 99% or higher.

Ezzat G. Bakhoum

2012-01-01T23:59:59.000Z

117

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

118

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

119

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

120

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Gossip Algorithm for Heterogeneous Multi-Vehicle Routing Problems  

E-Print Network [OSTI]

tasks arbitrarily distributed in a plane, to each task is assigned a servicing cost, each vehicle with arbi- trary execution cost and vehicles with different task exe- cution speeds. We provide upperA Gossip Algorithm for Heterogeneous Multi-Vehicle Routing Problems Mauro Franceschelli Daniele

Bullo, Francesco

122

Diesel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

123

Commercial viability of hybrid vehicles : best household use and cross national considerations.  

SciTech Connect (OSTI)

Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

Santini, D. J.; Vyas, A. D.

1999-07-16T23:59:59.000Z

124

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

125

A novel clutchless multiple-speed transmission for electric axles  

Science Journals Connector (OSTI)

Fully electric vehicles and range-extended electric vehicles can be characterised by a multitude of possible powertrain layouts, many of them currently under investigation and comparison. This contribution presents a novel clutchless seamless four-speed transmission system which can be concurrently driven by two electric motor drives, for use in fully electric vehicles or electric axles for through-the-road parallel hybrid electric vehicles. The transmission system allows the electric motors to work in their high efficiency region for a longer period during a typical driving schedule. This paper describes the layout of the novel transmission system, the equations for modelling its dynamics and the criteria for the selection of the best gearshift maps for energy efficiency. Finally, an energy consumption and performance comparison between the novel drivetrain, a conventional single-speed electric drivetrain and a double-speed electric drivetrain is discussed in detail for two case study vehicles.

Aldo Sorniotti; Thomas Holdstock; Mike Everitt; Marco Fracchia; Fabio Viotto; Carlo Cavallino; Stefano Bertolotto

2013-01-01T23:59:59.000Z

126

Alliance for Chinese Electric Vehicle Development and Commercialization |  

Open Energy Info (EERE)

Development and Commercialization Development and Commercialization Jump to: navigation, search Name Alliance for Chinese Electric Vehicle Development and Commercialization Place China Sector Vehicles Product China-based alliance announced in January 2010 for speeding up the commercialization and achieving mass adoption of Pure Electronic Vehicles (Pure EVs) in China. References Alliance for Chinese Electric Vehicle Development and Commercialization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alliance for Chinese Electric Vehicle Development and Commercialization is a company located in China . References ↑ "Alliance for Chinese Electric Vehicle Development and Commercialization"

127

Heel and toe driving on fuel cell vehicle  

DOE Patents [OSTI]

A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

Choi, Tayoung; Chen, Dongmei

2012-12-11T23:59:59.000Z

128

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

129

1. Physical constants 1 1. PHYSICAL CONSTANTS  

E-Print Network [OSTI]

1. Physical constants 1 1. PHYSICAL CONSTANTS Table 1.1. Reviewed 2011 by P.J. Mohr (NIST). Mainly in parentheses after the values give the 1-standard-deviation uncertainties in the last digits; the corresponding also P.J. Mohr and D.B. Newell, "Resource Letter FC-1: The Physics of Fundamental Constants," Am. J

130

Vehicles News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

131

SPATIALLY DISAGGREGATE PANEL MODELS OF CRASH AND INJURY COUNTS: THE EFFECT OF SPEED LIMITS AND DESIGN  

E-Print Network [OSTI]

characteristics, such as curvature and grade, as well as vehicle miles traveled (VMT). A 10 mph speed limit invites an "ecological fallacy" in results, where individual-level relationships cannot be inferred safety factors other than speed limits, including horizontal curvature and truck vehicle miles

Kockelman, Kara M.

132

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

133

The speed of light under the IST and Lorentz Transformations  

E-Print Network [OSTI]

We expand the IST transformation to three-dimensional Euclidean space and derive the speed of light under the IST transformation. The switch from the direction cosines observed in K to those observed in K-prime is surprisingly smooth. The formulation thus derived maintains the property that the round trip speed is constant. We further show that under the proper synchronization convention of K-prime, the one-way speed of light becomes constant.

Chandru Iyer

2008-10-09T23:59:59.000Z

134

Sustainably Priced Energy Enterprise Development (SPEED) Goals | Department  

Broader source: Energy.gov (indexed) [DOE]

Sustainably Priced Energy Enterprise Development (SPEED) Goals Sustainably Priced Energy Enterprise Development (SPEED) Goals Sustainably Priced Energy Enterprise Development (SPEED) Goals < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Water Heating Wind Program Info State Vermont Program Type Renewables Portfolio Standard Provider Vermont Public Service Board Vermont's Sustainably Priced Energy Enterprise Development (SPEED) Program was created by legislation in 2005 to promote renewable energy development. The SPEED program itself is not a renewable portfolio goal or standard. However, if the Vermont Public Service Board (PSB) determines that the

135

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

136

Is the speed of light invariant or covariant?  

E-Print Network [OSTI]

According to the theory of ether light propagates with constant speed c with respect to the absolute reference frame and with respect to any other reference frame the speed of light is covariant. According to the theory of special relativity the speed of light is invariant with respect to any reference frame. The new theory of reference frames gives a different answer to this question with the consideration of two speeds of light: the physical speed and the relativistic speed. After considering a few negative aspects of the two main theories a few fundamentals of the new theory are expounded.

Daniele Sasso

2010-03-11T23:59:59.000Z

137

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Vehicle Testing and Demonstration Activities Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities 2009 DOE Hydrogen Program and Vehicle...

138

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

139

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

140

Quantifying the benefits of vehicle pooling with shareability networks  

Science Journals Connector (OSTI)

...Because of their high prices medallions and most cabs...drivers per medallion on average. Note that we unfortunately...taxi sharing system. On average, in every two minutes...vehicle emissions and fuel consumption in urban...Kendall, G. R. Effects of vehicle speed and...

Paolo Santi; Giovanni Resta; Michael Szell; Stanislav Sobolevsky; Steven H. Strogatz; Carlo Ratti

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nonlinear Adaptive Dynamic Inversion Applied to a Generic Hypersonic Vehicle  

E-Print Network [OSTI]

Nonlinear Adaptive Dynamic Inversion Applied to a Generic Hypersonic Vehicle Elizabeth Rollins of hypersonic vehicles is challenging because of the wide range of oper- ating conditions encountered and certain aspects unique to high speed flight. A particular safety concern in hypersonic flight is the risk

Valasek, John

142

Use of a thermophotovoltaic generator in a hybrid electric vehicle  

Science Journals Connector (OSTI)

Viking 29 is the World’s first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration speed and handling compare to modern high performance sports cars while emissions are cleaner than current internal combustion engine vehicles.

Orion Morrison; Michael Seal; Edward West; William Connelly

1999-01-01T23:59:59.000Z

143

Design of Efficient In-Wheel Motor for Electric Vehicles  

Science Journals Connector (OSTI)

Abstract This research paper deals with the design and development of an in-wheel motor for electric vehicles. The proposed motor generates a 350-watt power drive with a power source of two 12 V batteries. The batteries are connected in series to increase the voltage to 24 volts and 18.23 A. The in-wheel motor is based on the principle of a DC electric motor to drive the vehicle wheels so that the mechanical components of the transmission and the energy loss are minimized. The proposed in-wheel motor has 46 poles, 51 slots and 51 teeth. In addition, the method lowers the maintenance cost. This research work assumes the maximum weight of 70 kg and the running speed of 20 km/hr. The experiment results show that the output power and efficiency of the in-wheel motor are subject to the variation in input power given that the input voltage remains constant at 25.41 volts. The maximum efficiency of the in-wheel motor of 82.56% is achieved at 2.5 N-m torque. The maximum torque of 6.25 N-m is achieved with the input power of 348.76 watts.

Winai Chanpeng; Prasert Hachanont

2014-01-01T23:59:59.000Z

144

Electric vehicle drive train with direct coupling transmission  

DOE Patents [OSTI]

An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

1995-01-01T23:59:59.000Z

145

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

146

Analysis of the influence of residential location on light passenger vehicle energy demand.  

E-Print Network [OSTI]

??New Zealand???s current urban environment assumes a constant availability and affordability of energy (oil) and as such the energy demand of private vehicles is rarely… (more)

Williamson, Mark

2013-01-01T23:59:59.000Z

147

Vehicle suspension  

SciTech Connect (OSTI)

This patent describes a vehicle consisting of sprung and unsprung masses, the combination of struts and support springs for the weight of the sprung mass, an axis defined by pivots between sprung and unsprung masses, with a front pivot approximately midway between the wheels and near the vertical and horizontal planes through the front axles, with a rear pivot lying in an axis through the front pivot and in a plane through the center-of-gravity of the sprung mass, with the plane parallel to the centrifugal force vector through the center-of-gravity of the sprung mass, and with the rear pivot positioned approximately midway between the rear wheels, means for transmitting the centrifugal force component on the front pivot to the front wheels and ground, and means for transmitting the centrifugal force component on the rear pivot to the rear wheels and ground.

Mikina, S.J.

1986-08-05T23:59:59.000Z

148

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: Energy.gov [DOE]

Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's)...

149

Hybrid Electric Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

150

Vehicle & Systems Simulation & Testing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

penetration of advanced vehicles and systems to displace petroleum consumption, reduce GHG emissions, and achieve vehicle electrification goals. Evaluate technology targets...

151

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

152

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

153

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

154

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

155

Adjustable Speed Pumping Applications  

Broader source: Energy.gov [DOE]

This tip sheet provides practical tips on the application of adjustable speed drives in industrial pumping systems.

156

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

157

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

158

Guidelines for installing two-way left-turn lanes on high-speed suburban roadways  

E-Print Network [OSTI]

benefits (reduced accident potential) for a high-speed suburban roadway with no existing median. From the results of this study, it was recommended that TWLTL facilities be provided on high-speed suburban roadways with average daily traffic volumes... vehicles, even at low speeds and low angles of approach. In fact, the curbs may increase the potential for severe accidents by causing vaulting. In this situation, higher operating speeds will only enhance the problem. One possible solution for suburban...

Nowlin, Ronald Lewis

2012-06-07T23:59:59.000Z

159

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

160

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

162

Image-based Vehicle Classification System  

E-Print Network [OSTI]

Electronic toll collection (ETC) system has been a common trend used for toll collection on toll road nowadays. The implementation of electronic toll collection allows vehicles to travel at low or full speed during the toll payment, which help to avoid the traffic delay at toll road. One of the major components of an electronic toll collection is the automatic vehicle detection and classification (AVDC) system which is important to classify the vehicle so that the toll is charged according to the vehicle classes. Vision-based vehicle classification system is one type of vehicle classification system which adopt camera as the input sensing device for the system. This type of system has advantage over the rest for it is cost efficient as low cost camera is used. The implementation of vision-based vehicle classification system requires lower initial investment cost and very suitable for the toll collection trend migration in Malaysia from single ETC system to full-scale multi-lane free flow (MLFF). This project ...

Ng, Jun Yee

2012-01-01T23:59:59.000Z

163

constant.inc  

E-Print Network [OSTI]

... with 1(read) completion } { 2 for status, and 3 for DMA control } { constants below for IBM DTC51C interface board } hddata = 0; { data port, bidirectional } hdcon ...

164

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

165

A comment on the Invariance of the Speed of Light  

E-Print Network [OSTI]

The invariance of the speed of light in all inertial frames is shown to be an inevitable consequence of the relativity principle of special relativity contrary to the view held by Hsu and Hsu in taiji relativity where the speed of light is no longer a universal constant. The present approach is not only new but also much simpler than the existing approaches.

Harihar Behera

2003-04-23T23:59:59.000Z

166

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

167

Speed of light in the extended gravity theories  

E-Print Network [OSTI]

We shall investigate the possibility of formulation of varying speed of light (VSL) in the framework of Palatini non-linear Ricci scalar and Ricci squared theories. Different speeds of light including the causal structure constant, electromagnetic, and gravitational wave speeds are discussed. We shall see that two local frames are distinguishable and discuss about the velocity of light in these two frames. We shall investigate which one of these local frames is inertial.

Azam Izadi; Ali Shojai

2009-09-02T23:59:59.000Z

168

Merging mobility and energy vision with hybrid electric vehicles and vehicle infrastructure integration  

Science Journals Connector (OSTI)

As the U.S. federal government is seeking useful applications of Vehicle-Infrastructure Integration (VII) and encouraging a greener and more efficient automobile industry, this paper demonstrated a path to meet the national transportation goal via VII. An impact study was conducted in a midsize U.S. metropolitan area on the potential of utilizing VII communication in Hybrid Electric Vehicle (HEV) operations by simulating a VII-enabled vehicle framework for both conventional HEV and Plug-in Hybrid Electric Vehicles (PHEV). The data collection and communication capability of the VII system allowed the prediction of speed profiles at the vehicle level with an average error rate of 13.2%. With the prediction, at the individual vehicle level, VII technology allowed PHEV and HEV to achieve additional benefits with an approximately 3% decrease in total energy consumption and emission. At the network level, the benefit–cost analysis indicated that the benefit–cost ratios for PHEV and HEV of the VII vehicle network exceed one at the fleet penetration rate of 20% and 30%, respectively. Our findings encourage to support public and private investments in VII infrastructure and its integration with HEV and PHEV in order to reap the increased energy savings from these vehicles.

Yiming He; Mashrur Chowdhury; Yongchang Ma; Pierluigi Pisu

2012-01-01T23:59:59.000Z

169

14 - Doxford low speed engines  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses low speed diesel engines from Doxford. Doxford is British firm that manufactured the distinctive Doxford opposed-piston (OP) low speed two-stroke engines. Doxford J-type engines were built in long and short stroke versions in bore sizes of 580, 670 and 760 mm, and with three to nine cylinders delivering up to around 20 000 kW. The engine is a single-acting two-stroke opposed-piston type with each cylinder having two pistons that move in opposite directions from a central combustion chamber. The last J-type engines were turbocharged on the constant pressure system following a changeover from the original impulse charging system. Three- and four-cylinder engines have only one turbocharger, mounted at the forward or aft end, while two or three chargers have been fitted to seven-, eight-, and nine-cylinder engines. Between each turbocharger and the engine entablature is a finned-tubed seawater-cooled after cooler. An electric auxiliary blower is provided for slow running or emergency duties. In its final years the company designed and produced the unusual three-cylinder 58JS3C model that developed 4050 kW at 220 rev/min and was specified to power several small containerships. The 58JS3C design was based on the J-type but with refinements addressing the higher rotational speed and relatively short piston stroke.

2004-01-01T23:59:59.000Z

170

High speed maglev design  

DOE Patents [OSTI]

A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields. 4 figures.

Rote, D.M.; Jianliang He; Coffey, H.

1993-10-19T23:59:59.000Z

171

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

172

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase (rev. 10/2005-ecb) #12;Vehicle Usage Log Instructions General instructions: The details of the use

Yang, Zong-Liang

173

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drivers, number of vehicles in operation, and total vehicle miles traveled. Fact 842 Dataset Supporting Information Population and Vehicle Growth Comparison, 1950-2012 Year...

174

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

175

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

176

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

177

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300 Commercial EVSE...

178

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

179

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

180

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

182

Unsafe at Any (Wind) Speed?  

Science Journals Connector (OSTI)

The goal of this research was to examine the relative safety and stability of stationary motor vehicles exposed to severe winds. The focus was on private passenger vehicles. 1) The behavior of two instrumented storm-chase vehicles that were ...

Thomas Schmidlin; Barbara Hammer; Paul King; Yuichi Ono; L. Scott Miller; Gregory Thumann

2002-12-01T23:59:59.000Z

183

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

184

Vehicle Research Laboratory - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

185

The pulsed linear induction motor concept for high-speed trains  

SciTech Connect (OSTI)

The SERAPBIM (SEgmented RAil PHased Induction Motor) concept is a linear induction motor concept which uses rapidly-pulsed magnetic fields and a segmented reaction rail, as opposed to low-frequency fields and continuous reaction rails found in conventional linear induction motors. These improvements give a high-traction, compact, and efficient linear motor that has potential for advanced high speed rail propulsion. In the SERAPBIM concept, coils on the vehicle push against a segmented aluminum rail, which is mounted on the road bed. Current is pulsed as the coils cross an edge of the segmented rail, inducing surface currents which repel the coil. The coils must be pulsed in synchronization with the movement by reaction rail segments. This is provided by a sense-and-fire circuit that controls the pulsing of the power modulators. Experiments were conducted to demonstrate the feasibility of the pulsed induction motor and to collect data that could be used for scaling calculations. A 14.4 kg aluminum plate was accelerated down a 4 m track to speeds of over 15 m/sec with peak thrust up to 18 kN per coilset. For a trainset capable of 200 mph speed, the SERAPHIM concept design is based on coils which are each capable of producing up to 3.5 kN thrust, and 30 coil pairs are mounted on each power car. Two power cars, one at each end of the train, provide 6 MW from two gas turbine prime power units. The thrust is about 210.000 N and is essentially constant up to 200 km/hr since wheel slippage does not limit thrust as with conventional wheeled propulsion. A key component of the SERAPHIM concept is the use of passive wheel-on-rah support for the high speed vehicle. Standard steel wheels are capable of handling over 200 mph. The SERAPHIM cost is comparable to that for steel-wheel high-speed rail, and about 10% to 25% of the projected costs for a comparable Maglev system.

Turman, B.N.; Marder, B.M.; Rohwein, G.J.; Aeschliman, D.P.; Kelley, J.B.; Cowan, M.; Zimmerman, R.M.

1995-06-01T23:59:59.000Z

186

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

187

University partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E&E reporter  

E-Print Network [OSTI]

the purchase of battery electric and fuel cell powered vehicles." ARB and the Chinese government agencyUniversity partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E to speed adoption of plug-in electric and fuel-cell electric vehicles, the school said yesterday. UC Davis

California at Davis, University of

188

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 6, NO. 2, JUNE 2005 125 On-Road Vehicle Detection Using Evolutionary  

E-Print Network [OSTI]

speed, and high cost. Moreover, when there is a large number of vehicles moving simultaneously-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization Zehang Sun, Member, IEEE, George Bebis, Member, IEEE, and Ronald Miller Abstract--Robust and reliable vehicle detection from images acquired

Bebis, George

189

Trends in On-Road Vehicle Emissions of Ammonia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

190

RTEV Inc Ruff Tuff Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

RTEV Inc Ruff Tuff Electric Vehicles RTEV Inc Ruff Tuff Electric Vehicles Jump to: navigation, search Name RTEV Inc. (Ruff & Tuff Electric Vehicles) Place Winnsboro, South Carolina Zip 29180 Sector Vehicles Product Electric vehicle company that has developed low speed electric vehicles and recreational electric vehicles. Currently developing a full speed electric vehicle. Coordinates 32.957805°, -95.290203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.957805,"lon":-95.290203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

192

Vehicle Technologies Office: Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

193

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

194

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

195

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

196

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

197

Vehicles | Open Energy Information  

Open Energy Info (EERE)

renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the...

198

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

199

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

200

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Electric Drive Vehicles  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

202

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

203

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

204

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

205

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

206

Vehicle engine use when no longer in transit; exceptions -Vehicle idling gets zero miles per gallon; unnecessary idling wastes fuel and pollutes.  

E-Print Network [OSTI]

gallon; unnecessary idling wastes fuel and pollutes. Running an engine at low speed (idling) also causes the point of view of both emissions and fuel consumption. Unless exempted in the following sectionVehicle engine use when no longer in transit; exceptions - Vehicle idling gets zero miles per

Powers, Robert

207

A Robust STATCOM Control to Augment LVRT capability of Fixed Speed Wind Turbines  

E-Print Network [OSTI]

A Robust STATCOM Control to Augment LVRT capability of Fixed Speed Wind Turbines M. J. Hossain, H Compensator (STATCOM) to enhance the Low-Voltage Ride- Through (LVRT) capability of fixed-speed wind turbines cost and maintenance due to rugged brushless construction. Constant speed wind turbines equipped

Pota, Himanshu Roy

208

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

209

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

210

Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

211

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

212

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

213

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

214

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

215

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

216

Cosmology with varying constants  

Science Journals Connector (OSTI)

...with a varying constant, say c, one can always, by a suitable rede nition of units of measurement, transform it into another theory...it follows that all we have to do is carry out appropriate rede nitions of our units of length, time and energy. Again, these...

2002-01-01T23:59:59.000Z

217

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

218

The fundamental constants and theory  

Science Journals Connector (OSTI)

...1. Introduction The fundamental constants appear as parameters...least-squares adjustment of the fundamental constants (Mohr Taylor...are the following: How does theory enter into the CODATA evaluation of the fundamental constants? What are the...

2005-01-01T23:59:59.000Z

219

Characterization of vehicle noise in Hong Kong  

Science Journals Connector (OSTI)

There is a common perception among residents of high?rise buildings facing expressways that noise emitted from moving vehicles would be dominated by tire/road interaction and at high?frequency regions. Local government officials believe that the impact on residents of low?frequency noise radiated from car engines would be insignificant especially after the corrections for the A?weighting scale are applied. This paper reports on an extensive survey and some in situ sound measurements. It was found that road noise in Hong Kong is dominated by low?frequency noise emitted from heavy vehicles in expressways and by low?frequency noise emitted from heavy and light vehicles driven at a speed below 50 km/h in streets. The measured data were characterized by using time?averaged 1/1 octave band analysis time?averaged 1/3 octave band analysis and time?frequency analysis. The Doppler effect was clearly observed at low?frequency regions in joint time?frequency distributions. It is suggested that the A?weighting scale would not reflect the true annoyance level of traffic noise. Noisiness should be used to quantify the annoyance caused by moving vehicles. A new noise model is proposed to give a realistic description of noise radiated from a moving vehicle.

W. T. Ng; M. M. F. Yuen; W. M. To

1998-01-01T23:59:59.000Z

220

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

222

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

223

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

224

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

225

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

226

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

227

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

228

Note on the relationship between the speed of light and gravity in the bi-metric theory of gravity  

E-Print Network [OSTI]

Relationship between the speed of gravity c_g and the speed of light c_e in the bi-metric theory of gravity is discussed. We reveal that the speed of light is a function of the speed of gravity which is a primary fundamental constant. Thus, experimental measurement of relativistic bending of light propagating in time-dependent gravitational field directly compares the speed of gravity versus the speed of light and tests if there is any aether associated with the gravitational field considered as a transparent `medium' with the constant refraction index.

Sergei Kopeikin

2005-12-30T23:59:59.000Z

229

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

230

CMVRTC: Overweight Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

231

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

232

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

233

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

234

SDTC Neural Network Traction Control of an Electric Vehicle without Differential Gears  

E-Print Network [OSTI]

, using two electric in-wheel motors give the possibility to have a torque and speed control in each wheel on the 2Ã?4 electrical vehicles, with independent driving in-wheel motor at the front and with classicalSDTC Neural Network Traction Control of an Electric Vehicle without Differential Gears A. Haddoun1

Paris-Sud XI, Université de

235

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

236

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

237

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

238

Hybrid Vehicle Technology - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

239

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

240

Vehicle Modeling and Simulation  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Flex Fuel Vehicle Systems  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

242

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

243

Vehicle Technologies Office: Conferences  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports and sponsors conferences related to the Office's goals and objectives. When such conferences are planned and conference information becomes available, it...

244

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

245

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

246

Vehicle highway automation.  

E-Print Network [OSTI]

??Vehicle Highway Automation has been studied for several years but a practical system has not been possible because of technology limitations. New advances in sensing… (more)

Challa, Dinesh Kumar

2009-01-01T23:59:59.000Z

247

Vehicles | Department of Energy  

Energy Savers [EERE]

Calculator is an interactive tool that helps you plan a route, pick a car and estimate a fuel costs. Subtopics Alternative Fuel Vehicles Batteries Hydrogen & Fuel Cells Bioenergy...

248

Integrated Vehicle Thermal Management  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

249

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

250

Combination of Speed Stroke Grinding and High Speed Grinding with Regard to Sustainability  

E-Print Network [OSTI]

Combination of Speed Stroke Grinding and High Speed Grindinghow the combination of speed stroke grinding and high speed4] Inasaki, I. , 1988, Speed Stroke Grinding of Advanced

Linke, Barbara; M. Duscha; F. Klocke; Dornfeld, David

2011-01-01T23:59:59.000Z

251

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

252

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

253

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

254

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

255

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress...

256

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

257

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

258

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

259

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

260

Novel estimation of tyre-road friction coefficient and slip ratio using electrical parameters of traction motor for electric vehicles  

Science Journals Connector (OSTI)

The estimation of the friction coefficient and the slip ratio is crucial for advanced traction control or anti-brake control of electric vehicles. In this paper, dynamic behaviours of electrical parameters of the traction motor under road change are modelled and analysed. Novel estimation only using the measurements of the armature voltage and the current is proposed. The proposed method is much quicker than traditional methods, contributing to adjust the vehicle's motion state more quickly and precisely. Further, it can eliminate the speed measuring devices of the wheel speed and the vehicle speed. Simulations verify the effectiveness.

Guoqing Xu; Kun Xu; Weimin Li

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Apparatus for weighing and identifying characteristics of a moving vehicle  

DOE Patents [OSTI]

Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight. 15 figures.

Muhs, J.D.; Jordan, J.K.; Tobin, K.W. Jr.; LaForge, J.V.

1993-11-09T23:59:59.000Z

262

Apparatus for weighing and identifying characteristics of a moving vehicle  

DOE Patents [OSTI]

Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight.

Muhs, Jeffrey D. (Clinton, TN); Jordan, John K. (Oak Ridge, TN); Tobin, Jr., Kenneth W. (Harriman, TN); LaForge, John V. (Knoxville, TN)

1993-01-01T23:59:59.000Z

263

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

264

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

265

Vehicle Technologies Market Report  

E-Print Network [OSTI]

· Diesel comprised 73% of the class 3-8 trucks sold in 2010, down from 84% in 2006 · Class 8 combination 2011 · There are more than 4,400 electric vehicle charging stations throughout the nation · Single wide stop sites across the country to reduce truck idling time Policy · Plug-in hybrids and electric vehicle

266

> 070131-073Vehicle  

E-Print Network [OSTI]

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

267

CMVRTC: Overweight Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

268

Which Vehicles Are Tested  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

269

Variable current speed controller for eddy current motors  

DOE Patents [OSTI]

A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

1982-03-12T23:59:59.000Z

270

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

271

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

272

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

273

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred methods for...

274

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

275

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for...

276

Unitaxial constant velocity microactuator  

DOE Patents [OSTI]

A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.

McIntyre, T.J.

1994-06-07T23:59:59.000Z

277

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

278

Hybrid powertrain optimization with trajectory prediction based on inter-vehicle-communication and vehicle-infrastructure-integration  

Science Journals Connector (OSTI)

Abstract Recent advances in Inter-Vehicle Communications (IVC) and Vehicle-Infrastructure Integration (VII) paved ways to real-time information sharing among vehicles, which are beneficial for vehicle energy management strategies (EMS). This is especially valuable for power-split hybrid electrical vehicles (HEV) in order to determine the optimal power-split between two different power sources at any particular time. Certainly, researches in this area have been done, but tradeoffs between optimality, driving-cycle sensitivity, speed of calculation and charge-sustaining (CS) conditions have not been cohesively addressed before. In light of this, a combined approach of a time-efficient powertrain optimization strategy, utilizing trajectory prediction based on IVC and VII is proposed. First, Gipps’ car following model for traffic prediction is used to predict the interactions between vehicles, combined with the cell-transmission-model (CTM) for the leading vehicle trajectory prediction. Secondly, a computationally efficient charge-sustaining (CS) HEV powertrain optimization strategy is analytically derived and simulated, based on the Pontryagin’s Minimum Principle and a CS-condition constraint. A 3D lookup-map, generated offline to interpolate the optimizing parameters based on the predicted speed, is also utilized to speed up the calculations. Simulations are conducted for 6-mile and 15-mile cases with different prediction update timings to test the performance of the proposed strategy against a Rule-Based (RB) control strategy. Results for accurate-prediction cases show 9.6% average fuel economy improvements in miles-per-gallon (MPG) over RB for the 6-mile case and 7% improvements for the 15-mile case. Prediction-with-error cases show smaller average MPG’s improvements, with 1.6% to 4.3% improvements for the 6-mile case and 2.6% to 3.4% improvements for the 15-mile case.

Mohd Azrin Mohd Zulkefli; Jianfeng Zheng; Zongxuan Sun; Henry X. Liu

2014-01-01T23:59:59.000Z

279

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

280

Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermodynamics in variable speed of light theories  

SciTech Connect (OSTI)

The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light (c), and the scalar contribution to the luminosity of white dwarfs. Using a bound for the change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of c is set. An independent bound is obtained from luminosity estimates for Stein 2015B.

Racker, Juan [CONICET, Centro Atomico Bariloche, Avenida Bustillo 9500 (8400), San Carlos De Bariloche (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900), La Plata (Argentina); Sisterna, Pablo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350 (7600), Mar del Plata (Argentina); Vucetich, Hector [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900), La Plata (Argentina)

2009-10-15T23:59:59.000Z

282

Thermodynamics in variable speed of light theories  

E-Print Network [OSTI]

The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light ($c$), and the scalar contribution to the luminosity of white dwarfs. Using a bound for the change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of $c$ is set. An independent bound is obtained from luminosity estimates for Stein 2015B.

Juan Racker; Pablo Sisterna; Hector Vucetich

2007-11-06T23:59:59.000Z

283

VEHICLE ACCESS PORTALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

284

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

285

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

286

Forecasting Solar Wind Speeds  

E-Print Network [OSTI]

By explicitly taking into account effects of Alfven waves, I derive from a simple energetics argument a fundamental relation which predicts solar wind (SW) speeds in the vicinity of the earth from physical properties on the sun. Kojima et al. recently found from their observations that a ratio of surface magnetic field strength to an expansion factor of open magnetic flux tubes is a good indicator of the SW speed. I show by using the derived relation that this nice correlation is an evidence of the Alfven wave which accelerates SW in expanding flux tubes. The observations further require that fluctuation amplitudes of magnetic field lines at the surface should be almost universal in different coronal holes, which needs to be tested by future observations.

Takeru K. Suzuki

2006-02-03T23:59:59.000Z

287

Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2009 DOE Hydrogen Program and

288

Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2010 DOE Hydrogen Program and

289

Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 DOE Hydrogen 1 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2011 DOE Hydrogen Program and

290

Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: September 9, 3: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries to someone by E-mail Share Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Facebook Tweet about Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Twitter Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Google Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Delicious Rank Vehicle Technologies Office: Fact #233: September 9, 2002

291

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

292

High speed door assembly  

SciTech Connect (OSTI)

This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

Shapiro, C.

1991-12-31T23:59:59.000Z

293

Cygnus X-1: The Black Hole Lab The speed (in kilometers per second) of light in empty space is  

E-Print Network [OSTI]

Cygnus X-1: The Black Hole Lab The speed (in kilometers per second) of light in empty space is c to learn that the speed of light is not constant! Indeed, light slows down slightly when it passes through various mediums like air or glass. In air, the speed of light is very close to (but less than) c

Lega, Joceline

294

Control methods of the switched reluctance motor in electric vehicle during acceleration  

Science Journals Connector (OSTI)

In this paper the equations describing the performance of the electric vehicle are derived. Performance characteristics for each part in the vehicle system are obtained when the vehicle is accelerated under voltage turn on and turn off angle control. A comparison between the different methods of control is established. From these comparisons it can be noticed that the acceleration time for the case at which the turn on angle is controlled will be smaller than that for the other cases; also the motor efficiency at the voltage control method has the highest value especially at the higher values of the vehicle speed.

Fathy El Sayed Abdel-Kader; M. Z. Elsherif; Naser M. B. Abdel-Rahim; Mohamed M. Fathy

2012-01-01T23:59:59.000Z

295

Motorcycle Maximal Safe Speed in Cornering Situation H. Slimi and D. Ichalal and H. Arioui and S. Mammar  

E-Print Network [OSTI]

Motorcycle Maximal Safe Speed in Cornering Situation H. Slimi and D. Ichalal and H. Arioui and S motorcycle speed in curves. The three main actors which are the vehicle, the driver and the infrastructure the last decade. However analysis of accident statistics shows that the number of death when a motorcycle

Paris-Sud XI, Université de

296

Singularities of varying light speed cosmologies  

E-Print Network [OSTI]

We study the possible singularities of isotropic cosmological models that have a varying speed of light as well as a varying gravitational constant. The field equations typically reduce to two dimensional systems which are then analyzed both by dynamical systems techniques in phase space and by applying the method of asymptotic splittings. In the general case we find initially expanding closed models which recollapse to a future singularity and open universes that are eternally expanding towards the future. The precise nature of the singularities is also discussed.

John Miritzis; Spiros Cotsakis

2006-09-21T23:59:59.000Z

297

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

298

Vehicle Technologies Office: Benchmarking  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

299

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Toyota Prius Plug-in 2013 Ford C-Max Hybrid 2013 Ford C-Max Energi 2013 Ford Fusion Energi 2014 VW Jetta Hybrid 2013 FLEET TEST VEHICLES 2 Honda CR-Z HEV 2...

300

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Irrationality of the Zeta Constants  

E-Print Network [OSTI]

A general technique for proving the irrationality of the zeta constants z(s) for odd s = 2n + 1 => 3 from the known irrationality of the beta constants L(2n+1) is developed in this note. The results on the irrationality of the zeta constants z(2n), n => 1, and z(3) are well known, but the results on the irrationality for the zeta constants z(2n+1), n => 2, are new, and these results seem to confirm that these constants are irrational numbers. In addition, a result on the irrationality measures indicates that mu(L(2n+1)) <= mu(z(2n+1)).

N. A. Carella

2014-04-08T23:59:59.000Z

302

1International High Speed Rail Conference 19642064 High Speed Rail  

E-Print Network [OSTI]

1International High Speed Rail Conference 1964­2064 High Speed Rail: Celebrating Ambition 2014 by the Birmingham Centre for Railway Research and Education Conference programme 8 ­10 December 2014 Kindly supported by: #12;2 International High Speed Rail Conference Monday 8 December 12:00 ­ 12:50 Registration

Birmingham, University of

303

Controlling the speed of Coding Line Conveyor using fuzzy logic  

Science Journals Connector (OSTI)

This paper presents performance improvement of a Coding Line Conveyer system (CLC), which is a key component of the automated parcels sorting complexes PP2000 used in logistics centers of Swiss Post. Normally, CLC operates with constant speed. The rules ... Keywords: control systems, fuzzy logic, parcels processing

Atanas Atanassov

2009-06-01T23:59:59.000Z

304

Vehicle Technologies Office: Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

305

Vehicle Technologies Office: Electrical Machines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

306

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

307

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

308

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

309

Brane World Cosmologies with Varying Speed of Light  

E-Print Network [OSTI]

We study cosmologies in the Randall-Sundrum models, incorporating the possibility of time-varying speed of light and Newton's constant. The cosmologies with varying speed of light (VSL) were proposed by Moffat and by Albrecht and Magueijo as an alternative to inflation for solving the cosmological problems. We consider the case in which the speed of light varies with time after the radion or the scale of the extra dimension has been stabilized. We elaborate on the conditions under which the flatness problem and the cosmological constant problem can be resolved. We find that the RS models are more restrictive about possible desirable VSL cosmological models than the standard general relativity. Particularly, the VSL cosmologies may provide with a possible mechanism for bringing the quantum corrections to the fine-tuned brane tensions after the SUSY breaking under control.

Donam Youm

2001-01-31T23:59:59.000Z

310

Observational constraint on the varying speed of light theory  

E-Print Network [OSTI]

The varying speed of light (VSL) theory is controversial. It succeeds in explaining some cosmological problems, but on the other hand it is excluded by mainstream physics because it will shake the foundation of physics. In the present paper, we devote ourselves to test whether the speed of light is varying from the observational data of the type Ia Supernova, Baryon Acoustic Oscillation, Observational $H(z)$ data and Cosmic Microwave Background (CMB). We select the common form $c(t)=c_0a^n(t)$ with the contribution of dark energy and matter, where $c_0$ is the current value of speed of light, $n$ is a constant, and consequently construct a varying speed of light dark energy model (VSLDE). The combined observational data show a much trivial constraint $n=-0.0033 \\pm 0.0045$ at 68.3\\% confidence level, which indicates that the speed of light may be a constant with high significance. By reconstructing the time-variable $c(t)$, we find that the speed of light almost has no variation for redshift $z < 10^{-1}$....

Qi, Jing-Zhao; Liu, Wen-Biao

2014-01-01T23:59:59.000Z

311

Optimal Flight Speed of Birds  

Science Journals Connector (OSTI)

...research-article Optimal Flight Speed of Birds Anders Hedenstrom Thomas Alerstam The speed of birds in flapping flight...when interpreted in the light of optimization theory, may...and review of optimal flight speeds of birds, based on foraging...

1995-01-01T23:59:59.000Z

312

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

313

A Tobit model for analyzing speed limit compliance in work zones  

Science Journals Connector (OSTI)

Abstract Poor compliance with speed limits is a serious safety concern in work zones. Most studies of work zone speeds have focused on descriptive analyses and statistical testing without systematically capturing the effects of vehicle and traffic characteristics. Consequently, little is known about how the characteristics of surrounding traffic and platoons influence speeds. This paper develops a Tobit regression technique for innovatively modeling the probability and the magnitude of non-compliance with speed limits at various locations in work zones. Speed data is transformed into two groups—continuous for non-compliant and left-censored for compliant drivers—to model in a Tobit model framework. The modeling technique is illustrated using speed data from three long-term highway work zones in Queensland, Australia. Consistent and plausible model estimates across the three work zones support the appropriateness and validity of the technique. The results show that the probability and magnitude of speeding was higher for leaders of platoons with larger front gaps, during late afternoon and early morning, when traffic volumes were higher, and when higher proportions of surrounding vehicles were non-compliant. Light vehicles and their followers were also more likely to speed than others. Speeding was more common and greater in magnitude upstream than in the activity area, with higher compliance rates close to the end of the activity area and close to stop/slow traffic controllers. The modeling technique and results have great potential to assist in deployment of appropriate countermeasures by better identifying the traffic characteristics associated with speeding and the locations of lower compliance.

Ashim Kumar Debnath; Ross Blackman; Narelle Haworth

2014-01-01T23:59:59.000Z

314

High speed transient sampler  

DOE Patents [OSTI]

A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

McEwan, T.E.

1995-11-28T23:59:59.000Z

315

High speed transient sampler  

DOE Patents [OSTI]

A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

McEwan, Thomas E. (Livermore, CA)

1995-01-01T23:59:59.000Z

316

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

317

Vehicle Technologies Office: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

318

Vehicle Technologies Office: 2013 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

319

Advanced Vehicle Testing Activity: Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

320

Vehicle Technologies Office: 2009 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Improved high speed maglev design  

DOE Patents [OSTI]

This report discusses a propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the be vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

Rote, D.M.; He, Jianliang; Coffey, H.T.

1992-01-01T23:59:59.000Z

322

Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

323

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Ethanol Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition...

324

Renewable Fuel Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description List of Renewable Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleRenewableFuelVehicles...

325

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

energy resource conversion (NREL, 2004). Sustainable Vehicle Energy StorageEnergy, Fuel, & Vehicle Technologies.41 Introduction41 Sustainable Energy Resources..42 Sustainable Vehicle Energy Storage..43 Sustainable

Jungers, Bryan D

2009-01-01T23:59:59.000Z

326

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV) builds high...

327

Advanced Electric Drive Vehicle Education Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Electric Drive Vehicle Education Program Advanced Electric Drive Vehicle Education Program 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

328

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

329

Specialty Vehicles and Material Handling Equipment  

Broader source: Energy.gov (indexed) [DOE]

fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles have no GHG emissions have no GHG emissions have no GHG emissions have no GHG emissions GHG...

330

Vehicle & Systems Simulation & Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle & Systems Simulation & Testing Vehicle & Systems Simulation & Testing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

331

Advanced Vehicle Testing & Evaluation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation vss029karner2011o.pdf More Documents & Publications Advanced Vehicle Testing & Evaluation Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and...

332

Advanced Vehicle Testing & Evaluation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Testing & Evaluation Advanced Vehicle Testing & Evaluation 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

333

Vehicle Technologies Office: National Laboratories | Department...  

Office of Environmental Management (EM)

Technology R&D Center at Argonne National Laboratory Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions...

334

Large Scale Tracked Vehicle Concurrent Engineering Environment  

Science Journals Connector (OSTI)

In this paper, a fully integrated Tracked Vehicle Concurrent Engineering environment that exploits CAD and CAE technologies in ... vehicles is presented. The Tracked Vehicle Concurrent Engineering environment com...

Kyung K. Choi; J. Kirk Wu; Kuang-Hua Chang; Jun Tang…

1995-01-01T23:59:59.000Z

335

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

336

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

337

Commercial Vehicle Safety Alliance | Department of Energy  

Office of Environmental Management (EM)

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

338

Vehicle Technologies Office: Active Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Solicitations to Active Solicitations to someone by E-mail Share Vehicle Technologies Office: Active Solicitations on Facebook Tweet about Vehicle Technologies Office: Active Solicitations on Twitter Bookmark Vehicle Technologies Office: Active Solicitations on Google Bookmark Vehicle Technologies Office: Active Solicitations on Delicious Rank Vehicle Technologies Office: Active Solicitations on Digg Find More places to share Vehicle Technologies Office: Active Solicitations on AddThis.com... Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage

339

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

340

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

342

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

343

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

344

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

345

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

346

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

347

Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: May 3, 2010 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Facebook Tweet about Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Twitter Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Google Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Delicious Rank Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Digg Find More places to share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on AddThis.com...

348

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

349

Vehicle Technologies Office: 2010 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Archive to someone 0 Archive to someone by E-mail Share Vehicle Technologies Office: 2010 Archive on Facebook Tweet about Vehicle Technologies Office: 2010 Archive on Twitter Bookmark Vehicle Technologies Office: 2010 Archive on Google Bookmark Vehicle Technologies Office: 2010 Archive on Delicious Rank Vehicle Technologies Office: 2010 Archive on Digg Find More places to share Vehicle Technologies Office: 2010 Archive on AddThis.com... 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010

350

Vehicle Technologies Office: 2006 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Archive to someone 6 Archive to someone by E-mail Share Vehicle Technologies Office: 2006 Archive on Facebook Tweet about Vehicle Technologies Office: 2006 Archive on Twitter Bookmark Vehicle Technologies Office: 2006 Archive on Google Bookmark Vehicle Technologies Office: 2006 Archive on Delicious Rank Vehicle Technologies Office: 2006 Archive on Digg Find More places to share Vehicle Technologies Office: 2006 Archive on AddThis.com... 2006 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006

351

Vehicle Technologies Office: 2011 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Archive to someone 1 Archive to someone by E-mail Share Vehicle Technologies Office: 2011 Archive on Facebook Tweet about Vehicle Technologies Office: 2011 Archive on Twitter Bookmark Vehicle Technologies Office: 2011 Archive on Google Bookmark Vehicle Technologies Office: 2011 Archive on Delicious Rank Vehicle Technologies Office: 2011 Archive on Digg Find More places to share Vehicle Technologies Office: 2011 Archive on AddThis.com... 2011 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011

352

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

Vehicles on the US Power Grid." The 25th World Battery,infrastructure assignment and power grid impacts assessmentfrom the vehicle to the power grid and overcome its current

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

353

Household vehicles energy consumption 1991  

SciTech Connect (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

354

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

355

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Identification 2: Identification of Joint Base Lewis McChord Vehicles for Installation of Data Loggers June 2013 Prepared for: Joint Base Lewis McChord Prepared by: Idaho National Laboratory and ECOtality North America DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

356

Advancing Next-Generation Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

357

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

358

Electric-Drive Vehicle engineering  

E-Print Network [OSTI]

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

359

Energy Department Accelerates the Deployment of Advanced Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Accelerates the Deployment of Advanced Vehicle Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships March 5, 2013 - 2:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to speeding the transition to more sustainable energy sources that will help drive economic growth, the Energy Department today announced 16 major U.S. employers and two stakeholder groups have joined the Workplace Charging Challenge to give more American workers access to new transportation options, while another three U.S. corporations have joined the National Clean Fleets Partnership. These steps support President Obama's goal to

360

A Simple Cosmological Model with Decreasing Light Speed  

E-Print Network [OSTI]

An alternative model describing the dynamics of a flat Universe without cosmological constant and allowing a gradual change of c with time is proposed. New relationships of redshift vs. distance and cosmic background radiation temperature are given. Values for the Universal radius, matter density, Hubble parameter, light deceleration, cosmic age and recombination time are obtained. Distant SNeIa faintness is explained within this decelerating, matter-dominated Universe without invoking dark energy. Horizon, flatness and other problems of standard Big Bang cosmology are solved without the need of inflation. The top speed of any signal, force, particle or wave at any time is limited by the expansion speed of the Universe itself.

Juan Casado Gimenez

2003-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

362

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

363

Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)  

SciTech Connect (OSTI)

This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

2013-06-01T23:59:59.000Z

364

Low-order simultaneous stabilization of linear bicycle models at different forward speeds  

E-Print Network [OSTI]

Low-order simultaneous stabilization of linear bicycle models at different forward speeds A. N. G¨undes¸1 and A. Nanjangud2 Abstract-- Linear models of bicycles with rigidly attached riders, operating-track vehicles with human riders, such as bicycles, present challenging problems of modeling and control. Based

Gundes, A. N.

365

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

366

Application of a panel method to hydrodynamics of underwater vehicles  

SciTech Connect (OSTI)

A low-order singularity panel method based on Green`s formulation is used to predict the hydrodynamics characteristics of underwater vehicles. The low-order modeling employs constant strength sources and doublets, and the body surface is modeled by quadrilaterals. The method is first applied to predicting the force and moment coefficients of underwater vehicles for the body-alone and finned configurations. Hydrodynamic coefficients of added mass and added moment of inertia are also calculated by modifying the code. Results for several two and three-dimensional bodies show the usefulness of the method for predicting the added mass and added moment of inertia.

Sahin, I. [Western Michigan Univ., Kalamazoo, MI (United States); Crane, J.W.; Watson, K.P. [Naval Surface Warfare Center, Panama City, FL (United States)

1994-12-31T23:59:59.000Z

367

Speed And Power Control Of An Engine By Modulation Of The Load Torque  

DOE Patents [OSTI]

A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

Ziph, Benjamin (Ann Arbor, MI); Strodtman, Scott (Ypsilanti, MI); Rose, Thomas K (Chelsea, MI)

1999-01-26T23:59:59.000Z

368

Closed Loop Speed Control of Induction Generator with Scalar-control Inverters  

Science Journals Connector (OSTI)

Abstract A closed loop speed control for an induction generator is presented. The system was developed for a space vector modulation-voltage source inverter and the three-phase squirrel-cage induction generator to regulate speed and generator voltages with scalar control technique. The aim of this research was to a generated voltage with a constant speed at variable mechanical torque of prime mover. The simulation results show a good performance of the system can be achieved by the proposed speed controller.

Anaphat Upasan; Yuttana Kumsuwan

2013-01-01T23:59:59.000Z

369

Household vehicles energy consumption 1994  

SciTech Connect (OSTI)

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

370

wind speed | OpenEI  

Open Energy Info (EERE)

speed speed Dataset Summary Description GIS data for offshore wind speed (meters/second). Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m. Annual average >= 10 months of data, no nulls. Source National Renewable Energy Laboratory (NREL) Date Released Unknown Date Updated Unknown Keywords GIS global NOAA NREL offshore wind wind speed Data application/zip icon Download Shapefile (zip, 18.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Please cite NREL and NOAA Rate this dataset Usefulness of the metadata

371

Vehicles News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

372

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

373

Vehicle Technologies Office: 2007 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Archive to someone 7 Archive to someone by E-mail Share Vehicle Technologies Office: 2007 Archive on Facebook Tweet about Vehicle Technologies Office: 2007 Archive on Twitter Bookmark Vehicle Technologies Office: 2007 Archive on Google Bookmark Vehicle Technologies Office: 2007 Archive on Delicious Rank Vehicle Technologies Office: 2007 Archive on Digg Find More places to share Vehicle Technologies Office: 2007 Archive on AddThis.com... 2007 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007

374

Vehicle Technologies Office: 2012 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Archive to someone 2 Archive to someone by E-mail Share Vehicle Technologies Office: 2012 Archive on Facebook Tweet about Vehicle Technologies Office: 2012 Archive on Twitter Bookmark Vehicle Technologies Office: 2012 Archive on Google Bookmark Vehicle Technologies Office: 2012 Archive on Delicious Rank Vehicle Technologies Office: 2012 Archive on Digg Find More places to share Vehicle Technologies Office: 2012 Archive on AddThis.com... 2012 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012

375

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

376

Vehicle Technologies Office: Educational Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Educational Activities to someone by E-mail Share Vehicle Technologies Office: Educational Activities on Facebook Tweet about Vehicle Technologies Office: Educational Activities on Twitter Bookmark Vehicle Technologies Office: Educational Activities on Google Bookmark Vehicle Technologies Office: Educational Activities on Delicious Rank Vehicle Technologies Office: Educational Activities on Digg Find More places to share Vehicle Technologies Office: Educational Activities on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Educational Activities EcoCAR 2: Plugging In to the Future EcoCAR 2: Plugging In to the Future is the successor to EcoCAR: The NeXt

377

Computation of Hypersonic Flow about Maneuvering Vehicles with Changing Shapes  

SciTech Connect (OSTI)

Vehicles moving at hypersonic speeds have great importance to the National Security. Ballistic missile re-entry vehicles (RV's) travel at hypersonic speeds, as do missile defense intercept vehicles. Despite the importance of the problem, no computational analysis method is available to predict the aerodynamic environment of maneuvering hypersonic vehicles, and no analysis is available to predict the transient effects of their shape changes. The present state-of-the-art for hypersonic flow calculations typically still considers steady flow about fixed shapes. Additionally, with present computational methods, it is not possible to compute the entire transient structural and thermal loads for a re-entry vehicle. The objective of this research is to provide the required theoretical development and a computational analysis tool for calculating the hypersonic flow about maneuvering, deforming RV's. This key enabling technology will allow the development of a complete multi-mechanics simulation of the entire RV flight sequence, including important transient effects such as complex flight dynamics. This will allow the computation of the as-delivered state of the payload in both normal and unusual operational environments. This new analysis capability could also provide the ability to predict the nonlinear, transient behavior of endo-atmospheric missile interceptor vehicles to the input of advanced control systems. Due to the computational intensity of fluid dynamics for hypersonics, the usual approach for calculating the flow about a vehicle that is changing shape is to complete a series of steady calculations, each with a fixed shape. However, this quasi-steady approach is not adequate to resolve the frequencies characteristic of a vehicle's structural dynamics. Our approach is to include the effects of the unsteady body shape changes in the finite-volume method by allowing for arbitrary translation and deformation of the control volumes. Furthermore, because the Eulerian computational mesh for the fluid domain must be attached to the vehicle as it undergoes potentially high accelerations, that mesh must be viewed in a non-inertial coordinate frame. The usual conservation-law form of the fluid dynamic governing equations must be augmented. This approach thus requires the derivation of a significantly new numerical formulation, especially to incorporate a modern flux-splitting methodology as needed for numerical stability and accuracy.

Ferencz, R M; Felker, F F; Castillo, V M

2004-02-23T23:59:59.000Z

378

Blog Feed: Vehicles  

Broader source: Energy.gov (indexed) [DOE]

feed-vehicles 1000 Independence Ave. SW Washington feed-vehicles 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Our Best Energy Videos of 2013 http://energy.gov/articles/our-best-energy-videos-2013 Our Best Energy Videos of 2013

379

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 18, 2013 December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as part of more than $1.8 billion in funding for electric utility infrastructure projects in 25 states and one territory. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 18, 2013 Energy Department Releases Grid Energy Storage Report The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use. More

380

Vehicle rear suspension mechanism  

SciTech Connect (OSTI)

A vehicle rear suspension mechanism is described which consists of: a suspension member connected with a vehicle body; wheel hub means supporting a rear wheel having a wheel center plane for rotation about a rotating axis; and connecting means for connecting the wheel hub means with the suspension member. The connecting means include ball joint means having a pivot center located forwardly of and below the rotating axis of the rear wheel and connecting the wheel hub means to the suspension member pivotably about the pivot center, first resilient means located between the wheel hub means and the suspension member rearwardly of and above the rotating axis of the rear wheel, and second resilient means located between the wheel hub means and the suspension member forwardly of and above the rotating axis of the rear wheel.

Kijima, T.; Maebayashi, J.

1986-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Unmanned Aerospace Vehicle Workshop  

SciTech Connect (OSTI)

The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

1995-04-01T23:59:59.000Z

382

Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: July 29, 2002 7: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Facebook Tweet about Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Twitter Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Google Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Delicious Rank Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Digg Find More places to share Vehicle Technologies Office: Fact #227:

383

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

384

Stabilizer for motor vehicle  

SciTech Connect (OSTI)

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

385

List of Vehicles Incentives | Open Energy Information  

Open Energy Info (EERE)

The following contains the list of 34 Vehicles Incentives. The following contains the list of 34 Vehicles Incentives. CSV (rows 1 - 34) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program Colorado Schools Local Government State Government Renewable Fuel Vehicles No Alternative Fuel Vehicle Tax Credit (West Virginia) Personal Tax Credit West Virginia Residential Renewable Fuel Vehicles No

386

Clean Cities: Electric Vehicle Infrastructure Training Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Infrastructure Electric Vehicle Infrastructure Training Program to someone by E-mail Share Clean Cities: Electric Vehicle Infrastructure Training Program on Facebook Tweet about Clean Cities: Electric Vehicle Infrastructure Training Program on Twitter Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Google Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Delicious Rank Clean Cities: Electric Vehicle Infrastructure Training Program on Digg Find More places to share Clean Cities: Electric Vehicle Infrastructure Training Program on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

387

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

388

Alternative Fuels Data Center: Vehicle Registration Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Registration Vehicle Registration Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Registration Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Registration Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Registration Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Registration Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Registration Requirement Motor vehicle registration applicants must provide proof of compliance with

389

The realisation of an on-board emission measuring system serving as a R&D tool for ultra low emitting vehicles  

Science Journals Connector (OSTI)

The negative impact of deteriorating air quality on public health etc. is receiving growing attention. As a result, the contributing emission sources are increasingly regulated. Thus, the emissions of road transport - being one of the largest contributors - are under constant pressure. As such, the evolving legislation on emissions of new cars is forcing to ultra low emitting vehicles. To assist in the development of those vehicles an on-board measuring system capable of determining ppm level emissions of carbon monoxide (CO), total hydrocarbons (THC) and nitrogen oxides (NOx) is realised. This system combines the latest in laboratory grade analysers with a high speed condensing type sampling system in a state of the-art shock proof design. The regulated emission components can be detected to at least one ppm. The data-acquisition allows for the simultaneous retrieval of engine and vehicle parameters in order to calculate on-line mass based time resolved emissions that can be quickly linked to relevant parameters of the emission control system. The data treatment is automated under LabView. The on-board system is validated by over 130 comparative simultaneous measurements on a Constant Volume Sampling chassis dynamometer. The tests are executed on three modern light duty vehicles of which one ultra low emitting Euro 4 certified petrol one. The comparison revealed that differences in emissions are below 10% except for very low levels i.e. underneath 0.02 g/km where the reference system is thought to be more inaccurate then the on-board one. On-board emission measurements performed on a Euro 4 petrol vehicle showed differences of more then a decade when compared to the type approval cycle on chassis dynamometer. An in-depth analysis revealed that, outside this cycle, the engine can be differently calibrated resulting in deviations from the stoichiometric air to fuel ratio and subsequent raise in emissions. Also, very short emission events could be studied such as NOx raise during accelerations immediately following a motoring period. This could be attributed to a slightly lean air fuel mixture just at the start of fuel injection.

G. Lenaers; L. Pelkmans; P. Debal

2003-01-01T23:59:59.000Z

390

Quantum cosmology with varying speed of light and Bohmian trajectories  

E-Print Network [OSTI]

The classical trajectories for FLRW universe with varying speed of light are obtained for the cases in which the cosmological constant depends or not depend on the velocity of light. The theory is then quantized and the corresponding WDW equation is solved. It is shown that the method of causal interpretation of Bohm can be applied successfully to the theory. Finally the Bohmian trajectories are obtained and compared with the classical ones.

F. Shojai; S. Molladavoudi

2007-08-04T23:59:59.000Z

391

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

392

High reduction transaxle for electric vehicle  

DOE Patents [OSTI]

A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

Kalns, Ilmars (Plymouth, MI)

1987-01-01T23:59:59.000Z

393

Vehicle Technologies Office: Key Activities in Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and...

394

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research to design engines optimized for alternative fuels that increases efficiency and takes advantage of these fuels' unique properties.

395

Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan  

Broader source: Energy.gov [DOE]

The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness.

396

Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

397

Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

398

Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...  

Energy Savers [EERE]

& Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

399

Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

400

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance  

Broader source: Energy.gov (indexed) [DOE]

Alliance Alliance Commercial Vehicle Safety Alliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email: carlisles@cvsa.org Phone: 301-830-6147 CVSA Levels of Inspections Level I Full inspection Level II Walk Around - Driver - Vehicle Level III Driver - Paperwork Level IV Special Project - Generally focus on one item CVSA Levels of Inspections Level V Vehicle Only Level VI Enhanced RAM Level VII Jurisdictional Mandated * 8 basic classes/year held in various states * Prerequisites: CVSA Level I and HAZMAT certified * Industry attends course * To date 135 classes/2268 attendees * Currently 702 certified Level VI

402

Vehicle Technologies Office: 2011 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Archive 1 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011 #702 Consumer Preferences on Electric Vehicle Charging November 21, 2011 #701 How Much More Would You Pay for an Electric Vehicle? November 14, 2011 #700 Biodiesel Consumption is on the Rise for 2011 November 7, 2011 #699 Transportation Energy Use by Mode and Fuel Type, 2009 October 31, 2011 #698 Changes in the Federal Highway Administration Vehicle Travel Data October 24, 2011 #697 Comparison of Vehicles per Thousand People in Selected Countries/Regions October 17, 2011

403

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

404

Vehicle Technologies Office: 2004 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Archive to someone 4 Archive to someone by E-mail Share Vehicle Technologies Office: 2004 Archive on Facebook Tweet about Vehicle Technologies Office: 2004 Archive on Twitter Bookmark Vehicle Technologies Office: 2004 Archive on Google Bookmark Vehicle Technologies Office: 2004 Archive on Delicious Rank Vehicle Technologies Office: 2004 Archive on Digg Find More places to share Vehicle Technologies Office: 2004 Archive on AddThis.com... 2004 Archive #352 Automotive Industry Material Usage December 27, 2004 #351 Gasohol Use Is Up December 20, 2004 #350 U.S. Oil Imports: Top Ten Countries of Origin December 13, 2004 #349 Crude Oil Production: OPEC, the Persian Gulf, and the United States December 6, 2004 #348 U.S. Trade Deficit, 2001-2003 November 29, 2004 #347 The Relationship of VMT and GDP November 22, 2004

405

NREL: Learning - Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Vehicles Hybrid Electric Vehicles Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. HEVs are powered by two energy sources: an energy conversion unit, such as

406

Vehicle Technologies Office: 2008 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Archive to someone 8 Archive to someone by E-mail Share Vehicle Technologies Office: 2008 Archive on Facebook Tweet about Vehicle Technologies Office: 2008 Archive on Twitter Bookmark Vehicle Technologies Office: 2008 Archive on Google Bookmark Vehicle Technologies Office: 2008 Archive on Delicious Rank Vehicle Technologies Office: 2008 Archive on Digg Find More places to share Vehicle Technologies Office: 2008 Archive on AddThis.com... 2008 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008

407

Forecasting wind speed financial return  

E-Print Network [OSTI]

The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

408

Adjustable Speed Drive Industrial Applications  

E-Print Network [OSTI]

Electric motors are significant users of electricity in the United States. Approximately 66 percent of the total electricity in the U.S. is used by electric motors. Electronic adjustable speed drives (ASDs) can save energy, lower maintenance cost...

Poole, J. N.

409

Speed Limit of Magnetic Recording  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1. The linac's beam, made of tightly packed bunches of electrons traveling close to the speed of light, creates magnetic pulses that are some of the world's strongest - at up to...

410

Information superhighway approaches light speed  

Science Journals Connector (OSTI)

Nothing moves faster than light in a vacuum but a new kind of optical fibre transports large volumes of data at 99.7 per cent of this speed limit

2013-01-01T23:59:59.000Z

411

Cosmological models with variable constants  

E-Print Network [OSTI]

The behavior of the constants, G,c,h,a,e,m and Lambda, considering them as variable, in the framework of a flat cosmological model with FRW symmetries described by a bulk viscous fluid and considering mechanisms of adiabatic matter creation are investigated. Within two models; one with radiation predominance and another of matter predominance, this behavior are studied.

J. A. Belinchon

1999-07-01T23:59:59.000Z

412

Fundamental Constants of the Muon  

Science Journals Connector (OSTI)

Three precise measurements exist on static properties of the muon. These are the g factor, g-2, and the frequency of the 3D-2P transition in mesonic phosphorus. They are combined to obtain the best fit to the fundamental constants of the muon.

G. Shapiro and L. M. Lederman

1962-02-01T23:59:59.000Z

413

Mack LNG vehicle development  

SciTech Connect (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

414

Hybrid vehicle motor alignment  

DOE Patents [OSTI]

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

415

Alternative Fuel Vehicles  

SciTech Connect (OSTI)

This Federal Technology Alert on alternative fuel vehicles (AFVs), prepared for the U.S. Department of Energy's Federal Energy Management Program (FEMP), is intended for fleet managers in government agencies and other government officials who need to use more alternative fuels and AFVs in their fleets of cars and trucks. This publication describes the government's plans and progress in meeting goals for the use of AFVs, which are stated in the Energy Policy Act and various Executive Orders. It describes the types of AFVs available, lists actual and potential federal uses, makes some general recommendations, and presents field experiences to date.

Not Available

2003-09-01T23:59:59.000Z

416

Combination of Speed Stroke Grinding and High Speed Grinding with Regard to Sustainability  

E-Print Network [OSTI]

Stress Model for Speed Stroke Grinding of Hardened SteelStresses in Speed Stroke Grinding via FEA Simulation andCombination of Speed Stroke Grinding and High Speed Grinding

Linke, Barbara; Duscha, Michael; Klocke, Fritz; Dornfeld, David

2011-01-01T23:59:59.000Z

417

Vehicle Technologies Office: Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

418

Heavy Duty Vehicle Modeling & Simulation  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

419

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Protection Agency (EPA) certification files (CERT files) containing laboratory test results of MPG. When the vehicle characteristic was missing from the questionnaire, but...

420

Vehicle Technologies Program Merit Review  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Vehicles and Fuels Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about alternative and advanced transportation technologies and systems. NREL Publications Database This database features a wide variety of publications produced by NREL from 1977 to the present. Search the database or find publications according to these popular key words: Advanced vehicles and systems | Alternative fuels | Batteries | Electric vehicles | Energy storage | Fuel cell vehicles | Hybrid electric vehicles | Plug-in electric vehicles | Vehicle analysis | Vehicle modeling | Vehicle emissions Selected Publications Read selected publications related to our vehicles and fuels projects:

422

Vehicle Technologies Office: EPAct Transportation Regulatory Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Office: EPAct Transportation Vehicle Technologies Office: EPAct Transportation Regulatory Activities to someone by E-mail Share Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Facebook Tweet about Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Twitter Bookmark Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Google Bookmark Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Delicious Rank Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Digg Find More places to share Vehicle Technologies Office: EPAct Transportation Regulatory Activities on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources The U.S. Department of Energy's (DOE) Vehicle Technologies Office manages

423

Alternative Fuels Data Center: Propane Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicles on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicles Related Information Availability Conversions Emissions Incentives & Laws

424

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

425

AVTA: Nissan Leaf All-Electric Vehicle 2011 Testing Reports ...  

Broader source: Energy.gov (indexed) [DOE]

Nissan Leaf All-Electric Vehicle 2011 Testing Reports AVTA: Nissan Leaf All-Electric Vehicle 2011 Testing Reports The Vehicle Technologies Office's Advanced Vehicle Testing...

426

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

427

New York State-wide Alternative Fuel Vehicle Program for Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations 2010...

428

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008  

Broader source: Energy.gov [DOE]

As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

429

A dynamic vehicle routing problem based on real-time traffic information  

Science Journals Connector (OSTI)

We treat the dynamic vehicle routing problem with time windows (DVRPTW) in the context of real-time traffic information. We integrate traffic information obtained in real time to change the speed profile according to the accidents on the road network (congestion, etc.). The travel times are based on a time-dependent model in which the travel speeds are step functions. This model is enriched with an exponential smoothing function able to calculate the forecasted speed. The analysis of the results of these experiments shows that our method with real-time traffic information provides a good performance, a better robustness against a simple model with time dependent travel time.

Xin Zhao; Gilles Goncalves; Remy Dupas

2010-01-01T23:59:59.000Z

430

Living with Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Living with Electric Vehicles Living with Electric Vehicles JOHN DAVIS: On any given weekend, somewhere you'll find a gathering of cars and a group of enthusiasts assembled around them. Be the hotrods classics or sports cars, each genre of the car's evolution has developed loyal following. And electric cars are no exception. The recent National Plug-in day included events held at hundreds of sites across the U.S. enticing EV aficionados to check out the latest models and share their passion for gas-free motoring. JOHN BARRACCA: The dealer gives you 9.3 gallons. I haven't used all of that yet. But, when I get 3 gallons low, I put 3 gallons in. So, I'm still at almost a full tank. The last time I put 3 gallons in was February and this is September 23rd. JOHN DAVIS: All of the owners we talked with were pleased with their plug-in car's fuel

431

Speeding Up Zeolite Evaluation for Carbon Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as...

432

Controlling proton source speeds catalyst | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controlling proton source speeds catalyst Controlling proton source speeds catalyst Nickel-based catalyst three times faster with adjustments to key acid Research showing that...

433

Fuel Cell Vehicle World Survey 2003-Specialty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Specialty Vehicles Specialty Vehicles History The first fuel cell vehicles were specialty vehicles. Allis Chalmers built and demonstrated a tractor in 1959 utilizing an alkaline fuel cell that produced 20 horsepower. During the 1960s, Pratt & Whitney delivered the first of an estimated 200 fuel cell auxiliary power units for space applications. Union Carbide delivered a fuel cell scooter to the U.S. Army in 1967. PEM fuel cells were invented in the 1960s for Allis Chalmers fuel cell tractor, 1959 military applications and have been used since the 1970s in submarines. Engelhard developed a fuel-cell-powered forklift about 1969. Since fuel cells are modular, scalable, and fuel-flexible, they remain excellent candidates for a wide range of specialty vehicle applications. Fuel cells are currently being demonstrated on land,

434

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicle Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies in the Media Spotlight Vehicle Technologies in the Media Spotlight August 19, 2013 Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market between 2015 and 2020. A recent Denver Post article highlights the National Renewable Energy Laboratory's contribution to the progress that automakers have made in getting their fuel cell electric vehicles ready for production. "When I started working on fuel cells in the '90s, people said it was a good field because a solution would always be five years away," said Brian Pivovar, who leads NREL's fuel cell research. "Not anymore." The article references a variety of NREL's hydrogen and fuel cell

435

Empirical evidences in favor of a varying-speed-of-light  

E-Print Network [OSTI]

The empirical evidences in favor of the hypothesis that the speed of light decreases by a few centimeters per second each year are examined. Lunar laser ranging data are found to be consistent with this hypothesis, which also provides a straightforward explanation for the so-called Pioneer anomaly, that is, a time-dependent blue-shift observed when analyzing radio tracking data from distant spacecrafts, as well as an alternative explanation for both the apparent time-dilation of remote events and the apparent acceleration of the Universe. The main argument against this hypothesis, namely, the constancy of fine-structure and Rydberg constants, is discussed. Both of them being combinations of several physical constants, their constancy imply that, if the speed of light is indeed time-dependent, then at least two other "fundamental constants" have to vary as well. This defines strong constraints which will have to be fulfilled by future varying-speed-of-light theories.

Yves-Henri Sanejouand

2009-08-03T23:59:59.000Z

436

Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics  

SciTech Connect (OSTI)

U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

437

NETL: News Release - Vehicle-Mounted Natural Gas Leak Detector Passes Key  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2, 2003 October 2, 2003 Vehicle-Mounted Natural Gas Leak Detector Passes Key "Road Test" Spots Natural Gas Leaks from 30 Feet Away At Speeds Approaching 20 Miles Per Hour Handheld Prototype Gas Detector Now Being Outfitted as a Van-Mounted Unit PSI has modified this early prototype of a handheld remote natural gas detector to operate from a moving vehicle. ANDOVER, MA - Physical Sciences Inc. (PSI) recently conducted a successful test of its mobile natural gas detector at the company's research facilities in Andover, Mass. PSI's prototype leak detector demonstrated its ability to spot natural gas leaks from a distance of up to 30 feet from a vehicle moving at speeds approaching 20 miles per hour. In the United States, significant resources are devoted annually to leak

438

Why Some Vehicles Are Not Listed / 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding the Guide Listings / 1 Understanding the Guide Listings / 1 * Why Some Vehicles Are Not Listed / 1 * Vehicle Classes Used in This Guide / 2 * Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 3 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2011 Fuel Economy Leaders / 4 * 2011 Model Year Vehicles / 6 * Battery Electric Vehicles / 18 * Plug-in Hybrid Electric Vehicles / 19 * Hybrid Electric Vehicles / 20 * Compressed Natural Gas Vehicles / 22 * Diesel Vehicles / 22 * Ethanol Flexible Fuel Vehicles / 24 * Fuel Cell Vehicles / 28 * Index / 29 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their

439

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

440

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

442

Light Duty Vehicle Pathways | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Duty Vehicle Pathways Light Duty Vehicle Pathways Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010....

443

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

444

Vehicle Technologies Office: 2010 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Archive 0 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010 #649 Number of New Light Vehicle Dealerships Continues to Shrink November 15, 2010 #648 Conventional and Alternative Fuel Prices November 8, 2010 #647 Sales Shifting from Light Trucks to Cars November 1, 2010 #646 Prices for Used Vehicles Rise Sharply from 2008 to 2010 October 25, 2010 #645 Price of Diesel versus Gasoline in Europe October 18, 2010 #644 Share of Diesel Vehicle Sales Decline in Western Europe October 11, 2010

445

Smart Thermal Skins for Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Smart Thermal Skins for Vehicles With a modest effort, many of the energy-efficient technologies developed for buildings can be transferred to the transportation sector. The goal of vehicle thermal management research at LBL is to save the energy equivalent of one to two billion gallons of gasoline per year, and improve the marketability of next-generation vehicles using advanced solar control glazings and insulating shell components to reduce accessory loads. Spectrally selective and electrochromic window glass and lightweight insulating materials improve the fuel efficiency of conventional and hybrid vehicles and extend the range of electric vehicles by reducing the need for air conditioning and heating, and by allowing the downsizing of equipment.

446

Vehicles Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Blog Vehicles Blog Vehicles Blog RSS November 22, 2013 As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency The 21st Century Truck Partnership aims to improve the fuel efficiency of heavy duty-freight vehicles in existing and future fleets throughout the country. The partnership includes 15 heavy-duty engine, truck, and bus manufacturers, four federal agencies and 12 national laboratories. September 19, 2013 A Clean Energy Revolution -- Now Critics often say America's clean energy future will "always be five years away." For four key clean energy technologies, that clean energy

447

Vehicles News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News News Vehicles News RSS September 4, 2013 Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs, and protect the environment in communities nationwide.

448

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

449

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

450

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

451

Propane Vehicle Demonstration Grant Program  

SciTech Connect (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

452

Vehicle Technologies Office: 2013 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Archive 3 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013 #804 Tool Available to Print Used Vehicle Fuel Economy Window Stickers November 18, 2013 #803 Average Number of Transmission Gears is on the Rise November 11, 2013 #802 Market Share by Transmission Type November 4, 2013 #801 Gasoline Direct Injection Continues to Grow October 28, 2013 #800 Characteristics of New Light Vehicles over Time October 21, 2013 #799 Electricity Generation by Source, 2003-2012 September 30, 2013

453

Vehicle Technologies Office: Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partners Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about these leading employers in your area. U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center orkplace Charging Challenge Partners 3M ABB Inc. AVL Baxter Healthcare Corporation Bentley Systems Biogen Idec Bloomberg LP BookFactory CFV Solar Test Laboratory, Inc. Chrysler Cisco Systems City of Auburn Hills City of Sacramento The Coca-Cola Company Dell Dominion Resources, Inc. DTE Energy Duke Energy Eli Lilly EMC Corporation Facebook Ford Fraunhofer Center for Sustainable Energy Systems General Electric

454

Vehicle Technologies Office: Glossary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary Glossary A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Adsorption: The adhesion of the molecules of gases, dissolved substances, or liquids in more or less concentrated form to the surface of solids or liquids with which they are in contact. Commercial adsorbent materials have enormous internal surfaces. AEMD (Automotive Electric Drive Motor): A U.S. Department of Energy program to develop low-cost traction drive motors for automotive applications. Aerosol: A cloud consisting of particles dispersed in a gas or gases. AIPM (Automotive Integrated Power Module) A U.S. Department of Energy program to integrate the power devices, control electronics, and thermal management of a vehicle into a single low-cost package that will meet all requirements for automotive motor control applications.

455

Hybrid Vehicle Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Links Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Hybrid Vehicles and Manufacturers Acura ILX Hybrid Audi Q5 Hybrid BMW ActiveHybrid 3 ActiveHybrid 5 ActiveHybrid 7 Buick LaCrosse eAssist* Regal eAssist* Chevrolet Malibu Eco* Impala eAssist* Ford Fusion Hybrid Honda Accord Hybrid Civic Hybrid Honda CR-Z Honda Insight Hyundai Sonata Hybrid Infiniti M Hybrid Q50 Hybrid Q50 S Hybrid QX60 Hybrid Kia Optima Hybrid Lexus CT 200h Lexus ES 300h GS 450h LS 600h L RX 450h Lincoln MKZ Hybrid Mercedes-Benz Mercedes E400 Hybrid Nissan Pathfinder Hybrid Porsche Cayenne S Hybrid Subaru XV Crosstrek Hybrid Toyota Avalon Hybrid

456

Chapter Seven - Variable speed drives  

Science Journals Connector (OSTI)

Publisher Summary The electromechanical controllers are a kind of variable speed drives (VSDs) that are obsolete but are still in use because when a motor and a drive is combined, they become a power drive system (PDS). There are two ways of varying the speed of an induction motor, either by varying the motor slip or by varying the supply frequency. The preferred practice for electrical speed variation is to change the supply frequency with a variable frequency drive (VFD). Many other designs also have been developed. However, except the specialized applications, few are still in operation. A number of motor and drive manufacturers are now producing the integrated motor/VFD units. These units consist of a motor and a specially designed VFD, produced as a single package, with the VFD unit mounted variously on the top, side, or end of the motor.

Europump; Hydraulic Institute

2005-01-01T23:59:59.000Z

457

An optimized international vehicle monitor  

SciTech Connect (OSTI)

The security plans for many DOE facilities require the monitoring of pedestrians and vehicles to control the movement of special nuclear material (SNM). Vehicle monitors often provide the outer-most barrier against the theft of SNM. Automatic monitors determine the presence of SNM by comparing the gamma-ray and neutron intensity while occupied, to the continuously updated background radiation level which is measured while the unit is unoccupied. The most important factors in choosing automatic vehicle monitors are sensitivity, cost and in high traffic applications total monitoring time. The two types of automatic vehicle monitors presently in use are the vehicle monitoring station and the drive-through vehicle monitor. These two types have dramatically different cost and sensitivities. The vehicle monitoring station has a worst-case detection sensitivity of 40 g of highly enriched uranium, HEU, and a cost approximately $180k. This type of monitor is very difficult to install and can only be used in low traffic flow locations. The drive-through vehicle portal has a worst-case detection sensitivity of 1 kg of HEU and a cost approximately $20k. The world`s political situation has created a pressing need to prevent the diversion of SNM from FSU nuclear facilities and across international borders. Drive-through vehicle monitors would be an effective and practical nuclear material proliferation deterrent if their sensitivity can be improved to a sufficient level. The goal of this project is to evaluate different detector configurations as a means of improving the sensitivity of these instruments to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of SNM.

York, R.L.; Close, D.A.; Fehlau, P.E.

1997-03-01T23:59:59.000Z

458

CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS  

E-Print Network [OSTI]

Solar Energy CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS Michael Rub August 1981 TWO-WEEK LOAN

Rubin, Michael

2013-01-01T23:59:59.000Z

459

OpenEI - wind speed  

Open Energy Info (EERE)

NREL GIS Data: Global NREL GIS Data: Global Offshore Wind http://en.openei.org/datasets/node/869 GIS data for offshore wind speed (meters/second).  Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m.  Annual average  >= 10 months of data, no nulls. License

Type of License:  Other (please specify below)

460

Boundary problems for one-dimensional kinetic equation with constant collision frequency  

E-Print Network [OSTI]

For the one-dimensional linear kinetic equation analytical solutions of problems about temperature jump and weak evaporation (condensation) over flat surface are received. The equation has integral of collisions BGK (Bhatnagar, Gross and Krook) and constant frequency of collisions of molecules. Distribution of concentration, mass speed and temperature is received.

A. L. Bugrimov; A. V. Latyshev; A. A. Yushkanov

2014-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Australia's Green Vehicle Guide | Open Energy Information  

Open Energy Info (EERE)

Australia's Green Vehicle Guide Australia's Green Vehicle Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Australia's Green Vehicle Guide Agency/Company /Organization: Commonwealth of Australia Focus Area: Vehicles, Fuel Efficiency Topics: Analysis Tools, Market Analysis Website: www.greenvehicleguide.gov.au/GVGPublicUI/home.aspx Equivalent URI: cleanenergysolutions.org/content/australias-green-vehicle-guide,http:/ Language: English Policies: Regulations Regulations: Fuel Efficiency Standards The Green Vehicle Guide provides information about the environmental performance of new light-duty vehicles sold in Australia, including carbon dioxide (CO2) emissions and fuel consumption. The Guide includes resources such as a fuel calculator, electric vehicle information and a truck buyers

462

Alternative Fuels Data Center: Propane Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Availability on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives

463

NREL: Vehicles and Fuels Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

464

Household Vehicles Energy Use Cover Page  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Household Vehicles Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback *...

465

NREL: Vehicles and Fuels Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D...

466

Vehicle-Grid Interoperability | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a test vehicle using the laboratory's solar-powered charging station. As plug-in electric vehicles (EVs) become more common, the challenges to managing their interactions with...

467

Electric Drive Vehicle Infrastructure Deployment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

468

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt039schwendeman2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles Advanced Electric Drive Vehicles Energy & Manufacturing Workforce...

469

Distributed Solar Photovoltaics for Electric Vehicle Charging...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DISTRIBUTED SOLAR PHOTOVOLTAICS FOR ELECTRIC VEHICLE CHARGING REGULATORY AND POLICY CONSIDERATIONS ABSTRACT Increasing demand for electric vehicle (EV) charging provides an...

470

NREL: Vehicles and Fuels Research - Success Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle, Grid, and Renewable Synergies Fuel, Engine, and Infrastructure Co-Optimization Red engine. Demo Projects Introduce New Class of Natural Gas Vehicles Graph...

471

Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Vehicle Testing Activity (AVTA) PHEV Evaluations and Data Collection Advanced Vehicle Testing Activity (AVTA) PHEV Evaluations and Data Collection Presentation from...

472

Advanced Vehicle Testing & Evaluation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Evaluation Advanced Vehicle Testing & Evaluation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

473

Vehicle Technologies Office: Partnerships | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnerships Vehicle Technologies Office: Partnerships Partnerships are at the heart of the Vehicle Technologies Office's (VTO) work, driving innovation, technology development,...

474

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 1 A trip is defined as all the driving done between consecutive...

475

Advanced Technology Vehicle Benchmark and Assessment | Department...  

Broader source: Energy.gov (indexed) [DOE]

Benchmark and Assessment Advanced Technology Vehicle Benchmark and Assessment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

476

Advanced Technology Vehicles Manufacturing Loan Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

477

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

478

Alternative Fuels Vehicle Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Alternative Fuels Vehicle Group Place: New York, New York Zip: 28 West 25th Street Sector: Vehicles Product: Focussed on news and...

479

Vehicle Technologies Office: Regulated Fleets | Department of...  

Energy Savers [EERE]

Alternative Fuels Vehicle Technologies Office: Regulated Fleets Vehicle Technologies Office: Regulated Fleets The Office of Energy Efficiency and Renewable Energy (EERE) manages...

480

Other Alternative Fuel Vehicles | Open Energy Information  

Open Energy Info (EERE)

description List of Other Alternative Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherAlternativeFuelVehicles&oldid267182...

Note: This page contains sample records for the topic "vehicle constant speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: fuel cell vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel cell vehicle ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy...

482

Measuring & Mitigating Electric Vehicle Adoption Barriers.  

E-Print Network [OSTI]

??Transitioning our cars to run on renewable sources of energy is crucial to addressing concerns over energy security and climate change. Electric vehicles (EVs), vehicles… (more)

Tommy, Carpenter

2015-01-01T23:59:59.000Z

483

Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback  

SciTech Connect (OSTI)

Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

Gonder, J.; Earleywine, M.; Sparks, W.

2012-06-01T23:59:59.000Z

484

Utilization of rotor kinetic energy storage for hybrid vehicles  

DOE Patents [OSTI]

A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

Hsu, John S. (Oak Ridge, TN)

2011-05-03T23:59:59.000Z

485

High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California's future  

Science Journals Connector (OSTI)

Sustainable mobility policy for long-distance transportation services should consider emerging automobiles and aircraft as well as infrastructure and supply chain life-cycle effects in the assessment of new high-speed rail systems. Using the California corridor, future automobiles, high-speed rail and aircraft long-distance travel are evaluated, considering emerging fuel-efficient vehicles, new train designs and the possibility that the region will meet renewable electricity goals. An attributional per passenger-kilometer-traveled life-cycle inventory is first developed including vehicle, infrastructure and energy production components. A consequential life-cycle impact assessment is then established to evaluate existing infrastructure expansion against the construction of a new high-speed rail system. The results show that when using the life-cycle assessment framework, greenhouse gas footprints increase significantly and human health and environmental damage potentials may be dominated by indirect and supply chain components. The environmental payback is most sensitive to the number of automobile trips shifted to high-speed rail, and for greenhouse gases is likely to occur in 20–30 years. A high-speed rail system that is deployed with state-of-the-art trains, electricity that has met renewable goals, and in a configuration that endorses high ridership will provide significant environmental benefits over existing modes. Opportunities exist for reducing the long-distance transportation footprint by incentivizing large automobile trip shifts, meeting clean electricity goals and reducing material production effects.

Mikhail Chester; Arpad Horvath

2012-01-01T23:59:59.000Z

486

Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: March 22, 5: March 22, 2010 Average Vehicle Trip Length to someone by E-mail Share Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Facebook Tweet about Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Twitter Bookmark Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Google Bookmark Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Delicious Rank Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Digg Find More places to share Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on AddThis.com... Fact #615: March 22, 2010 Average Vehicle Trip Length According to the latest National Household Travel Survey, the average trip

487

Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: August 23, 7: August 23, 2010 World Motor Vehicle Production to someone by E-mail Share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Facebook Tweet about Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Twitter Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Google Bookmark Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Delicious Rank Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on Digg Find More places to share Vehicle Technologies Office: Fact #637: August 23, 2010 World Motor Vehicle Production on AddThis.com... Fact #637: August 23, 2010 World Motor Vehicle Production

488

Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: June 11, 2007 3: June 11, 2007 Vehicle-Miles per Licensed Driver to someone by E-mail Share Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Facebook Tweet about Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Twitter Bookmark Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Google Bookmark Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Delicious Rank Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Digg Find More places to share Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on AddThis.com... Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver

489

Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 6, 1: January 6, 2014 Light Vehicle Sales Recoveries to someone by E-mail Share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Facebook Tweet about Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Twitter Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Google Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Delicious Rank Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Digg Find More places to share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on AddThis.com... Fact #811: January 6, 2014 Light Vehicle Sales Recoveries

490

Alternative Fuels Data Center: Propane Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicles » Propane Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Emissions

491

Vehicle Emission Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

492

Alternative Fuels Data Center: Biodiesel Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Vehicle Biodiesel Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Biodiesel Vehicle Emissions When used as a vehicle fuel, biodiesel offers some tailpipe and considerable greenhouse gas (GHG) emissions benefits over conventional

493

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

494

Complex System Method to Assess Commercial Vehicle Fuel Consumption  

Broader source: Energy.gov [DOE]

Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle with advanced, future options.

495

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicles International - EVI-MD Electric Vehicles International - 260-hp AC permanent magnet motor with...

496

Cover Page of Household Vehicles Energy Use: Latest Data & Trends  

Gasoline and Diesel Fuel Update (EIA)

Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

497

Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels  

SciTech Connect (OSTI)

This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

2013-09-30T23:59:59.000Z

498

Laboratory to change vehicle traffic-screening regimen at vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changes to vehicle traffic-screening Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and won't be staffed by a Laboratory protective force officer. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

499

NREL: Vehicles and Fuels Research - Vehicle Ancillary Loads Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map Photo of Advanced Automotive Manikin Reducing fuel consumption by air conditioning systems is the focus of Vehicle Ancillary Loads Reduction (VALR) activities at NREL. About 7 billion gallons of fuel-about 5.5% of total national light-duty vehicle fuel use-are used annually just to cool light-duty vehicles in the United States. That's why our VALR team works with industry to help increase fuel economy and reduce tailpipe emissions by reducing the ancillary loads requirements in vehicles while maintaining the thermal comfort of the passengers. Approaches include improved cabin insulation, advanced window systems, advanced cooling and venting systems, and heat generated cooling. Another focus of the VALR project is ADAM, the ADvanced Automotive Manikin

500

Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries  

Broader source: Energy.gov [DOE]

With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will...