Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AVTA Vehicle Component Cost Model | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Component Cost Model AVTA Vehicle Component Cost Model 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

2

NREL: Learning - Advanced Vehicle Systems and Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Vehicle Systems and Components Advanced Vehicle Systems and Components Photo of a man checking out an advanced battery using testing equipment that includes a long metal tube on a table top. NREL's researchers test new batteries developed for hybrid electric vehicles. Credit: Warren Gretz Researchers and engineers at the NREL work closely with those in the automotive industry to develop new technologies, such as advanced batteries, for storing energy in cars, trucks, and buses. They also help to develop and test new technologies for using that energy more efficiently. And they work on finding new, energy-efficient ways to reduce the amount of fuel needed to heat and cool the interiors, or cabins, of vehicles. To help develop these new technologies, NREL's researchers are improving the efficiency of vehicle systems and components like these:

3

Environmental Evaluation of New Generation Vehicles and Vehicle Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-266 1-266 Environmental Evaluation of New Generation Vehicles and Vehicle Components December 2001 Prepared by Susan M. Schexnayder 1 Sujit Das 2 Rajive Dhingra 1 Jonathan G. Overly 1 Bruce E. Tonn 2 Jean H. Peretz 1 Greg Waidley 1 Gary A. Davis 1 1 University of Tennessee-Knoxville 2 Oak Ridge National Laboratory This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

4

Automotive Component Measurements forAutomotive Component Measurements for Determining VehicleDetermining Vehicle--Level RadiatedLevel Radiated  

E-Print Network [OSTI]

1 Automotive Component Measurements forAutomotive Component Measurements for Determining VehicleDetermining Vehicle--Level RadiatedLevel Radiated Automotive Component Measurements forAutomotive ComponentEmissionsEmissionsEmissions Todd Hubing Mi h li P f f V hi l El t iMichelin Professor of Vehicular Electronics Clemson University

Stuart, Steven J.

5

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network [OSTI]

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

6

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

7

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

8

A Component Evaluation Tool from the Vehicle System Perspective  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

9

A Component Evaluation Tool from the Vehicle System Perspective  

Broader source: Energy.gov (indexed) [DOE]

Testbed) is a Modular Hybrid Test Environment for Component Evaluation Emulated electric traction system: *Battery pack simulated *Motor-inverter emulated *Physical motor...

10

Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications  

SciTech Connect (OSTI)

This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

2011-03-31T23:59:59.000Z

11

Using CSP||B Components: Application to a Platoon of Vehicles  

E-Print Network [OSTI]

Using CSP||B Components: Application to a Platoon of Vehicles Samuel Colin1, Arnaud Lanoix1, Olga- tionalities and services. It is specified using the combination, named CSP B, of two well-known formal methods: formal methods, CSP||B, compositional modelling, specification, ver- ification, case study 1 Introduction

Paris-Sud XI, Université de

12

Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimisation  

Science Journals Connector (OSTI)

Combining a Fuel Cell (FC), as primary power source, with a Battery Energy System (BES), as an auxiliary source, for high power demands is a promising approach for future hybrid electric vehicles (HEV). The powertrain control strategy and the component sizing significantly affect the vehicle performance, cost, vehicle efficiency and fuel economy. This paper presents a developed control strategy for optimising the power sharing between sources and components sizing by using Particle Swarm Optimisation (PSO) algorithm. This control strategy implemented on FC/Battery hybrid electric vehicle in order to achieve the best performance with minimum fuel consumption and minimum powertrain components sizing for a given driving cycle with high efficiency. The powertrain and the proposed control strategy have been simulated by Matlab/Simulink. The simulation results have demonstrated that the optimal sizing of the powertrain of FC/battery components and the minimum fuel consumption have been improved by applying the PSO control strategy.

Omar Hegazy; Joeri Van Mierlo

2012-01-01T23:59:59.000Z

13

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

14

1 Biomedical Sciences BIOMEDICAL SCIENCES  

E-Print Network [OSTI]

1 Biomedical Sciences BIOMEDICAL SCIENCES The interdisciplinary doctoral programs in the biomedical sciences are organized within the Institute for Biomedical Sciences. The first full year of study toward are admitted directly into the Institute for Biomedical Sciences through Columbian College of Arts and Sciences

Vertes, Akos

15

Biomedical Engineering  

E-Print Network [OSTI]

#12;Biomedical Engineering Dr. Kevin Lear, Director, Undergraduate Program Ms. Brett Eppich Beal Professor of Biomedical Sciences Associate Director ­ Kevin Lear Professor of Electrical & Computer Scott ­ Director, Regulatory Affairs Interdisciplinary Program #12;Biomedical Engineering at CSU

16

Vehicle Technologies Office Merit Review 2014: APEEM Components Analysis and Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about APEEM...

17

Vehicle Technologies Office Merit Review 2014: Aerodynamic Lightweight Cab Structure Components  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

18

EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan  

Broader source: Energy.gov [DOE]

DOEs Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States consumption of petroleum. This Proposed Action will also meaningfully assist in the nations economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

19

Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

20

Implantable biomedical devices on bioresorbable substrates  

DOE Patents [OSTI]

Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

2014-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction  

SciTech Connect (OSTI)

Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

Malikopoulos, Andreas [ORNL

2013-01-01T23:59:59.000Z

22

Department of Biomedical Engineering  

E-Print Network [OSTI]

Department of Biomedical Engineering Undergraduate Studies Manual 2011­2012 #12;Biomedical Introduction to Biomedical Engineering 3 Biomedical Engineering at Washington University 4 Career Opportunities 5 Core Curriculum 6 Biomedical Engineering Electives 7 School of Engineering Electives 8 Sample

Stormo, Gary

23

Department of Biomedical Engineering  

E-Print Network [OSTI]

Department of Biomedical Engineering Undergraduate Studies Manual 2012­2013 #12;Biomedical Introduction to Biomedical Engineering 3 Biomedical Engineering at Washington University 4 Career Opportunities 5 Core Curriculum 6 Biomedical Engineering Electives 7 School of Engineering Electives 8 Sample

Stormo, Gary

24

Biomedical Engineering Department of Biomedical Engineering  

E-Print Network [OSTI]

Biomedical Engineering Department of Biomedical Engineering Wishnick Hall 3255 S. Dearborn Chicago of Biomedical Engineering confers a doctoral degree in biomedical engineering (Ph.D. in Biomedical Engineering with engineering backgrounds can receive a Ph.D. in Biomedical Engineering at IIT and an M.D. from the University

Heller, Barbara

25

Biomedical Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomedical Studies AMS as a Tool in the Biological Sciences Radioisotope labeling has been an important tool in the biological sciences and will continue to be used for many...

26

Department of Biomedical Engineering  

E-Print Network [OSTI]

Department of Biomedical Engineering Undergraduate Studies Manual 2010­2011 #12;Biomedical Engineering Undergraduate Advising Manual 2010 | 1 Introduction 2 Biomedical Engineering at Washington University 4 Career Opportunities 6 Department Mission & Objective 7 Department of Biomedical Engineering 8

Stormo, Gary

27

Biomedical Engineering Graduate Concentration Fall 2013 Biomedical Imaging  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2013 Biomedical Imaging BIOMEDICAL IMAGING: BIOMEDE 516 Medical Imaging Systems (3) (I) GENERAL (both courses are required): BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics and Enterprise (1) (I) BIOMEDICAL RESEARCH AND DESIGN

Eustice, Ryan

28

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Broader source: Energy.gov (indexed) [DOE]

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

29

Biomedical Engineering Graduate Concentration Fall 2014 Biomedical Imaging  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2014 Biomedical Imaging Advisor: Luis Hernandez-Garcia, Ph.D. BIOMEDICAL IMAGING: BIOMEDE 516 Medical Imaging Systems (3) (I) GENERAL (both courses are required): BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics

Eustice, Ryan

30

Department of Biomedical Engineering  

E-Print Network [OSTI]

Department of Biomedical Engineering Graduate Studies Manual 2011­2012 #12;Biomedical Engineering Graduate Advising Manual 2011 | 1 Welcome 2 Biomedical Engineering 4 About Washington University 6 Research in Biomedical Engineering 30 Biomaterials and Tissue Engineering 30 Cardiovascular Engineering 32 Imaging 34

Stormo, Gary

31

Department of Biomedical Engineering  

E-Print Network [OSTI]

Department of Biomedical Engineering Graduate Studies Manual 2010­2011 #12;#12;Biomedical Engineering Graduate Advising Manual 2010 | 1 Welcome 2 Biomedical Engineering 4 About Washington University 6-7208 fax: (314) 935-7448 bme.wustl.edu #12;welcome Greetings from the Department of Biomedical Engineering

Stormo, Gary

32

Biomedical Sciences DEGREE PROGRAMME  

E-Print Network [OSTI]

BSc (Hons) Biomedical Sciences DEGREE PROGRAMME GUIDE 2013-2014 #12;2 BSc (Hons) Biomedical of programmes within the disciplines taught by the Biomedical Sciences and Molecular & Cell Biology sections of Biomedical Sciences and Molecular & Cell Biology in that it covers the scientific requirement of first year

Levi, Ran

33

Biomedical devices from ultraviolet LEDs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomedical devices from ultraviolet LEDs Biomedical devices from ultraviolet LEDs Light-emitting nanocrystal diodes go ultraviolet Biomedical devices with active components could be made from nanostructured systems. February 24, 2012 Researcher working with nanocrystals A researcher at LANL works with nanocrystals. Get Expertise Researcher Sergio Brovelli Physical Chem & Applied Spectroscopy Email Research Team Leader Alberto Paleari University of Milano-Bicocca in Italy Such devices could, for example, selectively activate light-sensitive drugs for better medical treatment or probe for the presence of fluorescent markers in medical diagnostics. LEDs produce light in the ultraviolet range A process for creating glass-based, inorganic light-emitting diodes (LEDs) that produce light in the ultraviolet range has been developed by a

34

Biomedical Engineering Courses BME 100 Introduction to Biomedical Engineering (required)  

E-Print Network [OSTI]

Biomedical Engineering Courses BME 100 Introduction to Biomedical Engineering (required) A rigorous introduction to biomedical engineering that provides the historical and social context of BME though Minor or Departmental Consent 3 credits, Fall only BME 212 Biomedical Engineering Research Fundamentals

Ge, Qiaode Jeff

35

Biomedical Engineering Program Assessment Plan Biomedical Engineering Program Assessment Plan  

E-Print Network [OSTI]

1 Biomedical Engineering Program Assessment Plan Biomedical Engineering Program in science and mathematics to address engineering problems in a biomedical context. a. Demonstrate a working sciences. b. Demonstrate ability to apply basic science concepts as foundations to biomedical engineering

Cantlon, Jessica F.

36

BIOMEDICAL SCIENCES Program of Study  

E-Print Network [OSTI]

BIOMEDICAL SCIENCES Program of Study Applying Correspondence Graduate Faculty The Graduate School of Biomedical Sciences (GSBS) offers a doctoral degree in Biomedical Sciences with concentrations in: Molecular and Cellular Biology Neuroscience Biomedical Engineering Toxicology as well as an interdisciplinary doctoral

Thomas, Andrew

37

Department of Biomedical Engineering Department of Biomedical Engineering  

E-Print Network [OSTI]

Department of Biomedical Engineering Department of Biomedical Engineering Wishnick Hall 3255 S The Department of Biomedical Engineering confers a doctoral degree in biomedical engineering (Ph.D. in Biomedical whereby students with engineering backgrounds can receive a Ph.D. in Biomedical Engineering at IIT

Heller, Barbara

38

Biomedical Engineering Bioengineering  

E-Print Network [OSTI]

Biomedical Engineering Bioengineering Talent for today and the future #12;Searching for Smart the unique problems and regulations of healthcare? #12;Biomedical Engineering and Bioengineering Over 40 by integrating the engineering sciences, biomedical sciences and clinical practice. #12;BME strong engineers

Collins, Gary S.

39

DEPARTMENT OF BIOMEDICAL ENGINEERING  

E-Print Network [OSTI]

DEPARTMENT OF BIOMEDICAL ENGINEERING (BME) Undergraduate Student Handbook & Curriculum Requirements: bme@engr.wisc.edu #12;#12;#12;II1 EMA 201 Statics (3) Physics 202 General Physics (5) B.S. Biomedical school requirement of a year of basic chemistry. #12;1 BIOMEDICAL ENGINEERING UNDERGRADUATE EDUCATIONAL

Wisconsin at Madison, University of

40

INSTITUTE OF BIOMEDICAL ENGINEERING  

E-Print Network [OSTI]

INSTITUTE OF BIOMEDICAL ENGINEERING Innovation,Translation, Impact University College London Gower Street London WC1E 6BT UK www.ibme.ucl.ac.uk DesignbyHype!hype.co.uk UCL Institute of Biomedical Engineering #12;Innovating MedTech The Institute of Biomedical Engineering (IBME) provides a much-needed focus

Saunders, Mark

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

TO TRANSFORM BIOMEDICAL ENGINEERING  

E-Print Network [OSTI]

IT'S TIME TO TRANSFORM BIOMEDICAL ENGINEERING EDUCATION #12;Charles H. & Bettye Barclay Professor Head, Department of Biomedical Engineering Texas A&M University We're dedicated to solving the world in biomedical engineering research and education ­ and we're well on our way. Our faculty continues to engineer

42

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network [OSTI]

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

43

Advanced Vehicles Group: Center for Transportation Technologies and Systems  

SciTech Connect (OSTI)

Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

Not Available

2008-08-01T23:59:59.000Z

44

Center for Biomedical Ethics and Humanities Program in Biomedical Ethics  

E-Print Network [OSTI]

Center for Biomedical Ethics and Humanities Program in Biomedical Ethics School of Medicine University of Virginia 2015 Summer Biomedical Ethics Internship The Program in Biomedical Ethics at the Center for Biomedical Ethics and Humanities at the University of Virginia School of Medicine invites

Acton, Scott

45

BIOMEDICAL ENGINEERING ABOUT THE MINOR  

E-Print Network [OSTI]

BIOMEDICAL ENGINEERING ABOUT THE MINOR A minor in biomedical engineering is open to all students engineering, with the opportunity to complete an interdisciplinary biomedical engineering design (capstone toward a major requirement. EECE4512 Biomedical Electronics EECE4664 Biomedical Signal Processing EECE

Ayers, Joseph

46

Cyberinfrastructure: Empowering a "Third Way" in Biomedical Research  

Science Journals Connector (OSTI)

...Internet and Web infrastructure familiar to the...biomedical community. Grid technology is not...components of the infrastructure. The environment...Biomedical Informatics Grid (caBIG). The...is a conceptual hybrid between BIRN and...it is an open infrastructure striving to achieve...

Kenneth H. Buetow

2005-05-06T23:59:59.000Z

47

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

48

The MSc provides a solid foundation in a range of subjects relevant to biomedical  

E-Print Network [OSTI]

The MSc provides a solid foundation in a range of subjects relevant to biomedical engineering including: · systems physiology · statistics and data analysis · biomedical imaging In addition components, all students studying for an MSc in Biomedical Engineering will complete a research project. You

49

Biomedical Ethics & Medical Humanities  

E-Print Network [OSTI]

List Sample Elective Courses Arts & Humanities Medical Scholars: Student Projects #12;2 What is BEMHBEMH Biomedical Ethics & Medical Humanities Scholarly Concentration Stanford University School? The Biomedical Ethics and Medical Humanities Scholarly Concentration is part of the new initiative at Stanford

Ford, James

50

The following courses will fulfill Biomedical Engineering technical electives for students in Biomedical Engineering and Chemical & Biomedical Engineering (3 credits required), Biomedical Engineering and Electrical Engineering (9 credits  

E-Print Network [OSTI]

The following courses will fulfill Biomedical Engineering technical electives for students in Biomedical Engineering and Chemical & Biomedical Engineering (3 credits required), Biomedical Engineering and Electrical Engineering (9 credits required), Biomedical Engineering and Electrical Engineering with Lasers

Stephens, Graeme L.

51

The following courses will fulfill Biomedical Engineering technical electives for students in Biomedical Engineering and Chemical & Biomedical Engineering (3 credits required), Biomedical Engineering and  

E-Print Network [OSTI]

The following courses will fulfill Biomedical Engineering technical electives for students in Biomedical Engineering and Chemical & Biomedical Engineering (3 credits required), Biomedical Engineering and Electrical Engineering (9 credits required), Biomedical Engineering and Electrical Engineering with Lasers

52

Novel Magnesium Alloys Developed for Biomedical Application: A Review Nan Li, Yufeng Zheng*  

E-Print Network [OSTI]

Novel Magnesium Alloys Developed for Biomedical Application: A Review Nan Li, Yufeng Zheng* State in the development of magnesium alloys both for industrial and biomedical applications. Industrial interest in magnesium alloys is based on strong demand of weight reduction of transportation vehicles for better fuel

Zheng, Yufeng

53

NJIT -Biomedical Engineering: WHY PURSUE GRADUATE STUDIES IN BIOMEDICAL ENGINEERING?  

E-Print Network [OSTI]

NJIT - Biomedical Engineering: WHY PURSUE GRADUATE STUDIES IN BIOMEDICAL ENGINEERING? The last half-century has seen an unparalleled explosion in new medical knowledge, leading to the creation of biomedical, with the development of new diagnostics and treatments for cancer, diabetes, stroke, and other diseases. Biomedical

Bieber, Michael

54

biomedical (BME) The interdisciplinary field of Biomedical Engineering combines elements  

E-Print Network [OSTI]

32 biomedical (BME) The interdisciplinary field of Biomedical Engineering combines elements to apply advanced technology to the complex problems of medical care. The Biomedical Engineering program of Engineering, pre-med BME's have access to the University's Pre-Health advisement office. Biomedical

Rohs, Remo

55

BioMedical Sciences BioMedical Sciences  

E-Print Network [OSTI]

BioMedical Sciences BioMedical Sciences As a professional working in the field of biomedical science, you'll perform essential tests that are vital to the well-being of our society. The BioMedical/Medical Laboratory Science, Cytotechnology, Biomedical Sciences and Public Health Microbiology. The Diagnostic

Saldin, Dilano

56

Study Abroad in Biomedical Engineering  

E-Print Network [OSTI]

Study Abroad in Biomedical Engineering Studying abroad is increasingly important for Biomedical perspective of Biomedical Engineering Experience another culture ­ and develop a greater awareness of your in for details! How will the study abroad program fulfill my graduation requirements? Biomedical Engineering

Heller, Barbara

57

Dartmouth Biomedical Libraries Annual Report  

E-Print Network [OSTI]

Dartmouth Biomedical Libraries Annual Report Fiscal Year 2011 Executive Summary The Biomedical a new director of the Biomedical Libraries. The Libraries' associate directors assumed the roles for the Biomedical Libraries. From planning a new space to replace Dana and Gilman, to migrating email

Myers, Lawrence C.

58

ETHICAL CONDUCT IN BIOMEDICAL RESEARCH  

E-Print Network [OSTI]

ETHICAL CONDUCT IN BIOMEDICAL RESEARCH: A Handbook for Biomedical Graduate Studies Students and Research Fellows Third Edition BIOMEDICAL GRADUATE STUDIES PROGRAM UNIVERSITY of PENNSYLVANIA #12 that a trainee in biomedical research should be taught to maintain the highest standards of scientific integrity

Plotkin, Joshua B.

59

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

60

Vehicle Technologies Office: Benchmarking  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Technologies Office Merit Review 2014: Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer-Aided Engineering of Batteries under Abuse  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupling of mechanical behavior of cell...

62

Hybrid Vehicle Technology - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

63

E-Print Network 3.0 - advanced vehicle control Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a resolution of major vehicle components for advanced class vehicles and systems. The Cost Model ASCM estimates... -duty EPA vehicle classes can be considered for the life cycle...

64

Department of Bioengineering Definition of Biomedical Engineering  

E-Print Network [OSTI]

Department of Bioengineering Definition of Biomedical Engineering Biomedical engineering cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences are the Specialty Areas? Some of the well established specialty areas within the field of biomedical engineering

65

Handbook for Biomedical Engineering Graduate Students  

E-Print Network [OSTI]

Handbook for Biomedical Engineering Graduate Students Department of Biomedical Engineering Wayne pertain to graduate students at the M.S. or Ph.D. level in the Department of Biomedical Engineering (BME........................................................................... iv Expectations for Citations in Biomedical Engineering .......................................... v

Berdichevsky, Victor

66

Vehicle suspension  

SciTech Connect (OSTI)

This patent describes a vehicle consisting of sprung and unsprung masses, the combination of struts and support springs for the weight of the sprung mass, an axis defined by pivots between sprung and unsprung masses, with a front pivot approximately midway between the wheels and near the vertical and horizontal planes through the front axles, with a rear pivot lying in an axis through the front pivot and in a plane through the center-of-gravity of the sprung mass, with the plane parallel to the centrifugal force vector through the center-of-gravity of the sprung mass, and with the rear pivot positioned approximately midway between the rear wheels, means for transmitting the centrifugal force component on the front pivot to the front wheels and ground, and means for transmitting the centrifugal force component on the rear pivot to the rear wheels and ground.

Mikina, S.J.

1986-08-05T23:59:59.000Z

67

Biomedical Engineering Graduate Concentration Fall 2014 Bioelectrical  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2014 Bioelectrical Advisor: Cynthia Chestek, Ph.D. BIOELECTRICAL: BIOMEDE 417 Electrical Biophysics (4) (II) GENERAL (both courses are required): BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics and Enterprise (1) (I) BIOMEDICAL

Eustice, Ryan

68

Biomedical Engineering Graduate Concentration Fall 2013 Biomechanics  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2013 Biomechanics BIOMECHANICS (select one course): BIOMEDE 456 Tissue Mechanics (3) (I) BIOMEDE 476 Biofluid Mechanics (4) (II) GENERAL (both courses are required): BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics

Eustice, Ryan

69

Biomedical Engineering Graduate Concentration Fall 2014 Biomaterials  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2014 Biomaterials Advisor: David Kohn, Ph.D. BIOMATERIALS: BIOMEDE 410 Design and Applications of Biomaterials (3) (I) GENERAL (both courses are required): BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics and Enterprise (1) (I) BIOMEDICAL

Eustice, Ryan

70

Biomedical Engineering Graduate Concentration Fall 2013 Bioelectrical  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2013 Bioelectrical BIOELECTRICAL: BIOMEDE 417 Electrical Biophysics (4) (II) GENERAL (both courses are required): BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics and Enterprise (1) (I) BIOMEDICAL RESEARCH AND DESIGN (select one

Eustice, Ryan

71

Biomedical Engineering Graduate Concentration Fall 2013 Biomaterials  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2013 Biomaterials BIOMATERIALS: BIOMEDE 410 Design and Applications of Biomaterials (3) (I) GENERAL (both courses are required): BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics and Enterprise (1) (I) BIOMEDICAL RESEARCH

Eustice, Ryan

72

Biomedical Engineering Graduate Concentration Fall 2014 Biomechanics  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2014 Biomechanics Advisor: Scott Hollister, Ph.D. BIOMECHANICS (select one course): BIOMEDE 456 Tissue Mechanics (3) (I) BIOMEDE 476 Biofluid Mechanics (4) (II) GENERAL (both courses are required): BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550

Eustice, Ryan

73

Advancing Next-Generation Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

74

Vanderbilt Department of Biomedical Engineering  

E-Print Network [OSTI]

Vanderbilt Department of Biomedical Engineering #12;bio-inspired therapeutics and nanomedicine possible. true cutting-edge engineering With the Biomedical Modeling Laboratory, the Surgical Navigation of Biomedical Engineering offers courses of study leading to the B.E., M.E., M.S., and Ph.D. degrees. Our

Bordenstein, Seth

75

ITEM # 13AA Biomedical Engineering  

E-Print Network [OSTI]

ITEM # 13AA Biomedical Engineering http://ecs.utdallas.edu/BME/ Faculty Professors: John H. L Southwestern and UT Dallas) List joint-assignments here Objectives The Biomedical Engineering Program generation of biomedical engineers will address fundamental scientific questions, provide answers to critical

O'Toole, Alice J.

76

Graduate Program in Biomedical Engineering  

E-Print Network [OSTI]

1 2014 Graduate Program in Biomedical Engineering Department of Bioengineering Binghamton University State University of New York http://bioeng.binghamton.edu Biomedical Engineering Graduate Program. Department Facilities 17 7. Contacts 18 #12;3 1. Overview of the Program The Biomedical Engineering graduate

Suzuki, Masatsugu

77

PRITZKER INSTITUTE FOR BIOMEDICAL SCIENCE  

E-Print Network [OSTI]

PRITZKER INSTITUTE FOR BIOMEDICAL SCIENCE AND ENGINEERING Strategic Plan Summary #12;Pritzker Institute for Biomedical Science and Engineering for Strategic Plan Summary | 1 PRITZKER INSTITUTE FOR BIOMEDICAL SCIENCE AND ENGINEERING STRATEGIC PLAN SUMMARY 1. Grow the student body · Provide financial

Heller, Barbara

78

Biomedical Ontologies: a functional perspective  

E-Print Network [OSTI]

Biomedical Ontologies: a functional perspective Daniel L. Rubin, Nigam H. Shah and Natalya F. Noy in biology makes it difficult for researchers to stay abreast of current biomedical knowl- edge and to make, their attributes and relationships among the entities in a domain of discourseçare increasingly enabling biomedical

Rubin, Daniel L.

79

Biomedical Sciences Graduate Program Guidelines  

E-Print Network [OSTI]

Biomedical Sciences Graduate Program Guidelines 1111 West 17th Street Tulsa, OK 74107-1898 #12;2 Table of Contents Section Page Number Program Description 3 1. Master of Science (M.S.) in Biomedical (Ph.D.) in Biomedical Sciences 7 3.1 Ph.D. Degree Program Requirements 7-10 4. Doctor of Osteopathic

Veiga, Pedro Manuel Barbosa

80

Mechanical & Biomedical Engineering  

E-Print Network [OSTI]

Mechanical & Biomedical Engineering Department BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING COURSE 105 Mechanical Engineering Graphics 3 CHEM 111L College Chemistry Lab (DLN) 1 ENGL 102 English PHYS 211 Mechanics, Waves & Heat (DLN) 4 UF 100 Intellectual Foundations 3 PHYS 211L Mechanics, Waves

Barrash, Warren

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353  

SciTech Connect (OSTI)

Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

Neubauer, J.

2013-05-01T23:59:59.000Z

82

Alternative Fuels Data Center: Installation of Alternative Fuel Components  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Installation of Installation of Alternative Fuel Components in Vehicles to someone by E-mail Share Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Facebook Tweet about Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Twitter Bookmark Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Google Bookmark Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Delicious Rank Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Digg Find More places to share Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on AddThis.com... More in this section... Federal

83

What is Biomedical Engineering? Biomedical engineers are professionally trained to apply engineering  

E-Print Network [OSTI]

What is Biomedical Engineering? Biomedical engineers are professionally trained to apply engineering analysis and design to clinical applications. Biomedical engineers understand how the human body diseases and injuries. The systems designed by biomedical engineers will improve patient outcomes

Lu, Chang

84

Assistant Professor Biomedical Communications The Biomedical Communications program, within the Department of Biology University of Toronto  

E-Print Network [OSTI]

Assistant Professor ­ Biomedical Communications The Biomedical Communications program, within-stream faculty appointment in Biomedical Communications at the rank of Assistant Professor, effective July 1 visualization, biomedical communications, medical illustration, instructional media design and/or educational

Sokolowski, Marla

85

Vehicle Technologies Office: Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

86

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

87

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

88

Master of Science Program In Biomedical Engineering  

E-Print Network [OSTI]

Master of Science Program In Biomedical Engineering Department of Biomedical Engineering New Jersey in Biomedical Engineering at NJIT The biomedical engineering department at NJIT offers one of the most flexible of specialization. The department of biomedical engineering is NJIT's newest academic department and is staffed

Bieber, Michael

89

Dartmouth Biomedical Libraries FY06 Annual Report  

E-Print Network [OSTI]

Dartmouth Biomedical Libraries FY06 Annual Report September 24, 2006 Dartmouth Biomedical Libraries Usage · D: July 1, 2006, Organization Chart Introduction The mission of the Dartmouth Biomedical (DHMC), and Dartmouth College. There are two Biomedical Libraries: the Dana Biomedical Library

Myers, Lawrence C.

90

Biomedical Engineering Graduate Concentration Fall 2013 Biotechnology  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2013 Biotechnology BIOTECHNOLOGY (select one course): BIOMEDE 410 Design and Applications of Biomaterials (3) (I) BIOMEDE 556 Cellular and Molecular Biomechanics (3) (I) BIOMEDE 574 Cells in Their Environment (3) (II) BIOMEDE 616 Analysis of Chemical Signaling

Eustice, Ryan

91

UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF BIOMEDICAL  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF BIOMEDICAL ENGINEERING GRADUATE STUDENT SURVIVAL to the Biomedical Engineering Graduate Program at UCI! This manual provides specific information on policies Biomedical Engineering Program is to train 21st century biomedical engineers for jobs in the biomedical

Mease, Kenneth D.

92

Biomedical Engineering Graduate Concentration Fall 2014 Biotechnology  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2014 Biotechnology Advisor: Michael Mayer, Ph.D. BIOTECHNOLOGY (select one course): BIOMEDE 410 Design and Applications of Biomaterials (3) (I) BIOMEDE 556 Cellular and Molecular Biomechanics (3) (I) BIOMEDE 574 Cells in Their Environment (3) (II) BIOMEDE 616

Eustice, Ryan

93

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

94

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

95

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

96

HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

97

The Graduate School BME Biomedical Engineering  

E-Print Network [OSTI]

The Graduate School BME Biomedical Engineering KEY: # = new course * = course changed = course;orconsentofinstructor. BME 501 FOUNDATIONS OF BIOMEDICAL ENGINEERING. (3 579.) BME 599 TOPICS IN BIOMEDICAL ENGINEERING (Subtitle required). (3) An interdisciplinary course

MacAdam, Keith

98

Biomedical System for Monitoring Pressure Ulcer Development  

E-Print Network [OSTI]

OF C ALIFORNIA Los Angeles Biomedical System for MonitoringOF THE D ISSERTATION Biomedical System for Monitoringto the design of a biomedical sys- tem for the monitoring of

Wang, Frank Tinghwa

2013-01-01T23:59:59.000Z

99

BIOMEDICAL MATHEMATICS: Promising Directions in Imaging,  

E-Print Network [OSTI]

BIOMEDICAL MATHEMATICS: Promising Directions in Imaging, Therapy Planning, and Inverse Problems #12;BIOMEDICAL MATHEMATICS: Promising Directions in Imaging, Therapy Planning, and Inverse Problems Yair Censor, Ming Jiang, Ge Wang Editors The Huangguoshu International Interdisciplinary Conference on Biomedical

Censor, Yair

100

BIOMEDICAL ENGINEERING CHEMICAL AND BIOLOGICAL ENGINEERING  

E-Print Network [OSTI]

BIOMEDICAL ENGINEERING CHEMICAL AND BIOLOGICAL ENGINEERING CIVIL, ARCHITECTURAL, AND ENVIRONMENTAL Experience. DEPARTMENT OF BIOMEDICAL ENGINEERING · Degree programs in cell and tissue engineering, medical imaging, and neural engineering These are exciting times for biomedical engineering and for Illinois Tech

Heller, Barbara

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nanoparticle Measurements and Standards for Biomedical and  

E-Print Network [OSTI]

Nanoparticle Measurements and Standards for Biomedical and Health Applications NANOMATERIALS Our consensus standards for characterization of biomedical nanoparticles are currently under development within for the biomedical and EHS sectors. Approach Materials Science and Engineering Laboratory Taking therapeutic

Magee, Joseph W.

102

BIOMEDICAL APPLICATIONS OF DIGITAL AUTORADIOGRAPHY WITH A MWPC  

E-Print Network [OSTI]

LBL-13772 Biomedical Applications of Digital Autoradiographya very useful detector for biomedical applications. Compared

Bellazzini, R.

2010-01-01T23:59:59.000Z

103

BIOMEDICAL AND HEALTH Assessing the Environmental, Health  

E-Print Network [OSTI]

BIOMEDICAL AND HEALTH Assessing the Environmental, Health and Safety Impact of Nanoparticles- proaching the sensitivity limit for most instruments. #12;BIOMEDICAL AND HEALTH A colloidal nanoparticle

Magee, Joseph W.

104

One decade of biomedical problems using ICA: a full comparative L. Albera1, A. Kachenoura1, A. Karfoul1, P. Comon2 and L. Senhadji1  

E-Print Network [OSTI]

One decade of biomedical problems using ICA: a full comparative study L. Albera1, A. Kachenoura1, A insights into the use of Independent Component Anal- ysis (ICA) for solving biomedical problems. First encountered biomedical problems solved using ICA is detailed. Finally a comparative performance study

Paris-Sud XI, Université de

105

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

106

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network [OSTI]

analyses of the manufacturing cost of the key unique components of electric vehicles: batteries, fuel cells,

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

107

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

108

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization.

109

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

FY 2011 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

110

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

FY 2012 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

111

Cyberinfrastructure: Empowering a "Third Way" in Biomedical Research  

Science Journals Connector (OSTI)

...metadata describe data, services...components of the infrastructure. The environment...address the mixed data and service access...Biomedical Informatics Grid (caBIG). The...a conceptual hybrid between BIRN...it is an open infrastructure striving to achieve...integration of data and applications...

Kenneth H. Buetow

2005-05-06T23:59:59.000Z

112

UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF BIOMEDICAL  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF BIOMEDICAL ENGINEERING GRADUATE STUDENT SURVIVAL - I. FOREWORD Welcome to the Biomedical Engineering Graduate Program at UCI! This manual provides as a graduate student. The goal of the UCI Biomedical Engineering Program is to train 21st century biomedical

Mease, Kenneth D.

113

UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF BIOMEDICAL  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF BIOMEDICAL ENGINEERING GRADUATE STUDENT SURVIVAL. FOREWORD Welcome to the Biomedical Engineering Graduate Program at UCI! This manual provides specific. The goal of the UCI Biomedical Engineering Program is to train 21st century biomedical engineers for jobs

Tang, William C

114

UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF BIOMEDICAL  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF BIOMEDICAL ENGINEERING GRADUATE STUDENT SURVIVAL Welcome to the Biomedical Engineering Graduate Program at UCI! This manual provides specific information of the UCI Biomedical Engineering Program is to train 21st century biomedical engineers for jobs

Mease, Kenneth D.

115

Biomedical Engineering Cynthia Bir, PhD  

E-Print Network [OSTI]

Biomedical Engineering Cynthia Bir, PhD Professor, Department of BME Director of Research, Orthopaedic Surgery #12;What is a Biomedical E i ?Engineer? "A bioengineer is anyoneA bioengineer is anyone who calls himself one." YC Fung #12;What is Biomedical E i i ?Engineering? Biomedical engineering

Berdichevsky, Victor

116

Biomedical Engineering Assist. Prof. Devrim nay  

E-Print Network [OSTI]

14.04.2014 1 Biomedical Engineering Assist. Prof. Devrim ?nay Office: D-530 devrim, therapists, biologists, etc. What is Biomedical Engineering? Why Biomedical Engineering? Promising future: Neuroengineering - neural prostheses My Research Activities #12;14.04.2014 2 Terminology Biomedical engineering

?nay, Devrim

117

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

118

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

119

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

120

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

122

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network [OSTI]

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

123

Careers in Biomedical Engineering Biomedical engineering students will be prepared for careers in the biomedical technology industry, graduate school or professional programs  

E-Print Network [OSTI]

Careers in Biomedical Engineering Biomedical engineering students will be prepared for careers in the biomedical technology industry, graduate school or professional programs such as engineering, medicine-time positions throughout the region. Scholarships Departmental scholarships are offered through the biomedical

Glowinski, Roland

124

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES Programme name Biomedical Engineering/ Biomedical Engineering with  

E-Print Network [OSTI]

Engineering/ Biomedical Engineering with Placement Award BEng (Hons) School School of Engineering of partnership Articulation PROGRAMME SUMMARY The BEng in Biomedical Engineering is a three year Bachelor theoretical and practical education in biomedical engineering and relevant subjects , who will qualify

Weyde, Tillman

125

Diesel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

126

Vehicle Technologies Office: Integration and Validation  

Broader source: Energy.gov [DOE]

Once vehicle components and subsystems prove out in the initial modeling and simulation research phases, it is time to build, integrate, and validate prototypes of those components and subsystems....

127

PEW SCHOLARS PROGRAM IN THE BIOMEDICAL SCIENCES http://www.pewhealth.org/biomedical-research/pew-biomedical-scholars-327805/program-details  

E-Print Network [OSTI]

PEW SCHOLARS PROGRAM IN THE BIOMEDICAL SCIENCES http://www.pewhealth.org/biomedical-research/pew-biomedical the Pew Scholars Program in the Biomedical Sciences. Additional program information can be found at Pew's website, http://www.pewhealth.org/biomedical-research/pew-biomedical-scholars- 327805/program

Jiang, Huiqiang

128

E-Print Network 3.0 - advanced vehicle control systems Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a resolution of major vehicle components for advanced class vehicles and systems. The Cost Model ASCM estimates... Automotive System Cost Modeling Tool (ASCM) T he affordability...

129

FACULTY POSITION IN BIOMEDICAL INFORMATICS The Geisel School of Medicine at Dartmouth has launched a major initiative in biomedical  

E-Print Network [OSTI]

FACULTY POSITION IN BIOMEDICAL INFORMATICS The Geisel School of Medicine at Dartmouth has launched a major initiative in biomedical informatics through the Collaboratory for Healthcare and Biomedical Informatics

Myers, Lawrence C.

130

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

131

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

132

Smart Thermal Skins for Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Smart Thermal Skins for Vehicles With a modest effort, many of the energy-efficient technologies developed for buildings can be transferred to the transportation sector. The goal of vehicle thermal management research at LBL is to save the energy equivalent of one to two billion gallons of gasoline per year, and improve the marketability of next-generation vehicles using advanced solar control glazings and insulating shell components to reduce accessory loads. Spectrally selective and electrochromic window glass and lightweight insulating materials improve the fuel efficiency of conventional and hybrid vehicles and extend the range of electric vehicles by reducing the need for air conditioning and heating, and by allowing the downsizing of equipment.

133

SPOTLIGHT on: Ellen Messer Biomedical (Mechanical) Engineering  

E-Print Network [OSTI]

SPOTLIGHT on: Ellen Messer Biomedical (Mechanical) Engineering Undergraduate Hometown: Easthampton of Biomedical Engineering, Undergraduate Research Assistant Program at the Brain and Creativity Institute, MA Involvement at USC: USC Marathon Team, Society of Women Engineers, Associated Students

Wang, Hai

134

Commercializing Biomedical Research Through Securitization Techniques  

E-Print Network [OSTI]

Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical ...

Fernandez, Jose-Maria

135

THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE  

E-Print Network [OSTI]

THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE the new Center for Integrative Biomedical Com- puting (CIBC) whose mission is to produce high performance im- age analysis, simulation, and visualization software in support of biomedical research. Software

Utah, University of

136

Biomedical Domain Status Document MONET 2 (IST-2001-33540), Biomedical Task Group  

E-Print Network [OSTI]

Biomedical Domain Status Document MONET 2 (IST-2001-33540), Biomedical Task Group Deliverable B1-based and qualitative reasoning methods in biomedical industry and health-care 18 3.1 Reprogramming pacemakers out by the Biomedical Task Group of the MONET 2 project (IST-2001-33540) in gathering information

Lucas, Peter

137

BIOMEDICAL ENGINEERING YOU CAN COUNT ON OUR BIOMEDICAL ENGINEERING INTERNS FOR ANY PROJECTS  

E-Print Network [OSTI]

BIOMEDICAL ENGINEERING YOU CAN COUNT ON OUR BIOMEDICAL ENGINEERING INTERNS FOR ANY PROJECTS ·Integrationofbiomedicaltechnologiesinhospitalsettings KEY TOOLS MASTERED: > C/C++ > LabVIEW > MATLAB > AutoCAD(BiomedicalEngineeringconcentrationinMechanicalEngineering) > PSPICE(BiomedicalEngineeringconcentrationinMechanicalEngineering) #12;DO YOU REQUIRE A CANDIDATE

Skorobogatiy, Maksim

138

Biomedical Domain Status Document MONET 2 (IST-2001-33540), Biomedical Task Group  

E-Print Network [OSTI]

Biomedical Domain Status Document MONET 2 (IST-2001-33540), Biomedical Task Group Deliverable B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Model-based and qualitative reasoning methods in biomedical industry and health-care 15 3 out by the Biomedical Task Group of the MONET 2 project (IST-2001-33540) in gathering information

Lucas, Peter

139

Advanced Materials for Lightweight Valve Train Components | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Lightweight Valve Train Components Advanced Materials for Lightweight Valve Train Components Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review...

140

Friction Modeling for Lubricated Engine and Drivetrain Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling for Lubricated Engine and Drivetrain Components Friction Modeling for Lubricated Engine and Drivetrain Components 2010 DOE Vehicle Technologies and Hydrogen Programs...

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Copyright 2008 Department of Biomedical Engineering  

E-Print Network [OSTI]

#12;Copyright© 2008 Department of Biomedical Engineering Wayne State University Last updated: March 2008 For more information, please visit: www.bme.wayne.edu Department of Biomedical Engineering #12;Contents History of Biomedical Engineering at Wayne State 1 Graduate Program-Overview 2 Master of Science 3

Berdichevsky, Victor

142

Updated June 2013 Biomedical Engineering Sample Curriculum  

E-Print Network [OSTI]

Updated June 2013 Biomedical Engineering Sample Curriculum WU Course Fall Spring Home Institution at WU Introduction to Biomedical Engineering BME 140 3 Biomechanics BME 240 3 Physiological Control Quantitative Physiology I & II BME 301A, 301B 4 4 Biomedical Engineering Design BME 401 3 Transport Phenomena I

Subramanian, Venkat

143

Updated May 2014 Biomedical Engineering Sample Curriculum  

E-Print Network [OSTI]

Updated May 2014 Biomedical Engineering Sample Curriculum WU Course Fall Spring Home Institution (3 at WU Introduction to Biomedical Engineering BME 140 3 Biomechanics BME 240 3 Physiological Control Quantitative Physiology I & II BME 301A, 301B 4 4 Biomedical Engineering Design BME 401 3 Transport Phenomena

Subramanian, Venkat

144

M.Eng/B.Eng Biomedical Engineering  

E-Print Network [OSTI]

M.Eng/B.Eng Biomedical Engineering Dr Phil Riches, Course Director #12;Formation of Bioengineering Bioengineering Bioengineering and National Centre Merge to create Biomedical Engineering 1962/3 1972 1974 2012 Dr Phil Riches, Course Director The History of Biomedical Engineering @ Strathclyde #12;Excellence

Mottram, Nigel

145

Biomedical Engineering Department Degrees Awarded 20122013  

E-Print Network [OSTI]

Biomedical Engineering Department 2013­2014 Degrees Awarded 2012­2013 ENROLLMENT 2013­2014 Bachelor for human health by training the next generation of biomedical engineers, cultivating leaders, and nurturing to CNN Money.com, biomedical engineering is one of today's fastest growing fields. Many students who

Ghosh, Joydeep

146

The Division of Biology & Biomedical Sciences  

E-Print Network [OSTI]

The Division of Biology & Biomedical Sciences what will YOU discover? #12;620students more than 470faculty 36departments 12programs and one YOU. DBBS Division of Biology and Biomedical Sciences Washington. The Division of Biology and Biomedical Sciences (DBBS) is ideally positioned to foster the interdisciplinary

Kornfeld, S. Kerry

147

New Degree Program in BIOMEDICAL PHYSICS  

E-Print Network [OSTI]

New Degree Program in BIOMEDICAL PHYSICS JUNIOR YEAR Fall Physics 5340/41: Optics Chemistry 2220: Biomedical Physics Seminar Science Elective College Group Req. General Education Req. Winter Physics/Radiology 6710: Physics in Medicine Physics 6780: Biomedical Physics Research College Group Req. General

Cinabro, David

148

The Division of Biology & Biomedical Sciences  

E-Print Network [OSTI]

The Division of Biology & Biomedical Sciences what will you discover? #12;what will you discover and Biomedical Sciences Washington University in St. Louis dbbs.wustl.edu On the cover: Moshi Song (left of other disciplines. The Division of Biology and Biomedical Sciences is ideally positioned to foster

Stormo, Gary

149

Biomedical Monitoring of Non-Hospitalized Subjects  

E-Print Network [OSTI]

Biomedical Monitoring of Non-Hospitalized Subjects using Disruption-Tolerant Wireless Sensors for the collection of biomedical data produced by sensors carried by mobile non-hospitalized subjects. In this paper we investigate the possibility of using these many hotspots as gateways for biomedical data

Paris-Sud XI, Université de

150

Biomedical Sciences Graduate Program Faculty Membership Application  

E-Print Network [OSTI]

Rev 7/10 Biomedical Sciences Graduate Program Faculty Membership Application The mission of the Biomedical Sciences Graduate Program (http://biomedsci.ucsd.edu) at UCSD is to provide outstanding graduate training competitive with the best graduate programs in biomedical sciences worldwide. The program consists

Gleeson, Joseph G.

151

Frontiers of biomedical text mining: current progress  

E-Print Network [OSTI]

Frontiers of biomedical text mining: current progress Pierre Zweigenbaum, Dina Demner-Fushman, Hong of biomedical text mining continue to present interesting challenges and opportunities for great improvements and interesting research. In this article we review the current state of the art in biomedical text mining or `Bio

Yu, Hong

152

PhD Studentships Biomedical Cell Biology  

E-Print Network [OSTI]

PhD Studentships Biomedical Cell Biology Funding available for UK and EU applicants ONLY The Division of Biomedical Cell Biology at Warwick Medical, and their research interests: See hYp://www2.warwick.ac.uk/fac/med/research/biomedical · Mohan

Davies, Christopher

153

PhD Studentships Biomedical Cell Biology  

E-Print Network [OSTI]

PhD Studentships Biomedical Cell Biology Funding available for UK and non-UK applicants The Division of Biomedical Cell Biology at Warwick Medical School seeks applications from candidates for Ph of the Division, and their research interests: See http://www2.warwick.ac.uk/fac/med/research/biomedical · Nick

Goldschmidt, Christina

154

Biomedical Engineering Department Degrees Awarded 20112012  

E-Print Network [OSTI]

Biomedical Engineering Department Facts 2012 Degrees Awarded 2011­2012 ENROLLMENT 2012 solutions for human health by training the next generation of biomedical engineers, cultivating leaders... According to CNN Money.com, biomedical engineering is one of today's fastest growing fields. Many students

Ben-Yakar, Adela

155

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

156

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

157

Vehicles News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

158

Vehicle Technologies Office: Modeling, Testing and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling, Testing and Analysis Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by modeling, testing, and analysis. This work complements the research on batteries, power electronics, and materials, helping researchers integrate these components and ensure the whole vehicle meets consumer and commercial needs. Modeling allows researchers to build "virtual vehicles" that simulate fuel economy, emissions and performance of a potential vehicle. The Office has supported the development of several software-based analytic tools that researchers can use or license. Integration and Validation allows researchers to test physical component and subsystem prototypes as if they are in a real vehicle. Laboratory and Fleet Testing provides data on PEVs through both dynamometer and on-the-road testing. Researchers use the data to benchmark current vehicles, as well as validate the accuracy of software models.

159

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

160

Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites in vehicles, which can decrease component weight by 10-60 percent.

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

162

Ultra Large Castings for Lightweight Vehicle Structures ?AMD...  

Broader source: Energy.gov (indexed) [DOE]

Maryland. merit08mccarty6.pdf More Documents & Publications Ultra Large Castings For Lightweight Vehicle Structures Magnesium Powertrain Cast Components Project (AMD 304)...

163

Flexible-Fuel Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one. Unlike natural gas vehicles and propane bi-fuel vehicles, flexible fuel vehicles contain one fueling system, which is made up of ethanol-compatible components and is set to accommodate the higher oxygen content of E85. E85 should only be used in ethanol-capable FFVs. For more information, read Flexible Fuel Vehicles: Powered by a Renewable American Fuel. Download Adobe Reader.

164

>> bme.wustl.edu The Department of Biomedical Engineering  

E-Print Network [OSTI]

>> bme.wustl.edu The Department of Biomedical Engineering Undergraduate Student Handbook 2014-2015 #12;Undergraduate Handbook 2014-2015 1 Welcome to Biomedical Engineering Department of Biomedical of Biomedical Engineering. Biomedical Engineering is a challenging major that will test your abilities

Stormo, Gary

165

Undergraduate Biomedical Engineering Minor Curriculum Requirements & Course Information  

E-Print Network [OSTI]

1 Undergraduate Biomedical Engineering Minor Curriculum Requirements & Course Information Description BIOM 101 Introduction to Biomedical Engineering 3 F Basic principles, fundamentals in biomedical course fee). BIOM 476A-B Biomedical Clinical Practicum 2-4 BMS 300; BIOM 470 F, S, SS Biomedical lab work

166

Undergraduate Biomedical Engineering Minor Curriculum Requirements & Course Information  

E-Print Network [OSTI]

1 Undergraduate Biomedical Engineering Minor Curriculum Requirements & Course Information Description BIOM 101 Introduction to Biomedical Engineering 3 F Basic principles, fundamentals in biomedical). BIOM 476A-B Biomedical Clinical Practicum 2-4 BMS 300; BIOM 470 F, S, SS Biomedical lab work

167

Department of Biomedical Engineering IIT Graduate Bulletin 2006-2008  

E-Print Network [OSTI]

104 Department of Biomedical Engineering IIT Graduate Bulletin 2006-2008 Department of Biomedical.iit.edu/~biomed Chair: Vincent Turitto The Department of Biomedical Engineering confers a doc- toral degree in biomedical engineering (Ph.D. in Biomedical Engineering). Currently, ten faculty members hold tenure- track

Heller, Barbara

168

Functionalizing Nanotubes for Biomedical Applications - Donghui...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Functionalizing Nanotubes for Biomedical Applications Donghui Zhang, LSU Chemistry Department Carbon nanotubes (CNT) are one dimensional nano-structures with novel materials...

169

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Vehicle Testing and Demonstration Activities Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities 2009 DOE Hydrogen Program and Vehicle...

170

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

171

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

172

Biomedical Collaborative Pilot Grants The Harvard Catalyst Pilot Grants Program sponsored three cycles of Biomedical Collaborative  

E-Print Network [OSTI]

Biomedical Collaborative Pilot Grants Cycle 2 The Harvard Catalyst Pilot Grants Program sponsored three cycles of Biomedical Collaborative Pilot Grants, which were directed at improving human health project. Funding decisions for the second cycle of Biomedical Collaborative Pilot Grants were announced

Church, George M.

173

Biomedical Collaborative Pilot Grants The Harvard Catalyst Pilot Grants Program sponsored three cycles of Biomedical Collaborative  

E-Print Network [OSTI]

Biomedical Collaborative Pilot Grants Cycle 1 The Harvard Catalyst Pilot Grants Program sponsored three cycles of Biomedical Collaborative Pilot Grants, which were directed at improving human health project. Funding decisions for the first cycle of Biomedical Collaborative Pilot Grants were announced

Church, George M.

174

Biomedical Collaborative Pilot Grants The Harvard Catalyst Pilot Grants Program sponsored three cycles of Biomedical Collaborative  

E-Print Network [OSTI]

Biomedical Collaborative Pilot Grants Cycle 3 The Harvard Catalyst Pilot Grants Program sponsored three cycles of Biomedical Collaborative Pilot Grants, which were directed at improving human health project. Funding decisions for the third cycle of Biomedical Collaborative Pilot Grants were announced

Church, George M.

175

Modeling and Simulation of Electric and Hybrid Vehicles  

E-Print Network [OSTI]

, and fuel cell vehicles, such as electric machines, power electronics, electronic continuously variableINVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design

Mi, Chunting "Chris"

176

Hybrid Vehicles: a Temporary Step J.J. CHANARON1  

E-Print Network [OSTI]

of full electric vehicles probably with hydrogen powered fuel cells. Such assumption is shared by several the diffusion of hybrid electric technology in vehicles. It is put into question whether the current strong electric components. It is found that most companies integrate hybrid electric vehicles in their technology

Paris-Sud XI, Université de

177

Biomedical Images Classification by Universal Nearest Neighbours Classifier  

E-Print Network [OSTI]

Biomedical Images Classification by Universal Nearest Neighbours Classifier Using Posterior scheme robust among different biomedical image datasets. To this aim, we compare unn performance paradigms. The results on one private and five public biomedical datasets show satisfactory performance. 1

Paris-Sud XI, Université de

178

The use of 'race' as a variable in biomedical research  

E-Print Network [OSTI]

be used as a variable in biomedical research but mainly toRace as a Variable in Biomedical Research A dissertationRace as a Variable in Biomedical Research. Manifest,

Efstathiou, Sophia

2009-01-01T23:59:59.000Z

179

Biomedical Engineering Interdisciplinary Studies Minor Curriculum Requirements & Course Information  

E-Print Network [OSTI]

1 Biomedical Engineering Interdisciplinary Studies Minor Curriculum Requirements & Course Credits Prerequisite(s) Semesters Taught Catalog Description BIOM 101 Introduction to Biomedical Engineering 3 F Basic principles, fundamentals in biomedical engineering including molecular, cellular

180

Biomedical Engineering AB Track Rev. October 2012 1/2  

E-Print Network [OSTI]

Biomedical Engineering AB Track Rev. October 2012 1/2 Plan of Study for the Biomedical or summer project resulting in a significant written report _______ #12;Biomedical Engineering AB Track Rev

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

182

Electric Vehicle Charging Infrastructure Deployment Guidelines: British  

Open Energy Info (EERE)

Electric Vehicle Charging Infrastructure Deployment Guidelines: British Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Agency/Company /Organization: Natural Resources Canada, British Columbia Hydro and Power Authority Focus Area: Vehicles Topics: Best Practices Website: www.bchydro.com/etc/medialib/internet/documents/environment/EVcharging A major component of winning public acceptance for plug-in vehicles is the streamlining of the private electric vehicle charging or supply equipment permitting and installation process as well as the public and commercial availability of charging locations. These guidelines are intended to anticipate the questions and requirements to ensure customer satisfaction.

183

Developing the Global Biomedical Engineer through a 12-month  

E-Print Network [OSTI]

Developing the Global Biomedical Engineer through a 12-month International Undergraduate Research, Ph.D. Coulter Department of Biomedical Engineering ASEE - Vancouver - June 2011 #12

Weber, Rodney

184

SciTech Connect: Biomedical Applications of Microfluidic Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomedical Applications of Microfluidic Technology Citation Details In-Document Search Title: Biomedical Applications of Microfluidic Technology Authors: Gao, Jun Los Alamos...

185

MECHANICAL & BIOMEDICAL ENGINEERING COURSE PLAN BY SEMESTER  

E-Print Network [OSTI]

MECHANICAL & BIOMEDICAL ENGINEERING COURSE PLAN BY SEMESTER STARTING WITH MATH 170 F I R S T Y E are identified and resolved quickly. #12;MECHANICAL & BIOMEDICAL ENGINEERING COURSE PLAN BY SEMESTER STARTING A R Fall Semester Spring Semester CHEM 111 College Chemistry 3 ME 105 Mechanical Engineering Graphics

Barrash, Warren

186

Heart Valve Lesson Plan Biomedical Engineering  

E-Print Network [OSTI]

Heart Valve Lesson Plan Biomedical Engineering Objective · Introduce students to biomedical Learning Outcomes · Students will understand the role and function of heart valves. · Students will learn does a heart valve work? · Why do we need to replace heart valves? Time Required (Itemized) · Lecture

Provancher, William

187

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

188

Household Vehicles Energy Use: Latest Data and Trends  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

2005-01-01T23:59:59.000Z

189

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

SciTech Connect (OSTI)

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

190

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: Energy.gov [DOE]

Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's)...

191

Hybrid Electric Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

192

Vehicle & Systems Simulation & Testing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

penetration of advanced vehicles and systems to displace petroleum consumption, reduce GHG emissions, and achieve vehicle electrification goals. Evaluate technology targets...

193

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

194

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

195

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

196

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

197

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

198

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

199

The Biomedical Libraries Dartmouth College/Dartmouth-Hitchcock Medical Center  

E-Print Network [OSTI]

The Biomedical Libraries Dartmouth College/Dartmouth-Hitchcock Medical Center 2000/2001 Annual Report William F. Garrity Director of Biomedical Libraries September 2001 The Biomedical Libraries are the Dana Biomedical Library on the Dartmouth College campus in Hanover, New Hampshire, and the Matthews

Myers, Lawrence C.

200

The Biomedical Libraries Dartmouth College/Dartmouth-Hitchcock Medical Center  

E-Print Network [OSTI]

The Biomedical Libraries Dartmouth College/Dartmouth-Hitchcock Medical Center 2001/2002 Annual Report William F. Garrity Director of Biomedical Libraries July 15, 2002 The Biomedical Libraries are the Dana Biomedical Library at the Dartmouth College campus in Hanover, New Hampshire, and the Matthews

Myers, Lawrence C.

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Open Biomedical Annotator Clement Jonquet, PhD1  

E-Print Network [OSTI]

The Open Biomedical Annotator Clement Jonquet, PhD1 , Nigam H. Shah, M.B.B.S, PhD1 and Mark A. Musen, MD, PhD1 1 Stanford Center for Biomedical Informatics Research and the National Center for Biomedical Ontology, Stanford University, Stanford, CA Abstract The range of publicly available biomedical

Paris-Sud XI, Université de

202

Department of Biomedical Engineering 2014-15 Faculty Search  

E-Print Network [OSTI]

Department of Biomedical Engineering 2014-15 Faculty Search The Department of Biomedical of Biomedical Engineering was established in 1997 and has rapidly grown to 20 faculty members, >400 center. Applicants must hold a Ph.D. degree in biomedical engineering or related field

von der Heydt, Rüdiger

203

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

204

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

205

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

206

Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle and Infrastructure Codes and Standards Chart Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations: Dispensing Vehicle Interface: Storage Containers: Storage Pressure Relief Devices: Storage System Siting: Storage and Production: Building and Fire Code Requirements: Organization Name Standards Development Areas AGA American Gas Association Materials testing standards API American Petroleum Institute

207

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

208

New Austenitic Stainless Steels for Exhaust Components (Agreement...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components Vehicle Technologies Office Merit Review 2014: Materials for...

209

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting vss033carlson2012o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office...

210

Friction and Wear Enhancement of Titanium Alloy Engine Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation pm007blau2011o.pdf More Documents & Publications Friction and Wear Enhancement of Titanium Alloy Engine Components Vehicle Technologies Office...

211

NDE DEVELOPMENT FOR ACERT ENGINE COMPONENTS | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pm024sun2011p.pdf More Documents & Publications NDE Development for ACERT Engine Components...

212

NREL: Learning - Vehicle Testing and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Testing and Analysis Vehicle Testing and Analysis Photo of two large semi-trailer truck cabs parked side by side on a hillside with a shrub-covered hill and sky in the background. Researchers at NREL obtain useful data on energy efficiency during tests conducted both in the laboratory and outdoors in truck cabs like these. Credit: Ken Proc Researchers and engineers test new technologies and vehicles to find out if they will help manufacturers produce more energy-efficient cars, vans, trucks, and buses. They also carry out studies using computer simulations. These studies help to identify the vehicles and components that will provide the best fuel economy and performance at the lowest cost. Fleet Tests and Evaluations NREL's engineers use the latest equipment and techniques to conduct vehicle

213

GRADUATE PROGRAM IN BIOMEDICAL ENGINEERING The Vanderbilt Biomedical Engineering (BME) graduate program is a pioneer in its field. The  

E-Print Network [OSTI]

GRADUATE PROGRAM IN BIOMEDICAL ENGINEERING The Vanderbilt Biomedical Engineering (BME) graduate of the most well respected programs nationally. It is ranked in the top 20 U.S. biomedical engineering graduate programs by U.S. News & World Report. The department is unique among biomedical engineering

Simaan, Nabil

214

Graduate Studies in Biomedical Sciences The graduate program in Biomedical Sciences is designed to provide a multidisciplinary educational and  

E-Print Network [OSTI]

Graduate Studies in Biomedical Sciences The graduate program in Biomedical Sciences is designed of the faculty. PhD Program Mission The mission of the Doctoral Program in Biomedical Sciences (DBMS caliber research in the biomedical sciences, contribute to the advancement of science, uphold

215

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

216

Biomedical Retrieval: How Can a Thesaurus Help?  

Science Journals Connector (OSTI)

Searching specialized collections, such as biomedical literature, typically requires intimate knowledge of a specialized terminology. Hence, it can be a disappointing experience: not knowing the right terms to us...

Leonie IJzereef; Jaap Kamps

2005-01-01T23:59:59.000Z

217

BIOMEDICAL ENGINEERING 2012-2014 CATALOG  

E-Print Network [OSTI]

Chemistry I.........................1 BME 335, Engineering Probability and Statistics...................3 Chemistry I..............................................3 PHY 103N, Engineering Physics II LaboratoryBIOMEDICAL ENGINEERING 2012-2014 CATALOG Suggested Arrangement of Courses for Eight Semester

Texas at Austin, University of

218

Building biomedical materials layer-by-layer  

E-Print Network [OSTI]

In this materials perspective, the promise of water based layer-by-layer (LbL) assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and ...

Hammond, Paula T.

219

Damping Specification of Automotive Structural Components via Modal Projection  

E-Print Network [OSTI]

at the cost of increased mass which negatively impacts production costs and vehicle performance on a substructuring approach, the tool allows the engineer to identify the critical vehicle components to be damped-frequency vibroacoustic noise in the vehicle compartment. It is a fairly straightforward procedure to compute

Paris-Sud XI, Université de

220

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase (rev. 10/2005-ecb) #12;Vehicle Usage Log Instructions General instructions: The details of the use

Yang, Zong-Liang

222

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drivers, number of vehicles in operation, and total vehicle miles traveled. Fact 842 Dataset Supporting Information Population and Vehicle Growth Comparison, 1950-2012 Year...

223

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

224

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

225

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

226

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300 Commercial EVSE...

227

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

228

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

229

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

230

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

231

Function Biomedical Informatics Research Network Recommendations for Prospective Multi-Center Functional Magnetic Resonance Imaging Studies  

E-Print Network [OSTI]

10.1002/jmri.23572. Function Biomedical Informatics Researchstudy performed by Biomedical Informatics Research Network.of information in distributed biomedical collaboratories.

2012-01-01T23:59:59.000Z

232

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

233

Vehicle Research Laboratory - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

234

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

235

AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC...  

Broader source: Energy.gov (indexed) [DOE]

AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC) AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC) Presentation from the U.S. DOE Office of Vehicle...

236

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

237

Vehicle Technologies Office: Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

238

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

239

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

240

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

242

Vehicles | Open Energy Information  

Open Energy Info (EERE)

renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the...

243

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

244

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

245

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

246

Advanced Electric Drive Vehicles  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

247

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

248

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

249

UCDavis // Dept. Biomedical Engineering // IIPP i NOV. 2014 Injury & Illness Prevention  

E-Print Network [OSTI]

UCDavis // Dept. Biomedical Engineering // IIPP i NOV. 2014 Injury & Illness Prevention Program Department of Biomedical Engineering Updated November, 2014 #12;UCDavis // Dept. Biomedical Engineering // IIPP ii NOV. 2014 THIS PAGE INTENTIONALLY LEFT BLANK. #12;UCDavis // Dept. Biomedical Engineering

Rocke, David M.

250

UCDavis // Dept. Biomedical Engineering // IIPP i Oct 2013 Injury & Illness Prevention  

E-Print Network [OSTI]

UCDavis // Dept. Biomedical Engineering // IIPP i Oct 2013 Injury & Illness Prevention Program Department of Biomedical Engineering Updated October 24, 2013 #12;UCDavis // Dept. Biomedical Engineering // IIPP ii Oct 2013 THIS PAGE INTENTIONALLY LEFT BLANK. #12;UCDavis // Dept. Biomedical Engineering

Ferrara, Katherine W.

251

BIOMEDICAL ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 RENSSELAER POLYTECHNIC INSTITUTE  

E-Print Network [OSTI]

1 BIOMEDICAL ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 RENSSELAER POLYTECHNIC INSTITUTE School of Engineering Biomedical Engineering #12;2 BIOMEDICAL ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 Table of Contents Biomedical Engineering

Salama, Khaled

252

BIOMEDICAL ENGINEERING UNDERGRADUATE HANDBOOK 8/24/2010 RENSSELAER POLYTECHNIC INSTITUTE  

E-Print Network [OSTI]

1 BIOMEDICAL ENGINEERING UNDERGRADUATE HANDBOOK 8/24/2010 RENSSELAER POLYTECHNIC INSTITUTE School of Engineering Biomedical Engineering #12;2 BIOMEDICAL ENGINEERING UNDERGRADUATE HANDBOOK 8/24/2010 Table of Contents Biomedical Engineering

Salama, Khaled

253

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

254

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

255

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Broader source: Energy.gov (indexed) [DOE]

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

256

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

257

Image-based Vehicle Classification System  

E-Print Network [OSTI]

Electronic toll collection (ETC) system has been a common trend used for toll collection on toll road nowadays. The implementation of electronic toll collection allows vehicles to travel at low or full speed during the toll payment, which help to avoid the traffic delay at toll road. One of the major components of an electronic toll collection is the automatic vehicle detection and classification (AVDC) system which is important to classify the vehicle so that the toll is charged according to the vehicle classes. Vision-based vehicle classification system is one type of vehicle classification system which adopt camera as the input sensing device for the system. This type of system has advantage over the rest for it is cost efficient as low cost camera is used. The implementation of vision-based vehicle classification system requires lower initial investment cost and very suitable for the toll collection trend migration in Malaysia from single ETC system to full-scale multi-lane free flow (MLFF). This project ...

Ng, Jun Yee

2012-01-01T23:59:59.000Z

258

PHOTOACOUSTIC IMAGING AND HIGH INTENSITY FOCUSED ULTRASOUND IN BIOMEDICAL APPLICATIONS  

E-Print Network [OSTI]

Optical and acoustical technologies for biomedical devices have been developed rapidly in the past years. These non-invasive technologies are used for diagnostic and therapeutic studies with great potential for improving biomedical applications...

Jo, Janggu

2014-08-31T23:59:59.000Z

259

Congestion control in charging of electric vehicles  

E-Print Network [OSTI]

The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

Carvalho, Rui; Gibbens, Richard; Kelly, Frank

2015-01-01T23:59:59.000Z

260

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

262

Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

263

BME BIOMEDICAL IMAGING CONCENTRATION F12 MS: 30 total credit hours minimum  

E-Print Network [OSTI]

BME BIOMEDICAL IMAGING CONCENTRATION ­ F12 MS: 30 total credit hours minimum Advisor: Luis Hernandez-Garcia, Ph.D. (hernan@umich.edu) Biomedical Imaging: BIOMEDE 5161 Medical Imaging Systems (3) (I)2 General: BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics and Enterprise (1) (I

Kamat, Vineet R.

264

BME BIOMEDICAL IMAGING CONCENTRATION F11 MS: 30 total credit hours minimum  

E-Print Network [OSTI]

BME BIOMEDICAL IMAGING CONCENTRATION ­ F11 MS: 30 total credit hours minimum Advisor: Luis Hernandez-Garcia, Ph.D. (hernan@umich.edu) Biomedical Imaging: BIOMEDE 5161 Medical Imaging Systems (3) (I)2 General: BIOMEDE 500 Biomedical Engineering Seminar (1) (I,II) BIOMEDE 550 Ethics and Enterprise (1) (I

Eustice, Ryan

265

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

266

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

267

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

268

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

269

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

270

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

271

DesignbyHype!hype.co.uk INSTITUTE OF BIOMEDICAL ENGINEERING  

E-Print Network [OSTI]

DesignbyHype!hype.co.uk INSTITUTE OF BIOMEDICAL ENGINEERING MedTech Accelerator www.ibme.ucl.ac.uk UCL Institute of Biomedical Engineering University College London Gower Street London WC1E 6BT UK #12;3 The Director of the IBME, Professor Quentin Pankhurst, is a physicist and biomedical engineer. Since joining

Saunders, Mark

272

24 February 2014 NUS Biomedical Engineering startup 2014's hottest  

E-Print Network [OSTI]

24 February 2014 NUS Biomedical Engineering startup ­ 2014's hottest Prof Lim Chwee Teck, co-founder of Clearbridge (fore, right) leads team in groundbreaking biotechnology at NUS Engineering. CLEABRIDGE BioMedics, an NUS Biomedical Engineering startup has been billed the hottest startup to watch in 2014

Chaudhuri, Sanjay

273

Richard Komistek Fred M. Roddy Professor of Biomedical Engineering  

E-Print Network [OSTI]

Richard Komistek Fred M. Roddy Professor of Biomedical Engineering #12;Dr. Richard Komistek has been named the Fred M. Roddy Professor of Biomedical Engineering at the University of Tennessee College of Engineering's Department of Mechanical, Aerospace and Biomedical Engineering. The professorship, which

Tennessee, University of

274

QANU Research Review Department of Biomedical Engineering at  

E-Print Network [OSTI]

QANU Research Review Department of Biomedical Engineering at Eindhoven University of Technology November 2010 #12;QANU / Draft report Research Review Biomedical Technology /Q2452 Quality Assurance with the permission of QANU and if the source is mentioned. #12;QANU / Research Review Biomedical Technology / Q245 3

Franssen, Michael

275

DEPARTMENT OF ELECTRICAL ENGINEERING (ELE) BIOMEDICAL ENGINEERING EMPHASIS  

E-Print Network [OSTI]

1 DEPARTMENT OF ELECTRICAL ENGINEERING (ELE) BIOMEDICAL ENGINEERING EMPHASIS Ibrahim Abdel offers a B.S. in electrical engineering with an emphasis in biomedical engineering. Track 1 is for students who intend to pursue a career as biomedical engineers. Track 2 is for students who intend

Karonis, Nicholas T.

276

Fall Semester Technical College Course Biomedical Engineering Course Requirements  

E-Print Network [OSTI]

First Year Fall Semester Technical College Course Biomedical Engineering Course Requirements Technical College Course Biomedical Engineering Course Requirements No Equivalent BMEN 211 ENG 102 ENGL 102 Course Biomedical Engineering Course Requirements No Equivalent BMEN 202 CHM 211 CHEM 333/331L MAT 240

Almor, Amit

277

DEPARTMENT OF BIOMEDICAL ENGINEERING 2008 2010 Technical Area 2  

E-Print Network [OSTI]

DEPARTMENT OF BIOMEDICAL ENGINEERING 2008 ­ 2010 Technical Area 2 Cell and Biomolecular Engineering List CGOV 310L American Government MBME 371 Biomedical Engineering Project BME 370 SBME Sr. Elective must be in Biomedical Engineering. Choose one: TBME 376 Cell Engineering BIO 311C TBME 354 Molecular

Ben-Yakar, Adela

278

Biomedical Engineering Faculty Search Herbert Herff Chair of Excellence (II)  

E-Print Network [OSTI]

Biomedical Engineering Faculty Search Herbert Herff Chair of Excellence (II) The University/University of Tennessee Health Science Center (UM/UT) Joint Graduate Program in Biomedical Engineering, and to help drive candidates must have a Ph.D. or equivalent degree in Biomedical Engineering or a closely related field

Dasgupta, Dipankar

279

Biomedical Engineering Specimen Curriculum National University of Ireland, Galway  

E-Print Network [OSTI]

Biomedical Engineering Specimen Curriculum National University of Ireland, Galway Fall Semester ELEC Sci, Engineering, Math Elective 6* 16 Senior Year Fall VU Spring VU BME 271 Biomedical Seminar 1 BME 273 Design of Medical Engineering Systems II 3 BME 255w Biomedical Engineering Lab 3 18 SEM

Simaan, Nabil

280

Topics in Biomedical Optics: introduction to the feature issue  

E-Print Network [OSTI]

Topics in Biomedical Optics: introduction to the feature issue Joseph P. Culver,1, * Wolfgang; accepted 25 March 2009; posted 25 March 2009 (Doc. ID 109253); published 30 March 2009 This Applied Optics feature issue on Topics in Biomedical Optics highlights papers presented at the 2008 Biomedical Topical

Larson-Prior, Linda

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biomedical Text Disambiguation using UMLS Wessam Gad El-Rab  

E-Print Network [OSTI]

Biomedical Text Disambiguation using UMLS Wessam Gad El-Rab University of Alberta Edmonton, Canada from biomedical documents has increased significantly in recent years but has always been challenged to disambiguate biomedical text. In this study we propose a word sense disambiguation algorithm focused

Zaiane, Osmar R.

282

Enriched Protein-Protein Interactions from Biomedical Text  

E-Print Network [OSTI]

Enriched Protein-Protein Interactions from Biomedical Text Barry Haddow, Michael Matthews from Biomedical Text #12;Overview The TXM Project Protein-Protein Interactions Enriched Protein Protein-Protein Interactions from Biomedical Text #12;Project Information Text Mining Programme funded (3

Edinburgh, University of

283

BIOMEDICAL ENGINEERING BSE PLAN REQUIREMENTS Campus: UMICH RG = Requirement Group  

E-Print Network [OSTI]

BIOMEDICAL ENGINEERING BSE PLAN REQUIREMENTS Campus: UMICH RG = Requirement Group Career: UENG RQ = Requirement Program: LN = Line Plan: 0880BSE Sub-Plan: RG 6856 BIOMEDICAL ENGINEERING MAJOR REQUIREMENTS Effective FA05/1560 (09/06/2005) RQ 4996 Program Subjects Effective FA05/1560 (09/06/2005) LN 0010 BIOMEDE

Shyy, Wei

284

A SIMPLE ALGORITHM FOR IDENTIFYING ABBREVIATION DEFINITIONS IN BIOMEDICAL TEXT  

E-Print Network [OSTI]

A SIMPLE ALGORITHM FOR IDENTIFYING ABBREVIATION DEFINITIONS IN BIOMEDICAL TEXT ARIEL S. SCHWARTZ of biomedical text is growing at a fast rate, creating challenges for humans and computer systems alike. One of these challenges arises from the frequent use of novel abbreviations in these texts, thus requiring that biomedical

Hearst, Marti

285

Updating a Biomedical Database Writing, Reading and Invisible Contribution*  

E-Print Network [OSTI]

Updating a Biomedical Database Writing, Reading and Invisible Contribution* David PONTILLE chargé part of biomedical research (Bowker 2000; Hine 2006). As a result of developments in molecular biology project on several biomedical databases in France and the issues involved in different forms

Paris-Sud XI, Université de

286

Biomedical Engineering Graduate Concentration Fall 2014 Medical Product Development  

E-Print Network [OSTI]

Biomedical Engineering Graduate Concentration ­ Fall 2014 Medical Product Development Advisor: Jan Stegemann, Ph.D. MEDICAL PRODUCT DESIGN AND DEVELOPMENT (both courses are required): BIOMEDE 599.002 Graduate BME Innovative Design Team (3) (I) BIOMEDE 599.004 Graduate BME Innovative Design Team (4) (II

Eustice, Ryan

287

Biomedical companies catch and bleed horseshoe crabs for the pro-  

E-Print Network [OSTI]

293 Biomedical companies catch and bleed horseshoe crabs for the pro- duction of Limulus amebocyte product. The biomedical industry harvest- ed approximately 260,000 horseshoe crabs in 1997 (HCTC1). However, approximately 25% of the horseshoe crabs landed for biomedical purposes were rejected for use

288

Biomedical Term Recognition With the Perceptron HMM Algorithm  

E-Print Network [OSTI]

Biomedical Term Recognition With the Perceptron HMM Algorithm Sittichai Jiampojamarn and Grzegorz of biomedical terms in research publications using the Perceptron HMM algorithm. Each important term is iden­ tified and classified into a biomedical con­ cept class. Our proposed system achieves a 68.6% F

Kondrak, Greg

289

Biomedical Engineering Undergraduate Advising Manual (updated August, 2013)  

E-Print Network [OSTI]

Biomedical Engineering Undergraduate Advising Manual (updated August, 2013) The Discipline of Biomedical Engineering 2 Career Opportunities 2 Degree Programs 3 BS ­ Degree Requirements 4 Structure/Independent Study 19 Satisfactory/Unsatisfactory 20 Study Abroad 20 Transfer Courses 21 The Discipline of Biomedical

von der Heydt, Rüdiger

290

Building a biomedical ontology recommender web Clement Jonquet1  

E-Print Network [OSTI]

- 1 - Building a biomedical ontology recommender web service Clement Jonquet1§ , Mark A. Musen1 , Nigam H. Shah1 1 Center for Biomedical Informatics Research, Stanford University, CA 94305, USA: musen@stanford.edu NHS: nigam@stanford.edu Abstract Background Researchers in biomedical informatics use

Paris-Sud XI, Université de

291

SPECIAL ISSUE -EDITORIAL Micro and nanotechnology for biological and biomedical  

E-Print Network [OSTI]

SPECIAL ISSUE - EDITORIAL Micro and nanotechnology for biological and biomedical applications Chwee of micro and nano- technological tools, devices and techniques for both bio- logical and biomedical of the important outcomes will eventually see actual biomedical applications in the not too distant future

Espinosa, Horacio D.

292

Biomedical signal processing --application of optimization methods for machine learning  

E-Print Network [OSTI]

Biomedical signal processing -- application of optimization methods for machine learning problems Helmholtz Zentrum M¨unchen http://cmb.helmholtz-muenchen.de Grenoble, 16-Sep-2008 F. Theis Biomedical signal Biomedical signal processing -- application of optimization methods for machi #12;Data mining cocktail

Absil, Pierre-Antoine

293

Special Section Guest Editorial Coherent Raman Imaging Techniques and Biomedical  

E-Print Network [OSTI]

Special Section Guest Editorial Coherent Raman Imaging Techniques and Biomedical Applications. The combination of high resolution and molecular contrast has moved Raman techniques into the biomedical spotlight on biomedical imag- ing. The spontaneous Raman interaction is weak, yielding insufficient photons for fast

Potma, Eric Olaf

294

Passive Cooling System for a Vehicle  

DOE Patents [OSTI]

A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

Hendricks, T. J.; Thoensen, T.

2005-11-15T23:59:59.000Z

295

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 11, 2010 August 11, 2010 Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University The Future of Electric Vehicles and Arizona State University's MAIL Battery Building cost-effective EVs just got a little easier. August 11, 2010 Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Novolyte Charging Up Electric Vehicle Sector Just outside Baton Rouge in Zachary, Louisiana, sits Novolyte Technologies, a battery component manufacturer in business since the early 1970s, making components for batteries used in everything from calculators to hearing

296

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network [OSTI]

that strongly supported electricdrive vehicles, was workingbattery developers, and electric-drive components industry).on attributes of the electric drive system that would help

Collantes, Gustavo

2006-01-01T23:59:59.000Z

297

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

on technical and cost issues for hydrogen and fuel cellvehicle component costs (for fuel cells and hydrogenfuel cell durability, vehicle range and hydrogen station capacity and costs.

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

298

Control system design for a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the design of control systems for a parallel hybrid electric drive train which is an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine...

Buntin, David Leighton

1994-01-01T23:59:59.000Z

299

Impact of hybrid and electric vehicles on automobile recycling infrastructure  

Science Journals Connector (OSTI)

The recycling infrastructure for end-of-use vehicles in the United States is driven by profitability due to the absence of regulations. Typically, the recycling consists of removing reusable components for resale and shredding and separating remaining ...

Deogratias Kibira; Sanjay Jain

2011-12-01T23:59:59.000Z

300

Biomedical Optics Laser Laboratory The lab's objective is to improve human health through research and education in Biomedical Optics, a  

E-Print Network [OSTI]

Biomedical Optics Laser Laboratory The lab's objective is to improve human health through research and education in Biomedical Optics, a multidisciplinary field incorporating elements of the physical and life in Biomedical Optics involves developing and applying methods of optical science and engineering

Kamat, Vineet R.

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Funding Opportunity: Team-Based Design in Biomedical Engineering Education (R25) Sponsor: National Institutes of Biomedical Imaging and  

E-Print Network [OSTI]

Funding Opportunity: Team-Based Design in Biomedical Engineering Education (R25) Sponsor: National Institutes of Biomedical Imaging and Bioengineering (NIBIB) National Institute of Child Health and Human: May 13, 2014 Program Synopsis The mission of the National Institute of Biomedical Imaging

Suzuki, Masatsugu

302

Funding Opportunity: Team-Based Design in Biomedical Engineering Education (R25) Sponsor: National Institutes of Biomedical Imaging and  

E-Print Network [OSTI]

Funding Opportunity: Team-Based Design in Biomedical Engineering Education (R25) Sponsor: National Institutes of Biomedical Imaging and Bioengineering (NIBIB) National Institute of Child Health and Human: May 18, 2012 Program Synopsis The mission of the National Institute of Biomedical Imaging

Suzuki, Masatsugu

303

MECHANICAL & BIOMEDICAL ENGINEERING COURSE PLAN BY SEMESTER  

E-Print Network [OSTI]

MECHANICAL & BIOMEDICAL ENGINEERING COURSE PLAN BY SEMESTER F I R S T Y E A R Fall Semester Spring TOTAL CREDITS 14 S E C O N D Y E A R Fall Semester Spring Semester PHYS 211 Mechanics, Waves, and Heat 4 PHYS 212 Electricity, Magnetism, and Optics 4 PHYS 211L Mechanics, Waves and Heat Lab 1 PHYS 212L

Barrash, Warren

304

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

305

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

306

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

307

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

308

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

309

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

310

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

311

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

312

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

313

CMVRTC: Overweight Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

314

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

315

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

316

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

317

Comparative Evaluation of Capsular Polysaccharide-Specific IgM and IgG Antibodies and F(ab?)2 and Fab Fragments as Delivery Vehicles for Radioimmunotherapy of Fungal Infection  

Science Journals Connector (OSTI)

...the best delivery vehicle for radioimmunotherapy...used as delivery vehicles for radionuclides...Latex-Crypto antigen detection system (2), which is...Antibodies as delivery vehicles for radioimmunotherapy...components of the immune system in vitro and during...

Ekaterina Dadachova; Ruth A. Bryan; Xianchun Huang; Geraldina Ortiz; Tiffany Moadel; and Arturo Casadevall

2007-09-15T23:59:59.000Z

318

Monitoring Battery System for Electric Vehicle, Based On "One Wire" Technology  

E-Print Network [OSTI]

Santiago, Chile jdixon@ing.puc.cl Abstract-- A monitoring system for a battery powered electric vehicle (EV- powered electric vehicles, the need for fast information related to different components and equipmentMonitoring Battery System for Electric Vehicle, Based On "One Wire" Technology Javier Ibáñez Vial

Catholic University of Chile (Universidad Católica de Chile)

319

The Vehicle Scheduling Problem with Intermittent Customer Demands W. C. Benton  

E-Print Network [OSTI]

Engineering The Ohio State University May 9, 1991 revised June 11, 2008 #12;Abstract The vehicle scheduling is to minimize the total cost of operating the vehicle fleet. The key cost components are labor, fuelThe Vehicle Scheduling Problem with Intermittent Customer Demands W. C. Benton Academic Faculty

Rossetti, Manuel D.

320

Secure Software Upload in an Intelligent Vehicle via Wireless Communication Links  

E-Print Network [OSTI]

, a significant part of a vehicle's manufacturing cost goes towards the implementation of electronic components on vehicles on an individual basis eliminating labor costs from the auto manufacturers as well as from costs. To upload software in vehicles, it is critically important that this be done in a secure

Mahmud, Syed Masud

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

322

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

323

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

324

Stack Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stack Components Stack Components Nancy L. Garland Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Fuel Cell Team FORS 5G-086 (202) 586-5673 nancy.garland@ee.doe.gov Stack Components F u e l P r o c e s s o r Bipolar Plate Cathode + Anode - Electrolyte H+ H+ HYDROGEN OXYGEN Example shown is for acidic electrolytes Bipolar Plate e - e - O 2 O 2 O 2 e - H+ Bipolar Plate Bipolar Plate Cathode + Anode - Electrolyte H+ H+ H+ H+ HYDROGEN OXYGEN Example shown is for acidic electrolytes Bipolar Plate Bipolar Plate e - e - e - e - O 2 O 2 O 2 O 2 O 2 O 2 e - e - H+ H+ Power Stack Component Barriers $10 Other Bipolar Plates Membranes Electrodes $25 $5 $5 Fuel Cell Power Systems $45/kW BARRIERS * Stack material cost/manufacturing * Durability * Electrode performance * Thermal and water management Stack Component Targets

325

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

326

Vehicle Modeling and Simulation  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

327

Flex Fuel Vehicle Systems  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

328

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

329

Vehicle Technologies Office: Conferences  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports and sponsors conferences related to the Office's goals and objectives. When such conferences are planned and conference information becomes available, it...

330

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

331

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

332

Vehicle highway automation.  

E-Print Network [OSTI]

??Vehicle Highway Automation has been studied for several years but a practical system has not been possible because of technology limitations. New advances in sensing (more)

Challa, Dinesh Kumar

2009-01-01T23:59:59.000Z

333

Vehicles | Department of Energy  

Energy Savers [EERE]

Calculator is an interactive tool that helps you plan a route, pick a car and estimate a fuel costs. Subtopics Alternative Fuel Vehicles Batteries Hydrogen & Fuel Cells Bioenergy...

334

Integrated Vehicle Thermal Management  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

335

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

336

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles . Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

337

Comparative Biomedical Sciences is one of five graduate fields associated with the Biological & Biomedical Sciences (BBS) Graduate Program. As an umbrella program, the BBS fosters an atmosphere  

E-Print Network [OSTI]

Background Comparative Biomedical Sciences is one of five graduate fields associated with the Biological & Biomedical Sciences (BBS) Graduate Program. As an umbrella program, the BBS fosters fields are members of the BBS Graduate Program: Comparative Biomedical Sciences Immunology & Infectious

Walter, M.Todd

338

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

339

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

340

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress...

342

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

343

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

344

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

345

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

346

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

347

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

348

Vehicle Technologies Market Report  

E-Print Network [OSTI]

· Diesel comprised 73% of the class 3-8 trucks sold in 2010, down from 84% in 2006 · Class 8 combination 2011 · There are more than 4,400 electric vehicle charging stations throughout the nation · Single wide stop sites across the country to reduce truck idling time Policy · Plug-in hybrids and electric vehicle

349

> 070131-073Vehicle  

E-Print Network [OSTI]

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

350

CMVRTC: Overweight Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

351

Which Vehicles Are Tested  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

352

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

353

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

354

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

355

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred methods for...

356

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

357

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for...

358

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

359

Biomedical Signal Processing Hsun-Hsien Chang and Jose M. F. Moura  

E-Print Network [OSTI]

1 Biomedical Signal Processing Hsun-Hsien Chang and Jos´e M. F. Moura I. INTRODUCTION Biomedical, to neural and cardiac rhythms, to tissue and organ images. Biomedical signal processing aims at extracting significant information from biomedical signals. With the aid of biomedical signal processing, biologists can

Moura, José

360

Levels and Spectra of Transportation Vehicle Noise  

Science Journals Connector (OSTI)

In the years immediately preceding the war an informal program of the study of traffic transportationvehicle and industrial noise was undertaken in the Chicago area. In the recent past another but much more exhaustive program has been initiated and further and more detailed work has now been done. One phase of the work has been a study of the noise within the various types of vehicles generally employed in transportation. These include older and newer type trolley cars and trolley buses elevated lines and subway cars suburban electric and steam trains and passenger automobiles.Measurements were made in these vehicles not only of total sound level but of components in octave bands in the audible frequency range. The work has therefore permitted a comparison of the acoustic spectra in these vehicles and curves to show these characteristic differences will be shown.

G. L. Bonvallet

1949-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

362

Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

363

VEHICLE ACCESS PORTALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

364

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

365

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

366

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

367

Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2009 DOE Hydrogen Program and

368

Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2010 DOE Hydrogen Program and

369

Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 DOE Hydrogen 1 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2011 DOE Hydrogen Program and

370

Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: September 9, 3: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries to someone by E-mail Share Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Facebook Tweet about Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Twitter Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Google Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Delicious Rank Vehicle Technologies Office: Fact #233: September 9, 2002

371

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

372

Biomedical Information Retrieval based on Document-Level Term Boosting.  

E-Print Network [OSTI]

?? There are several problems regarding information retrieval on biomedical information. The common methods for information retrieval tend to fall short when searching in this (more)

Johannsson, Dagur Valberg

2009-01-01T23:59:59.000Z

373

2013 IEEE International Symposium on Biomedical Imaging: From...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 IEEE International Symposium on Biomedical Imaging: From Nano to Macro http:www.biomedicalimaging.org2013 April 7-11, 2013; San Francisco, CA, USA...

374

USER MANUAL -BIOMEDICAL APPLICATION WP1 -TASK 1.1  

E-Print Network [OSTI]

USER MANUAL - BIOMEDICAL APPLICATION WP1 - TASK 1.1 CG1.1-v1.0-UvA007- Biomedical Filename: CG1.1-v1.0-UvA007- BiomedicalAppUserManual.doc Work package: WP1 ­ Task 1.1 Partner(s): UvA, University Linz Lead Partner: UvA Config ID: CG1.1-v1.0-UvA007-BiomedicalAppUserManual Document

Zudilova-Seinstra, Elena

375

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

376

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Toyota Prius Plug-in 2013 Ford C-Max Hybrid 2013 Ford C-Max Energi 2013 Ford Fusion Energi 2014 VW Jetta Hybrid 2013 FLEET TEST VEHICLES 2 Honda CR-Z HEV 2...

377

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

378

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage Containers and Piping: Storage Container Pressure Relief Devices and Venting: Production Storage Systems: Production Process Safety: Pipelines: Building and Fire Code Requirements: Organization Name Standards Development Areas AGA American Gas Association Materials testing standards

379

Clerc BioMedical Engineering OnLine 2013, 12:22 http://www.biomedical-engineering-online.com/content/12/22  

E-Print Network [OSTI]

Clerc BioMedical Engineering OnLine 2013, 12:22 http://www.biomedical-engineering Engineering OnLine 2013, 12:22 Page 2 of 4 http://www.biomedical-engineering-online.com/content/12, distribution, and reproduction in any medium, provided the original work is properly cited. #12;Clerc BioMedical

Paris-Sud XI, Université de

380

Nguyen et al. BioMedical Engineering OnLine 2012, 11:32 http://www.biomedical-engineering-online.com/content/11/32  

E-Print Network [OSTI]

Nguyen et al. BioMedical Engineering OnLine 2012, 11:32 http://www.biomedical-engineering the original work is properly cited. #12;Nguyen et al. BioMedical Engineering OnLine 2012, 11:32 Page 2 of 21 http://www.biomedical-engineering-online.com/content/11/32 analyze the patient-ventilator interface [3

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hayashibe and Guiraud BioMedical Engineering OnLine 2013, 12:86 http://www.biomedical-engineering-online.com/content/12/1/86  

E-Print Network [OSTI]

Hayashibe and Guiraud BioMedical Engineering OnLine 2013, 12:86 http://www.biomedical-engineering and Guiraud BioMedical Engineering OnLine 2013, 12:86 Page 2 of 18 http://www.biomedical-engineering

Paris-Sud XI, Université de

382

Choosing the right program The BEng program in Biomedical and Mechanical Engineering  

E-Print Network [OSTI]

Choosing the right program The BEng program in Biomedical and Mechanical Engineering is fully The Biomedical and Mechanical Engineering program at Carleton University uniquely combines the foundation of mechanical engineering and the exciting and rapidly growing discipline of biomedical engineering

Dawson, Jeff W.

383

JOYCE Y. WONG Departments of Biomedical Engineering and Materials Science & Engineering  

E-Print Network [OSTI]

JOYCE Y. WONG Professor Departments of Biomedical Engineering and Materials Science & Engineering, Departments of Biomedical Engineering & Materials Science & Engineering (2013-) Co-Director, Affinity Research - ) Associate Chair, Graduate Studies, Department of Biomedical Engineering (2006-2010) Associate Director

384

Tenure-Track Assistant/Associate/Full Professors in Biomedical Engineering Department of Biological Systems Engineering  

E-Print Network [OSTI]

Tenure-Track Assistant/Associate/Full Professors in Biomedical Engineering Department of Biological rank in the field of Biomedical Engineering. The UNL College related to Biomedical Engineering. The Biological Systems Engineering

Bohnhoff, David

385

On the cutting edge of biomedical engineering, IBBME is a unique, multidisciplinary  

E-Print Network [OSTI]

On the cutting edge of biomedical engineering, IBBME is a unique, multidisciplinary graduate solutions to the world's most pressing healthcare challenges. The leading biomedical engineering centre in Canada, the Institute of Biomaterials & Biomedical Engineering (IBBME) is an interdisciplinary graduate

Prodiæ, Aleksandar

386

Suggested Courses for ME Students Interested in Biomechanics/Biomedical Engineering  

E-Print Network [OSTI]

Engineering: Virginia Tech is in the process of developing a new biomedical a Biomedical Engineering minor and the required ME technical electives. For more-4016 ­ Engineering Design and Project (6 credits total) Select from various biomechanics/biomedical

Virginia Tech

387

Basic Biomedical Sciences and the Future of Medical Education: Implications for Internal Medicine  

E-Print Network [OSTI]

siblings of Brass: Basic Biomedical Sciences and the FutureNorman GR. The role of biomedical knowledge in diagnosis ofIt all make sense: biomedical knowledge, causal connections

Brass, Eric P.

2009-01-01T23:59:59.000Z

388

Master in Mathematics with Specialization in: Modelling and Simulation for Biomedical  

E-Print Network [OSTI]

: Modelling and Simulation for Biomedical Applications (in English) Department-2013 SUMMARY: The specialization of Modelling and Simulation for Biomedical, interpreting results from biomedical imaging, to name but a few. This two-year Master

Pugliese, Andrea

389

Biomedical Engineering AND Mechanical Engineering Student Name:________________________ Curriculum Check Sheet 157 Credits  

E-Print Network [OSTI]

Biomedical Engineering AND Mechanical Engineering Student Name:________________________ Curriculum (PREREQS) TERM* CR BIOM 101 Intro to Biomedical Engineering F 3 CHEM 113 General Chemistry II (CHEM 107 = Fall, S = Spring, SS = Summer Session Biomedical Engineering Courses highlighted in grey Must have

390

Navya Biomedical Technologies, LLC Developing Fullerenes to Image and Destroy Tumors  

E-Print Network [OSTI]

Navya Biomedical Technologies, LLC Developing Fullerenes to Image and Destroy Tumors Navya Biomedical Technologies, LLC (Navya) is a privately held biotechnology company that de- signs, develops. Polyhydroxy fullerenes exhibit beneficial biomedical characteristics that could lead to multiple product lines

Jawitz, James W.

391

Vehicle Technologies Office: Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

392

Vehicle Technologies Office: Electrical Machines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

393

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

394

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

395

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

396

Advanced Vehicle Technology Analysis & Evaluation Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office of FreedomCAR and Vehicle Technologies DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * AVTAET's mission is to develop and apply the tools and skills necessary to: - Identify technology development needs and requirements to support OFCVT goals and - Collect, analyze, and disseminate unbiased information on advanced transportation technology components, systems, and vehicles that potentially support OFCVT goals. * Goal of analytical groups at ANL, NREL and ORNL - Develop and apply modeling and simulation tools to help DOE, manufacturers and suppliers design and develop clean, energy efficient components and systems for

397

(A) ABET Syllabet Template (with Objectives and Outcomes) BEE 4530/MAE 4530. Computer-Aided Engineering: Applications to Biomedical Processes  

E-Print Network [OSTI]

-Aided Engineering: Applications to Biomedical Processes Spring Semester 2009 Credit: 3 hours Catalogue description. Computer-Aided Engineering: Applications to Biomedical Processes. Cambridge University Press. Course to integrate engineering analysis with biomedical processes. 5. Learn about several biomedical processes

Walter, M.Todd

398

Friction and Wear Enhancement of Titanium Alloy Engine Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7-11, 2010 -- Washington D.C. pm007blau2010o.pdf More Documents & Publications Friction and Wear Enhancement of Titanium Alloy Engine Components Vehicle Technologies Office...

399

ADVISOR (ADvanced VehIcle SimulatOR) | Open Energy Information  

Open Energy Info (EERE)

ADVISOR (ADvanced VehIcle SimulatOR) ADVISOR (ADvanced VehIcle SimulatOR) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ADVISOR (ADvanced VehIcle SimulatOR) Focus Area: Fuel Economy Topics: System & Application Design Website: sourceforge.net/projects/adv-vehicle-sim/ Equivalent URI: cleanenergysolutions.org/content/advisor-advanced-vehicle-simulator Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This tool, originally developed by the National Renewable Energy Laboratory (NREL), allows users to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. The tool allows users to assess the effect of changes in vehicle components (such as motors, batteries, catalytic converters, climate control systems,

400

HST.950J / 6.872J Engineering Biomedical Information: From Bioinformatics to Biosurveillance, Fall 2005  

E-Print Network [OSTI]

This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research.

Kohane, Isaac

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biomedical Engineering AND Chemical & Biological Engineering Student Name:_________________________ Curriculum Check Sheet  

E-Print Network [OSTI]

Biomedical Engineering AND Chemical & Biological Engineering Student Name) TERM* CR BIOM 101 Intro to Biomedical Engineering F 3 CBE 102 Chemical and Biological Engineering II

402

ECE 331 -Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Statistics & Safety  

E-Print Network [OSTI]

ECE 331 - Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Lab #1(n) [modulating generating] sensor. #12;ECE 331 - Biomedical Instrumentation Department of Electrical & Computer

Pulfrey, David L.

403

ECE 331 -Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Limb Plethysmography & Flow  

E-Print Network [OSTI]

ECE 331 - Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Lab #2 scale and flow (in L/ min). Compute linearity. #12;ECE 331 - Biomedical Instrumentation Department

Pulfrey, David L.

404

ASSISTANT, ASSOCIATE, AND FULL PROFESSOR POSITIONS DEPARTMENT OF BIOMEDICAL ENGINEERING  

E-Print Network [OSTI]

ASSISTANT, ASSOCIATE, AND FULL PROFESSOR POSITIONS DEPARTMENT OF BIOMEDICAL ENGINEERING THE UNIVERSITY OF MICHIGAN The Department of Biomedical Engineering at the University of Michigan in Ann Arbor, now a joint department between the College of Engineering and the School of Medicine, is seeking

Adams, Mark

405

A pragmatic approach to mapping the open biomedical ontologies  

Science Journals Connector (OSTI)

There has been a large increase in the number of ontologies that have been introduced by the biomedical community in recent years. To maximise their potential, there is an urgent need for a mechanism to build interoperability between ontologies developed ... Keywords: OBO, bioinformatics, interoperability, knowledge sharing, ontology clustering, ontology overlapping, ontology sharing, open biomedical ontologies, semantic similarity, semantics

Deendayal Dinakarpandian; Tuanjie Tong; Yugyung Lee

2007-09-01T23:59:59.000Z

406

Accelerated Master's of Science in Biomedical Engineering Description  

E-Print Network [OSTI]

Accelerated Master's of Science in Biomedical Engineering Description The Biomedical Engineering Graduate Interdisciplinary Program, in cooperation with the College of Engineering, offers an Accelerated requirements for the Accelerated Master's Program (AMP) are set by the Office of Academic Affairs, and can

Utzinger, Urs

407

Int. J. of Heavy Vehicle Systems, Vol. 11, Nos 3/4, 2004 372 Combined optimisation of design and power  

E-Print Network [OSTI]

for the Family of Medium Tactical Vehicles (FMTV). A representative duty cycle for the FMTV is generated based equipped with highly-efficient diesel engines, thus limiting opportunities for significant vehicle fuel. Vehicle hybridisation generally means using an alternative propulsion component instead of, or in addition

Papalambros, Panos

408

AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

409

Nanomaterials driven energy, environmental and biomedical research  

SciTech Connect (OSTI)

We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F. [Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 (United States)

2014-03-31T23:59:59.000Z

410

Vehicle Technologies Office: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

411

Vehicle Technologies Office: 2013 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

412

Advanced Vehicle Testing Activity: Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

413

Vehicle Technologies Office: 2009 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

414

Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

415

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Ethanol Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition...

416

Renewable Fuel Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description List of Renewable Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleRenewableFuelVehicles...

417

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

energy resource conversion (NREL, 2004). Sustainable Vehicle Energy StorageEnergy, Fuel, & Vehicle Technologies.41 Introduction41 Sustainable Energy Resources..42 Sustainable Vehicle Energy Storage..43 Sustainable

Jungers, Bryan D

2009-01-01T23:59:59.000Z

418

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV) builds high...

419

Advanced Electric Drive Vehicle Education Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Electric Drive Vehicle Education Program Advanced Electric Drive Vehicle Education Program 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

420

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Specialty Vehicles and Material Handling Equipment  

Broader source: Energy.gov (indexed) [DOE]

fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles have no GHG emissions have no GHG emissions have no GHG emissions have no GHG emissions GHG...

422

Vehicle & Systems Simulation & Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle & Systems Simulation & Testing Vehicle & Systems Simulation & Testing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

423

Advanced Vehicle Testing & Evaluation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation vss029karner2011o.pdf More Documents & Publications Advanced Vehicle Testing & Evaluation Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and...

424

Advanced Vehicle Testing & Evaluation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Testing & Evaluation Advanced Vehicle Testing & Evaluation 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

425

Vehicle Technologies Office: National Laboratories | Department...  

Office of Environmental Management (EM)

Technology R&D Center at Argonne National Laboratory Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions...

426

Large Scale Tracked Vehicle Concurrent Engineering Environment  

Science Journals Connector (OSTI)

In this paper, a fully integrated Tracked Vehicle Concurrent Engineering environment that exploits CAD and CAE technologies in ... vehicles is presented. The Tracked Vehicle Concurrent Engineering environment com...

Kyung K. Choi; J. Kirk Wu; Kuang-Hua Chang; Jun Tang

1995-01-01T23:59:59.000Z

427

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

428

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

429

Commercial Vehicle Safety Alliance | Department of Energy  

Office of Environmental Management (EM)

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

430

Vehicle Technologies Office: Active Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Solicitations to Active Solicitations to someone by E-mail Share Vehicle Technologies Office: Active Solicitations on Facebook Tweet about Vehicle Technologies Office: Active Solicitations on Twitter Bookmark Vehicle Technologies Office: Active Solicitations on Google Bookmark Vehicle Technologies Office: Active Solicitations on Delicious Rank Vehicle Technologies Office: Active Solicitations on Digg Find More places to share Vehicle Technologies Office: Active Solicitations on AddThis.com... Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage

431

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

432

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

433

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

434

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

435

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

436

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

437

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

438

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

439

Control device for vehicle speed  

SciTech Connect (OSTI)

This patent describes a control device for vehicle speed comprising: a throttle driving means operatively coupled to a throttle valve of a vehicle; a set switch means for commanding memorization of the vehicle speed; a resume switch means for commanding read of the vehicle speed; a vehicle speed detecting means for generating a signal in accordance with the vehicle speed; a vehicle speed memory; an electronical control means for memorizing in the vehicle speed memory vehicle speed information corresponding to the signal obtained from the vehicle speed detecting means in response to actuation of the set switch means. The control means is also for reading out the content of the vehicle speed memory in response to actuation of the resume switch means to control the throttle driving means in accordance with the read-out content; a power supply means for supplying power to the electronical control means; and a power supply control switch means for controlling supply of power to the electronical control means in response to the state of at least one of the set switch means and the resume switch means and the state of the electronical control means. The improvement described here comprises the electronical control means sets the power supply control switch means into such a state that supply of power to the electronical control means is turned OFF, when vehicle speed information is not memorized in the vehicle speed memory.

Kawata, S.; Hyodo, H.

1987-03-03T23:59:59.000Z

440

Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: May 3, 2010 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Facebook Tweet about Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Twitter Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Google Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Delicious Rank Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Digg Find More places to share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on AddThis.com...

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Technologies Office: 2010 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Archive to someone 0 Archive to someone by E-mail Share Vehicle Technologies Office: 2010 Archive on Facebook Tweet about Vehicle Technologies Office: 2010 Archive on Twitter Bookmark Vehicle Technologies Office: 2010 Archive on Google Bookmark Vehicle Technologies Office: 2010 Archive on Delicious Rank Vehicle Technologies Office: 2010 Archive on Digg Find More places to share Vehicle Technologies Office: 2010 Archive on AddThis.com... 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010

442

Vehicle Technologies Office: 2006 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Archive to someone 6 Archive to someone by E-mail Share Vehicle Technologies Office: 2006 Archive on Facebook Tweet about Vehicle Technologies Office: 2006 Archive on Twitter Bookmark Vehicle Technologies Office: 2006 Archive on Google Bookmark Vehicle Technologies Office: 2006 Archive on Delicious Rank Vehicle Technologies Office: 2006 Archive on Digg Find More places to share Vehicle Technologies Office: 2006 Archive on AddThis.com... 2006 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006

443

Vehicle Technologies Office: 2011 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Archive to someone 1 Archive to someone by E-mail Share Vehicle Technologies Office: 2011 Archive on Facebook Tweet about Vehicle Technologies Office: 2011 Archive on Twitter Bookmark Vehicle Technologies Office: 2011 Archive on Google Bookmark Vehicle Technologies Office: 2011 Archive on Delicious Rank Vehicle Technologies Office: 2011 Archive on Digg Find More places to share Vehicle Technologies Office: 2011 Archive on AddThis.com... 2011 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011

444

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

Vehicles on the US Power Grid." The 25th World Battery,infrastructure assignment and power grid impacts assessmentfrom the vehicle to the power grid and overcome its current

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

445

Household vehicles energy consumption 1991  

SciTech Connect (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

446

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

447

Spaser as Novel Versatile Biomedical Tool  

E-Print Network [OSTI]

Fluorescence imaging and spectroscopy remain the most powerful tools for visualization with chemical and immunological specificity of labeled biomolecules, viruses, cellular organelles, and living cells in complex biological backgrounds. However, a common drawback of fluorescence labels is that their brightness is limited by optical saturation and photobleaching. As an alternative, plasmonic metal nanoparticles are very promising as optical labels with no photobleaching and low optical saturation at realistic exciting intensities as was demonstrated in photoacoustic and photothermal sensing, imaging, and theranostics. However, plasmonic nanoparticles have wide absorption spectra and are not fluorescent, which limits their spectral selectivity and multimodal functionality, respectively. Here we demonstrate experimentally, both in vitro and in vivo, that spaser (surface plasmon amplification by stimulated emission of radiation) provides unprecedented efficiency as a versatile tool in biomedical research and app...

Galanzha, Ekaterina I; Nedosekin, Dmitry A; Sarimollaoglu, Mustafa; Kuchyanov, Alexander S; Parkhomenko, Roman G; Plekhanov, Alexander I; Stockman, Mark I; Zharov, Vladimir P

2015-01-01T23:59:59.000Z

448

Biomedical silver-109m isotope generator  

DOE Patents [OSTI]

A method, composition of matter, and apparatus for producing substantially pure Ag-109m for use in biomedical imaging techniques. Cd-109, which decays with a half-life of 453 days to Ag-109m, is loaded onto an ion exchange column consisting of particulate tin phosphate. After secular equilibrium is reached in about ten minutes, Ag-109m may be selectively eluted from the column by means of a physiologically acceptable aqueous buffered eluent solution of sodium thiosulfate, and either ascorbic acid or dextrose. The breakthrough of toxic Cd-109 is on the order of 1 x 10-7, which is sufficiently low to permit administration of the Ag-109m-containing eluate, with but a minor pH adjustment, directly to a human patient within a matter of seconds. 1 fig.

Wanek, P.M.; Steinkruger, F.J.; Moody, D.C.

1985-03-05T23:59:59.000Z

449

Biomedical silver-109m isotope generator  

DOE Patents [OSTI]

A method, composition of matter, and apparatus for producing substantially pure Ag-109m for use in biomedical imaging techniques. Cd-109, which decays with a half-life of 453 days to Ag-109m is loaded onto an ion exchange column consisting of particulate tin phosphate. After secular equilibrium is reached in about ten minutes, Ag-109m may be selectively eluted from the column by means of a physiologically acceptable aqueous buffered eluent solution of sodium thiosulfate, and either ascorbic acid or dextrose. The breakthrough of toxic Cd-109 is on the order of 1.times.10.sup.-7, which is sufficiently low to permit administration of the Ag-109m-containing eluate, with but a minor pH adjustment, directly to a human patient within a matter of seconds.

Wanek, Philip M. (Los Alamos, NM); Steinkruger, Frederick J. (Los Alamos, NM); Moody, David C. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

450

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Identification 2: Identification of Joint Base Lewis McChord Vehicles for Installation of Data Loggers June 2013 Prepared for: Joint Base Lewis McChord Prepared by: Idaho National Laboratory and ECOtality North America DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

451

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

452

BEE 4530/MAE 4530. Computer-Aided Engineering: Applications to Biomedical Processes Spring Semester 2009  

E-Print Network [OSTI]

BEE 4530/MAE 4530. Computer-Aided Engineering: Applications to Biomedical Processes Spring Semester to integrate engineering analysis with biomedical processes. 5. Learn about several biomedical processes in the Biological Engineering Concentration. For students opting to do a Minor in Biomedical Engineering, the course

Walter, M.Todd

453

Robert R. McCormick Department of Mechanical Engineering School of Engineering Department of Biomedical Engineering  

E-Print Network [OSTI]

of Biomedical Engineering and Applied Science Joint Biomedical Engineering -- Mechanical Engineering Tenure-track position in the Departments of Biomedical Engineering and Mechanical Engineering at Northwestern University earned a Ph.D. or an equivalent degree and have a background in biomedical engineering, mechanical

Shull, Kenneth R.

454

Sub-GHz UWB Biomedical Communication Mark Stoopman and Wouter A. Serdijn  

E-Print Network [OSTI]

Sub-GHz UWB Biomedical Communication Mark Stoopman and Wouter A. Serdijn Biomedical Electronics and lower power consuming wireless link compared to other biomedical communications today. An operating to the conventional 50 interface. Index Terms--Sub-GHz, UWB, biomedical, wireless commu- nication, implantable

Serdijn, Wouter A.

455

Biomedical Engineering Seminar Kristen O'Halloran Cardinal, Ph.D.  

E-Print Network [OSTI]

Biomedical Engineering Seminar Kristen O'Halloran Cardinal, Ph.D. Assistant Professor, Biomedical.D. in Biomedical Engineering at the University of Arizona in May 2007. Her dissertation research with Dr. Stu to accept an Assistant Professor position at Cal Poly, San Luis Obispo in Cal Poly's new Biomedical

Utzinger, Urs

456

Biomedical Named Entity Recognition: A Poor Knowledge HMM-Based Approach  

E-Print Network [OSTI]

Biomedical Named Entity Recognition: A Poor Knowledge HMM-Based Approach Natalia Ponomareva, Ferran of biomedical enti- ties. In this paper we present our Hidden Markov Model (HMM)-based biomedical NER system the problem of non- uniform distribution among biomedical entity classes and to provide the system

Pla, Ferran

457

Analysis of data from electric and hybrid electric vehicle student competitions  

SciTech Connect (OSTI)

The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

Wipke, K.B. [National Renewable Energy Lab., Golden, CO (United States); Hill, N.; Larsen, R.P. [Argonne National Lab., IL (United States)

1994-01-01T23:59:59.000Z

458

Biomedical Applications (Sensors and Instrumentation and NDE) - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NPNS > Sensors and NPNS > Sensors and Instrumentation and NDE > Biomedical Applications Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Safety-Related Applications Homeland Security Applications Biomedical Applications Medical Ice Slurry Coolants for Inducing Targeted-Organ/Tissue Protective Cooling Biosensor for revival of sudden cardiac arrest victims Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Biomedical Applications Bookmark and Share Biosensor for revival of sudden cardiac arrest victims In collaboration from the Emergency Resuscitation Research Center of the

459

Electric-Drive Vehicle engineering  

E-Print Network [OSTI]

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

460

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

462

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

ScienceCinema (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2013-05-29T23:59:59.000Z

463

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

SciTech Connect (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2010-01-01T23:59:59.000Z

464

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

465

Vehicle Technologies Office: Parasitic Loss Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parasitic Loss Reduction Parasitic Loss Reduction Heavy vehicles lose a tremendous amount of energy to wind resistance and drag, braking, and rolling resistance. Such non-engine losses can account for an approximate 45% decrease in efficiency. Other sources of energy loss include: friction and wear in the power train, thermal (heat) loads, operation of auxiliary loads (air conditioning, heaters, refrigeration, etc.), and engine idling. The parasitic loss activity identifies methodologies that may reduce energy losses, and tests those in the laboratory. Promising technologies are then prototyped and tested onboard heavy vehicles. Once validated, technologies must be tested on-road to obtain durability, reliability, and life-cycle cost data for the developmental component and/or design strategy.

466

Dr. Joshua M. Carlson Department of Biomedical Engineering  

E-Print Network [OSTI]

that plasticity in the amygdala­anterior cingulate system mediates attention bias modification treatment outcomeDr. Joshua M. Carlson Department of Biomedical Engineering State University of New York at Stony

Cheatwood, Joseph L.

467

Photoacoustic and thermoacoustic tomography: system development for biomedical applications  

E-Print Network [OSTI]

in biomedical applications. Basic research on PAT and TAT, and the relevant physics, is presented in Chapter I. In Chapter II, we investigate the imaging mechanisms of TAT in terms of signal generation, propagation and detection. We present a theoretical...

Ku, Geng

2006-04-12T23:59:59.000Z

468

Bioinformatics Challenges to Computer Science: Bioinformatics Tools and Biomedical Modeling  

Science Journals Connector (OSTI)

The second edition of the workshop on Bioinformatics Challenges to Computer Science aimed to discuss the gap between bioinformatics tools and biomedical simulation and modeling. This short paper summarizes th...

Mario Cannataro; Rodrigo Weber dos Santos

2009-01-01T23:59:59.000Z

469

Comprehensive Research Areas in ChBE Biomedical Engineering  

E-Print Network [OSTI]

& BioprocessingCatalysis, Reaction Kinetics & Reaction EngineeringComplex Fluids & Multiphase Flow EnergyComprehensive Research Areas in ChBE Biomedical Engineering Biotechnology, Bioinformatics & M EM S Nanotechnology Polymers & Materials Science Process Systems Engineering Pulp & Paper

Sherrill, David

470

Household vehicles energy consumption 1994  

SciTech Connect (OSTI)

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

471

Vehicles News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

472

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

473

Vehicle Technologies Office: 2007 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Archive to someone 7 Archive to someone by E-mail Share Vehicle Technologies Office: 2007 Archive on Facebook Tweet about Vehicle Technologies Office: 2007 Archive on Twitter Bookmark Vehicle Technologies Office: 2007 Archive on Google Bookmark Vehicle Technologies Office: 2007 Archive on Delicious Rank Vehicle Technologies Office: 2007 Archive on Digg Find More places to share Vehicle Technologies Office: 2007 Archive on AddThis.com... 2007 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007

474

Vehicle Technologies Office: 2012 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Archive to someone 2 Archive to someone by E-mail Share Vehicle Technologies Office: 2012 Archive on Facebook Tweet about Vehicle Technologies Office: 2012 Archive on Twitter Bookmark Vehicle Technologies Office: 2012 Archive on Google Bookmark Vehicle Technologies Office: 2012 Archive on Delicious Rank Vehicle Technologies Office: 2012 Archive on Digg Find More places to share Vehicle Technologies Office: 2012 Archive on AddThis.com... 2012 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012

475

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

476

Vehicle Technologies Office: Educational Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Educational Activities to someone by E-mail Share Vehicle Technologies Office: Educational Activities on Facebook Tweet about Vehicle Technologies Office: Educational Activities on Twitter Bookmark Vehicle Technologies Office: Educational Activities on Google Bookmark Vehicle Technologies Office: Educational Activities on Delicious Rank Vehicle Technologies Office: Educational Activities on Digg Find More places to share Vehicle Technologies Office: Educational Activities on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Educational Activities EcoCAR 2: Plugging In to the Future EcoCAR 2: Plugging In to the Future is the successor to EcoCAR: The NeXt

477

Speaker: Prof. Fa-Hsuan Lin (Institute of Biomedical Engineering, NTU) Dr. Yi-Cheng Hsu (Institute of Biomedical Engineering, NTU)  

E-Print Network [OSTI]

Speaker: Prof. Fa-Hsuan Lin (Institute of Biomedical Engineering, NTU) Dr. Yi-Cheng Hsu (Institute of Biomedical Engineering, NTU) Title: Magnetic resonance imaging of the human brain: progress, challenges

Wu, Yih-Min

478

Blog Feed: Vehicles  

Broader source: Energy.gov (indexed) [DOE]

feed-vehicles 1000 Independence Ave. SW Washington feed-vehicles 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Our Best Energy Videos of 2013 http://energy.gov/articles/our-best-energy-videos-2013 Our Best Energy Videos of 2013

479

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 18, 2013 December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as part of more than $1.8 billion in funding for electric utility infrastructure projects in 25 states and one territory. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 18, 2013 Energy Department Releases Grid Energy Storage Report The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use. More

480

Vehicle rear suspension mechanism  

SciTech Connect (OSTI)

A vehicle rear suspension mechanism is described which consists of: a suspension member connected with a vehicle body; wheel hub means supporting a rear wheel having a wheel center plane for rotation about a rotating axis; and connecting means for connecting the wheel hub means with the suspension member. The connecting means include ball joint means having a pivot center located forwardly of and below the rotating axis of the rear wheel and connecting the wheel hub means to the suspension member pivotably about the pivot center, first resilient means located between the wheel hub means and the suspension member rearwardly of and above the rotating axis of the rear wheel, and second resilient means located between the wheel hub means and the suspension member forwardly of and above the rotating axis of the rear wheel.

Kijima, T.; Maebayashi, J.

1986-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle components biomedical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

Mara, L.M.

1998-05-05T23:59:59.000Z

482

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

Mara, Leo M. (Livermore, CA)

1998-01-01T23:59:59.000Z

483

Magnesium Powertrain Cast Components  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

484

PHEVs Component Requirements  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

485

A 3D scanning system for biomedical purposes  

Science Journals Connector (OSTI)

The use of three-dimensional (3D) scanning systems for acquiring the external shape features of biological objects has recently been gaining popularity in the biomedical field. A simple, low cost, 3D scanning system is presented, which employs ... Keywords: 3D geometric modelling, 3D scanning, EFDs, biological objects, biomedical scanners, camera calibration, data acquisition, direct linear transformation, elliptical Fourier descriptors, laser light-sectioning, medical imaging, shape features

B. D. Bradley; A. D. C. Chan; M. J. D. Hayes

2009-06-01T23:59:59.000Z

486

Unmanned Aerospace Vehicle Workshop  

SciTech Connect (OSTI)

The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

1995-04-01T23:59:59.000Z

487

Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: July 29, 2002 7: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Facebook Tweet about Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Twitter Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Google Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Delicious Rank Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Digg Find More places to share Vehicle Technologies Office: Fact #227:

488

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

489

Stabilizer for motor vehicle  

SciTech Connect (OSTI)

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

490

List of Vehicles Incentives | Open Energy Information  

Open Energy Info (EERE)

The following contains the list of 34 Vehicles Incentives. The following contains the list of 34 Vehicles Incentives. CSV (rows 1 - 34) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program Colorado Schools Local Government State Government Renewable Fuel Vehicles No Alternative Fuel Vehicle Tax Credit (West Virginia) Personal Tax Credit West Virginia Residential Renewable Fuel Vehicles No

491

Clean Cities: Electric Vehicle Infrastructure Training Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Infrastructure Electric Vehicle Infrastructure Training Program to someone by E-mail Share Clean Cities: Electric Vehicle Infrastructure Training Program on Facebook Tweet about Clean Cities: Electric Vehicle Infrastructure Training Program on Twitter Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Google Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Delicious Rank Clean Cities: Electric Vehicle Infrastructure Training Program on Digg Find More places to share Clean Cities: Electric Vehicle Infrastructure Training Program on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

492

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

493

Alternative Fuels Data Center: Vehicle Registration Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Registration Vehicle Registration Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Registration Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Registration Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Registration Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Registration Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Registration Requirement Motor vehicle registration applicants must provide proof of compliance with

494

Objectives of the Bachelor of Science in Biomedical Engineering at NJIT Objective A) The overall educational objective of the Bachelor of Science Biomedical  

E-Print Network [OSTI]

Objectives of the Bachelor of Science in Biomedical Engineering at NJIT Objective A) The overall educational objective of the Bachelor of Science Biomedical Engineering Program is to prepare students for productive careers related broadly to biomedical engineering. It is anticipated that BME graduates

Bieber, Michael

495

Comparative Biomedical Sciences Strategic Plan March 21, 2011 The goals of the Department of Comparative Biomedical Sciences will be to seek and obtain excellence  

E-Print Network [OSTI]

1 1 Comparative Biomedical Sciences Strategic Plan March 21, 2011 GOALS The goals of the Department of Comparative Biomedical Sciences will be to seek and obtain excellence in our performance: Developing Leaders in Veterinary and Biomedical Careers: CBS will focus on a learning environment

496

A priori and on-line route optimization for unmanned underwater vehicles  

E-Print Network [OSTI]

The U.S. military considers Unmanned Underwater Vehicles (UUVs) a critical component of the future for two primary reasons - they are effective force multipliers and a significant risk-reducing agent. As the military's ...

Crimmel, Brian A

2012-01-01T23:59:59.000Z

497

Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into magnesium and carbon fiber reinforced composites, which could reduce the weight of some components by 50-75 percent in the long-term.

498

Vehicle Modeling and Simulation  

Broader source: Energy.gov (indexed) [DOE]

* PHEV Simulations and Analysis - Travel Profile Database - PHEV Impact on Components - Integration with Renewable Fuels - PHEV Economics - PHEV Test Procedures * Route-Based...

499

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

500

Microsoft Word - Vehicle Battery EA_Pyrotek  

Broader source: Energy.gov (indexed) [DOE]

20 20 Environmental Assessment for Pyrotek, Inc. Electric Drive Vehicle Battery and Component Manufacturing Initiative Project, Sanborn, NY April 2010 Prepared for: Department of Energy National Energy Technology Laboratory Environmental Assessment DOE/EA-1720 Pyrotek, Incorporated, Sanborn, NY April 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with Pyrotek, Incorporated (Pyrotek), to partially fund the construction of an industrial building; installation of electrically heated furnaces and other production equipment such as conveyors, collectors, screens, and cooling towers required to accomplish the proposed expansion of Pyrotek's graphitization process. The plant expansion would enable the manufacture