Sample records for vehicle choice models

  1. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2012-08-01T23:59:59.000Z

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  2. WHERE ARE THE ELECTRIC VEHICLES?1 A SPATIAL MODEL FOR VEHICLE-CHOICE COUNT DATA2

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 WHERE ARE THE ELECTRIC VEHICLES?1 A SPATIAL MODEL FOR VEHICLE-CHOICE COUNT DATA2 3 T. Donna Chen4 ABSTRACT29 30 Electric vehicles (EVs) are predicted to increase in market share as auto manufacturers: Electric vehicles, spatial count modeling, vehicle choice, vehicle ownership,1 consumer behavior

  3. Vehicle Technologies Office Merit Review 2015: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ParaChoice:...

  4. Vehicle Technologies Office Merit Review 2014: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about parametric...

  5. Updating and Enhancing the MA3T Vehicle Choice Model

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  7. Vehicle Technologies Office Merit Review 2014: Consumer-Segmented Vehicle Choice Modeling: the MA3T Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  8. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  9. Leading by Example: Argonne Senior Management Makes "Green" Vehicle Choices

    ScienceCinema (OSTI)

    Peters, Mark; Kearns, Paul;

    2013-04-19T23:59:59.000Z

    Argonne's senior management shows leadership in the sustainability arena with their own personal choices in "green" vehicles. They don't just talk the talk ? they walk the walk.

  10. Leading by Example: Argonne Senior Management Makes "Green" Vehicle Choices

    SciTech Connect (OSTI)

    Peters, Mark; Kearns, Paul

    2011-01-01T23:59:59.000Z

    Argonne's senior management shows leadership in the sustainability arena with their own personal choices in "green" vehicles. They don't just talk the talk — they walk the walk.

  11. Fact #814: January 27, 2014 More Choices when Buying Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    number of models and types of alternative fuel vehicles produced by manufacturers has varied considerably over the last 22 years. In 1991, there were a total of 19 models available...

  12. Foraging theory for autonomous vehicle speed choice Theodore P. Pavlic , Kevin M. Passino 1

    E-Print Network [OSTI]

    Foraging theory for autonomous vehicle speed choice Theodore P. Pavlic Ã, Kevin M. Passino 1 consider the optimal control design of an abstract autonomous vehicle (AAV). The AAV searches an area cost of depleted vehicle fuel), and search costs depend on search speed. However, the designer rewards

  13. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  14. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01T23:59:59.000Z

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  15. Modeling And Control Of Articulated Vehicles

    E-Print Network [OSTI]

    Chen, Chieh; Tomizuka, Masayoshi

    1997-01-01T23:59:59.000Z

    Modeling, Advanced Vehicle Control Systems, Lateral control, SteeringSteering and Braking Control of Heavy Duty Vehicles. Under this project, dynamic modeling

  16. New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliot William

    2009-01-01T23:59:59.000Z

    a specific vehicle model (e.g, Honda Civic). The higher thethe compact sedans such as the Honda Civic are unlikely toToyota Camry Toyota Prius Honda Accord Nissan Altima Period

  17. New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliott William

    2009-01-01T23:59:59.000Z

    a specific vehicle model (e.g, Honda Civic). The higher thethe compact sedans such as the Honda Civic are unlikely toToyota Camry Toyota Prius Honda Accord Nissan Altima Oct-05

  18. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  19. New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliot William

    2009-01-01T23:59:59.000Z

    7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

  20. New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliott William

    2009-01-01T23:59:59.000Z

    7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

  1. Nonparametric choice modeling : applications to operations management

    E-Print Network [OSTI]

    Jagabathula, Srikanth

    2011-01-01T23:59:59.000Z

    With the recent explosion of choices available to us in every walk of our life, capturing the choice behavior exhibited by individuals has become increasingly important to many businesses. At the core, capturing choice ...

  2. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

  3. Autonomie Modeling Tool Improves Vehicle Design and Testing,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel...

  4. A theoretical and simulation-based examination of household vehicle choice through an adoption perspective

    E-Print Network [OSTI]

    Liu, Jenny Hsing-I

    2010-01-01T23:59:59.000Z

    4.2 Hybrid Vehicle Price Decreases due to Learning-by-Doing4.3.1 Tax Incentives for Hybrid Vehicles . . . . . .Predicted percentage of hybrid vehicle sales with different

  5. Modelling and control strategy development for fuel cell electric vehicles

    E-Print Network [OSTI]

    Peng, Huei

    Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

  6. In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J was performed for both VRLA and NiMH batteries using Penn State University's electric vehicle, the Electric Lion and hybrid-electric vehicles. A thorough understanding of battery systems from the point of view

  7. A theoretical and simulation-based examination of household vehicle choice through an adoption perspective

    E-Print Network [OSTI]

    Liu, Jenny Hsing-I

    2010-01-01T23:59:59.000Z

    assume energy prices, environmental awareness, demographicsconstant environmental awareness and energy price increaseschanges in energy price, environmental awareness or vehicle

  8. A Statistical Model of Vehicle Emissions and Fuel Consumption

    E-Print Network [OSTI]

    Cappiello, Alessandra

    2002-09-17T23:59:59.000Z

    A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

  9. Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains

    E-Print Network [OSTI]

    Victoria, University of

    Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains By Jeffrey of the author. #12;ii Modelling, Simulation, Testing and Optimization of Advanced Hybrid Vehicle Powertrains supplant conventional ICEs as the dominant technology, most notably electric and hybrid powertrains

  10. Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles

    E-Print Network [OSTI]

    Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

    2009-01-01T23:59:59.000Z

    D R.L. Polk & Co. , 2006. Hybrid Vehicle Registrations Morecapital cost of the hybrid vehicle, subsidy providedfor the hybrid vehicle, horsepower of the hybrid vehicle,

  11. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01T23:59:59.000Z

    model was originally developed by the TransportationSystems Center of the USDepartment Transportationto support vehicle of energy

  12. DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

  13. Predicting Vehicle Crashworthiness: Validation of Computer Models for

    E-Print Network [OSTI]

    Berger, Jim

    Predicting Vehicle Crashworthiness: Validation of Computer Models for Functional and Hierarchical. Cafeo, Chin-Hsu Lin, and Jian Tu Abstract The CRASH computer model simulates the effect of a vehicle colliding against different barrier types. If it accurately represents real vehicle crash- worthiness

  14. Model Based Vehicle Tracking for Autonomous Driving in Urban Environments

    E-Print Network [OSTI]

    Model Based Vehicle Tracking for Autonomous Driving in Urban Environments Anna Petrovskaya environments. This paper describes moving vehicle tracking module that we developed for our autonomous driving in this area. DARPA has organized a series of competitions for autonomous vehicles. In 2005, autonomous

  15. Vehicle Trajectory Prediction based on Motion Model and Maneuver Recognition

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Vehicle Trajectory Prediction based on Motion Model and Maneuver Recognition Adam Houenou, Philippe is a crucial task for an autonomous vehicle, in order to avoid collisions on its planned trajectory. It is also necessary for many Advanced Driver Assistance Systems, where the ego- vehicle's trajectory has

  16. Vehicle Modeling and Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of& Systems Simulation|Modeling and

  17. Fact #814: January 27, 2014 More Choices when Buying Vehicles that Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoicesDepartmentDepartmentisRise

  18. Residential mobility and location choice: a nested logit model with sampling of alternatives

    E-Print Network [OSTI]

    Lee, Brian H.; Waddell, Paul

    2010-01-01T23:59:59.000Z

    Waddell, P. : Modeling residential location in UrbanSim. In:D. (eds. ) Modelling Residential Location Choice. Springer,based model system and a residential location model. Urban

  19. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect (OSTI)

    Markel, T.; Wipke, K.

    2001-01-01T23:59:59.000Z

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  20. Vehicle Technologies Office Merit Review 2014: Emissions Modeling...

    Energy Savers [EERE]

    More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of VehicleFuel Systems Fuel-Cycle Energy and Emissions Analysis with the GREET Model...

  1. Tri-City Herald OpEd: Electric Vehicles are a smart choice

    SciTech Connect (OSTI)

    Christensen, Peter C.; Haas, Anne M.

    2010-12-10T23:59:59.000Z

    Why are so many of us at the Pacific Northwest National Laboratory, a national thought leader in power industry issues located right here in the Tri-Cities, so bullish on the future of EVs? And why do we think it's so important that this country, especially THIS part of the country, be leaders in the adoption of EVs? Is it that we all just happen to like driving polluting golf carts? The answer is that, like most everyone else, most of us here at PNNL drive to work every day, and like most people, we care about the cost of gasoline and the impact that burning imported oil has on the environment and on our foreign policy. The reality is that electric vehicles are simply more efficient, pollute much less, use locally-generated energy, and cost MUCH less to drive.

  2. Vehicle Technologies Office Merit Review 2015: Modeling for Light and Heavy Vehicle Market Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Energetics at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modeling for light and heavy...

  3. Vehicle Technologies Office Merit Review 2015: Technical Cost Modeling for Vehicle Lightweighting

    Broader source: Energy.gov [DOE]

    Presentation given by IBIS Associates at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technical cost modeling for...

  4. Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of electric vehicles René Bohnsacka , Jonatan Pinkseb , & Ans Kolka a University of Amsterdam Business School in the case of electric vehicles Abstract Sustainable technologies challenge prevailing business practices models for electric vehicles. Based on a qualitative analysis of electric vehicle projects of key

  5. Improving behavioral realism in hybrid energy-economy models using discrete choice

    E-Print Network [OSTI]

    Improving behavioral realism in hybrid energy-economy models using discrete choice studies Abstract Hybrid energy-economy models combine top-down and bottom-up approaches to explore behaviorally models to inform key behavioral parameters in CIMS, a hybrid model. The discrete choice models

  6. COMBINING STATED AND REVEALED CHOICE RESEARCH TO INFORM ENERGY SYSTEM

    E-Print Network [OSTI]

    Energy System Simulation Models: The Case of Hybrid Electric Vehicles Report Number: 409 ExaminingCOMBINING STATED AND REVEALED CHOICE RESEARCH TO INFORM ENERGY SYSTEM SIMULATION MODELS: THE CASE parameters for a hybrid energy-economy model (called CIMS) using empirically derived choice models based

  7. CONTROL-ORIENTED PLANAR MOTION MODELING OF UNMANNED SURFACE VEHICLES

    E-Print Network [OSTI]

    Virginia Tech

    CONTROL-ORIENTED PLANAR MOTION MODELING OF UNMANNED SURFACE VEHICLES C. Sonnenburg, A. Gadre, D effective model-based control design, (2) sufficiently simple to allow straight forward parameter. A first order steering model relates steering angle to turn rate. A second order steering model relates

  8. Journal of Transportation Engineering Modelling Automobile Driver's Toll-Lane Choice Behaviour at a Toll Plaza

    E-Print Network [OSTI]

    Kundu, Debasis

    Journal of Transportation Engineering Modelling Automobile Driver's Toll-Lane Choice Behaviour at a Toll Plaza --Manuscript Draft-- Manuscript Number: TEENG-1181R3 Full Title: Modelling Automobile Driver to develop a random utility based discrete multinomial choice model for the behaviour of automobile drivers

  9. Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsin’s Fuel Choice

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  10. Vehiculos de Combustible Flexible: Brindando Opciones en Combustible Renovable (Flexible Fuel Vehicles: Providing a Renewable Fuel Choice) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  11. Operator Choice Modeling for UAV Visual Search Tasks

    E-Print Network [OSTI]

    Bertuccelli, L.F.

    Unmanned aerial vehicles (UAVs) provide unprecedented access to imagery of possible ground targets of interest in real time. The availability of this imagery is expected to increase with envisaged future missions of one ...

  12. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    SciTech Connect (OSTI)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20T23:59:59.000Z

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  13. Vehicle Model Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of& Systems Simulation|

  14. Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles

    E-Print Network [OSTI]

    Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

    2009-01-01T23:59:59.000Z

    levels, yielding a 3 7 factorial design that was simpli?edorthogonal fractional factorial design of 18 choice sets.subject to the factorial design were: capital cost of the

  15. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  16. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  17. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01T23:59:59.000Z

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  18. Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle without Differential Terms--Electric vehicle, electric motor, speed estimation, neural networks, traction control. I. INTRODUCTION Recently, Electric Vehicles (EVs) including fuel-cell and hybrid vehicles have been developed very

  19. DEVELOPMENT AND APPLICATION OF A NETWORK-BASED SHARED AUTOMATED VEHICLE MODEL IN AUSTIN, TEXAS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    DEVELOPMENT AND APPLICATION OF A NETWORK-BASED SHARED AUTOMATED VEHICLE MODEL IN AUSTIN, TEXAS automated vehicle (SAV), combining features of short term rentals with the vehicles' powerful automated self. INTRODUCTION Vehicle automation appears poised to revolutionize the way in which we interface

  20. Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell

  1. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    Distributed Generation, Plug-in Electric Vehicles (PEVs), Energy Management, Multi-Building Modeling and Simulation Introduction The Green Islands

  2. Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

    1999-08-01T23:59:59.000Z

    Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

  3. A Network Economic Model of a Service-Oriented Internet with Choices and Quality Competition

    E-Print Network [OSTI]

    Nagurney, Anna

    of Electrical and Computer Engineering and Sara Saberi PhD candidate Department of Operations & Information., and Saberi, S. (2013). A Network Economic Game Theory Model of a Service-Oriented Internet with Choices

  4. Vehiculos de combustible flexible: brindando opciones en combustible renovable (Flexible Fuel Vehicles: Providing a Renewable Fuel Choice), Programa de Technologias de Vehiculos (Vehicle Technologies Program - VTP) (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize Available ResourcesVehicleMayo 2010 la Junta de

  5. Vehicle Longitudinal Motion Modeling for nonlinear control K. El Majdoub c

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Vehicle Longitudinal Motion Modeling for nonlinear control K. El Majdoub c , F. Giri a,* , H Abstract-- The problem of modeling and controlling vehicle longitudinal motion is addressed for front wheel propelled vehicles. The chassis dynamics are modeled using relevant fundamental laws taking into account

  6. Vehicle Technologies Office Merit Review 2015: MA3T—Modeling Vehicle Market Dynamics with Consumer Segmentation

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about MA3T—modeling...

  7. Construction of a driver-vehicle model and identification of the driver model parameters

    E-Print Network [OSTI]

    Su, Jemeng

    1981-01-01T23:59:59.000Z

    CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by , JEMENG SU Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requiremr nt for the degree of MASTER... OF SCIENCE December 1981 Major Subject: Mechanical Engineering CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by JEMENG SU Approved as to style and content by: (Chairman of Committe ) / I...

  8. Construction of a driver-vehicle model and identification of the driver model parameters 

    E-Print Network [OSTI]

    Su, Jemeng

    1981-01-01T23:59:59.000Z

    CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by , JEMENG SU Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requiremr nt for the degree of MASTER... OF SCIENCE December 1981 Major Subject: Mechanical Engineering CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by JEMENG SU Approved as to style and content by: (Chairman of Committe ) / I...

  9. Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in

    E-Print Network [OSTI]

    Victoria, University of

    Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

  10. THE TRAVEL AND ENVIRONMENTAL IMPLICATIONS OF SHARED AUTONOMOUS VEHICLES, USING AGENT-BASED MODEL SCENARIOS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 THE TRAVEL AND ENVIRONMENTAL IMPLICATIONS OF SHARED AUTONOMOUS VEHICLES, USING AGENT-BASED MODEL an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles describes the design of an agent-based model for Shared Autonomous Vehicle (SAV) operations, the results

  11. Online Center of Gravity Estimation in Automotive Vehicles using Multiple Models and Switching

    E-Print Network [OSTI]

    Duffy, Ken

    Online Center of Gravity Estimation in Automotive Vehicles using Multiple Models and Switching and switching for realtime estimation of center of gravity (CG) position in automotive vehicles. The method utilizes simple linear vehicle models and assumes availability of standard stock automotive sensors. We

  12. Using Discrete-Event Simulation to Model Situational Awareness of Unmanned-Vehicle Operators

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    but delegated to the automation onboard the unmanned vehicles (Sheridan, 1992). Reduced workload afforded1 Using Discrete-Event Simulation to Model Situational Awareness of Unmanned-Vehicle Operators Carl vehicles becomes increasingly realizable, the impact on operator situational awareness of such a paradigm

  13. An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for Co). In addition, an automated vehicle should also self-assess its own perception abilities, and not only perceive this idea, cybercars were designed as fully automated vehicles [3], thought since its inception as a new

  14. TOWARDS SONAR BASED PERCEPTION AND MODELLING FOR UNMANNED UNTETHERED UNDERWATER VEHICLES

    E-Print Network [OSTI]

    Garner, Philip N.

    TOWARDS SONAR BASED PERCEPTION AND MODELLING FOR UNMANNED UNTETHERED UNDERWATER VEHICLES B. Steer will be of critical importance in the development of flexible, adaptive and useful unmanned underwater vehicles will be of critical importance in the de- velopment of flexible, adaptive and useful unmanned un- derwater vehicles

  15. Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Fainekos, Georgios E.

    focused on single aerial vehicles. In particular, we have witnessed autonomous or aggressive control autonomous formation flying of autonomous aerial vehicles (UAVs) are [20]­[24]. In [22] and [23], the authorsHybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles Selcuk

  16. Understanding the Effect of Baseline Modeling Implementation Choices on

    E-Print Network [OSTI]

    . Mathieu Power Systems Laboratory ETH Z¨urich Zurich, Switzerland Email: jmathieu@eeh.ee.ethz.ch Sila electric load against counterfactual predictions made using statistical base- line models. Many baseline build- ings to become active participants in power system operations [1]. In traditional demand response

  17. A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    of residential space heating technology choice. That choicemarket for space heating technologies. EPRI modeled thesethe selection of space heating technology. It is more likely

  18. Vehicle Technologies Office Merit Review 2015: Model Development and Analysis of Clean & Efficient Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

  19. Vehicle Technologies Office Merit Review 2014: Atomistic models of LMRNMC Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about atomistic models...

  20. Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

  1. American black bear habitat selection in northern lower peninsula, Michigan, USA, using discrete-choice modeling

    E-Print Network [OSTI]

    Brown, Daniel G.

    data better than others; both indicated that locations of bears were negatively associated with water bear harvests, sightings, and nuisance reports. Policy makers and wildlife managers can prepare 1991­2000 for 20 males and 35 females. We developed Bayesian random effects discrete-choice models

  2. American black bear habitat selection in northern Lower Peninsula, Michigan, USA, using discrete-choice modeling

    E-Print Network [OSTI]

    data better than others; both indicated that locations of bears were negatively associated with water bear harvests, sightings, and nuisance reports. Policy makers and wildlife managers can prepare 1991­2000 for 20 males and 35 females. We developed Bayesian random effects discrete-choice models

  3. Quantum Cournot equilibrium for the Hotelling-Smithies model of product choice

    E-Print Network [OSTI]

    Ramij Rahaman; Priyadarshi Majumdar; B. Basu

    2012-02-10T23:59:59.000Z

    This paper demonstrates the quantization of a spatial Cournot duopoly model with product choice, a two stage game focusing on non-cooperation in locations and quantities. With quantization, the players can access a continuous set of strategies, using continuous variable quantum mechanical approach. The presence of quantum entanglement in the initial state identifies a quantity equilibrium for every location pair choice with any transport cost. Also higher profit is obtained by the firms at Nash equilibrium. Adoption of quantum strategies rewards us by the existence of a larger quantum strategic space at equilibrium.

  4. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    accounted separately), regenerative braking, battery thermalthere is no regenerative braking, and vehicle efficiency,iterative calculations. Regenerative braking is represented

  5. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    vehicles (BPEVs); • hydrogen fuel-cell-powered EVs (with or w/out peak-power device) (FCEVs); • methanol

  6. Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    mounted PM synchronous motor (SPMSM) is developed in this paper. Due to the high conductivity of the rare of PM Motors in Hybrid Vehicle Applications Taking into Account Eddy Current Loss in Magnets Xiaofeng, University of Michigan-Dearborn, mi@ieee.org Abstract Permanent Magnet (PM) Motors are popular choices

  7. New trends in vehicle dynamics: from modelling to control. Olivier SENAME

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    New trends in vehicle dynamics: from modelling to control. Olivier SENAME GIPSA-lab - Department approaches such as H approach for Linear Parameter Varying systems and Model predictive control have shown methods for modelling and control of subsystems and of the vehicle. The session will be organized

  8. Measuring U.S. Consumer Preferences for Genetically Modified Foods Using Choice Modeling Experiments: The Role of Price,

    E-Print Network [OSTI]

    Neimark, Alexander V.

    Measuring U.S. Consumer Preferences for Genetically Modified Foods Using Choice Modeling attributes of price, product benefits, and technology influence consumer demand for genetically modified food Modified Foods Using Choice Modeling Experiments: The Role of Price, Product Benefits and Technology

  9. Tyre modelling for use in vehicle dynamics studies

    SciTech Connect (OSTI)

    Bakker, E.; Nyborg, L.; Pacejka, H.B.

    1987-01-01T23:59:59.000Z

    A new way of representing tyre data obtained from measurements in pure cornering and pure braking conditions has been developed in order to further improve the Dynamic Safety of vehicles. The method makes use of a formula with coefficients which describe some of the typifying quantities of a tyre, such as slip stiffnesses at zero slip and force and torque peak values. The formula is capable of describing the characteristics of side force, brake force and self aligning torque with great accuracy. This mathematical representation is limited to steady-state conditions during either pure cornering or pure braking and forms the basis for a model describing tyre behaviour during combined braking and cornering.

  10. Submitted to Vehicle System Dynamics An Adaptive Lateral Preview Driver Model

    E-Print Network [OSTI]

    Peng, Huei

    of the vehicle. The proposed driver model is developed using the adaptive predictive control (APC) framework inspires our interest in understanding human steering actions and the development of a driver model on the response of the vehicle. These tests can be performed with a steering and speed control robot, and thus can

  11. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    SciTech Connect (OSTI)

    Michael Wang

    2012-07-25T23:59:59.000Z

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  12. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema (OSTI)

    Michael Wang

    2013-06-05T23:59:59.000Z

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  13. Vehicle Technologies Office Merit Review 2014: Unified Modeling...

    Office of Environmental Management (EM)

    ADOPT Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  14. Vehicle Level Model and Control Development and Validation Under...

    Broader source: Energy.gov (indexed) [DOE]

    Division * NREL Relevance Temperature Has a Significant Impact on Electric Drive Energy Consumption 3 Vehicle Dynamometer Testing Source: ANL APRF - 2013 Ford Cmax Energi Fleet...

  15. Household Vehicle Ownership by Vehicle Type: Application of a Multivariate Negative Binomial Model

    E-Print Network [OSTI]

    Kockelman, Kara M.

    related to household size, income, population density (of zone of residence), and vehicle prices 1970's and early 1980's. Continual improvements in computation power permit more rigorous statistical to new energy issues and a focus on global warming policies, renewed consideration should be given

  16. Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models

    E-Print Network [OSTI]

    Schultz, Grant George

    2004-09-30T23:59:59.000Z

    with an increased availability of CMV data. The primary sources of these data are automatic vehicle classification (AVC) and weigh-in-motion (WIM). Microscopic traffic simulation models have been used extensively to model the dynamic and stochastic nature...

  17. Emergence of electric mobility: a nested approach to vehicle choice modeling

    E-Print Network [OSTI]

    Bierlaire, Michel

    shares within the automotive sector for the different types of cars (namely gasoline cars, hybrid cars alternatives which do not belong to the respondent in comparison to latter's own car, when we analyze and electric cars) are likely to be significantly affected. This particular context motivated a sound demand

  18. A versatile computer model for the design and analysis of electric and hybrid vehicles 

    E-Print Network [OSTI]

    Stevens, Kenneth Michael

    1996-01-01T23:59:59.000Z

    The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct...

  19. A versatile computer model for the design and analysis of electric and hybrid vehicles

    E-Print Network [OSTI]

    Stevens, Kenneth Michael

    1996-01-01T23:59:59.000Z

    The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct...

  20. Modeling Workload Impact in Multiple Unmanned Vehicle Supervisory Control

    E-Print Network [OSTI]

    Donmez, B.D.

    2010-01-01T23:59:59.000Z

    Discrete event simulations for futuristic unmanned vehicle (UV) systems enable a cost and time effective methodology for evaluating various autonomy and human automation design parameters. Operator mental workload is an ...

  1. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    device, such as a high-power battery. AVCEM has over 1000source, such as a peak-power battery, drives the vehicle Thedevice (say, a high-power battery) or traction battery must

  2. Incorporating Vehicle Emission Models into the Highway Design Process

    E-Print Network [OSTI]

    Ko, Myung-Hoon

    2012-02-14T23:59:59.000Z

    Automobile transportation consumes a significant amount of non-reusable energy and emits emissions as by-products of fuel consumption. There has been much progress in the development of vehicle engine technology and alternative fuels to reduce...

  3. Modeling human supervisory control in heterogeneous unmanned vehicle systems

    E-Print Network [OSTI]

    Nehme, Carl, 1981-

    2009-01-01T23:59:59.000Z

    Given advanced technology that relieves the human operator of low-level tasking and the future vision for network-centric operations, operator supervisory control of Unmanned Vehicle (UV) teams is likely to be a focal point ...

  4. Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

  5. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01T23:59:59.000Z

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  6. Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic modes in the low-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is applied on a complex computational model of an automotive vehicle. 1 INTRODUCTION This work is performed

  7. Integrated motion planning and model learning for mobile robots with application to marine vehicles

    E-Print Network [OSTI]

    Greytak, Matthew B. (Matthew Bardeen)

    2009-01-01T23:59:59.000Z

    Robust motion planning algorithms for mobile robots consider stochasticity in the dynamic model of the vehicle and the environment. A practical robust planning approach balances the duration of the motion plan with the ...

  8. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  9. Vehicle Technologies Office Merit Review 2015: BatPaC Model Development

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about BatPaC model...

  10. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01T23:59:59.000Z

    by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

  11. A comparative study of vibrational relaxation models for the aeroassisted orbital transfer vehicle flight regime

    E-Print Network [OSTI]

    Green, Derek Scott

    1991-01-01T23:59:59.000Z

    A COMPARATIVE STUDY OF VIBRATIONAL RELAXATION MODELS FOR AEROASSISTED ORBITAL TRANSFER VEHICLE FLIGHT REGIME A Thesis by DEREK SCOTI' GREEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1991 Major Subject: Aerospace Engineering A COMPARATIVE STUDY OF VIBRATIONAL RELAXATION MODELS FOR AEROASSISTED ORBITAL TRANSFER VEHICLE FLIGHT REGIME A Thesis by DEREK SCOTT GREEN Approved...

  12. A comparative study of vibrational relaxation and chemical reaction models for the Martian entry vehicle

    E-Print Network [OSTI]

    Koteshwar, Rajeev

    1992-01-01T23:59:59.000Z

    A COMPARATIVE STUDY OF VIBRATIONAL RELAXATION AND CHEMICAL REACTION MODELS FOR THE MARTIAN ENTRY VEHICLE A Thesis by RAJEEV KOTESHWAR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1992 Major Subject: Aerospace Engineering A COMPARATIVE STUDY OF VIBRATIONAL RELAXATION AND CHEMICAL REACTION MODELS FOR THE MARTIAN ENTRY VEHICLE A Thesis by RAJEEV KOTESHWAR Approved as to style...

  13. Modeling and Simulation of Electric and Hybrid Vehicles

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    an important role in the diagnostics of the operating components. For example, running an embedded fuel cell, and fuel cell vehicles, such as electric machines, power electronics, electronic continuously variable converters, such as Li- ion batteries, ultracapacitors, and fuel cells, are introduced in the next generation

  14. Energy Management for an Electric Vehicle Based on Combinatorial Modeling

    E-Print Network [OSTI]

    Boyer, Edmond

    energy sources (fuel cells, photovoltaic panels, batteries, supercapacitors) with different of the energy system The energy chain of the vehicle concerned is composed of a Fuel Cell System (FCS) using Toulouse, France Abstract This paper describes the process of electrical energy management and optimization

  15. Essays on School Choice and the Returns to School Quality

    E-Print Network [OSTI]

    Ajayi, Kehinde Funmilola

    2011-01-01T23:59:59.000Z

    School Choice Model . . . . . . . . . . . . . .Preferences for SchoolHistory of School Choice Reforms in Ghana . . . . . . . . .

  16. The Smart Grid, A Scale Demonstration Model Incorporating Electrified Vehicles

    E-Print Network [OSTI]

    Clemon, Lee; Mattson, Jon; Moore, Andrew; Necefer, Len; Heilman, Shelton

    2011-04-01T23:59:59.000Z

    energy infrastructure. Furthermore, with the advent and commercialization of electrified vehicles, energy demand has the capability to increase dramatically. A sustainable solution via renewable energy technologies can act to offset... to ensure the energy security of the United States. Supported by the EPA P3 initiative, the current small-scale stage of the EcoHawks design project involves creation of a smart energy infrastructure that integrates solar and wind renewable energy...

  17. Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and Assumptions

    SciTech Connect (OSTI)

    Post, Ellen S.; Grambsch, A.; Weaver, C. P.; Morefield, Philip; Huang, Jin; Leung, Lai-Yung R.; Nolte, Christopher G.; Adams, P. J.; Liang, Xin-Zhong; Zhu, J.; Mahoney, Hardee

    2012-11-01T23:59:59.000Z

    Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices.

  18. Vehicle Technologies Office: Modeling and Simulation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I AThe Vehicle Technologies Office

  19. Vehicle Technologies Office: Modeling, Testing, Data and Results |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I AThe Vehicle Technologies

  20. Vehicle Technologies Office Merit Review 2014: Electrochemical Modeling of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of&SystemsCharging Demo |LMR-NMC

  1. Vehicle Technologies Office Merit Review 2014: Model Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of&SystemsChargingEnergy

  2. Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data | DepartmentTechnologyLife Cycle

  3. Multivariable decoupled longitudinal and lateral vehicle control: A model-free design

    E-Print Network [OSTI]

    Multivariable decoupled longitudinal and lateral vehicle control: A model-free design Lghani model-free control is ap- plied to a multivariable decoupled longitudinal and lateral ve- hicle control and steering angle). It yields driving maneuvers requiring a control coordination of steering angle, braking

  4. ROLE OF VEHICLE DYNAMIC MODELING FIDELITY WITH HAPTIC COLLABORATION IN STEER BY WIRE

    E-Print Network [OSTI]

    Krovi, Venkat

    ROLE OF VEHICLE DYNAMIC MODELING FIDELITY WITH HAPTIC COLLABORATION IN STEER BY WIRE SYSTEMS control back to the driver. Candidate solutions for mimicking the steering feel have ranged from direct torque prediction schemes based on mathematical dynamics models (of tire-road, suspension, power-steering

  5. MODELING OF SKID-STEERED WHEELED ROBOTIC VEHICLES ON SLOPED TERRAINS

    E-Print Network [OSTI]

    Collins, Emmanuel

    MODELING OF SKID-STEERED WHEELED ROBOTIC VEHICLES ON SLOPED TERRAINS Camilo Ordonez Center radii. This work presents the analysis and experimental verification of a dynamic model for skid-steered for Intelligent Systems, Controls and Robotics (CISCOR) Department of Mechanical Engineering Florida A

  6. Using Local and Regional Air Quality Modeling and Source Apportionment Tools to Evaluate Vehicles and Biogenic Emission Factors

    E-Print Network [OSTI]

    Kota, Sri H

    2014-07-25T23:59:59.000Z

    and inventories of CO, NO_(x) and VOCs from on-road vehicles estimated by vehicle emission factor models and biogenic emissions of isoprene estimated by a popular biogenic emission model are evaluated using local and regional scale air quality modeling and source...

  7. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  8. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  9. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01T23:59:59.000Z

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  10. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    -down system. Index Terms--Bond Graphs, hybrid electric vehicle (HEV), mechatronics, modeling, powertrain testIEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain Test Cell Using Bond Graphs Mariano Filippa, Student Member, IEEE, Chunting Mi

  11. A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    and Tech- nology Choice in Home Heating and Cooling," LBLTechnology Choice in Home Heating and Cooling" for a more

  12. Negotiating the neighborhood : modeling the relationship between built environment and transit choice

    E-Print Network [OSTI]

    Chheda, Rinal (Rinal Komal)

    2014-01-01T23:59:59.000Z

    This thesis examines the relationship between land use and built environment variables and peoples' mode choice for home-based work trips. Many studies recommend that factors like densification, mixed land use, optimal ...

  13. Planning and Control of Electric Vehicles Using Dynamic Energy Capacity Models

    E-Print Network [OSTI]

    Zhang, Wei

    for a large population of Plug-in Electric Vehicles (PEVs) for demand response applications. We consider both. Therefore, the accuracy of the aggregate model is integral to our efficient use of charging demand of the aggregated loads available at each time step is a function of the past energy management decisions

  14. Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Hornsey, Richard

    Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles Cyrus Minwalla) are essential in controlled airspace under visual flight rules (VFR). A prototype optical sensor accomplishes and evaluation of the prototype sensor are presented here, as are preliminary measurements to clarify the roles

  15. Full vehicle dynamics model of a formula SAE racecar using ADAMS/Car

    E-Print Network [OSTI]

    Mueller, Russell Lee

    2005-11-01T23:59:59.000Z

    friction coefficient of 1.0. The ADAMS/Car model can now support the design process as an analysis tool for full vehicle dynamics and with continued refinement, will be able to accurately predict behavior throughout a complete autocross course....

  16. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

  17. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2011-01-01T23:59:59.000Z

    Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

  18. Equivalent circuit modeling of hybrid electric vehicle drive train

    E-Print Network [OSTI]

    Routex, Jean-Yves

    2001-01-01T23:59:59.000Z

    . . . . Figure 3. 4. 6: The motor shaft at no load. Figure 3. 4. 7: Bond graph for the motor shaft. . . Figure 3. 4. 8: Equivalent circuit of the motor shaft. Figure 3. 5. 1: Concrete example: the elevator Figure 3. 5. 2: Electro-mechanical model... model of the elevator. Figure 3. 5. 8: Final equivalent circuit of the elevator. Figure 4. 1. 1: Mechanical model of a shaft. Figure 4. 1. 2: Equivalent circuit of the shaft. Figure 4. 1. 3: Mechanical model of a gearbox. Figure 4. 1. 4: Equivalent...

  19. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  20. Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

    2006-01-01T23:59:59.000Z

    Make Model Odometer Chevrolet Malibu Honda Accord LX DodgeNeon Ford Focus Honda Accord LX Mazda Protégé Volkswagen3.2TL Buick Regal Ford Mustang Honda Civic Mitsubishi Galant

  1. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01T23:59:59.000Z

    Make Model Odometer Chevrolet Malibu Honda Accord LX DodgeNeon Ford Focus Honda Accord LX Mazda Protégé Volkswagen3.2TL Buick Regal Ford Mustang Honda Civic Mitsubishi Galant

  2. ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL, TUNING AND SENSITIVITY

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL periods of intense interest in using ethanol as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol

  3. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12T23:59:59.000Z

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  4. HOME ENERGY PREFERENCES & POLICY: APPLYING STATED CHOICE MODELING TO A HYBRID

    E-Print Network [OSTI]

    or benefits for heating system and renovation choices in the residential sector. Overall, respondents prefer furnaces, 6% for electric baseboards, 28% for heat pumps and 10% for mid efficiency oil furnaces for home renovations and heating systems. Using stated preference data from over 600 completed surveys, I

  5. A Dynamic Model of the Choice of Mode for Exploiting Complementary Capabilities

    E-Print Network [OSTI]

    Chi, Tailan; Seth, Anju

    2009-01-01T23:59:59.000Z

    as ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + = ?? ?? ?+?+?+ ?? )( ),( ),( ,])ˆ,,([)( max)ˆ,,( , , )( 0,2,1 )( 0 ,2,1 tt ttj tti tr tttttt tr t ttt S BX BX essaaJEes saaJ ? ? ? ? where s0 denotes the initial share structure. If the initial mode of organization is either acquisition or licensing, the second or third choice...

  6. A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    and electric forced-air; heat pumps; and electric baseboard)are conventional air conditioning and heat pump, given theair choice elec forced-air choice heat pump choice elec

  7. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. William Hirst Hirst Enterprises,MODEL

  8. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2010-11-01T23:59:59.000Z

    This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

  9. VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION

    E-Print Network [OSTI]

    Watson, Craig A.

    VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

  10. Analysis and calibration of social factors in a consumer acceptance and adoption model for diffusion of diesel vehicle in Europe

    E-Print Network [OSTI]

    Zhang, Qi, S.M. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    While large scale diffusion of alternative fuel vehicles (AFVs) is widely anticipated, the mechanisms that determine their success or failure are ill understood. Analysis of an AFV transition model developed at MIT has ...

  11. The impact of residential density on vehicle usage and fuel consumption

    E-Print Network [OSTI]

    Kim, Jinwon; Brownstone, David

    2010-01-01T23:59:59.000Z

    characteristics on household residential choice and auto2009. The impact of residential density on vehicle usage and2010-05) The impact of residential density on vehicle usage

  12. Confronting the challenge of hybrid modeling: Using discrete choice models to inform the behavioural parameters of a hybrid model

    E-Print Network [OSTI]

    in Industry Sustainability in Industry: Increasing Energy Efficiency, Reducing Emissions Rye Brook, New York. Heavy use of such models has spurred the creation of many different energy models throughout the past

  13. Evaluating indoor exposure modeling alternatives for LCA: A case study in the vehicle repair industry

    SciTech Connect (OSTI)

    Demou, Evangelia; Hellweg, Stefanie; Wilson, Michael P.; Hammond, S. Katharine; McKone, Thomas E.

    2009-05-01T23:59:59.000Z

    We evaluated three exposure models with data obtained from measurements among workers who use"aerosol" solvent products in the vehicle repair industry and with field experiments using these products to simulate the same exposure conditions. The three exposure models were the: 1) homogeneously-mixed-one-box model, 2) multi-zone model, and 3) eddy-diffusion model. Temporally differentiated real-time breathing zone volatile organic compound (VOC) concentration measurements, integrated far-field area samples, and simulated experiments were used in estimating parameters, such as emission rates, diffusivity, and near-field dimensions. We assessed differences in model input requirements and their efficacy for predictive modeling. The One-box model was not able to resemble the temporal profile of exposure concentrations, but it performed well concerning time-weighted exposure over extended time periods. However, this model required an adjustment for spatial concentration gradients. Multi-zone models and diffusion-models may solve this problem. However, we found that the reliable use of both these models requires extensive field data to appropriately define pivotal parameters such as diffusivity or near-field dimensions. We conclude that it is difficult to apply these models for predicting VOC exposures in the workplace. However, for comparative exposure scenarios in life-cycle assessment they may be useful.

  14. Identification of powered parafoil-vehicle dynamics from modelling and flight test data

    E-Print Network [OSTI]

    Hur, Gi-Bong

    2006-08-16T23:59:59.000Z

    S consisting of N particles P1,...,PN, suppose that n -m gen- eralized speeds have been introduced, and let vPir denote the rth partial velocity of Pi. Then, if Ri is the resultant of all contact and body forces acting on Pi, then the n -m quantities F1,...,Fn-m...IDENTIFICATION OF POWERED PARAFOIL-VEHICLE DYNAMICS FROM MODELLING AND FLIGHT TEST DATA A Dissertation by GI-BONG HUR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  15. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    SciTech Connect (OSTI)

    Wood, E.; Burton, E.; Duran, A.; Gonder, J.

    2014-06-01T23:59:59.000Z

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

  16. Smog Check II Evaluation Part II: Overview of Vehicle

    E-Print Network [OSTI]

    Denver, University of

    Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 4. The Vehicle Fleet Is Dominated by Newer Vehicles______________ 8 5. More Recent Vehicle Models

  17. Energy Star Concepts for Highway Vehicles

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-06-24T23:59:59.000Z

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  18. Social Implications of Vehicle Choice and Use

    E-Print Network [OSTI]

    Langer, Ashley Anne

    2010-01-01T23:59:59.000Z

    schemes . . . 5.2.2 Non-linear regression specificationsdistant competitors. Non-linear regression specifications Asuch non-linear relationship is evident, and a regression of

  19. Social Implications of Vehicle Choice and Use

    E-Print Network [OSTI]

    Langer, Ashley Anne

    2010-01-01T23:59:59.000Z

    geographic regions. The EIA surveys retail gasoline outletsThe survey methodology is detailed online at the EIA

  20. Social Implications of Vehicle Choice and Use

    E-Print Network [OSTI]

    Langer, Ashley Anne

    2010-01-01T23:59:59.000Z

    3.5.2 Lagged retail gasoline prices and gasoline futuresSeasonally adjusted retail gasoline prices at the nationalincrease in the retail gasoline price on the manufacturer

  1. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  2. AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    accounted separately), regenerative braking, battery thermalthere is no regenerative braking, and vehicle efficiency,iterative calculations. Regenerative braking is represented

  3. AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    vehicles (BPEVs); • hydrogen fuel-cell-powered EVs (with or w/out peak-power device) (FCEVs); • methanol

  4. Applications of Probabilistic Graphical Models to Diagnosis and Control of Autonomous Vehicles

    E-Print Network [OSTI]

    the performancesof unmanned underwater vehicles were identified in terms of safety for the system itself as well problems of di- agnosis and control of ground and underwater robotic vehicles. In particular, we describe how battery monitoring and control problems related to an underwater and a ground vehicle are solved

  5. Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles Part 1: Model, Methods, and

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles-parallel configuration considered here. Hybrid vehicles are characterized by multiple energy sources; the strategy Gillespie, Jeffrey A. Cook, and J.W. Grizzle Abstract--Hybrid Vehicle fuel economy performance is highly

  6. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  7. Residential mobility and location choice: a nested logit model with sampling of alternatives

    E-Print Network [OSTI]

    Lee, Brian H.; Waddell, Paul

    2010-01-01T23:59:59.000Z

    empirical results from the Puget Sound region. Environ.residences from the central Puget Sound region. It usesapplication in the Central Puget Sound region The NL model

  8. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells

  9. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdf Flash2008-50.pdf4.pdf0 Flash2011-40 Issue aTechnologies

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  11. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    - 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

  12. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

  13. Network knowledge and route choice

    E-Print Network [OSTI]

    Ramming, Michael Scott

    2002-01-01T23:59:59.000Z

    Models of urban traveler route choice are reviewed in the context of Intelligent Transportation Systems, particularly Advanced Traveler Information S ystems. Existing models suffer from assumptions of perfect information ...

  14. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John F [ORNL

    2014-01-01T23:59:59.000Z

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  15. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31T23:59:59.000Z

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  16. Will China's Vehicle Population Grow Even Faster than Forecasted?

    E-Print Network [OSTI]

    Wang, Yunshi; Teter, Jacob; Sperling, Daniel

    2012-01-01T23:59:59.000Z

    2011. “China’s Soaring Vehicle Population: Even Greater Thanversion, “China’s Soaring Vehicle Population: Even Greater2012. “Modeling Future Vehicle Sales and Stock in China,”

  17. Understanding Geographical Markets of Online Firms Using Spatial Models of Customer Choice

    E-Print Network [OSTI]

    Jank, Wolfgang

    structure into models of aggregate demand/sales (Bronnenberg and Mahajan 2001; Bronnenberg and Sismeiro 2002 response variables/parameters of interest vary across geographical markets by incorporating spatial, service, order-of-entry, etc.) but also variations in demand side factors (geographical characteristics

  18. UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA

    SciTech Connect (OSTI)

    Davis, S.C.

    2000-11-16T23:59:59.000Z

    The Energy Information Administration's (EIA's) National Energy Modeling System (NEMS) Freight Truck Stock Adjustment Model (FTSAM) was created in 1995 relying heavily on input data from the 1992 Economic Census, Truck Inventory and Use Survey (TIUS). The FTSAM is part of the NEMS Transportation Sector Model, which provides baseline energy projections and analyzes the impacts of various technology scenarios on consumption, efficiency, and carbon emissions. The base data for the FTSAM can be updated every five years as new Economic Census information is released. Because of expertise in using the TIUS database, Oak Ridge National Laboratory (ORNL) was asked to assist the EIA when the new Economic Census data were available. ORNL provided the necessary base data from the 1997 Vehicle Inventory and Use Survey (VIUS) and other sources to update the FTSAM. The next Economic Census will be in the year 2002. When those data become available, the EIA will again want to update the FTSAM using the VIUS. This report, which details the methodology of estimating and extracting data from the 1997 VIUS Microdata File, should be used as a guide for generating the data from the next VIUS so that the new data will be as compatible as possible with the data in the model.

  19. Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric@elpl.snu.ac.kr Abstract--To improve the cycle efficiency and peak output power density of energy storage systems in electric vehicles (EVs), supercapacitors have been proposed as auxiliary energy storage elements

  20. A Bottom-Up Approach to Verification of Hybrid Model-Based Hierarchical Controllers with application to Underwater Vehicles

    E-Print Network [OSTI]

    Kumar, Ratnesh

    A Bottom-Up Approach to Verification of Hybrid Model-Based Hierarchical Controllers with application to Underwater Vehicles M. O'Connor, S. Tangirala, R. Kumar, S. Bhattacharyya, M. Sznaier and L.E. Holloway Abstract -- We present a systematic method of verification for a hierarchical hybrid system

  1. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

  2. Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  3. Vehicle Technologies Office Merit Review 2015: Joint Development and Coordination of Emissions Control Data and Models

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about joint...

  4. Vehicle Technologies Office Merit Review 2014: Development of Thermoplastic Pultrusion with Modeling and Experiments

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at Birmingham at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Vehicle Technologies Office Merit Review 2015: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cell Analysis,...

  6. Vehicle Technologies Office Merit Review 2014: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cell analysis,...

  7. Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2007-01-01T23:59:59.000Z

    conventional internal combustion engine vehicles (ICEVs) (East may change, internal combustion engines may becometechnology: gasoline internal combustion engines. At time t

  8. Vehicle Technologies Office Merit Review 2015: Continuum Modeling as a Guide to Developing New Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  9. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01T23:59:59.000Z

    fuel-cell-powered electric vehicles (FCEVs); and methanolvehicle, of the battery, fuel cell, and hydrogen or methanolvehicle, of the battery, fuel cell, and hydrogen or methanol

  10. Vehicle Technologies Office Merit Review 2015: Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unified...

  11. Vehicle Technologies Office Merit Review 2015: Coupling Mechanical with Electrochemical-Thermal Models Batteries Under Abuse

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupling...

  12. Vehicle Technologies Office Merit Review 2015: Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  13. Vehicle Technologies Office Merit Review 2015: CLEERS: Aftertreatment Modeling and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CLEERS,...

  14. Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

  15. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30T23:59:59.000Z

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

  16. QUANTIFYING THE EXTERNAL COSTS OF VEHICLE USE: EVIDENCE FROM AMERICA'S TOP SELLING LIGHT-DUTY MODELS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -selling passenger cars and light-duty trucks in the U.S. Among these external costs, those associated with crashes estimated for several other vehicles of particular interest, including GM's Hummer and several hybrid drive: small cars, mid-sized cars, large cars, luxury cars, crossover utility vehicles (CUVs), sport

  17. A Convex Optimization Approach for Computing Correlated Choice ...

    E-Print Network [OSTI]

    2014-01-03T23:59:59.000Z

    tives (see Parsons and Kealy (28)), choice of car models involving 689 alternatives (see Brownstone,. Bunch and Train (6)) and choice of messenger bags ...

  18. Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet

    SciTech Connect (OSTI)

    Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

    2006-06-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

  19. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.

    2011-10-20T23:59:59.000Z

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  20. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect (OSTI)

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31T23:59:59.000Z

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  1. Vehicle Technologies Office Merit Review 2015: Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about transportation...

  2. Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2007-01-01T23:59:59.000Z

    dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen–fuel cell combination as ainclude on-board hydrogen storage and fuel cell durability.

  3. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  4. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle

    E-Print Network [OSTI]

    Prestero, Timothy (Timothy Jason), 1970-

    2001-01-01T23:59:59.000Z

    mproving the performance of modular, low-cost autonomous underwater vehicles (AUVs) in such applications as long-range oceanographic survey, autonomous docking, and shallow-water mine countermeasures requires improving the ...

  5. The electric vehicle experiment : developing the theoretical model for 2.672

    E-Print Network [OSTI]

    Zedler, Matthew R. (Matthew Robert)

    2007-01-01T23:59:59.000Z

    The purpose of this project was to develop a computer simulation of the proposed 2.672 electric vehicle experiment (EVE) to estimate the magnitudes of the powers required in different components of the drive train, piecewise ...

  6. Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2007-01-01T23:59:59.000Z

    engines. At time t = 0, gasoline HEVs enter the market, followed by hydrogen-hydrogen vehicles have no tailpipe emissions while at the same time offer private benefits relative to conventional internal combustion engine

  7. Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis

    E-Print Network [OSTI]

    Hausmann, Austin Joseph

    2012-08-31T23:59:59.000Z

    A combination of stricter emissions regulatory standards and rising oil prices is leading many automotive manufacturers to explore alternative energy vehicles. In an effort to achieve zero tail pipe emissions, many of these ...

  8. Electric vehicle charging infrastructure deployment : policy analysis using a dynamic behavioral spatial model

    E-Print Network [OSTI]

    Kearney, Michael J. (Michael Joseph)

    2011-01-01T23:59:59.000Z

    The United States government is committed to promoting a market for electric vehicles. To ensure that this electrification program does not result in the same failure that has come be associated with its predecessor programs, ...

  9. AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    device, such as a high-power battery. AVCEM has over 1000source, such as a peak-power battery, drives the vehicle Thedevice (say, a high-power battery) or traction battery must

  10. Modeling design changes in vehicle assembly systems : platform transition strategies and manufacturing flexibility

    E-Print Network [OSTI]

    Wüstemeyer, Christoph

    2014-01-01T23:59:59.000Z

    Driven by rising environmental and geopolitical concerns, regulations have been put in place over the last decade to compel car makers to lower the CO2 emissions of their cars. Due to these increasingly stringent vehicle ...

  11. A discrete event simulation model for unstructured supervisory control of unmanned vehicles

    E-Print Network [OSTI]

    McDonald, Anthony D. (Anthony Douglas)

    2010-01-01T23:59:59.000Z

    Most current Unmanned Vehicle (UV) systems consist of teams of operators controlling a single UV. Technological advances will likely lead to the inversion of this ratio, and automation of low level tasking. These advances ...

  12. Integrated perception, modeling, and control paradigm for bistatic sonar tracking by autonomous underwater vehicles

    E-Print Network [OSTI]

    Lum, Raymond Hon Kit

    2012-01-01T23:59:59.000Z

    In this thesis, a fully autonomous and persistent bistatic anti-submarine warfare (ASW) surveillance solution is developed using the autonomous underwater vehicles (AUVs). The passive receivers are carried by these AUVs, ...

  13. Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    electric cars and petrol-driven ones and in particular which include the respondents' own cars. Electric vehicles have major advantages compared to the petrol-driven ones: they do not emit carbon dioxyde

  14. Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

    Broader source: Energy.gov [DOE]

    Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

  15. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  16. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  17. Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

  18. Vehicle Technologies Office Merit Review 2015: First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Texas A&M at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first principles modeling of...

  19. Armored Vehicle 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  20. VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION

    E-Print Network [OSTI]

    VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

  1. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect (OSTI)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01T23:59:59.000Z

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  2. Willingness to pay for electric vehicles and their attributes MichaelK.Hidrue a

    E-Print Network [OSTI]

    Firestone, Jeremy

    Willingness to pay for electric vehicles and their attributes§ MichaelK.Hidrue a , George classification: Q42 Q51 Keywords: Electric vehicles Stated preference Discrete choice A B S T R A C T This article presents a stated preference study of electric vehicle choice using data from a national survey

  3. Vehicle Technologies Office Merit Review 2014: Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the LAVE-Trans...

  4. On the Higher-Order MoM-PO Electromagnetic Modeling of Vehicles

    E-Print Network [OSTI]

    Notaros, Branislav M.

    vehicles (cars, airplanes, helicopters, spacecraft, etc.). From the electromagnetic point of view and accurate higher-order, large-domain hybrid computational technique based on the method of moments (Mo the efficiency and accuracy of the hybrid higher-order computational technique and its advantages over

  5. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's...

  6. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  7. Application for certification, 1991 model-year light-duty vehicles - Sterling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems or exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  8. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect (OSTI)

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31T23:59:59.000Z

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  9. FirstChoice Investments

    E-Print Network [OSTI]

    Peters, Richard

    FirstChoice Wholesale Investments Product Disclosure Statement Including FirstRate Wholesale Saver and FirstRate Wholesale Term Deposits This is a combined Financial Services Guide and Product Disclosure in FirstChoice Wholesale Investments 1 3 How FirstChoice Wholesale Investments works 2 4 Risks of investing

  10. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  11. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  12. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  13. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  14. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  15. User's guide to DIANE Version 2. 1: A microcomputer software package for modeling battery performance in electric vehicle applications

    SciTech Connect (OSTI)

    Marr, W.W.; Walsh, W.J. (Argonne National Lab., IL (USA). Energy Systems Div.); Symons, P.C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA (USA))

    1990-06-01T23:59:59.000Z

    DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh'' batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user-input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers. 7 refs.

  16. FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION

    E-Print Network [OSTI]

    Collantes, Gustavo

    2005-01-01T23:59:59.000Z

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  17. Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2005-01-01T23:59:59.000Z

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  18. StreetSmart : modeling vehicle fuel consumption with mobile phone sensor data through a participatory sensing framework

    E-Print Network [OSTI]

    Oehlerking, Austin Louis

    2011-01-01T23:59:59.000Z

    Vehicle energy efficiency has become a priority of governments, researchers, and consumers in the wake of rising fuels costs over the last decade. Traditional Internal Combustion Engine (ICE) vehicles are particularly ...

  19. Modelling the global prospects and impacts of heavy duty liquefied natural gas vehicles in computable general equilibrium

    E-Print Network [OSTI]

    Yip, Arthur Hong Chun

    2014-01-01T23:59:59.000Z

    Natural gas vehicles have the prospects of making substantial contributions to transportation needs. The adoption of natural gas vehicles could lead to impacts on energy and environmental systems. An analysis of the main ...

  20. Table 5.5. U.S. Vehicle Fuel Efficiency by Model Year, 1994

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle Fuel Consumption. U.S..

  1. Table 5.6. U.S. Average Vehicle Fuel Consumption by Model Year, 1994

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle Fuel Consumption. U.S...

  2. Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoices for2013 is All Electric |

  3. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoicesDepartment ofofEnergy

  4. A Self-triggered Visual Servoing Model Predictive Control Scheme for Under-actuated Underwater Robotic Vehicles

    E-Print Network [OSTI]

    Dimarogonas, Dimos

    extensively used in the past for the autonomous operation of underwater robotic vehicles. Complex missions Robotic Vehicles Shahab Heshmati-Alamdari, Alina Eqtami, George C. Karras, Dimos V. Dimarogonas and Kostas Control (NMPC) scheme for an under- actuated underwater robotic vehicle. In this scheme, the control loop

  5. Electric Drive Vehicle Level Control Development Under Various...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)...

  6. Analysis of the benefits of designing and implementing a virtual didactic model of multiple choice exam and problem-solving heuristic report, for first year engineering students

    E-Print Network [OSTI]

    Bennun, Leonardo

    2015-01-01T23:59:59.000Z

    Improvements in performance and approval obtained by first year engineering students from University of Concepcion, Chile, were studied, once a virtual didactic model of multiple-choice exam, was implemented. This virtual learning resource was implemented in the Web ARCO platform and allows training, by facing test models comparable in both time and difficulty to those that they will have to solve during the course. It also provides a feedback mechanism for both: 1) The students, since they can verify the level of their knowledge. Once they have finished the simulations, they can access a complete problem-solving heuristic report of each problem; 2) The teachers, since they can obtain information about the habits of the students in their strategies of preparation; and they also can diagnose the weaknesses of the students prior to the exam. This study indicates how this kind of preparation generates substantial improvements on the approval rates by allowing the students: 1) A more structured and oriented syste...

  7. Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design Overview The team was tasked with modelling the accelerations and pressures of an impact of the scaled landing vehicle to reduce the accelerations and pressures of the vehicle. Objectives Provide

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  12. Design, Modeling And Control Of Steering And Braking For An Urban Electric Vehicle

    E-Print Network [OSTI]

    Maciua, Dragos

    1996-01-01T23:59:59.000Z

    Design, Modeling and Control of Steering and Braking for anDesign, Modeling and Control of Steering and Braking for anDesign, Modeling and Control of Steering and Braking for an

  13. Modeling the transient operation of an endothermic fuel cooling system for high Mach number vehicle missions

    E-Print Network [OSTI]

    Williams, Mark Robert

    1993-01-01T23:59:59.000Z

    A computer model was developed to simulate the transient operation of a hypothetical endothermic fuel cooling system. The model simulated the performance of a cross-flow, shell and tube heat exchanger. This model was applied to a representative...

  14. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  15. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  16. Vehicle Technologies Office Merit Review 2015: Developing Kinetic Mechanisms for New Fuels and Biofuels, Including CFD Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  17. Vehicle Technologies Office Merit Review 2015: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancements in...

  18. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  19. Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

  20. Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerate the...

  1. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    derived from a basic diagnostic fuel cell model [3] was usedExperimental Diagnostics in Polymer Electrolyte Fuel Cells,

  2. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    duty fuel cell vehicles using gasoline, methanol, ethanol,fuel-cell vehicle with a proton-exchange membrane (PEM) and methanolmethanol), fuel feedstocks (e.g. , coal), and vehicle types (e.g. , fuel-cell vehicle).

  3. Modeling and Simulation of a Two wheeled vehicle with suspensions by using Robotic Formalism

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , France (Philippe.chevrel@emn.fr) Abstract: Models, simulators and control strategies are required tools in various situations (e.g. for control application) as simplified model for 3 or 4 wheeled (tilting) cars. In that way, the dynamic model is easy to implement and the system can be used for control applications

  4. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  5. Expandability, reversibility, and optimal capacity choice

    E-Print Network [OSTI]

    Dixit, Avinash K.

    1997-01-01T23:59:59.000Z

    We develop continuous-time models of capacity choice when demand fluctuates stochastically, and the firm's opportunities to expand or contract are limited. Specifically, we consider costs of investing or disinvesting that ...

  6. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

  7. Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis

    E-Print Network [OSTI]

    response to gasoline prices by investigating whether or not U.S. households alter their reliance on higher fuel economy vehicles in response to gasoline price changes. Using micro-level household vehicle usage data collected during a period of gasoline price fluctuations in 2008 to 2009, the econometric analysis

  8. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    E-Print Network [OSTI]

    Vermont, University of

    model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer in Ireland. As primary power sources for the electric grid become greener and gasoline prices increase

  9. Islands and Integrals: Processes of Diversification in an Island Archipelago and Bayesian Methods of Comparative Phylogeographical Model Choice

    E-Print Network [OSTI]

    Oaks, Jamie Richard

    2013-12-31T23:59:59.000Z

    .2.7 Assessing the performance and power of msBayes . . . . . . . . . . . 14 xi 1.2.8 Assessing prior sensitivity of msBayes . . . . . . . . . . . . . . . . . . 15 1.2.9 A note on coalescent units . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Results... analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.8 Differing utilities of ? and ? in msBayes . . . . . . . . . . . . . . . . . . . . 57 2.9 Some general thoughts on the model of msBayes . . . . . . . . . . . . . . . . 58 2...

  10. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  11. Clean Cities 2011 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  12. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  13. Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    magnet synchronous machines (PMSM) are provided with advantages of small size, light weight, and high power density, therefore PMSM are primary choice as traction motors in hybrid vehicles. In addition hybrid vehicles use PMSM [Kassakian , 2000]. However, interior permanent magnet synchronous motor (IPMSM

  14. Applying Engineering and Fleet Detail to Represent Passenger Vehicle Transport in a Computable General Equilibrium Model

    E-Print Network [OSTI]

    Karplus, V.J.

    A well-known challenge in computable general equilibrium (CGE) models is to maintain correspondence between the forecasted economic and physical quantities over time. Maintaining such a correspondence is necessary to ...

  15. Characterization and modeling of a shape memory allow actuated biomimetic vehicle

    E-Print Network [OSTI]

    Garner, Luke Jay

    1999-01-01T23:59:59.000Z

    describes the design, modeling, and testing of a single segment demonstration SMA actuated hydrofoil. The SMA actuation elements are two sets of thin wires on either side of an elastomeric component that joins together the leading and trailing edges...

  16. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  17. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  18. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  19. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  20. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  1. AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  2. Stochastic Dynamic Vehicle Routing in the Euclidean Plane: The Multiple-Server, Capacitated Vehicle Case

    E-Print Network [OSTI]

    Bertsimas, Dimitris J.

    In a previous paper [12], we introduced a new model for stochastic and dynamic vehicle routing called the dynamic traveling repairman problem (DTRP), in which a vehicle traveling at constant velocity in a Euclidean region ...

  3. Generic vehicle speed models based on traffic simulation: Development and application

    SciTech Connect (OSTI)

    Margiotta, R.; Cohen, H.; Elkins, G.; Rathi, A.; Venigalla, M.

    1994-12-15T23:59:59.000Z

    This paper summarizes the findings of a research project to develop new methods of estimating speeds for inclusion in the Highway Performance Monitoring System (HPMS) Analytical Process. The paper focuses on the effects of traffic conditions excluding incidents (recurring congestion) on daily average ed and excess fuel consumption. A review of the literature revealed that many techniques have been used to predict speeds as a function of congestion but most fail to address the effects of queuing. However, the method of Dowling and Skabardonis avoids this limitation and was adapted to the research. The methodology used the FRESIM and NETSIM microscopic traffic simulation models to develop uncongested speed functions and as a calibration base for the congested flow functions. The chief contributions of the new speed models are the simplicity of application and their explicit accounting for the effects of queuing. Specific enhancements include: (1) the inclusion of a queue discharge rate for freeways; (2) use of newly defined uncongested flow speed functions; (3) use of generic temporal distributions that account for peak spreading; and (4) a final model form that allows incorporation of other factors that influence speed, such as grades and curves. The main limitation of the new speed models is the fact that they are based on simulation results and not on field observations. They also do not account for the effect of incidents on speed. While appropriate for estimating average national conditions, the use of fixed temporal distributions may not be suitable for analyzing specific facilities, depending on observed traffic patterns. Finally, it is recommended that these and all future speed models be validated against field data where incidents can be adequately identified in the data.

  4. Gorur D, Rasmussen CE. Dirichlet process Gaussian mixture models: Choice of the base distribution. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 25(4): 615626 July 2010/DOI 10.1007/s11390-010-1051-1

    E-Print Network [OSTI]

    Edinburgh, University of

    G¨or¨ur D, Rasmussen CE. Dirichlet process Gaussian mixture models: Choice of the base distribution Rasmussen2,3 1 Gatsby Computational Neuroscience Unit, University College London, London WC1N 3AR, U.K. 2 Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K. 3 Max Planck Institute

  5. ANINTEGERPROGRAMMINGMODELFORASSIGNING UNMANNED AIR VEHICLES TO TASKS

    E-Print Network [OSTI]

    Nygard, Kendall E.

    the mission. An integer linear program is posed for assembling the vehicles into sub-teams. The model as a generalization of a linear network model presented in [Nygard et. al.], which is limited to the assignment is allowed. #12;An Integer Programming Model for Assigning Unmanned Air Vehicles to Tasks 3 The model

  6. Vehicle Technologies Office Merit Review 2014: Joint Development and Coordination of Emissions Control Data and Models (CLEERS Analysis and Coordination)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the joint...

  7. Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  8. Climate and energy policy for U.S. passenger vehicles : a technology-rich economic modeling and policy analysis

    E-Print Network [OSTI]

    Karplus, Valerie J

    2011-01-01T23:59:59.000Z

    Climate and energy security concerns have prompted policy action in the United States and abroad to reduce petroleum use and greenhouse gas (GHG) emissions from passenger vehicles. Policy affects the decisions of firms and ...

  9. Managing the transition toward self-sustaining alternative fuel vehicle markets : policy analysis using a dynamic behavioral spatial model

    E-Print Network [OSTI]

    Supple, Derek R. (Derek Richard)

    2007-01-01T23:59:59.000Z

    Designing public policy or industry strategy to bolster the transition to alternative fuel vehicles (AFVs) is a formidable challenge as demonstrated by historical failed attempts. The transition to new fuels occurs within ...

  10. Vehicle Technologies Office Merit Review 2015: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  11. Vehicle Technologies Office Merit Review 2015: Assessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about assessing the...

  12. Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  13. Vehicle Technologies Office Merit Review 2015: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC-Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  14. Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data

    E-Print Network [OSTI]

    Wang, Guihua; Bai, Song; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    of Motor-Vehicle Air Pollution. University of California athave a different pollution episode location issue, as com-TOG have a comparable pollution level, and both are roughly

  15. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  16. Vehicle Technologies Office Merit Review 2015: 2015 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Broader source: Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 2015 KIVA...

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  18. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  19. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  20. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing...

  1. Discrete Choice Modeling for Transportation

    E-Print Network [OSTI]

    Brownstone, David

    2001-01-01T23:59:59.000Z

    Bhat, C. (1998b). Accomodating variations in responsivenesspress. Bhat, C. (1998a). Accomodating flexible substitution

  2. Vehicle Technologies Office Merit Review 2015: Mechanistic Modeling Framework for Predicting Extreme Battery Response: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and (Electro)chemical Processes

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about mechanistic...

  3. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01T23:59:59.000Z

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  4. Vehicle Technologies Office Merit Review 2014: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2014: Significant...

  5. Vehicle Technologies Office Merit Review 2015: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2015: Significant Enhancement of Computational...

  6. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    model simulates grid response to a number of scenarios relating to increased levels of vehicle recharging or renewable power

  7. Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combustion, energy storage technology, electric machines, high power electronics, fuel cells, vehicle simulation modeling, and other critical technologies Explore technical...

  8. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01T23:59:59.000Z

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  9. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  10. HapTouch and the 2+1 State Model: Potentials of Haptic Feedback on Touch Based In-Vehicle

    E-Print Network [OSTI]

    -Vehicle Information Systems Hendrik Richter University of Munich hendrik.richter@ifi.lmu.de Ronald Ecker BMW Group Research and Technology ronald.ecker@bmw.de Christopher Deisler BMW Group Research and Technology christopher.deisler@bmw.de Andreas Butz University of Munich andreas.butz@ifi.lmu.de ABSTRACT Haptic feedback

  11. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  12. Factors Affecting Cotton Producers' Choice of Marketing Outlet

    E-Print Network [OSTI]

    Pace, Jason 1979-

    2012-08-16T23:59:59.000Z

    Studies 4 Adoption Studies Employing Multinomial Logistic Regression ?.. 5 Hedging Studies ?????????????????????.. 8 Marketing Studies ????????????????????... 12 Non-cotton and General Commodity Marketing Studies ????. 12 Cotton Marketing Studies... Employing Multinomial Logistic Regression This paper will model the factors that influence several qualitative choices (cash marketing outlets) among cotton producers. The objective of qualitative choice modeling is to determine each explanatory...

  13. University of Michigan and NBER "Identification of Discrete Choice

    E-Print Network [OSTI]

    Presenter: Jeremy Fox University of Michigan and NBER "Identification of Discrete Choice Models;Identification of Discrete Choice Models for Bundles and Binary Games Jeremy T. Fox University of Michigan and NBER Natalia Lazzati University of Michigan March 2014 Abstract We study nonparametric identification

  14. FirstChoice Wholesale Investments

    E-Print Network [OSTI]

    Peters, Richard

    FirstChoice Wholesale Investments Product Disclosure Statement Including FirstRate Wholesale Saver Colonial First State 1 2 Benefits of investing in FirstChoice Wholesale Investments 1 3 How FirstChoice Wholesale Investments works 2 4 Risks of investing 2 5 Fees and other costs 6 6 How managed investment

  15. U.S. Shared-Use Vehicle Survey Findings on Carsharing and Station Car Growth

    E-Print Network [OSTI]

    Shaheen, Susan

    2004-01-01T23:59:59.000Z

    auto insurance for nonprofit car- sharing organizations. Theuse vehicle model. Car- sharing typically aims to assess

  16. SU-D-9A-02: Relative Effects of Threshold Choice and Spatial Resolution Modeling On SUV and Volume Quantification in F18-FDG PET Imaging of Anal Cancer Patients

    SciTech Connect (OSTI)

    Zhao, F [Duke University Medical Center, Durham, NC (United States); Shandong Cancer Hospital and Insititute, Jinan, Shandong (China); Bowsher, J; Palta, M; Czito, B; Willett, C; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2014-06-01T23:59:59.000Z

    Purpose: PET imaging with F18-FDG is utilized for treatment planning, treatment assessment, and prognosis. A region of interest (ROI) encompassing the tumor may be determined on the PET image, often by a threshold T on the PET standard uptake values (SUVs). Several studies have shown prognostic value for relevant ROI properties including maximum SUV value (SUVmax), metabolic tumor volume (MTV), and total glycolytic activity (TGA). The choice of threshold T may affect mean SUV value (SUVmean), MTV, and TGA. Recently spatial resolution modeling (SRM) has been introduced on many PET systems. SRM may also affect these ROI properties. The purpose of this work is to investigate the relative influence of SRM and threshold choice T on SUVmean, MTV, TGA, and SUVmax. Methods: For 9 anal cancer patients, 18F-FDG PET scans were performed prior to treatment. PET images were reconstructed by 2 iterations of Ordered Subsets Expectation Maximization (OSEM), with and without SRM. ROI contours were generated by 5 different SUV threshold values T: 2.5, 3.0, 30%, 40%, and 50% of SUVmax. Paired-samples t tests were used to compare SUVmean, MTV, and TGA (a) for SRM on versus off and (b) between each pair of threshold values T. SUVmax was also compared for SRM on versus off. Results: For almost all (57/60) comparisons of 2 different threshold values, SUVmean, MTV, and TGA showed statistically significant variation. For comparison of SRM on versus off, there were no statistically significant changes in SUVmax and TGA, but there were statistically significant changes in MTV for T=2.5 and T=3.0 and in SUVmean for all T. Conclusion: The near-universal statistical significance of threshold choice T suggests that, regarding harmonization across sites, threshold choice may be a greater concern than choice of SRM. However, broader study is warranted, e.g. other iterations of OSEM should be considered.

  17. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  18. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 3, MARCH 2010 943 Electric Vehicle Using a Combination of

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 3, MARCH 2010 943 Electric Vehicle Using used for an experimental electric vehicle (EV). These batteries are cheaper than Li-ion cells and have batteries (ZEBRA) are a good choice for electric vehicles (EVs) [1], [2]. They are safe and low cost and can

  19. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    models require accurate estimates of how the market shares of different fuel choices (electricity, gas, or oil)

  20. AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  1. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  2. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  3. > 070131-073Vehicle

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    on collaborative control ofAutonomous Underwater Vehicles (AUV), Unmanned Aerial Vehicles (UAV) and Autonomous. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus Terms-Autonomous Surface Vehicles, ocean robotics, marine science operations, unmanned survey vessels. I

  4. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  5. Lie Group Integrators for Animation and Control of Vehicles

    E-Print Network [OSTI]

    Desbrun, Mathieu

    .8 [Simulation and Modeling]: Animation 1. INTRODUCTION A vehicle is an actuated mechanical system that moves animation for which a plethora of techniques are available. Additionally, human familiarity with vehicles simulation appears simple: a vehicle is easily modeled by its pose in the world and a set of internal

  6. Biofuels, Climate Policy and the European Vehicle Fleet

    E-Print Network [OSTI]

    Rausch, Sebastian

    We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

  7. Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking

    E-Print Network [OSTI]

    Duffy, Ken

    Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking Selim Solmaz, switching, and tuning (MMST) paradigm [13, 14, 15] for preventing un­tripped rollover in automotive vehicles performance than its fixed robust counterpart. Keywords: Automotive control; Multiple models; Parameter

  8. AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    -to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

  9. Author manuscript, published in "International Conference on Information Fusion (2013)" An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for Co-Driving

    E-Print Network [OSTI]

    Evangeline Pollard; Fawzi Nashashibi

    2013-01-01T23:59:59.000Z

    Abstract—Full autonomy of ground vehicles is a major goal of the ITS (Intelligent Transportation Systems) community. However, reaching such highest autonomy level in all situations (weather, traffic,...) may seem difficult in practice, despite recent results regarding driverless cars (e.g., Google Cars). In addition, an automated vehicle should also self-assess its own perception abilities, and not only perceive its environment. In this paper, we propose an intermediate approach towards full automation, by defining a spectrum of automation layers, from fully manual (the car is driven by a driver) to fully automated (the car is driven by a computer), based on an ontological model for representing knowledge. We also propose a second ontology for situation assessment (what does the automated car perceive?), including the sensors/actuators state, environmental conditions and driver’s state. Finally, we also define inference rules to link the situation assessment ontology to the automation level one. Both ontological models have been built and first results are presented. I.

  10. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  11. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  12. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Energy Savers [EERE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  13. Vehicle Technologies Office Merit Review 2014: A Combined Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes Vehicle Technologies Office Merit Review 2014: A Combined Experimental and Modeling Approach...

  14. Vehicle Technologies Office Merit Review 2014: Validation of...

    Broader source: Energy.gov (indexed) [DOE]

    Validation of Material Models for Automotive Carbon Fiber Composite Structures Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon...

  15. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cellsan FFV? An FFV, as

  16. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValley of theEthanol8 F l e e t

  17. MathCAD model for the estimation of cost and main characteristics of air-cushion vehicles in the preliminary design stage

    E-Print Network [OSTI]

    Gougoulidis, Georgios

    2005-01-01T23:59:59.000Z

    In the naval architecture terminology, the term ACV (Air Cushion Vehicle) refers to this category of vehicles, in which a significant portion of the weight (or all the weight) is supported by forces arising from air pressures ...

  18. Vehicle Technologies and Bus Fleet Replacement Optimization

    E-Print Network [OSTI]

    Bertini, Robert L.

    1 Vehicle Technologies and Bus Fleet Replacement Optimization: problem properties and sensitivity: R41 #12;2 Abstract This research presents a bus fleet replacement optimization model to analyze hybrid and conventional diesel vehicles, are studied. Key variables affecting optimal bus type

  19. A Stark Choice on Solar

    Broader source: Energy.gov [DOE]

    As a nation, we face a stark choice. We can sit back and cede our position in the burgeoning solar industry or we can stand up and compete.

  20. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  1. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    to maximize usage, educating the public and coordinating with utilities. The Vehicle Technologies Office is partnering with city governments, local organizations, and...

  2. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  4. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Environmental Management (EM)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  6. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  7. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  8. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  9. Coordinating Automated Vehicles via Communication

    E-Print Network [OSTI]

    Bana, Soheila Vahdati

    2001-01-01T23:59:59.000Z

    1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

  10. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EfficiencyVehicle Technologies Vehicle Technologies Combustion Research Facility (CRF) Vehicle Technology programs at Sandia share a common goal: reducing dependence on...

  11. Editor's Choice Editor's Choice: Crop Genome Plasticity and Its Relevance

    E-Print Network [OSTI]

    Parrott, Wayne

    . The term GE is preferred over the term "genetically modified" (commonly referred to as GMEditor's Choice Editor's Choice: Crop Genome Plasticity and Its Relevance to Food and Feed Safety of Genetically Engineered Breeding Stacks1 Genetically engineered (GE) stacks, combinations of two or more single

  12. Potential single-occupancy vehicle demand for the Katy Freeway and Northwest Freeway high-occupancy vehicle lanes

    E-Print Network [OSTI]

    Xu, Lei

    2006-10-30T23:59:59.000Z

    discrete choice model of transit mode choice access was developed by Loutzenheiser (54) in 1997, based on Bay Area Rapid Transit passenger surveys and station area characteristics. Loutzenheiser found that the individual?s characteristics 24 were more...

  13. VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________

    E-Print Network [OSTI]

    Yang, Zong-Liang

    VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

  14. Pounds That Kill: The External Costs of Vehicle MICHAEL L. ANDERSON

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    ), likely in response to rising gasoline prices and the passage of the Corporate Average Fuel Efficiency (CAFE) standard. As gasoline prices fell in the late-1980s, however, average vehicle weight began of research examines the effects of CAFE and gasoline prices on consumers' vehicle choices (Portney, Parry

  15. Social networking in vehicles

    E-Print Network [OSTI]

    Liang, Philip Angus

    2006-01-01T23:59:59.000Z

    In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

  16. A Loop Material Flow System Design for Automated Guided Vehicles

    E-Print Network [OSTI]

    Dessouky, Maged

    A Loop Material Flow System Design for Automated Guided Vehicles Ardavan Asef-Vaziri 1 Maged load automated guided vehicles. The model simultaneously determines both the design are attributed to material handling (Tompkins et al., 1996). Automated guided vehicles (AGVs) are among

  17. SYSTEM IDENTIFICATION OF UNDERWATER VEHICLES Javier Pereira and Alec Duncan

    E-Print Network [OSTI]

    .duncan@cmst.curtin.edu.au Abstract - Unmanned underwater vehicles (UUV's) are used in a number of applications such as pipelineSYSTEM IDENTIFICATION OF UNDERWATER VEHICLES Javier Pereira and Alec Duncan Australian Maritime hydrodynamic derivative measurements from sea trials using an underwater vehicle which is a half-scale model

  18. Automated Vehicle-to-Vehicle Collision Avoidance at Intersections

    E-Print Network [OSTI]

    Del Vecchio, Domitilla

    Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

  19. Motor Vehicle Record Procedure Objective

    E-Print Network [OSTI]

    Kirschner, Denise

    Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

  20. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  1. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  2. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  3. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced Research Fellow A vehicles powertrain is a complex combination of interacting sub-systems which include complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task

  4. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S Akehurst, EPSRC Advanced Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development

  5. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  6. Essays on Bank Optimal Portfolio Choice under Liquidity Constraint

    E-Print Network [OSTI]

    Kim, Eul Jin

    2012-10-19T23:59:59.000Z

    portfolio choices under liquidity constraints. Our theory predicts that liquidation plays an important role in a bank's portfolio model. Even though liquidation is an off-equilibrium phenomenon, banks can have rich loan portfolios due to the possibility...

  7. The Quantitative Genetics of Mate Choice Evolution: Theory and Empiricism

    E-Print Network [OSTI]

    Ratterman, Nicholas 1981-

    2012-11-15T23:59:59.000Z

    emerged. From a theoretical standpoint, the nature of the genetic covariance built up by the process of mate choice has received considerable attention, though the models still make biologically unrealistic assumptions. Empirically, the difficulty...

  8. Superpressure stratospheric vehicle

    SciTech Connect (OSTI)

    Chocol, C.; Robinson, W.; Epley, L.

    1990-09-15T23:59:59.000Z

    Our need for wide-band global communications, earth imaging and sensing, atmospheric measurements and military reconnaissance is extensive, but growing dependence on space-based systems raises concerns about vulnerability. Military commanders require space assets that are more accessible and under local control. As a result, a robust and low cost access to space-like capability has become a national priority. Free floating buoyant vehicles in the middle stratosphere can provide the kind of cost effective access to space-like capability needed for a variety of missions. These vehicles are inexpensive, invisible, and easily launched. Developments in payload electronics, atmospheric modeling, and materials combined with improving communications and navigation infrastructure are making balloon-borne concepts more attractive. The important milestone accomplished by this project was the planned test flight over the continental United States. This document is specifically intended to review the technology development and preparations leading up to the test flight. Although the test flight experienced a payload failure just before entering its assent altitude, significant data were gathered. The results of the test flight are presented here. Important factors included in this report include quality assurance testing of the balloon, payload definition and characteristics, systems integration, preflight testing procedures, range operations, data collection, and post-flight analysis. 41 figs., 5 tabs.

  9. Inferring noncompensatory choice heuristics

    E-Print Network [OSTI]

    Yee, Michael, 1978-

    2006-01-01T23:59:59.000Z

    Human decision making is a topic of great interest to marketers, psychologists, economists, and others. People are often modeled as rational utility maximizers with unlimited mental resources. However, due to the structure ...

  10. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  11. Mountain Health Choices Beneficiary Report

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ................................................................................................................ 42 I. Access to Health Care Mountain Health Choices Beneficiary Report A Report to the West Virginia Bureau for Medical of Health and Human Resources, Bureau for Medical Services. #12; 1 Table of Contents I. EXECUTIVE

  12. Autotuning programs with algorithmic choice

    E-Print Network [OSTI]

    Ansel, Jason (Jason Andrew)

    2014-01-01T23:59:59.000Z

    The process of optimizing programs and libraries, both for performance and quality of service, can be viewed as a search problem over the space of implementation choices. This search is traditionally manually conducted by ...

  13. Vehicle Technologies Office Merit Review 2015: A Systematic Multiscale Modeling and Experimental Approach to Understand Corrosion at Grain Boundaries in Magnesium Alloys

    Broader source: Energy.gov [DOE]

    Presentation given by Mississippi State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a systematic...

  14. Economic Impacts Associated With Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model

    Broader source: Energy.gov [DOE]

    Report by Argonne National Laboratory summarizing an analysis of the economic impacts associated with commercializing fuel cell electric vehicles (FCEVs) in California.

  15. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  16. Vehicle Technologies Office Merit Review 2014: Reassessing the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reassessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM) Vehicle Technologies Office Merit Review 2014: Reassessing the Outlook of US Oil Dependence...

  17. Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...

    Broader source: Energy.gov (indexed) [DOE]

    HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

  18. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing...

    Broader source: Energy.gov (indexed) [DOE]

    results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing...

  19. Vehicle Technologies Office Merit Review 2014: Synthetic Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Cathode Synthesis and Voltage Fade: Designed Solutions Based on Theory Vehicle Technologies Office Merit Review 2014: Electrochemical Modeling of LMR-NMC...

  20. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    SciTech Connect (OSTI)

    Greene, D.L.

    2004-08-23T23:59:59.000Z

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  1. Effect of Vehicle Mobility on Connectivity of Vehicular Ad Hoc Networks

    E-Print Network [OSTI]

    Zhou, Xiangyun "Sean"

    Effect of Vehicle Mobility on Connectivity of Vehicular Ad Hoc Networks Salman Durrani, Xiangyun equivalent speed parameter and develop an analytical model to explain the effect of vehicle mobility vehicle speed and it decreases as the standard deviation of the vehicle speed increases. Using

  2. General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications

    E-Print Network [OSTI]

    Gilbes, Fernando

    General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

  3. Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now

    E-Print Network [OSTI]

    Bertini, Robert L.

    analyzes the impacts of utilization (mileage per year per vehicle) and gasoline prices on vehicle gasoline prices or high utilization, (b) current European carbon dioxide cap-and-trade emissions price (miles per year), and market conditions (fuel prices) on the competitiveness of EVs. This paper

  4. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  5. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  6. AVTA: 2013 BRP Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2013 BRP neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  7. AVTA: 2009 Vantage Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of two 2009 Vantage neighborhood electric vehicles (a pickup truck style and a van style). Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  8. Accomodating Electric Vehicles

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  9. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  10. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01T23:59:59.000Z

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  11. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01T23:59:59.000Z

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  12. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  13. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  14. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  15. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  16. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  17. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  18. Georgia Tech Vehicle Acquisition and

    E-Print Network [OSTI]

    1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

  19. Environmental Knowledge, Environmental Attitudes, and Vehicle Ownership and Use

    E-Print Network [OSTI]

    Flamm, Bradley John

    2006-01-01T23:59:59.000Z

    Guide to Effective Environmental Choices: Practical Advicefor Economic Prosperity, Environmental Quality, and Equity.A Structural Model of Environmental Attitudes and Behaviour.

  20. Analytical models to evaluate system performance measures for vehicle based material-handling systems under various dispatching policies

    E-Print Network [OSTI]

    Lee, Moonsu

    2005-08-29T23:59:59.000Z

    -route material-handling systems from two different perspectives: the workcenters?? point of view and the transporters?? point of view. The state-dependent nature of the transportation time is considered here for more accurate analytical approximation models...

  1. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  2. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  3. OPTIMAL DESIGN OF HYBRID FUEL CELL VEHICLES

    E-Print Network [OSTI]

    Jeongwoo Han; Michael Kokkolaras; Panos Papalambros

    Fuel cells are being considered increasingly as a viable alternative energy source for automobiles because of their clean and efficient power generation. Numerous technological concepts have been developed and compared in terms of safety, robust operation, fuel economy, and vehicle performance. However, several issues still exist and must be addressed to improve the viability of this emerging technology. Despite the relatively large number of models and prototypes, a model-based vehicle design capability with sufficient fidelity and efficiency is not yet available in the literature. In this article we present an analysis and design optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrating a fuel cell vehicle simulator with a physics-based fuel cell model. The integration is achieved via quasi-steady fuel cell performance maps, and provides the ability to modify the characteristics of fuel cell systems with sufficient accuracy (less than 5 % error) and efficiency (98 % computational time reduction on average). Thus, a vehicle can be optimized subject to constraints that include various performance metrics and design specifications so that the overall efficiency of the hybrid fuel cell vehicle can be improved by 14 % without violating any constraints. The obtained optimal fuel cell system is also compared to other, not vehicle-related, fuel cell systems optimized for maximum power density or maximum efficiency. A tradeoff between power density and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency because it operates in a wider current region. When optimizing the fuel cell

  4. Advanced Vehicle Technology Analysis and Evaluation Team

    E-Print Network [OSTI]

    Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performance Testing · Advanced Powertrain Research Facility · ReFuel Facility Fleet Testing · Industry/Government LabFuelReFuel FacilityFacility Fleet TestingFleet Testing ·· Industry/GovernmentIndustry/Government ModelModel Validation

  5. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  6. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  7. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  8. MKV Carrier Vehicle Sensor Calibration

    E-Print Network [OSTI]

    Plotnik, Aaron M.

    The Multiple Kill Vehicle (MKV) system, which is being developed by the US Missile Defense Agency (MDA), is a midcourse payload that includes a carrier vehicle and a number of small kill vehicles. During the mission, the ...

  9. The Vehicle Technologies Market Report

    E-Print Network [OSTI]

    The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

  10. Game Theoretic Modelling of a Human Driver’s Steering Interaction with Vehicle Active Steering Collision Avoidance System

    E-Print Network [OSTI]

    Na, Xiaoxiang; Cole, David J.

    2014-11-10T23:59:59.000Z

    -Integral-Derivative (PID) control, Model Predictive Control (MPC) and Linear Quadratic Regulator (LQR). Particular attention here is given to the MPC and LQR which serve as the foundation of the distributed MPC and LQ dynamic optimization approaches to be described...

  11. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31T23:59:59.000Z

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  12. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    energy consumption. EPRI translates these projections into3 Technology Choices in EPRI's Model of Space Heating andPower Research Institute (EPRI) [1984]: "Household Appliance

  13. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    among different space heating technologies to household andhousehold's choice of heating technology is modeled jointlymodel five space heating technologies given central cooling

  14. Life Choices Student Survey Items

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    by Topical Area: Life Choices Berea-Specific Entering Survey, Fall Term First-Year Students and New Transfers for life-long learning Cooperative Institutional Research Program (CIRP), Entering Fall Term Students 2012, Historical Trends) Please indicate the extent to which each of the following describe you Searching

  15. Career Choices: Industry vs. Academia

    E-Print Network [OSTI]

    Rohs, Remo

    Career Choices: Industry vs. Academia Yan Liu Assistant Professor Computer Science Department, IBM TJ Watson Research Center · Now, USC #12;1) What career path did you consider most during your Ph industry, and where can one make the most impact? · Best virtues in all jobs ­ Hardworking ­ Good attitude

  16. Vehicle Technologies Office Merit Review 2014: First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Texas A&M University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first principles...

  17. Vehicle Technologies Office Merit Review 2014: Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer-Aided Engineering of Batteries under Abuse

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupling of mechanical behavior of cell...

  18. Multi-vehicle Mobility Allowance Shuttle Transit (MAST) System - An Analytical Model to Select the Fleet Size and a Scheduling Heuristic 

    E-Print Network [OSTI]

    Lu, Wei

    2012-10-19T23:59:59.000Z

    The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) formulation for the static scheduling problem...

  19. Vehicle Technologies Office Merit Review 2015: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined experimental and...

  20. Multi-vehicle Mobility Allowance Shuttle Transit (MAST) System - An Analytical Model to Select the Fleet Size and a Scheduling Heuristic

    E-Print Network [OSTI]

    Lu, Wei

    2012-10-19T23:59:59.000Z

    The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) formulation for the static scheduling problem...

  1. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  2. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Strategy Phase 2 Demonstrator Vehicle (GDCI) 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: Stop start EMS Control Algorithms Calibration GDi pump...

  3. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Energy Efficiency On November 11, 2010, in Solid-State Lighting Vehicle Technologies Energy Efficiency News Energy Frontier Research Center for Solid-State...

  4. A GLOBAL ROAD SCENE ANALYSIS SYSTEM FOR AUTONOMOUS VEHICLES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to the hydraulic steering system ofthe car. To control such a model,a tech- nique of pole assignment embedded, Real time image processing, Vehicle modelling, Adaptive control. 1. HIGH SPEED VEHICLE GUIDANCE with an additional device connected to its steering sys- tem. This device is an input allowing a velocity control

  5. Congestion control in charging of electric vehicles

    E-Print Network [OSTI]

    Carvalho, Rui; Gibbens, Richard; Kelly, Frank

    2015-01-01T23:59:59.000Z

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

  6. AVTA: ARRA EV Project Vehicle Placement Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  7. A Verified Hybrid Controller For Automated Vehicles

    E-Print Network [OSTI]

    Lygeros, J.; Godbole, D. N.; Sastry, S.

    1997-01-01T23:59:59.000Z

    con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

  8. Thoughts on Models UC Davis SB 375 Policy Forum

    E-Print Network [OSTI]

    California at Davis, University of

    Autonomous vehicles Variable workplaces ... 23 #12;Automobile ownership Workplace location Tour mode choice;3 #12;4 7.0 million 16.4 resident passenger vehicle miles traveled per capita 8.7 million 13.9 resident passenger vehicle miles traveled per capita #12;5 7.0 million 16.4 resident passenger vehicle miles traveled

  9. Choices

    E-Print Network [OSTI]

    Feyrer, G.

    1986-01-01T23:59:59.000Z

    Standing on the balcony beside him, Mc Coy swirled his brandy snifter restlessly, and muttered under his breath, "I've never understood what Jim sees in those pouty lipped, Pekinese types." "Ruth," Spock said. Startled, wide blue eyes turnedon him..., and the Captain and McCoy had accepted their selections. The Doctor seemed quite at home in his cobalt blue velvet and pale blue brocade. Familiar or preferred colors, Spock wondered? They had offered him something similar,turquoise and black satin, but he had...

  10. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  11. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  12. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12T23:59:59.000Z

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  13. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  14. Self Control, Revealed Preference and Consumption Choice Wolfgang Pesendorfer

    E-Print Network [OSTI]

    the behavior generated by the time-inconsistency approach but, unlike time-inconsistent models, allows for self-controlSelf Control, Revealed Preference and Consumption Choice Faruk Gul and Wolfgang Pesendorfer Princeton University November 2002 Abstract We provide a time consistent model that addresses the preference

  15. Parameter study of a vehicle-scale hydrogen storage system.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01T23:59:59.000Z

    Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

  16. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Office of Environmental Management (EM)

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

  17. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicleEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  18. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

  19. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  20. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located within the Vehicle Technologies Office (VTO), within the Office of Energy Efficiency and Renewable Energy (EERE). The Office reports to the Deputy Assistant Secretary for...

  1. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

  2. Assessment of Fuel Economy Technologies for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

  3. Vehicles and E85 Stations Needed to Achieve Ethanol Goals

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    This paper presents an analysis of the numbers of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85). The paper does not analyze issues related to the supply of ethanol which may turn out to be of even greater concern. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived and preliminary results for 2010, 2017 and 2030 consistent with the President s 2007 biofuels program goals are presented (1). A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85, and that 125 to 200 million flexible fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: (1) there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline, (2) the future prices of E85 and gasoline are uncertain; and (3) the method of analysis used is highly aggregated; it does not consider the potential benefits of regional strategies nor the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce FFVs and insure widespread availability of E85.

  4. A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle Applications (Part intelligent vehicle applications. In this article, we focus rather on a "local" issue, i.e. the system model estimation, state, system model, Kalman filter (KF), intelligent vehicles 1 Introduction This article follows

  5. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29T23:59:59.000Z

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  6. Vehicle operating costs: evidence from developing countries

    SciTech Connect (OSTI)

    Chesher, A.; Harrison, R.

    1987-01-01T23:59:59.000Z

    The document presents information concerning the relationships between vehicle operating costs and highway conditions derived from four studies performed in Kenya, the Caribbean, Brazil, and India in the 1970s and early 1980s. The levels of transport costs and the amounts by which they are altered when highway conditions change depend on two main factors. The first is the production technology facing firms, in particular, the types and designs of vehicles to which firms have access. The second is the economic environment that firms face, in particular, relative prices of inputs to the production of transportation, such as fuel, tires, labor, and vehicles, and the nature of the transport markets that firms serve. The first part of the book sets out an economic model of firms managing vehicle fleets within which these influences can be examined. The second part of the book reports and interprets the results of the four major research projects which were designed to study the influences on vehicle operating costs. The third part of the book examines total vehicle operating costs.

  7. Identifying Challenges for Sustained Adoption of Alternative Fuel Vehicles and Infrastructure

    E-Print Network [OSTI]

    Struben, Jeroen J.R.,

    2007-04-27T23:59:59.000Z

    This paper develops a dynamic, behavioral model with an explicit spatial structure to explore the co-evolutionary dynamics between infrastructure supply and vehicle demand. Vehicles and fueling infrastructure are ...

  8. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt-hours (kWh). However,...

  9. Department of Engineering Spring 2013 Project Name Boeing Team 1 Unmanned Ground Vehicle

    E-Print Network [OSTI]

    Demirel, Melik C.

    Vehicle Overview Develop an autonomous, heat-seeking robotic rover, capable of detecting thermal targets as a scale model for a future, larger autonomous vehicle Proved proof of concept to sponsor of delivering

  10. An Interactive, physics-based unmanned ground vehicle simulator leveraging open source gaming technology: Progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    E-Print Network [OSTI]

    Kewlani, Gaurav

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ...

  11. Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

  12. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect (OSTI)

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01T23:59:59.000Z

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  13. AVTA: 2011 Nissan Leaf All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2011 Nissan Leaf. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  14. AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

  15. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01T23:59:59.000Z

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  16. Resource-Optimal Planning For An Autonomous Planetary Vehicle

    E-Print Network [OSTI]

    Della Penna, Giuseppe; Magazzeni, Daniele; Mercorio, Fabio; 10.5121/ijaia.2010.1302

    2010-01-01T23:59:59.000Z

    Autonomous planetary vehicles, also known as rovers, are small autonomous vehicles equipped with a variety of sensors used to perform exploration and experiments on a planet's surface. Rovers work in a partially unknown environment, with narrow energy/time/movement constraints and, typically, small computational resources that limit the complexity of on-line planning and scheduling, thus they represent a great challenge in the field of autonomous vehicles. Indeed, formal models for such vehicles usually involve hybrid systems with nonlinear dynamics, which are difficult to handle by most of the current planning algorithms and tools. Therefore, when offline planning of the vehicle activities is required, for example for rovers that operate without a continuous Earth supervision, such planning is often performed on simplified models that are not completely realistic. In this paper we show how the UPMurphi model checking based planning tool can be used to generate resource-optimal plans to control the engine of ...

  17. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20T23:59:59.000Z

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  18. 192 Int. J. Vehicle Systems Modelling and Testing, Vol. 1, Nos. 1/2/3, 2005 Copyright 2005 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Lewis, Kemper E.

    Development Research Lab, General Motors Research and Development Center, Warren, MI USA E-mail: joe in the Vehicle Development Research Laboratory at the General Motors Research and Development Center in Warren, Michigan. His ten years of experience with General Motors and the Ford Motor Company have broadly spanned

  19. GREEN ENERGY AND ELECTRIC VEHICLES. BMW GROUP TECHNOLOGYOFFICE USA.

    E-Print Network [OSTI]

    California at Davis, University of

    can still guarantee where my power's coming from." "The perfect model is buy an electric car, putGREEN ENERGY AND ELECTRIC VEHICLES. BMW GROUP TECHNOLOGYOFFICE USA. LT-Z-Z, OCTOBER 2012 #12;GREEN E, LT-Z-Z,OCT 2012 Page 2 BACKGROUND. Markets for green energy and electric vehicles can accelerate

  20. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  1. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  2. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  3. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    waste heat recovery devices for vehicles Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling...

  4. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  5. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks...

  6. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities that provide data critical to the development and commercialization of next-generation vehicles Vehicle Electrification Advancing the future of electric vehicles...

  7. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  8. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

  9. Vehicle Technologies Office: Power Electronics and Electrical...

    Broader source: Energy.gov (indexed) [DOE]

    overview of electric drive vehicles, see the Alternative Fuels Data Center's pages on Hybrid and Plug-in Electric Vehicles. The Vehicle Technologies Office (VTO) supports...

  10. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  11. Specialty Vehicles and Material Handling Equipment

    Broader source: Energy.gov (indexed) [DOE]

    Benefits Environmental Benefits "Well-to-Tank" Greenhouse Gas Factors Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell...

  12. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  13. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  14. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  15. Relationship between Heavy Vehicle Speed Limit and Fleet Fuel Consumption on Minor Roads

    E-Print Network [OSTI]

    Wilson, G.; Morrison, G.; Midgley, W.; Cebon, D.

    2015-03-12T23:59:59.000Z

    e s/M in ) Link Data Calibrated Model 13 3. Fuel Consumption Model Figure 7 outlines the basic structure of the fuel consumption model. Figure 7: General flow diagram of the fuel consumption model. Energy Consumption Model The energy... flow rates tend to be low. As traffic approaches bound flow (at the top of the chart), vehicle interactions increase and faster fleet vehicles begin to platoon behind the slowest vehicles. The extent to which traffic is slowed depends on the speeds...

  16. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  17. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  18. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

    2002-11-19T23:59:59.000Z

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  19. Lifecycle-analysis for heavy vehicles.

    SciTech Connect (OSTI)

    Gaines, L.

    1998-04-16T23:59:59.000Z

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. On-Road Motor Vehicle Emissions Measurements

    E-Print Network [OSTI]

    Denver, University of

    . Pokharel, Gary A. Bishop and Donald H. Stedman Department of Chemistry and Biochemistry University 1990 1991 1992 1993 1994 1995 1996 1997 1998 Model Year FailureRate(%) Gasoline Vehicles Natural Gas Bi/day382252Diesel trucks Tons/day2730220Gasohol (LTK, PAS) Tons/day3748369Gasoline (LTK, PAS) g per kg of fuel

  3. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  4. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  5. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  6. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Utilization Data Base Evaluate Infrastructure Effectiveness Develop Sustainable Business Models Develop Models For Future Infrastructure Deployments Relevance MILESTONES...

  7. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01T23:59:59.000Z

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  8. A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by Sébastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

  9. WORKING PAPER SERIES: GSPP13-001 Consumers' willingness to pay for alternative fuel vehicles

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    or natural-gas powered vehicles could become more significant in the future.4 The US, Japan, and otherWORKING PAPER SERIES: GSPP13-001 Consumers' willingness to pay for alternative fuel vehicles model to estimate consumers' willingness to pay (WTP) for electric vehicles (EV) and plug-in hybrid

  10. Charging Games in Networks of Electrical Vehicles Olivier Beaude, Samson Lasaulce, and Martin Hennebel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Charging Games in Networks of Electrical Vehicles Olivier Beaude, Samson Lasaulce, and Martin charging in electrical vehicle (EV) networks is proposed. This formulation allows one to model games, electrical vehicle, distribution net- works, potential games, Nash equilibrium, price of anarchy

  11. A Collision Avoidance Control for Multi-Vehicle Using PWA/MLD Hybrid System Representation

    E-Print Network [OSTI]

    A Collision Avoidance Control for Multi-Vehicle Using PWA/MLD Hybrid System Representation Masakazu for multi-vehicle systems which are modeled as a class of hybrid systems, piecewise affine (PWA) systems. We propose an optimal trajectory path which guarantees that the vehicle moves to the objective point

  12. Fuel Economy of Vehicles Made in 2004 Description of the sample

    E-Print Network [OSTI]

    Carriquiry, Alicia

    Fuel Economy of Vehicles Made in 2004 Description of the sample: A random sample of 36 cars and light trucks was obtained from all the vehicle models made in 2004. The combined fuel economy estimate the vehicles got 22 MPG or less. There was a good deal of variability in the fuel economy of the 36 cars

  13. Motor Vehicle Rental Exemption Certificate THIS EXEMPTION CERTIFICATE IS NOT VALID FOR TAX-FREE REGISTRATION.

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Motor Vehicle Rental Exemption Certificate THIS EXEMPTION CERTIFICATE IS NOT VALID FOR TAX-FREE REGISTRATION. THIS EXEMPTION CERTIFICATE MUST BE ATTACHED TO THE RENTAL CONTRACT. Make of Vehicle Motor or Vehicle Identification Number Year Model Body Style License Number The undersigned claims exemption from

  14. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  15. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  16. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  17. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11T23:59:59.000Z

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  19. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  20. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing