Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative fuels and vehicles choice model  

DOE Green Energy (OSTI)

This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

Greene, D.L. [Oak Ridge National Lab., TN (United States). Center for Transportation Analysis

1994-10-01T23:59:59.000Z

2

TAFV Alternative Fuels and Vehicles Choice Model Documentation  

DOE Green Energy (OSTI)

A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model.

Greene, D.L.

2001-07-27T23:59:59.000Z

3

TAFV Alternative Fuels and Vehicles Choice Model Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

34 34 ORNL/TM-2001/134 TAFV Alternative Fuels and TAFV Alternative Fuels and Vehicles Choice Model Vehicles Choice Model Documentation Documentation July 2001 David L. Greene David L. Greene Corporate Fellow Corporate Fellow DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

4

PRISM 2.0: Mixed Logit Consumer Vehicle Choice Modeling Using Revealed Preference Data  

Science Conference Proceedings (OSTI)

Predicting the penetration of electric vehicles into the automotive market is challenging because these vehicles do not exist in the market today and therefore consumer reaction is largely unknown. One way to estimate consumer demand for electric vehicles is to model the attribute bundles of vehicles that are present in the market today and predict market share using state-of-the-art discrete choice demand models.This research develops a choice-based demand model to extract consumer ...

2013-09-30T23:59:59.000Z

5

Brownstone and Fang 1 A VEHICLE OWNERSHIP AND UTILIZATION CHOICE MODEL WITH ENDOGENOUS RESIDENTIAL DENSITY  

E-Print Network (OSTI)

This paper explores the impact of residential density on households ’ vehicle type and usage choices using the 2001 National Household Travel Survey (NHTS). Attempts to quantify the effect of urban form on households ’ vehicle choice and utilization often encounter the problem of sample selectivity. Household characteristics that are unobservable to the researchers might determine simultaneously where to live, what vehicles to choose, and how much to drive them. Unless this simultaneity is modeled, any relationship between residential density and vehicle choice may be biased. This paper extends the Bayesian multivariate ordered probit and tobit model developed in Fang (2008) to treat local residential density as endogenous. The model includes equations for vehicle ownership and usage in terms of number of cars, number of trucks (vans, sports utility vehicles, and pickup trucks), miles traveled by cars, and miles traveled by trucks. We carry out policy simulations which show that an increase in residential density has a negligible effect on car choice and utilization, but slightly reduces truck choice and utilization. We also perform an out-of-sample forecast using a holdout sample to test the robustness of the model. * Corresponding author.

David Brownstone; Hao (audrey Fang

2009-01-01T23:59:59.000Z

6

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

The Relationship of Vehicle Type Choice to Personality,on revealed and stated vehicle type choice and utilizationA disaggregate model of auto-type choice. Transportation

Choo, S; Mokhtarian, Patricia L

2004-01-01T23:59:59.000Z

7

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

on revealed and stated vehicle type choice and utilizationA disaggregate model of auto-type choice. Transportationforecasting automobile type-choice. Transportation Research

Choo, Sangho; Mokhtarian, Patricia L.

2004-01-01T23:59:59.000Z

8

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network (OSTI)

Error gov. Error model model CNG constant Methanol constantcompressed natural gas (CNG) vehicles with over 300 milestime or refueling cost of CNG vehicles? My fuel choice

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

9

EIA-DOE Vehicle Choice and Markets Technical Workshop  

U.S. Energy Information Administration (EIA) Indexed Site

DOE Vehicle Choice and Markets Technical Workshop 1 DOE Vehicle Choice and Markets Technical Workshop 1 January 2013 EIA-DOE Vehicle Choice and Markets Technical Workshop Meeting Summary The Department of Energy (DOE) and Energy Information Administration (EIA) held a workshop on January 25th, 2013 in Detroit, MI with marketing and automotive industry experts to discuss and better understand consumer acceptance of hybrid, plug-in hybrid, and battery electric vehicles. The workshop focused on recent survey analyses, market representation, state of the art modeling, and comparisons of projected model results. This event provided a rare and insightful opportunity to compare and contrast our understanding and representation of vehicle markets and vehicle choice modeling with our nation's automotive leaders to assure that EIA's future projections and policy

10

Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles  

E-Print Network (OSTI)

s early market for hybrid electric vehicles. TransportationThe case of hybrid-electric vehicles Jonn Axsen a, *, Deanpreferences Hybrid-electric vehicles Discrete choice model

Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

2009-01-01T23:59:59.000Z

11

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNO’Statmn Wagon (dummy) CNG’*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

12

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNO’Statmn Wagon (dummy) CNG’*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

13

A Vehicle Ownership and Utilization Choice Model with Edogenous Residential Density  

E-Print Network (OSTI)

be 3.4 million gallons by car usage and 2.2 million gallonsof 3.4 million gallons by car usage and 3.7 million gallonsordered probit, and usage of cars and trucks are modeled as

Brownstone, David; Fang, Hao Audrey

2010-01-01T23:59:59.000Z

14

Determinants of alternative fuel vehicle choice in the continental United States.  

SciTech Connect

This paper describes the ongoing investigation into the determinants of alternative fuel vehicle choice. A stated preference vehicle choice survey was conducted for the 47 of the continental U.S. states, excluding California. The national survey is based on and is an extension of previous studies on alternative fuel vehicle choice for the State of California conducted by the University of California's Institute of Transportation Studies (UC ITS). Researchers at UC ITS have used the stated-preference national survey to produce a series of estimates for new vehicle choice models. Three of these models are presented in this paper. The first two of the models were estimated using only the data from the national survey. The third model presented in this paper pools information from the national and California surveys to estimate a true national model for new vehicle choice.

Tompkins, M.

1997-12-18T23:59:59.000Z

15

Social Implications of Vehicle Choice and Use  

E-Print Network (OSTI)

Prices by Vehicle Type and Manufacturer Fuel Efficient andto understand how vehicle manufacturers and dealers sharePrices by Vehicle Type and Manufacturer Section 3.4. Section

Langer, Ashley Anne

2010-01-01T23:59:59.000Z

16

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network (OSTI)

the agriculture industry to electric vehicles. Organizationsindustry, however, strongly prefers gasoline vehicle to the electricelectric vehicles. Methanol appears to be the alternative fuel of choice by agriculture industry.

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

17

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

18

Search for Model Year 2000 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

19

Search for Model Year 2014 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Model Year: 2014 Select Class... Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles...

20

Search for Model Year 2001 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Search for Model Year 2004 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Bifuel (Propane) Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

22

Search for Model Year 2008 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

23

Search for Model Year 2003 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

24

Search for Model Year 2002 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

25

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)  

Science Conference Proceedings (OSTI)

Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

Not Available

2010-03-01T23:59:59.000Z

26

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)  

DOE Green Energy (OSTI)

Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

Not Available

2008-06-01T23:59:59.000Z

27

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice  

DOE Green Energy (OSTI)

This Clean Cities Program fact sheet describes aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It discusses performance and lists additional resources.

Not Available

2007-05-01T23:59:59.000Z

28

Search for Model Year 2013 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

29

Search for Model Year 2012 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

30

Search for Model Year 2011 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

31

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

an FFV? an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs are equipped with modified components designed specifically to be compatible with ethanol's chemical properties. In the illustration on the back, the main modifications for FFVs are

32

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Modeling, Testing and Analysis to someone by E-mail Share Vehicle Technologies Office: Modeling, Testing and Analysis on Facebook Tweet about Vehicle Technologies Office: Modeling, Testing and Analysis on Twitter Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Google Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Delicious Rank Vehicle Technologies Office: Modeling, Testing and Analysis on Digg Find More places to share Vehicle Technologies Office: Modeling, Testing and Analysis on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by

33

Hybrid Electric Vehicles - HEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Modeling Background Because of time and cost constraints, designers cannot build and test each of the many possible powertrain configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a collaborative effort to further develop Autonomie in collaboration with General Motors. Autonomie is sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Program. Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

34

Model Year 2014 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

4 SmartWay Vehicles Updated November 6, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 12 Model Displ Cyl Trans Drive Fuel Sales...

35

Model Year 2013 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Updated August 14, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 13 Model Displ Cyl Trans Drive Fuel Sales...

36

A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation  

DOE Green Energy (OSTI)

This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2010-01-01T23:59:59.000Z

37

Search for Model Year 2005 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2005 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

38

Search for Model Year 2009 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2009 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

39

Search for Model Year 2010 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2010 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

40

NREL: Vehicle Ancillary Loads Reduction - Integrated Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Modeling Integrated Modeling NREL's Vehicle Ancillary Loads Reduction (VALR) team predicts the impact of advanced vehicle cooling technologies before testing by using an integrated modeling process. Evaluating the heat load on a vehicle under real world conditions is a difficult task. An accepted method to evaluate passenger compartment airflow and heat transfer is computational fluid dynamics. (CFD). Combining analytical models with CFD provides a powerful tool to assist industry both on current vehicles and on future design studies. Flow chart showing the vehicle integrated modeling process which considers solar radiation, air conditioning, and vehicles with CAD, glazing, cabin thermal/fluid, and thermal comfort modeling tools. Results are provided for fuel economy, tailpipe emissions and occupant thermal comfort.

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Analysis Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by modeling, testing, and analysis. This work complements the research on batteries, power electronics, and materials, helping researchers integrate these components and ensure the whole vehicle meets consumer and commercial needs. Modeling allows researchers to build "virtual vehicles" that simulate fuel economy, emissions and performance of a potential vehicle. The Office has supported the development of several software-based analytic tools that researchers can use or license. Integration and Validation allows researchers to test physical component and subsystem prototypes as if they are in a real vehicle. Laboratory and Fleet Testing provides data on PEVs through both dynamometer and on-the-road testing. Researchers use the data to benchmark current vehicles, as well as validate the accuracy of software models.

42

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

background not only to vehicle manufacturers, but also todomestic and foreign vehicle manufacturers, and millions ofmakers as well as vehicle manufacturers. For example, as

Choo, S; Mokhtarian, Patricia L

2004-01-01T23:59:59.000Z

43

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network (OSTI)

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliot William

2009-01-01T23:59:59.000Z

44

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network (OSTI)

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliott William

2009-01-01T23:59:59.000Z

45

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network (OSTI)

of the Top Five Manufacturers by Vehicle Type. (Source:Table 7: U.S. New Vehicle Sales by Manufacturer and VehicleTable 8: U.S. New Vehicle Sales by Manufacturer and Vehicle

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

46

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network (OSTI)

Economy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid Tax

Martin, Elliott William

2009-01-01T23:59:59.000Z

47

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network (OSTI)

Economy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid Tax

Martin, Elliot William

2009-01-01T23:59:59.000Z

48

Model Year 2013: Alternative Fuel Vehicles and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

13: Alternative Fuel and Advanced Technology Vehicles 13: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 3/6/13) 1 Source: http:/afdc.energy.gov/vehicles/search/light/ Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy HEV Acura ILX Sedan 1.5L I4 ECVT Tier 2 Bin 3 LEVII PZEV 39 / 38 N/A FFV E85 Audi A4 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Cabriolet Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi Allroad Quatro Wagon 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 27 14 / 18 FFV E85 Audi Q5 SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 28 14 / 19 HEV Audi Q5 Hybrid SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 24 / 30 N/A FFV E85 Bentley

49

Model Year 2003 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 2 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

50

Model Year 2010 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 20 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score...

51

Model Year 2009 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 16 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

52

Model Year 2001 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score SmartWay HONDA Accord...

53

Model Year 2012 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

54

Model Year 2007 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 18 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

55

Model Year 2000 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score...

56

Model Year 2011 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 10 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

57

Model Year 2008 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 20 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

58

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network (OSTI)

and subsidies for hybrid or alternative fuel vehicles (seesubsidies in the form of tax credits or deductions on hybrid vehicle

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

59

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network (OSTI)

4.3.1 Tax Incentives for Hybrid Vehicles . . . . . .adoption. Tax Incentives for Hybrid Vehicles Adoption of new

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

60

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Proceedings LBNL Report Number...

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network (OSTI)

about 20% will be compressed natural gas, and almost 21%if we could make compressed natural gas (CNG) vehicles withabout 20% will be compressed natural gas, and almost 21%

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

62

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network (OSTI)

4.2 Hybrid Vehicle Price Decreases due to Learning-by-Doing4.3.1 Tax Incentives for Hybrid Vehicles . . . . . .Predicted percentage of hybrid vehicle sales with different

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

63

A Statistical Model of Vehicle Emissions and Fuel Consumption  

E-Print Network (OSTI)

A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

Cappiello, Alessandra

2002-09-17T23:59:59.000Z

64

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

Not Available

2011-02-01T23:59:59.000Z

65

Modeling and Simulation of Electric and Hybrid Vehicles  

E-Print Network (OSTI)

INVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design of electric and hybrid vehicles. Different modeling methods such as physics-based Resistive Companion Form

Mi, Chunting "Chris"

66

Understanding the Effect of Baseline Modeling Implementation Choices on  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Effect of Baseline Modeling Implementation Choices on Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance Title Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance Publication Type Conference Paper LBNL Report Number LBNL-5560E Year of Publication 2013 Authors Addy, Nathan, Johanna L. Mathieu, Sila Kiliccote, and Duncan S. Callaway Conference Name ASME 2013 International Mechanical Engineering Congress & Exposition Conference Location Houston, TX Keywords market sectors, technologies Abstract Accurate evaluation of the performance of buildings participating in Demand Response (DR) programs is critical to the adoption and improvement of these programs. Typically, we calculate load sheds during DR events by comparing observed electric demand against counterfactual predictions made using statistical baseline models. Many baseline models exist and these models can produce different shed calculations. Moreover, modelers implementing the same baseline model can make different modeling implementation choices, which may affect shed estimates. In this work, using real data, we analyze the effect of different modeling implementation choices on shed predictions. We focused on five issues: weather data source, resolution of data, methods for determining when buildings are occupied, methods for aligning building data with temperature data, and methods for power outage filtering. Results indicate sensitivity to the weather data source and data filtration methods as well as an immediate potential for automation of methods to choose building occupied modes.

67

Modeling and Validation of a Fuel Cell Hybrid Vehicle  

E-Print Network (OSTI)

This paper describes the design and construction of a fuel cell hybrid electric vehicle based on the conversion of a five passenger production sedan. The vehicle uses a relatively small fuel cell stack to provide average power demands, and a battery pack to provide peak power demands for varied driving conditions. A model of this vehicle was developed using ADVISOR, an A__dvanced Vehicle Simulator that tracks energy flow and fuel usage within the vehicle drivetrain and energy conversion components.

Michael J. Ogburn; Douglas J. Nelson; Keith Wipke; Tony Markel

2000-01-01T23:59:59.000Z

68

Modelling vehicle emissions from an urban air-quality perspective:testing vehicle emissions interdependencies.  

E-Print Network (OSTI)

??Abstract This thesis employs a statistical regression method to estimate models for testing the hypothesis of the thesis of vehicle emissions interdependencies. The thesis at… (more)

Dabbas, Wafa M

2010-01-01T23:59:59.000Z

69

NREL: Vehicle Ancillary Loads Reduction - Physiological Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Physiological Model Physiological Model The Vehicle Ancillary Loads Reduction team developed a three-dimensional model to simulate human internal thermal physiological systems (muscle, blood, etc.) and thermoregulatory responses such as metabolic heat generation. The model was developed with ANSYS, a finite element software which computes heat flow by conduction, convection, and mass transport of the blood. A human tissue system model represents the human body, including the physiological and thermal properties of the tissues. The arms and legs consist of bone, muscle, fat, and skin. There are additional lung, abdominal, and brain tissues in the torso and head zones. The model calculates the conduction heat transfer based on the temperature gradients between the tissue nodes. Blood flow is modeled with a network of supply

70

Vehicle Technologies Office: Modeling and Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

and low emissions in advanced internal combustion engine, advanced diesel engine, hybrid electric, and fuel cell vehicles. Advanced technology vehicles can incorporate any of a...

71

Model Year 2014 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Updated December 20, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Smog Rating City MPG Hwy MPG Cmb MPG Greenhouse Gas Rating SmartWay ACURA ILX 1.5 4 SCV-7 2WD Gasoline FA B2 Federal Tier 2 Bin 2 EHNXV01.58D2 small car 9 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline CA PZEV California PZEV EHNXV01.58D2 small car 9 39 38 38 9 yes ACURA ILX 2 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV EHNXV02.0EB3 small car 6 24 35 28 7 yes ACURA RLX 3.5 6 SemiAuto-7 4WD Gasoline FA B3 Federal Tier 2 Bin 3 EHNXV03.52G2 midsize car 7 28 32 30 8 yes ACURA RLX 3.5 6 SemiAuto-7 4WD Gasoline CA L3SULEV30 California LEV-III SULEV30 EHNXV03.52G2 midsize car 8 28 32 30 8 yes ACURA TSX 2.4 4 SemiAuto-5

72

Model Year 2013 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Updated August 14, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 13 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA ILX 1.5 4 SCV-7 2WD Gasoline FC B3 Federal Tier 2 Bin 3 DHNXV01.5WF2 small car 7 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline FA B2 Federal Tier 2 Bin 2 DHNXV01.5YD2 small car 8 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline CA PZEV California PZEV DHNXV01.5YD2 small car 9 39 38 38 9 yes ACURA ILX 2 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV02.0CB2 small car 6 24 35 28 7 yes ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV02.4DB3 small car 6 22 31 26 7 yes AUDI A3 2 4 AMS-6 2WD Diesel FA B5 Federal Tier 2 Bin 5

73

Modelling Recreation Demand using Choice Experiments: Climbing in Scotland  

E-Print Network (OSTI)

This paper is concerned with the use of the choice experiment method for modelling the demand for recreation, using the example of rock-climbing in Scotland. We begin by outlining the method itself, including its theoretical and econometric underpinnings. Data collection procedures are then outlined. We present results from both nested and non-nested models, and report some tests for the implications of choice complexity and rationality. Finally, we compare our results with a revealed preference data model based on the same sample of climbers.

Nick Hanley; Robert E. Wright; Gary Koop

2000-01-01T23:59:59.000Z

74

Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles  

E-Print Network (OSTI)

D R.L. Polk & Co. , 2006. Hybrid Vehicle Registrations Morecapital cost of the hybrid vehicle, subsidy providedfor the hybrid vehicle, horsepower of the hybrid vehicle,

Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

2009-01-01T23:59:59.000Z

75

COMBINING STATED AND REVEALED CHOICE RESEARCH TO INFORM ENERGY SYSTEM  

E-Print Network (OSTI)

from a vehicle attribute database. RP dynamics were assessed by comparing models estimated from regions....................................................................................................33 2.2.2 Vehicle Database technologies, including choices among appliances (Nanduri, Tiedemann, & Bilodeau, 2002), energy suppliers

76

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

Mégel. 2011. “Modeling Electric Vehicle Benefits Connectedenvironmental value of plug-in electric vehicles connectedBattaglia. 2010. “Plug-in Electric Vehicle Interactions with

Mendes, Goncalo

2013-01-01T23:59:59.000Z

77

Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR  

DOE Green Energy (OSTI)

Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

Markel, T.; Wipke, K.

2001-01-01T23:59:59.000Z

78

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

VISION Model for Vehicle Technologies and Alternative Fuels VISION Model for Vehicle Technologies and Alternative Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: VISION Model for Vehicle Technologies and Alternative Fuels Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Create a Vision Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/VISION/ OpenEI Keyword(s): EERE tool, VISION Model for Vehicle Technologies and Alternative Fuels References: The VISION Model [1] Estimate the potential energy use, oil use, and carbon emission impacts of advanced light and heavy-duty vehicle technologies and alternative fuels through 2050. The VISION model has been developed to provide estimates of the potential

79

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

80

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

E-Print Network (OSTI)

level, the choice alternatives are cooling and no cooling.space heating alternatives with central cooling (gas, oil,choice model. Alternative formulations of the cooling choice

Wood, D.J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Emissions Modeling for Electric Vehicles: Progress Report  

Science Conference Proceedings (OSTI)

There has been considerable debate and numerous publications comparing the emissions from alternative fuel vehicles with those of internal combustion engine vehicles. Considering the highly competitive nature of the automotive industry, the size of the automotive fuels markets, and intense regulatory scrutiny of emissions, there is no easy method of establishing agreement on all of the analytical factors involved in emissions analysis from vehicles. However, agreement on many of the factual parameters sh...

1999-12-09T23:59:59.000Z

82

Model Year 2012 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXV02.4DB9 small car 6 22 31 26 6 yes ACURA TSX Wagon 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXV02.4DB9 station wagon 6 22 30 25 6 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel FA B5 Federal Tier 2 Bin 5 CVWXV02.0U5N station wagon 5 30 42 34 7 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel CA U2 California LEV-II ULEV CVWXV02.0U5N station wagon 6 30 42 34 7 yes AUDI A4 2 4 CVT 2WD Gasoline CA U2 California LEV-II ULEV CADXJ02.03UB small car 6 22 30 25 6 yes AUDI A4 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV CADXJ02.03UB small car 6 21 31 25 6 yes AUDI A5 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV

83

Model Year 2004 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 5 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 4HNXV02.0RKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 4HNXV02.0XKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 4HNXV02.0XKC small car 6 24 30 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA LEV 4HNXV02.0RKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA LEV 4HNXV02.0XKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA LEV 4HNXV02.0XKC small car 6 24 30 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 4HNXV03.2CKR midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 4HNXV03.2CKR midsize car 7 18 28 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5

84

Model Year 2005 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 9 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 5HNXV02.0HKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 5HNXV02.4KBP small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 5HNXV02.4KBP small car 6 24 31 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA L2 5HNXV02.0HKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA L2 5HNXV02.4KBP small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA L2 5HNXV02.4KBP small car 6 24 31 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 5HNXV03.24B4 midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 5HNXV03.24B4 midsize car 7 18 26 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5 2WD

85

Model Year 2002 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CL LEV 2HNXV02.0EKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 21 30 24 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 23 30 26 8 yes HONDA Accord 2.3 (4 cyl) Auto-L4 2WD Gasoline CA SLEV 2HNXV02.3FK6 midsize car 9 20 28 23 7 yes HONDA CR-V 2.4 (4 cyl) Auto-L4 2WD Gasoline NF LEV 2HNXT02.4YBP SUV 6 20 26 23 7 yes HONDA Civic 1.7 (4 cyl) Auto-AV 2WD CNG CA SLEV 2HNXV01.74WN small car 9.5 26 31 28 9 yes HONDA Civic 1.7 (4 cyl) Auto-AV 2WD CNG NL+CF ULEV 2HNXV01.74WN small car 9 26 31 28 9 yes HONDA Civic 2 (4 cyl) Man-5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 23 28 25 7 yes HONDA Insight 1 (3 cyl)

86

Model Year 2006 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 11 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 24 31 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 24 31 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 6HNXV03.2NKR midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 6HNXV03.2NKR midsize car 7 18 26 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5 2WD

87

Model Year 2011 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 10 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXV02.4DB9 small car 6 22 31 26 6 yes ACURA TSX Wagon 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXV02.4DB9 station wagon 6 22 30 25 6 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel CA U2 California LEV-II ULEV BVWXV02.0U5N station wagon 6 30 42 34 7 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel FA B5 Federal Tier 2 Bin 5 BVWXV02.0U5N station wagon 5 30 42 34 7 yes AUDI A4 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV BADXJ02.03UB small car 6 21 31 25 6 yes AUDI A4 2 4 CVT 2WD Gasoline CA U2 California LEV-II ULEV BADXJ02.03UB small car 6 22 30 25 6 yes AUDI A5 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV

88

Residential mobility and location choice: a nested logit model with sampling of alternatives  

E-Print Network (OSTI)

Waddell, P. : Modeling residential location in UrbanSim. In:D. (eds. ) Modelling Residential Location Choice. Springer,based model system and a residential location model. Urban

Lee, Brian H.; Waddell, Paul

2010-01-01T23:59:59.000Z

89

Vehicle Technologies Office: Fact #400: November 28, 2005 Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2005 Model Year 2006 Fuel Economy and Fuel Cost to someone by E-mail Share Vehicle Technologies Office: Fact 400: November 28, 2005 Model Year 2006 Fuel Economy and Fuel Cost...

90

MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPRESSED NATURAL GAS VEHICLES ... 5 LIQUEFIED PETROLEUM GAS (PROPANE) VEHICLES ...... 5 DIESEL VEHICLES ......

91

Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Collaboration Modeling Collaboration Is a Win-Win Situation for Vehicle Research to someone by E-mail Share Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Facebook Tweet about Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Twitter Bookmark Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Google Bookmark Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Delicious Rank Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Digg Find More places to share Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on AddThis.com...

92

Tri-City Herald OpEd: Electric Vehicles are a smart choice  

SciTech Connect

Why are so many of us at the Pacific Northwest National Laboratory, a national thought leader in power industry issues located right here in the Tri-Cities, so bullish on the future of EVs? And why do we think it's so important that this country, especially THIS part of the country, be leaders in the adoption of EVs? Is it that we all just happen to like driving polluting golf carts? The answer is that, like most everyone else, most of us here at PNNL drive to work every day, and like most people, we care about the cost of gasoline and the impact that burning imported oil has on the environment and on our foreign policy. The reality is that electric vehicles are simply more efficient, pollute much less, use locally-generated energy, and cost MUCH less to drive.

Christensen, Peter C.; Haas, Anne M.

2010-12-10T23:59:59.000Z

93

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

Modeling Electric Vehicle Benefits Connected to Smart Grids Michael Stadler1,2 , Chris Marnay1 to be presented at the 7th IEEE Vehicle Power and Propulsion Conference Chicago, IL, Sept 6-9 2011 http, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement

94

Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year  

NLE Websites -- All DOE Office Websites (Extended Search)

4: September 16, 4: September 16, 2002 2003 Model Year Alternative Fuel Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Facebook Tweet about Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Twitter Bookmark Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Google Bookmark Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Delicious Rank Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Digg Find More places to share Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on

95

Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles  

E-Print Network (OSTI)

capital cost of the hybrid vehicle, subsidy provided for thesubsidy Same as current vehicle (150 HP) Small SUV hybrid-hybrid vehicle fuel ef?ciency, and gasoline price. While capital cost, subsidy

Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

2009-01-01T23:59:59.000Z

96

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network (OSTI)

Taurus Ford Explorer Toyota Prius Comfort Annual Fixed CostFor example, when the Toyota Prius first came onto the mar-Hybrid Highlander Hybrid Prius Eligible Model Years Table

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

97

Modeling of Plug-in Electric Vehicles' Interactions with a Sustainable...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Plug-in Electric Vehicles' Interactions with a Sustainable Community Grid in the Azores Title Modeling of Plug-in Electric Vehicles' Interactions with a Sustainable Community...

98

Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models  

E-Print Network (OSTI)

HC Reduction in S.E. (%) NOx Reduction in S.E. (%) Table 2:c) HC, d) NOx Younglove/Scora/Barth VSP Bin CO2 Reduction inNOx Table 1: Vehicle Specific Power bins used in preliminary MOVES model (4). Table 2: Percent reduction

Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

99

The development of a prescreening model to identify failed and gross polluting vehicles  

E-Print Network (OSTI)

variables de?ned by the vehicle manufacturer or model year.studies often pooled vehicle manufacturers into categories (emissions of a given manufacturer’s vehicles can also vary

Choo, Sangho; Shafizadeh, Kevan; Niemeier, Deb

2007-01-01T23:59:59.000Z

100

Combined quasi-static backward modeling and look-ahead fuzzy control of vehicles  

Science Conference Proceedings (OSTI)

Vehicle modeling can play an important role in vehicle power train design, control and energy management investigation. This paper presents a method for vehicle power train modeling. The key feature of the method is its presentation of the dynamic of ... Keywords: Fuzzy logic, Look-ahead controller, Power train vehicle modeling, Quasi-static backward facing, Simulation

Behnam Ganji; Abbas Z. Kouzani

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.  

DOE Green Energy (OSTI)

Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

Burnham, A.; Wang, M. Q.; Wu, Y.

2006-12-20T23:59:59.000Z

102

Household appliance choice: revision of REEPS behavioral models. Final report  

Science Conference Proceedings (OSTI)

This report describes the analysis of household decisions to install space heating, central cooling, and water heating in new housing as well as decisions to own freezers and second refrigerators. This analysis was conducted as part of the enhancements to the Residential End-Use Energy Planning System (REEPS) under EPRI project RP1918-1. The empirical models used in this analysis were the multinomial logit and its generalization the nested logit. The choice model parameters were estimated statistically on national and regional survey data. The results show that capital and operating costs are significant determinants of appliance market penetrations, and the relative magnitudes of the cost coefficients imply discount rates ranging from 3.4 to twenty-one percent. Several tests were conducted to examine the temporal and geographical stability of the key parameters. The estimated parameters have been incorporated into the REEPS computer code. The revised version of REEPS is now available on a limited release basis to EPRI member utilities for testing on their system.

Goett, A.A.

1984-02-01T23:59:59.000Z

103

Battery modeling for electric vehicle applications using neural networks  

SciTech Connect

Neural networking is a new approach to modeling batteries for electric vehicle applications. This modeling technique is much less complex then a first principles model but can consider more parameters then classic empirical modeling. Test data indicates that individual cell size and geometry and operating conditions affect a battery performance (energy density, power density and life). Given sufficient battery data, system parameters and operating conditions a neural network model could be used to interpolate and perhaps even extrapolate battery performance under wide variety of operating conditions. As a result the method could be a valuable design tool for electric vehicle battery design and application. This paper describes the on going modeling method at Texas A and M University and presents preliminary results of a tubular lead acid battery model. The ultimate goal of this modeling effort is to develop the values necessary to be able to predict performance for batteries as wide ranging as sodium sulfur to zinc bromine.

Swan, D.H.; Arikara, M.P.; Patton, A.D.

1993-12-31T23:59:59.000Z

104

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Electric Vehicle Benefits Connected to Smart Grids Modeling Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Paper Year of Publication 2011 Authors Stadler, Michael, Chris Marnay, Ratnesh Sharma, Gonçalo Mendes, Maximillian Kloess, Gonçalo Cardoso, Olivier Mégel, and Afzal S. Siddiqui Conference Name 7th IEEE Vehicle Power and Propulsion Conference Date Published 09/2011 Publisher LBNL Conference Location Chicago, IL Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

105

Operator Choice Modeling for Collaborative UAV Visual Search Tasks  

E-Print Network (OSTI)

Unmanned aerial vehicles (UAVs) provide unprecedented access to imagery of possible ground targets of interest in real time. The availability of this imagery is expected to increase with envisaged future missions of one ...

Bertuccelli, Luca F.

106

Commentary---On the Interpretation of Temporal Inflation Parameters in Stochastic Models of Judgment and Choice  

Science Conference Proceedings (OSTI)

The implications of Salisbury and Feinberg's (2010) paper [Salisbury, L. C., F. M. Feinberg. 2010. Alleviating the constant stochastic variance assumption in decision research: Theory, measurement, and experimental test. Marketing Sci.29(1) ... Keywords: behavioral decision theory, behavioral economics, choice modeling, intertemporal choice, measurement and inference, psychological process models, random utility models

J. Wesley Hutchinson; Gal Zauberman; Robert Meyer

2010-01-01T23:59:59.000Z

107

Vehiculos de Combustible Flexible: Brindando Opciones en Combustible Renovable (Flexible Fuel Vehicles: Providing a Renewable Fuel Choice) (Fact Sheet)  

SciTech Connect

The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

2010-05-01T23:59:59.000Z

108

Measuring and Modeling Emissions from Extremely Low Emitting Vehicles  

E-Print Network (OSTI)

last several years, vehicle manufacturers have started tospecifications by the vehicle manufacturers, and are readilymanufacturers have been producing gasoline-powered vehicles

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

2006-01-01T23:59:59.000Z

109

Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles  

E-Print Network (OSTI)

last several years, vehicle manufacturers have started tospecifications by the vehicle manufacturers, and are readilymanufacturers have been producing gasoline-powered vehicles

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

2006-01-01T23:59:59.000Z

110

Vehicle-track-underground modeling of rail induced wave propagation  

Science Conference Proceedings (OSTI)

A moving rail vehicle may cause propagating waves to the surroundings potentially leading to detrimental effects for the track construction, nuisances for the surroundings and interference with delicate electronic equipment. A full computational model ... Keywords: Finite element analysis, Rigid body dynamics, Vibrations

Håkan Lane; Torbjörn Ekevid; Per Kettil; Chun Yuen Ching; Nils-Erik Wiberg

2007-08-01T23:59:59.000Z

111

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

112

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Model Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevy Equinox, Ford Explorer) have been validated within 1% of fuel economy. Hybrid electric vehicles (e.g., Honda Insight, Toyota Prius, Lexus RX400h) have been validated...

113

Nonlinear and linear models for losses of plug in hybrid electric vehicle: A computation approach  

Science Conference Proceedings (OSTI)

This paper presents nonlinear and linear models for the losses of Plug in Hybrid Electric Vehicle (PHEV). An accurate model to calculate the PHEV losses for just one vehicle is not remarkable. However

2013-01-01T23:59:59.000Z

114

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

115

Lean NOx Trap Modeling in Vehicle Systems Simulations  

DOE Green Energy (OSTI)

A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Conklin, Jim [ORNL

2010-09-01T23:59:59.000Z

116

Vehicle Transient Air Conditioning Analysis: Model Development& System Optimization Investigations  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has developed a transient air conditioning (A/C) system model using SINDA/FLUINT analysis software. It captures all the relevant physics of transient A/C system performance, including two-phase flow effects in the evaporator and condenser, system mass effects, air side heat transfer on the condenser/evaporator, vehicle speed effects, temperature-dependent properties, and integration with a simplified cabin thermal model. It has demonstrated robust and powerful system design optimization capabilities. Single-variable and multiple variable design optimizations have been performed and are presented. Various system performance parameters can be optimized, including system COP, cabin cool-down time, and system heat load capacity. This work presents this new transient A/C system analysis and optimization tool and shows some high-level system design conclusions reached to date. The work focuses on R-134a A/C systems, but future efforts will modify the model to investigate the transient performance of alternative refrigerant systems such as carbon dioxide systems. NREL is integrating its transient air conditioning model into NRELs ADVISOR vehicle system analysis software, with the objective of simultaneously optimizing A/C system designs within the overall vehicle design optimization.

Hendricks, T. J.

2001-06-01T23:59:59.000Z

117

Equivalent circuit modeling of hybrid electric vehicle drive train  

E-Print Network (OSTI)

The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool. The objective of this work is to develop and validate a modeling and design method adapted to advanced vehicles conception. The designer, as a system engineer, needs performances predictions and physical understanding of the system dynamics. In order to achieve this objective, a methodology based on electrical analogies and transducers theory is presented in this work. Using the powerful circuit theory to solve multi-disciplinary problems is not revolutionary, but applied to the design of advanced vehicles, it brings a strong insight and a visual, intuitive interpretation of the set of differential equations. The equivalent circuit obtained from this method offers an elegant alternative to traditional methods and is especially adapted to the study of the interactions between the mechanical and the electrical side of any electromechanical system.

Routex, Jean-Yves

2001-01-01T23:59:59.000Z

118

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

119

Analysis of Acoustic Signatures from Moving Vehicles UsingTime-Varying Autoregressive Models  

Science Conference Proceedings (OSTI)

Time-varying autoregressive (TVAR) modeling approach for the analysis of acoustic signatures from moving vehicles is presented in this paper. Acoustic signatures from moving vehicles are nonstationary, and features extracted under the stationary ... Keywords: acoustic, classification, time-varying autoregressive model, time-varying, vehicle identification

Kie B. Eom

1999-10-01T23:59:59.000Z

120

Search on Modeling and Collaborative Simulation for Electric Drive Wheeled Armored Vehicle  

Science Conference Proceedings (OSTI)

In order to evaluate the performance of electric transmission wheeled armored vehicle, models of motor driving system and dynamics of the 8 wheels drive vehicles based on ADAMS/Car were constructed, which compose the model of collaborative simulation ... Keywords: ADAMS/Car, Matlab, electric transmission, wheeled armored vehicle, collaborative simulation, dynamic performance

Zili Liao, Guibing Yang, Chunguang Liu, Yu Xiang

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in  

E-Print Network (OSTI)

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

Victoria, University of

122

A Structural Model of Vehicle Use in Two-Vehicle Households  

E-Print Network (OSTI)

vehicle sports car implies that usage is shifted towardthecars as secondcars have a weakerpositive relationship to usage,

Golob, Thomas F.; Kim, Seyoung; Ren, Weiping

1994-01-01T23:59:59.000Z

123

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

Auto Industry Models to Review Electric Vehicle Costing andElectric Vehicles in the Nation's Energy Future , DE86-003295, Argonne National Laboratory, Illinois, November (1984). Auto industry

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

124

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

125

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

locations for systems connecting electric vehicles with solar energy sources and microgrids. A microgrid that integrates renewable generation and vehicle energy storage offers...

126

Advanced controls and modeling of a hybrid vehicle.  

E-Print Network (OSTI)

??The Texas Tech University Advanced Vehicle Engineering Team has been working in vehicle competitions for 20 years. From that experience the team designed a hybrid… (more)

Harrison, Matthew

2008-01-01T23:59:59.000Z

127

Plug-In Hybrid Electric Vehicles - PHEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a...

128

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

129

Trajectory Design and Implementation for Multiple Autonomous Underwater Vehicles Based on Ocean Model Predictions  

E-Print Network (OSTI)

Underwater Vehicles Based on Ocean Model Predictions Ryan N.Trajectory Design based on Ocean Model Predictions PredictEffective tracking of ocean features Gather specific in situ

2009-01-01T23:59:59.000Z

130

Passing the buck in the garbage can model of organizational choice  

Science Conference Proceedings (OSTI)

We reconstruct Cohen, March and Olsen's Garbage Can model of organizational choice as an agent-based model. In the original model, the members of an organization can postpone decision-making. We add another means for avoiding making decisions, that of ... Keywords: Buck-passing, Garbage can model, Organizational decision making, Postponing decisions

Guido Fioretti; Alessandro Lomi

2010-06-01T23:59:59.000Z

131

Comparative Modeling Analysis of Plug-in Electric Vehicle Architectures  

Science Conference Proceedings (OSTI)

This report describes the assumptions and results for advanced vehicle simulation analysis. A midsize sedan was used to investigate the conventional, pre-transmission parallel, input power-split, series, and full electric architectures. Variations of these architectures were also investigated such as charge-sustaining hybrid electric vehicles, charge-depleting plug-in hybrid electric vehicles, and extended-range electric-vehicles (EREVs). The differences in these vehicle architectures and variations are ...

2010-12-21T23:59:59.000Z

132

Large-scale battery system modeling and analysis for emerging electric-drive vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles demonstrate the potential for significant reduction of petroleum consumption and greenhouse gas emissions. Existing electric-drive vehicles typi- cally include a battery system consisting of thousands of Lithium-ion battery ... Keywords: analysis, battery system model, electric-drive vehicles

Kun Li; Jie Wu; Yifei Jiang; Zyad Hassan; Qin Lv; Li Shang; Dragan Maksimovic

2010-08-01T23:59:59.000Z

133

Searching for simplified farmers' crop choice models for integrated watershed management in Thailand: A data mining approach  

Science Conference Proceedings (OSTI)

This study used the C4.5 data mining algorithm to model farmers' crop choice in two watersheds in Thailand. Previous attempts in the Integrated Water Resource Assessment and Management Project to model farmers' crop choice produced large sets of decision ... Keywords: Data mining, Decision support system, Decision trees, Farmers' crop choice

Benchaphun Ekasingh; Kamol Ngamsomsuke

2009-12-01T23:59:59.000Z

134

VISION Model : description of model used to estimate the impact of highway vehicle technologies and fuels on energy use and carbon emissions to 2050.  

DOE Green Energy (OSTI)

The VISION model has been developed by the U.S. Department of Energy (DOE) to provide estimates of the potential energy use, oil use, and carbon emission impacts to 2050 of advanced light- and heavy-duty highway vehicle technologies and alternative fuels. DOE supports research of advanced transportation technologies (including fuels) and is frequently asked to provide estimates of the potential impacts of successful market penetration of these technologies, sometimes on a relatively quick-turnaround basis. VISION is a spreadsheet model in Microsoft Excel that can be used to respond rapidly to quick-turnaround requests, as well as for longer-term analyses. It uses vehicle survival and age-dependent usage characteristics to project total light and heavy vehicle stock, total vehicle miles of travel (VMT), and total energy use by technology and fuel type by year, given market penetration and vehicle energy efficiency assumptions developed exogenously. Total carbon emissions for on-highway vehicles by year are also estimated because life-cycle carbon coefficients for various fuels are included in VISION. VISION is not a substitute for the transportation component of the Energy Information Administration's (EIA's) National Energy Modeling System (NEMS). NEMS incorporates a consumer choice model to project market penetration of advanced vehicles and alternative fuels. The projections are made within the context of the entire U.S. economy. However, the NEMS model is difficult to use on a quick-turnaround basis and only makes projections to 2025. VISION complements NEMS with its relative ''user-friendliness'' and by extending the time frame of potential analysis. VISION has been used for a wide variety of purposes. For illustration, we have listed some of its most recent and current uses in Table 1.1. Figures 1.1-1.3 illustrate the results of some of those runs. These graphs are not actual model output, but they are based on model results. The main body of this report describes VISION's methodology and data sources. The methodology and data sources used in the light- and heavy-vehicle portions of the model are discussed separately. Some suggestions for future improvements to the model are made. Appendix A provides instructions on how to run the VISION model. Appendix B describes the procedure for updating the model with the latest EIA Annual Energy Outlook (AEO).

Singh, M.; Vyas, A.; Steiner, E.

2004-02-19T23:59:59.000Z

135

Hybrid ?–p Coordinate Choices for a Global Model  

Science Conference Proceedings (OSTI)

A methodology for choosing a hybrid ?–p (sigma–pressure) vertical coordinate of the Simmons–Strüfing form for a global model is presented. The method focuses on properties of the vertical derivative of the terrain-following coefficient, which ...

Stephen Eckermann

2009-01-01T23:59:59.000Z

136

Performance and prediction: bayesian modelling of fallible choice in chess  

Science Conference Proceedings (OSTI)

Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by ...

Guy Haworth; Ken Regan; Giuseppe Di Fatta

2009-05-01T23:59:59.000Z

137

System Dynamics: HyDIVE(TM) (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model (Presentation)  

DOE Green Energy (OSTI)

This presentation by Cory Welch at the 2007 DOE Hydrogen Program Annual Merit Review Meeting focuses on Hydrogen Dynamic Infrastructure and Vehicle Evolution Model.

Welch, C.

2007-05-16T23:59:59.000Z

138

Modeling, Simulation & Implementation of Li-ion Battery Powered Electric and Plug-in Hybrid Vehicles.  

E-Print Network (OSTI)

??The modeling, simulation and hardware implementation of a Li-ion battery powered electric vehicle are presented in this thesis. The results obtained from simulation and experiments… (more)

Mantravadi, Siva Rama Prasanna

2011-01-01T23:59:59.000Z

139

Model choice considerations and information integration using analytical hierarchy process  

SciTech Connect

Using the theory of information-gap for decision-making under severe uncertainty, it has been shown that model output compared to experimental data contains irrevocable trade-offs between fidelity-to-data, robustness-to-uncertainty and confidence-in-prediction. We illustrate a strategy for information integration by gathering and aggregating all available data, knowledge, theory, experience, similar applications. Such integration of information becomes important when the physics is difficult to model, when observational data are sparse or difficult to measure, or both. To aggregate the available information, we take an inference perspective. Models are not rejected, nor wasted, but can be integrated into a final result. We show an example of information integration using Saaty's Analytic Hierarchy Process (AHP), integrating theory, simulation output and experimental data. We used expert elicitation to determine weights for two models and two experimental data sets, by forming pair-wise comparisons between model output and experimental data. In this way we transform epistemic and/or statistical strength from one field of study into another branch of physical application. The price to pay for utilizing all available knowledge is that inferences drawn for the integrated information must be accounted for and the costs can be considerable. Focusing on inferences and inference uncertainty (IU) is one way to understand complex information.

Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC; Ross, Timothy J. [UNM

2010-10-15T23:59:59.000Z

140

Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles  

DOE Green Energy (OSTI)

This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Estimation of Discrete Choice Models Using DCM for Ox  

E-Print Network (OSTI)

changes. 4. If Ox has been installed properly, this will allow using the DCM package from any directory. To use the package in your code, add the command #include ’’packages/dcm/dcm.ox’’ at the top of all files which require it. 1Subscription information... .1 Data organization DCM can read any data format available in Ox and GiveWin. Fur- thermore, DCM accepts multiple types of data organizations, i.e., the organization of the data in the database. For example, in re- vealed preference or ordered models...

Eklof, Matias; Weeks, Melvyn

2004-06-16T23:59:59.000Z

142

An error model for inter-vehicle communications in highway scenarios at 5.9GHz  

Science Conference Proceedings (OSTI)

The design and evaluation of Inter-Vehicle Communication (IVC) protocols rely much on the accurate and efficient computational simulations. For simulations of Medium Access Control (MAC) and higher layers, the modeling work of underlying Physical layer ... Keywords: DSRC, IEEE 802.11p, ITS, inter-vehicle communications, packet error ratio, wireless channel model

Yunpeng Zang; Lothar Stibor; Georgios Orfanos; Shumin Guo; Hans-Juergen Reumerman

2005-10-01T23:59:59.000Z

143

Search for Model Year 2002 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

144

Search for Model Year 2000 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

145

Search for Model Year 2009 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

146

Search for Model Year 2010 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Sport...

147

Search for Model Year 2008 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

08 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

148

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

149

Modelling and control of underwater inspection vehicle for aquaculture sites.  

E-Print Network (OSTI)

?? Underwater vehicles such as AUVs and ROVs with hovering capabilities is a promising method for inspection of net integrity in large scale, sea based,… (more)

Hval, Mats Nåvik

2012-01-01T23:59:59.000Z

150

Search for Model Year 1998 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles...

151

Search for Model Year 1996 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles...

152

Search for Model Year 1990 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Standard...

153

Search for Model Year 2003 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Cab C...

154

Search for Model Year 2006 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Minivan - 2WD Small Station Wagons Sport Utility Vehicle Standard Pickup...

155

Search for Model Year 1997 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Sport...

156

Search for Model Year 2007 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Station Wagons Sport Utility Vehicle Standard Pickup Trucks Subcompact...

157

Search for Model Year 1994 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Standard...

158

Search for Model Year 2004 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Station Wagons Sport Utility Vehicle Standard Pickup Trucks Subcompact...

159

Search for Model Year 1999 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Sport...

160

Search for Model Year 2001 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Sport...

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total Cost of Ownership Model for Current Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

The plug-in electric vehicle (PEV) market has grown dramatically in the past three years, but the central question concerning PEV acceptance in the marketplace still remains: When compared to a hybrid or conventional vehicle, is a PEV worth the additional up-front cost to consumers? Given the incomplete understanding of changes in driving patterns due to vehicle purchases, the baseline analysis described in this report does not model customer adaptation, nor does it attempt to address non-tangible ...

2013-06-10T23:59:59.000Z

162

Hybrid Electric Vehicle with Permanent Magnet Traction Motor: A Simulation Model  

E-Print Network (OSTI)

A simulation model for a hybrid electric vehicle is developed. Permanent magnet synchronous motor is considered for the drive part of the hybrid electric vehicle which comprises three energy sources: (i) a fuel cell, (ii) a battery bank, and (iii) a super capacitor. Rotor-oriented speed controller is designed, and also verified by simulation results, to achieve trajectory tracking requirements of the hybrid electric vehicle within the inverter voltage and current limits.

Levent U. Gökdere; Khalid Benlyazid; Enrico; Enrico Santi; Charles W. Brice; Roger A. Dougal

1999-01-01T23:59:59.000Z

163

Orienteering problem modeling for electric vehicle-based tour  

Science Conference Proceedings (OSTI)

This paper presents the design and analyzes the performance of a tour planner for electric vehicles, aiming at overcoming their long charging time by computational intelligence. This service basically finds the maximal subset out of the whole user-selected ... Keywords: electric vehicle, genetic algorithm, orienteering problem, tour planning, visitable places

Junghoon Lee; Gyung-Leen Park

2013-03-01T23:59:59.000Z

164

Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles  

E-Print Network (OSTI)

of emissions to global climate change. Although electric cars and buses have been the focus of much of electricModelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair Supervisors: Dr. Zuomin Dong ABSTRACT Electric vehicles, as an emerging transportation platform, have been

Victoria, University of

165

2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User's Conference Proceedings (CD)  

DOE Green Energy (OSTI)

The 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference provided an opportunity for engineers in the automotive industry and the research environment to share their experiences in vehicle systems modeling using ADVISOR and PSAT. ADVISOR and PSAT are vehicle systems modeling tools developed and supported by the National Renewable Energy Laboratory and Argonne National Laboratory respectively with the financial support of the US Department of Energy. During this conference peers presented the results of studies using the simulation tools and improvements that they have made or would like to see in the simulation tools. Focus areas of the presentations included Control Strategy, Model Validation, Optimization and Co-Simulation, Model Development, Applications, and Fuel Cell Vehicle Systems Analysis. Attendees were offered the opportunity to give feedback on future model development plans.

Markel, T.

2001-08-01T23:59:59.000Z

166

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network (OSTI)

FCV: fuel cell vehicle FEA: finite element analysis GA: Genetic Algorithms GCM: Global Circulation of a power-split architecture with two modes (or configurations) introduced by General Motors Corporation.2 General Motors Designs

Victoria, University of

167

Modeling and control of a biorobotic autonomous underwater vehicle  

E-Print Network (OSTI)

Current research into Autonomous Underwater Vehicles (AUVs) has included work on biologically inspired propulsion mechanisms, for instance flapping foils. The first aim of this thesis is to develop an accurate non-linear ...

Booth, William Duncan Lewis

2006-01-01T23:59:59.000Z

168

Modeling and vehicle performance analysis of Earth and lunar hoppers  

E-Print Network (OSTI)

Planetary hoppers-vehicles which travel over the surface as opposed to on it-offer significant advantages over existing rovers. Above all, they are able to travel quickly and can overcome terrain obstacles such as boulders ...

Middleton, Akil J

2010-01-01T23:59:59.000Z

169

PRISM 2.0: Personal Transportation Module of the U.S. Regional Economy, Greenhouse Gas, and Energy (US-REGEN) Model: A Guide to Operation and Development  

Science Conference Proceedings (OSTI)

The personal transportation/electric vehicle penetration module (Transportation Module) of the U.S. Regional Economy, Greenhouse Gas, and Energy (US-REGEN) integrated regional macroeconomic model is a structural economic model of personal vehicle purchase and driving behaviors that focuses on the adoption of electric vehicles. The module employs a representation of consumers’ demographics, existing vehicles, vehicle choices, and preferences for vehicle characteristics to model personal vehicle ...

2013-09-26T23:59:59.000Z

170

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

DOE Green Energy (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

171

Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle  

E-Print Network (OSTI)

Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle engine vehicles (1). Hybrid systems of many kinds, combining a primary energy source having a high energy://www.ecsdl.org/terms_use.jsp #12;article, a model of a hybrid vehicle, including a HTPEM with lead acid batteries, is de- veloped

Nielsen, Mads Pagh

172

Estimating a Model of Strategic Network Choice: The Convenience-Store Industry in Okinawa  

E-Print Network (OSTI)

This paper examines the impacts of the merger of two multi-store …rms, using new crosssectional data from the convenience-store industry in Okinawa, Japan. I propose a general methodology for estimating a game of network choice by two multi-store …rms. I use latticetheoretical results to deal with the huge number of possible network choices. I integrate the entry model with post-entry outcome data, while correcting for the selection of entrants by simulations. Parameter estimates …nd the acquirer of a hypothetical merger of two chains would increase its number of stores in the city center in Okinawa but would decrease its number in suburbs. The trade-o ¤ of cost savings and lost revenues from clustering its own stores plays a central role in explaining this seemingly odd result. I also examine the impacts of eliminating the zoning regulation introduced in 1968, which has been a major urban policy issue.

Mitsukuni Nishida Y

2009-01-01T23:59:59.000Z

173

Analysis of WRF Model Wind Estimate Sensitivity to Physics Parameterization Choice and Terrain Representation in Andalusia (Southern Spain)  

Science Conference Proceedings (OSTI)

This paper reports on an evaluation of the relative roles of choice of parameterization scheme and terrain representation in the Weather Research and Forecasting (WRF) mesoscale model, in the context of a regional wind resource assessment. As a ...

F. J. Santos-Alamillos; D. Pozo-Vázquez; J. A. Ruiz-Arias; V. Lara-Fanego; J. Tovar-Pescador

2013-07-01T23:59:59.000Z

174

North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity  

Science Conference Proceedings (OSTI)

The viability of a generalized (Hybrid) Coordinate Ocean Model (HYCOM), together with the importance of thermobaricity and the choice of reference pressure, is demonstrated by analyzing simulations carried out using the World Ocean Circulation ...

Eric P. Chassignet; Linda T. Smith; George R. Halliwell; Rainer Bleck

2003-12-01T23:59:59.000Z

175

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

176

Industrial fuel choice analysis model. Volume II. Appendices to model documentation  

SciTech Connect

Descriptions, documentation, and other information are included in these appendices dealing with industrial fuel choices: Energy Consumption Data Base; Major Fuel Burning Installation Survey; American Boiler Manufacturers Association Data File; Midrange Energy Forecasting System; Projection Method; Capacity Utilization Rates; Nonboiler Characteristics; Boiler Capital and O and M Cost Data; Nonboiler Capital and O and M Cost Data; Approach to Estimating Energy Impacts of the Coal Conversion Regulatory Program; Index or Acronyms.

1979-01-08T23:59:59.000Z

177

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

178

Analysis of a PM DC motor model for application in feedback design for electric-powered mobility vehicles  

Science Conference Proceedings (OSTI)

Accurate modelling of Permanent Magnet (PM) DC motors is a prerequisite for expedient feedback design of electric-powered mobility vehicles. This paper identifies the parameters in the ideal equations for PM DC motors and considers the methods ... Keywords: electric-powered mobility vehicles, feedback design, frictional torque, model accuracy, modelling, permanent magnet DC motors models

Patrick Wolm; XiaoQi Chen; J. Geoffrey Chase; Warren Pettigrew; Christopher E. Hann

2010-08-01T23:59:59.000Z

179

Trajectory Design and Implementation for Multiple Autonomous Underwater Vehicles Based on Ocean Model Predictions  

E-Print Network (OSTI)

for Multiple Autonomous Underwater Vehicles Based on OceanAUVs) • Autonomous Underwater Vehicles Evolving ocean

2009-01-01T23:59:59.000Z

180

The modeling of mode choices of intercity freight transportation with the artificial neural networks and adaptive neuro-fuzzy inference system  

Science Conference Proceedings (OSTI)

Mode choice modeling is probably the most important element of transportation planning. It affects the general efficiency of travel and the allocation of resources. The development of mode choice models has recently witnessed significant advances in ... Keywords: Freight transportation, Fuzzy logic, Hybrid algorithm, Inference system, Mode choices, Neural networks, Neuro-fuzzy

Ahmet Tortum; Nadir Yayla; Mahir Gökda?

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

Vehicle manufacturer control variables for vehicle manufacturer results in massAccounting for vehicle manufacturer causes a reduction in

Wenzel, Tom

2013-01-01T23:59:59.000Z

182

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409,"HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

SciTech Connect

This paper revises and extends EPRI report EA-3409, ''Household Appliance Choice: Revision of REEPS Behavioral Models.'' That paper reported the results of an econometric study of major appliance choice in new residential construction. Errors appeared in two tables of that report. We offer revised versions of those tables, and a brief analysis of the consequences and significance of the errors. The present paper also proposes several possible extensions and re-specifications of the models examined by EPRI. Some of these are judged to be highly successful; they both satisfy economic intuition more completely than the original specification and produce a better quality fit to the dependent variable. We feel that inclusion of these modifications produces a more useful set of coefficients for economic modeling than the original specification. This paper focuses on EPRI's models of residential space heating technology choice. That choice was modeled as a nested logit structure, with consumers choosing whether to have central air conditioning or not, and, given that choice, what kind of space heating system to have. The model included five space heating alternatives with central cooling (gas, oil, and electric forced-air; heat pumps; and electric baseboard) and eight alternatives without it (gas, oil, and electric forced-air; gas and oil boilers and non-central systems; and electric baseboard heat). The structure of the nested logit model is shown in Figure 1.

Wood, D.J.; Ruderman, H.; McMahon, J. E.

1989-05-01T23:59:59.000Z

183

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network (OSTI)

non-electric vehicles, non-CNG vehicles, vehicle size, andrelated to ability to refuel EV or CNG vehicles at home.type vehicles: gasoline, CNG, methanol and EV. In the Wave-1

Sheng, Hongyan

1999-01-01T23:59:59.000Z

184

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES.  

E-Print Network (OSTI)

??The objective of modeling, verification, and synthesis of hierarchical hybrid mission control for underwater vehicle is to (i) propose a hierarchical architecture for mission control… (more)

Bhattacharyya, Siddhartha

2005-01-01T23:59:59.000Z

185

An Optimization Model for Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL; Smith, David E [ORNL

2011-01-01T23:59:59.000Z

186

Agent-Based Model of Price Competition, Capacity Choice, and Product Differentiation on Congested Networks  

E-Print Network (OSTI)

Using consistent agent-based techniques, this research models the decision-making processes of users and infrastructure owner/operators to explore the welfare consequence of price competition, capacity choice, and product differentiation on congested transportation networks. Component models include: (1) An agent-based travel demand model wherein each traveler has learning capabilities and unique characteristics (e.g. value of time); (2) Econometric facility provision cost models; and (3) Representations of road authorities making pricing and capacity decisions. Different from small-network equilibrium models in prior literature, this agent-based model is applicable to pricing and investment analyses on large complex networks. The subsequent economic analysis focuses on the source, evolution, measurement, and impact of product differentiation with heterogeneous users on a mixed ownership network (with tolled and untolled roads). Two types of product differentiation in the presence of toll roads, path differentiation and space differentiation, are defined and measured for a base case and several variants with different types of price and capacity competition and with various degrees of user

Lei Zhang; David Levinson

2006-01-01T23:59:59.000Z

187

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

188

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

189

Modeling Electric Vehicle Benefits Connected to Smart Grids  

DOE Green Energy (OSTI)

Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

2011-07-01T23:59:59.000Z

190

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

191

Reflections on Monetary Policy Choices in the Open Economy: Implications from an Optimizing Model  

E-Print Network (OSTI)

The purpose of this paper is to provide some intuition and insight into monetary policy choices faced in the open economy. The approach we pursue is to ‘inspect the mechanism ’ of the two country Clarida, Gali, Gertler (2002) optimizing model by focusing on the three main building blocks that can be derived from it: the ‘open economy ’ IS curve, the open economy Phillips curve, and the open economy Taylor rule. We emphasize the following results that are based open a benchmark specification of the model which assume that the elasticity of intertemporal substitution in consumption is less than 1. First, there will in general be a spillover from foreign output to potential domestic output. Second, there will in general be a spillover from foreign output growth to the domestic neutral real interest rate. Third, we show that a more open economy has a flatter IS curve. Fourth, we show that a more open economy has a flatter Phillips curve. We discuss that a more open economy places a larger weight on inflation stabilization in the appropriately derived quadratic approximation to the social welfare function. Sixth, we review that optimal monetary policy in the open economy can be written as a Taylor rule in the neutral real interest rate and expected domestic inflation. Seventh, we show that in a more open economy the optimal Taylor rule coefficient on expected inflation is smaller than in a more closed economy, so that the central bank needs to lean less against the wind for any given inflation shock. Eighth, while a Taylor rule is one way to write the optimal policy rule, the optimal policy rule can also be written as an augmented Taylor rule that includes the rate of nominal exchange rate depreciation and the home ? foreign growth differential. Ninth, there is a presumption that, under optimal monetary policy, bad news about inflation will be good news for the exchange rate. Reflections on Monetary Policy Choices in the Open Economy:

Richard H. Clarida; Richard H. Clarida

2007-01-01T23:59:59.000Z

192

Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles  

E-Print Network (OSTI)

1997. “Analysis of modal emissions from diverse in-useof a Comprehensive Modal Emissions Model”. Final reportof a Comprehensive Modal Emissions Model: Operating Under

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

2006-01-01T23:59:59.000Z

193

Measuring and Modeling Emissions from Extremely Low Emitting Vehicles  

E-Print Network (OSTI)

1997. “Analysis of modal emissions from diverse in-useof a Comprehensive Modal Emissions Model”. Final reportof a Comprehensive Modal Emissions Model: Operating Under

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

2006-01-01T23:59:59.000Z

194

Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and Assumptions  

SciTech Connect

Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices.

Post, Ellen S.; Grambsch, A.; Weaver, C. P.; Morefield, Philip; Huang, Jin; Leung, Lai-Yung R.; Nolte, Christopher G.; Adams, P. J.; Liang, Xin-Zhong; Zhu, J.; Mahoney, Hardee

2012-11-01T23:59:59.000Z

195

A versatile computer model for the design and analysis of electric and hybrid vehicles  

E-Print Network (OSTI)

The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct sources, usually an internal combustion engine and an electric motor. Because of the design flexibility inherent in a propulsion system that has more than one source of energy, computer er modeling is necessary to identify which parameters are mainly responsible for the performance of the power-plant and to determine which designs are most viable. The modeling system described i@ this thesis was developed to accommodate a wide range of vehicle components and modeling techniques. The modeling framework to which the drive-train component models are attached emphasizes the functional role of components and not their implementation. This creates a uniform component interface which limits access to the inner workings of a component model and improves compatibility between various types of models. Conceptual levels of abstraction are identified in this thesis which can be used to organize information in a hybrid vehicle model. By incorporating these levels into the modeling system, the tasks associated with creating a hybrid vehicle are separated allowing the designer to focus on one aspect at a time. The modeling of the various levels occurs at independent locations in the model and the interfaces between the conceptual levels are defined so that changing the implementation of a particular level does not affect its interaction with other levels. A simulation study is then detailed to show how the model can be used to create and analyze hybrid vehicle designs. The study focuses on two control algorithms which implement a sustainable, electrically-peaking, parallel hybrid design. The first algorithm reduces fuel consumption by minimizing the amount of time that the internal combustion engine is operated. The second algorithm reduces the load on the electric motor by operating the internal combustion engine over its entire speed range. The simulation results indicate that both algorithms can successfully maintain the battery state of charge over the given drive-cycle. Finally, conclusions about the model and recommendations for future studies are discussed.

Stevens, Kenneth Michael

1996-01-01T23:59:59.000Z

196

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

Electric and Hybrid Electric Vehicles (Workshop Proceedings,J. Oros, President, Electric Vehicle Infrastructure, Inc. ,Hydride Batteries for Electric Vehicles,” presented at the

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

197

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network (OSTI)

the interest in hybrid electric vehicles (HEVs) and hydrogenfollowed by hybrid electric vehicles. G.O. Collantes /are replaced only by hybrid electric vehicles and hybrid

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

198

Full vehicle dynamics model of a formula SAE racecar using ADAMS/Car  

E-Print Network (OSTI)

The Texas A&M University Formula SAE program currently has no rigorous method for analyzing or predicting the overall dynamic behavior of the student-designed racecars. The objective of this study is to fulfill this need by creating a full vehicle ADAMS/Car model incorporating an empirical tire-road force model and validating the longitudinal performance of the model by using vehicle responses recorded at the track. Creating the model requires measuring mass and inertia properties for each part, measuring the locations of all the kinematic joints, testing the Risse Racing Jupiter-5 shocks to characterize damping and stiffness, measuring engine torque, and modeling the tire behavior. Measuring the vehicle performance requires installation of the Pi Research DataBuddy data acquisition system and appropriate sensors. The 2002 Texas A&M University Formula SAE racecar, the subject vehicle, was selected because it already included some accommodations for sensors and is almost identical in layout to the available ADAMS/Car model Formula SAE templates. The tire-road interface is described by the Pacejka ??94 handling force model within ADAMS/Car that is based on a set of Goodyear coefficients. The majority of the error in the model originated from the Goodyear tire model and the 2004 engine torque map. The testing used Hoosier tires and the 2002 engine intake and exhaust configuration. The deliverable is a full vehicle model of the 2002 racecar with a 2004 engine torque map and a tire model correlated to longitudinal performance recorded at the track using the installed data acquisition system. The results of the correlation process, confirmed by driver impressions and performance of the 2004 racecar, show that the 2004 engine torque map predicts higher performance than the measured response with the 2002 engine. The Hoosier tire on the Texas A&M University Riverside Campus track surface produces 75??3% of peak longitudinal tire performance predicted by the Goodyear tire model combined with a road surface friction coefficient of 1.0. The ADAMS/Car model can now support the design process as an analysis tool for full vehicle dynamics and with continued refinement, will be able to accurately predict behavior throughout a complete autocross course.

Mueller, Russell Lee

2005-08-01T23:59:59.000Z

199

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis  

E-Print Network (OSTI)

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis and energy security concerns have prompted policy action in the United States and abroad to reduce petroleum

200

Model-based development and verification of control software for electric vehicles  

Science Conference Proceedings (OSTI)

Most innovations in the automotive domain are realized by electronics and software. Modern cars have up to 100 Electronic Control Units (ECUs) that implement a variety of control applications in a distributed fashion. The tasks are mapped onto different ... Keywords: control systems, control/architecture co-design, electric vehicles, model-based design

Dip Goswami, Martin Lukasiewycz, Matthias Kauer, Sebastian Steinhorst, Alejandro Masrur, Samarjit Chakraborty, S. Ramesh

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Implementing a mathematical model for locating EMS vehicles in Fayetteville, NC  

Science Conference Proceedings (OSTI)

Emergency medical services (EMS) aims to reduce the elapsed time to respond to an emergency. The number and location of vehicles within the service area, directly affect the attainment of this goal. In this paper, we focus on a mathematical modeling ... Keywords: bicriterion, covered demand, expected coverage, set covering

Asad Tavakoli; Constance Lightner

2004-08-01T23:59:59.000Z

202

The unavailable candidate model: a decision-theoretic view of social choice  

Science Conference Proceedings (OSTI)

One of the fundamental problems in the theory of social choice is aggregating the rankings of a set of agents (or voters) into a consensus ranking. Rank aggregation has found application in a variety of computational contexts. However, the goal ... Keywords: preferences, rank aggregation, social choice, voting

Tyler Lu; Craig E. Boutilier

2010-06-01T23:59:59.000Z

203

NREL: Vehicles and Fuels Research - Models and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

momentum, and continuity equations. Models of all the major components-compressor, condenser, expansion device, and evaporator-are included. Available soon for public download....

204

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

can be found at 1. In previous work, the Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM) 2, 3. Its optimization techniques...

205

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

DOE Green Energy (OSTI)

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

206

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

SciTech Connect

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O' Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

207

Energyenvironment policy modeling of endogenous technological change with personal vehicles  

E-Print Network (OSTI)

reserved. Keywords: Greenhouse gas; Hybrid cost models; Transportation emissions policy; Bottom-up; Top-down; Technological change; Greenhouse gas abatement policy 1. Introduction A major challenge for greenhouse gas (GHGMETHODS Energy­environment policy modeling of endogenous technological change with personal

208

Model Year 2011 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXT03.7M19 SUV 6 16 21 18 3 no ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT03.7M19 SUV 5 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 17 22 19 3 no ACURA RL 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXV03.7PB9 midsize car

209

Model Year 2012 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT03.7R19 SUV 5 16 21 18 3 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV CHNXT03.7R19 SUV 6 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 19 24 21 4 no ACURA TL 3.5 6 SemiAuto-6 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXV03.5EB3 midsize car 5

210

Model Year 2010 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV AHNXT03.7W19 SUV 7 16 21 18 4 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT03.7W19 SUV 6 16 21 18 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 17 22 19 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 17 22 19 4 no ACURA RL 3.7 6 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXV03.7PB9 midsize car

211

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

212

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

E-Print Network (OSTI)

EPRI EA-3409, "Household Appliance Choice: Revision of REEPSEA",3409: "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPSreport EA-3409, "Household Appliance Choice: Revi- sion of

Wood, D.J.

2010-01-01T23:59:59.000Z

213

NREL: Vehicle Ancillary Loads Reduction - Thermal Comfort Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Comfort Model Comfort Model Photo of human testing to determine thermal comfort perception data. Photo of human testing to determine thermal comfort perception data. Working with researchers at the University of California, Berkeley, our team at NREL developed an empirical model of people's temperature sensation (hot/cold) as well as perceptions (comfortable/uncomfortable) in a transient non-homogeneous environment. The model predicts sensation and comfort locally (at specific points on the body) as well as globally (overall). The university performed more than 100 tests on human test subjects in a controlled environmental chamber under a range of steady state and transient thermal conditions. Participants subjectively recorded their thermal comfort on a simple form. Core and local skin temperature data was

214

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

215

The Rail Technology Unit Modelling the Behaviour of Freight Vehicles  

E-Print Network (OSTI)

., in- ference 0.8 sec. (4) overhead of loading models, image re- sizing, etc.: 1.4 sec. After human' evaluation is carried out on a test set of video frames from `Buffy: the vampire slayer' (season 5 episode 2 is evaluated on video frames from the `Buffy: the vampire slayer' TV show and images from the PASCAL VOC 2008

216

Plug-In Hybrid Electric Vehicle Environmental Analysis--Electric Sector Modeling of CO2 Emissions  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute has initiated a comprehensive collaborative study to quantify the environmental impacts of electric transportation, specifically with respect to plug-in hybrid electric vehicles (PHEVs). This technical update describes the adaptation of the EPRI electric sector model for the analysis of CO2 emissions from the charging on PHEVs on the electrical grid. A "PHEV Base Case" was developed using baseline assumptions from the "EPRI Base Case," a nominal set of key assumptio...

2006-11-29T23:59:59.000Z

217

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

Science Conference Proceedings (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

218

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)  

DOE Green Energy (OSTI)

This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2010-11-01T23:59:59.000Z

219

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

220

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network (OSTI)

J.D. Power, et al. , Hybrid Vehicle Market Share Expected tosales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles G.O. Collantes /

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Introduction to the OR Forum Article: “Modeling the Impacts of Electricity Tariffs on Plug-in Hybrid Electric Vehicle Charging, Costs, and Emissions” by Ramteen Sioshansi  

Science Conference Proceedings (OSTI)

Comment on “Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions” by Ramteen Sieshansi. Keywords: energy, environment, plug-in hybrid electric vehicles, pricing

Edieal J. Pinker

2012-05-01T23:59:59.000Z

222

Analysis and calibration of social factors in a consumer acceptance and adoption model for diffusion of diesel vehicle in Europe  

E-Print Network (OSTI)

While large scale diffusion of alternative fuel vehicles (AFVs) is widely anticipated, the mechanisms that determine their success or failure are ill understood. Analysis of an AFV transition model developed at MIT has ...

Zhang, Qi, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

223

Engine Selection, Modeling, and Control Development for an Extended Range Electric Vehicle.  

E-Print Network (OSTI)

??Increased pressure for fuel economy improvement in combination with rapid development of battery technology has brought focus to new vehicle architectures like: hybrid electric vehicles… (more)

Cooley, Robert Bradley

2010-01-01T23:59:59.000Z

224

Modeling and Design Optimization of Plug-In Hybrid Electric Vehicle Powertrains.  

E-Print Network (OSTI)

??Hybrid electric vehicles (HEVs) were introduced in response to rising environmental challenges facing the automotive sector. HEVs combine the benefits of electric vehicles and conventional… (more)

Chehresaz, Maryyeh

2013-01-01T23:59:59.000Z

225

System Modeling and Energy Management Strategy Development for Series Hybrid Vehicles .  

E-Print Network (OSTI)

??A series hybrid electric vehicle is a vehicle that is powered by both an engine and a battery pack. An electric motor provides all of… (more)

Cross, Patrick Wilson

2008-01-01T23:59:59.000Z

226

Increased understanding of hybrid vehicle design through modeling, simulation, and optimization.  

E-Print Network (OSTI)

??Vehicle design is constantly changing and improving due to the technologically driven nature of the automotive industry, particularly in the hybridization and electrification of vehicle… (more)

Geller, Benjamin M. (Benjamin Michael)

2010-01-01T23:59:59.000Z

227

Modeling the fast fill process in natural gas vehicle storage cylinders  

DOE Green Energy (OSTI)

The on-board storage capacity of natural gas vehicles (NGVs) is a critical issue to the wide spread marketing of these alternate fueled vehicles. Underfilling of NGV cylinders, during fast fill (< 5 min.) charging operations, can occur at fueling stations, at ambient temperatures greater than 50{degrees}F or 60{degrees}F. The resulting reduced driving range of the vehicle is a serious obstacle which the gas industry is striving to overcome, without resorting to unnecessarily high fueling station pressures, or by applying extensive overpressurization of the cylinder during the fueling operation. Undercharged storage cylinders are a result of the elevated temperature which occurs in the NGV storage cylinder, due to compression and other processes which have not, to the author`s knowledge, been analyzed and documented to date. This paper presents a model and solution methodology which quantifies the cylinder undercharging phenomena which occurs during rapid (< 5 min.) fueling. The effects of heat transfer from the cylinder gas to its constraining walls and ambient are considered in the model analysis. The ramifications of the results on fueling station and cylinder designs are discussed. Suggestions are made for controlled experimental programs to verify the theoretical results, and for fueling station design studies which could minimize or eliminate cylinder underfilling.

Kountz, K.J.

1994-09-01T23:59:59.000Z

228

Uncertainty quantification in ground vehicle dynamics through  

E-Print Network (OSTI)

vehicles (Honda Insight, Ford P2000) and up to 5% for full hybrid vehicles (Toyota Prius) Modeled using

Negrut, Dan

229

HOME ENERGY PREFERENCES & POLICY: APPLYING STATED CHOICE MODELING TO A HYBRID  

E-Print Network (OSTI)

. The federal government's EnerGuide program was introduced in 1978 to provide information to encourage the adoption of more energy efficient appliances to reduce energy demand (NRCan, 1994). Recently, Nanduri et al. (2002) undertook a stated preference discrete choice survey to evaluate the effectiveness of the EnerGuide

230

Modeling the effect of engine assembly mass on engine friction and vehicle fuel economy  

DOE Green Energy (OSTI)

In this paper, an analytical model is developed to estimate the impact of reducing engine assembly mass (the term engine assembly refers to the moving components of the engine system, including crankshafts, valve train, pistons, and connecting rods) on engine friction and vehicle fuel economy. The relative changes in frictional mean effective pressure and fuel economy are proportional to the relative change in assembly mass. These changes increase rapidly as engine speed increases. Based on the model, a 25% reduction in engine assembly mass results in a 2% fuel economy improvement for a typical mid-size passenger car over the EPA Urban and Highway Driving Cycles.

An, Feng [University of California, Riverside, CA (United States); Stodolsky, F. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

231

Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid  

E-Print Network (OSTI)

engine. Keywords: electric vehicles, electric-vehicle simulation, hybrid electric vehicles, hybrid-duty hybrid electric truck', Int. J. of Heavy Vehicle Systems, Vol. 11, Nos. 3/4, pp. 349­370. 1 Introduction. Hybrid-electric vehicles (HEV) appear to be one of the most viable technologies with significant

Peng, Huei

232

Battery Choices for Different Plug-in HEV Configurations (Presentation)  

DOE Green Energy (OSTI)

Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

Pesaran, A.

2006-07-12T23:59:59.000Z

233

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

234

Combination, a model vehicle engine and a direct-current generator  

SciTech Connect

This patent describes an engine for a model vehicle and a direct-current generator, comprising: an internal-combustion engine; and a direct-current generator operatively coupled to the engine; wherein the generator comprises an armature, and a drive coupling member drivingly engaged with the armature; the armature has three poles; each of the poles has not less than six hundred turns of magnetic wire; the engine having first means comprising a crankshaft, and second means comprising a connecting rod; and one of the first a second means has means for drivingly engaging the drive coupling for imparting rotation to the generator from the engine.

Williams, G.A.

1987-01-20T23:59:59.000Z

235

Probabilistic evaluation of mobile source air pollution: Volume 1 -- Probabilistic modeling of exhaust emissions from light duty gasoline vehicles. Final report, 1 August 1994--31 May 1997  

Science Conference Proceedings (OSTI)

Emission factors for light duty gasoline vehicles (LDGV) are typically developed based upon laboratory testing of vehicles for prescribed driving cycles. In this project, selected LDGV data sets and modeling assumptions used to develop Mobile5a were revisited. Probabilistic estimates of the inter-vehicle variability in emissions and the uncertainty in fleet average emissions for selected vehicle types and driving cycles were made. Case studies focused upon probabilistic analysis of base emission rate and speed correction estimates used in Mobile5a for throttle body and port fuel injected vehicles. Based upon inter-vehicle variability in the data sets and a probabilistic model in which the standard error terms of regression models employed in Mobile5a are also considered, the uncertainty was estimated for average emission factors for the selected fleets of light duty gasoline vehicles. The 90 percent confidence interval for the average emission factor varied in range with pollutant and driving cycle.

Frey, H.C.; Kini, M.D.

1997-12-01T23:59:59.000Z

236

Don't Work, Work at Home, or Commute? Discrete Choice Models of the Decision for San Francisco Bay Area Residents  

E-Print Network (OSTI)

Don’t Work, Work at Home, or Commute? Discrete Choice ModelsA. R. (1997) The Time Bind: When Work Becomes Homeand Home Becomes Work. New York: Metropolitan Books. Ho, C.

Ory, David T.; Mokhtarian, Patricia L.

2005-01-01T23:59:59.000Z

237

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

238

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

239

Investigation of Advanced Power Plants and Multiple Use Applications for Single Occupancy Vehicles  

SciTech Connect

Modeling of advanced and conventional drivetrains in a single occupancy vehicle has been undertaken utilizing numerical modeling. The vehicle modeling code Advisor, developed at the National Renewable Energy Laboratory, has shown that high efficiency, low power output hybrid vehicle drivetrains can almost double the economy relative to conventional powertrains. Experimental verification of the high efficiency potential of a free piston based electrical generator at 2 kilowatts output has been accomplished. For the purpose of introducing this class of transportation, however, the low cost and robust construction of the conventional drivetrain may be the logical first choice.

Peter Van Blarigan

2002-01-01T23:59:59.000Z

240

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network (OSTI)

characteristics on household residential choice and auto2009. The impact of residential density on vehicle usage and2010-05) The impact of residential density on vehicle usage

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

242

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

Benefits Connected to Smart Grids”. In Proceedings of the 7Planning and Operation of Smart Grids with Electric Vehicle

Mendes, Goncalo

2013-01-01T23:59:59.000Z

243

Modeling and Simulation of a Parallel-Series Hybrid Vehicle Based on ADAMS and MATLAB  

Science Conference Proceedings (OSTI)

As the main developing direction of new energy vehicles, hybrid vehicles are highly valued by almost all automobile enterprises. For the automobile enterprises, the most important issue is accelerating the development of hybrid vehicles. The thesis creates ... Keywords: parallel-series, co-simulation, ADAMS, forward simulation

Hao Zhu; Lei Li; Cheng Qian; Yubing Xie

2012-04-01T23:59:59.000Z

244

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

245

Energy Star Concepts for Highway Vehicles  

Science Conference Proceedings (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

246

NREL: Vehicle Systems Analysis - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

information related to NREL's vehicle systems analysis capabilities and R&D activities, including: Models and tools National laboratories Models and Tools NREL's vehicle system...

247

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

HyDIVE(tm) HyDIVE(tm) (Hydrogen Dynamic Infrastructure and Vehicle Evolution) model analysis Cory Welch Hydrogen Analysis Workshop, August 9-10 Washington, D.C. Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes. Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their

248

Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion  

E-Print Network (OSTI)

and Associates (2005). Hybrid Vehicle Market Share Expectedsales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles It can be observed that

Collantes, Gustavo O

2005-01-01T23:59:59.000Z

249

FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION  

E-Print Network (OSTI)

and Associates (2005). Hybrid Vehicle Market Share Expectedsales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles It can be observed that

Collantes, Gustavo

2005-01-01T23:59:59.000Z

250

Social Implications of Vehicle Choice and Use  

E-Print Network (OSTI)

women prefer sedans, with the Toyota Camry Sedan topping theJeep Liberty Chevy Equinox Toyota Highlander Hyundai TucsonSilverado Ford F-150 Toyota Tacoma Chevrolet Colorado Dodge

Langer, Ashley Anne

2010-01-01T23:59:59.000Z

251

Social Implications of Vehicle Choice and Use  

E-Print Network (OSTI)

do increase (e.g. , the 2006 Prius or the 2006 Escape Hy-$998 for the 2006 Toyota Prius. And, al- though manufacturerFigures 3.6 and 3.7. SRT4 Prius Prius Prius SRT4 SRT4 Prius

Langer, Ashley Anne

2010-01-01T23:59:59.000Z

252

The Role of Convective Model Choice in Calculating the Climate Impact of Doubling CO2  

Science Conference Proceedings (OSTI)

The role of the parameterization of vertical convection in calculating the climate impact of doubling CO2 is assessed using both one-dimensional radiative-convective vertical models and in the latitude-dependent Hadley-baroclinic model of Lindzen ...

R. S. Lindzen; A. Y. Hou; B. F. Farrell

1982-06-01T23:59:59.000Z

253

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

in the energy management of microgrid systems. PEVs can beeventually available in a microgrid system. Recentthe link between a microgrid and an electric vehicle can

Mendes, Goncalo

2013-01-01T23:59:59.000Z

254

Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads.  

E-Print Network (OSTI)

??In recent years, there has been a push by automotive manufacturers to improve the efficiency of the vehicle development process. This can be accomplished by… (more)

Bombardier, William

2009-01-01T23:59:59.000Z

255

Modeling, Control and Prototyping of Alternative Energy Storage Systems for Hybrid Vehicles.  

E-Print Network (OSTI)

??Electrochemical batteries are typically considered for secondary energy storage device on hybrid vehicles. Still other forms of energy storage are receiving considerable interest today. In… (more)

Samuel Durair Raj, Kingsly Jebakumar

2012-01-01T23:59:59.000Z

256

Modeling, simulation, and analysis of series hybrid electric vehicles for fuel economy improvement.  

E-Print Network (OSTI)

??A hybrid electric vehicle (HEV) combines a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system. In a series HEV, an electric… (more)

Khandaker, Masuma

2011-01-01T23:59:59.000Z

257

Model-Based Validation of Fuel Cell Hybrid Vehicle Control Systems.  

E-Print Network (OSTI)

??Hydrogen fuel cell technology has emerged as an efficient and clean alternative to internal combustion engines for powering vehicles, and hydrogen powertrains will aid in… (more)

Wilhelm, Erik

2007-01-01T23:59:59.000Z

258

Hybrid electric vehicle powertrain and control system modeling, analysis and design optimization.  

E-Print Network (OSTI)

??Today uncertainties of petroleum supply and concerns over global warming call for further advancement of green vehicles with higher energy efficiency and lower green house… (more)

Zhou, Yuliang Leon

2011-01-01T23:59:59.000Z

259

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

260

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network (OSTI)

electric, methanol, and compressed natural gas vehicles withinclude electric, compressed natural gas (CNG), and methanoltypes: gasoline, compressed natural gas (CNG), methanol, and

Brownstone, David; Bunch, David S; Train, Kenneth

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Choice of a Vertical Grid in Incorporating Condensation Heating into an Isentropic Vertical Coordinate Model  

Science Conference Proceedings (OSTI)

Advantages of using an isentropic vertical coordinate in atmospheric models are well recognized. In particular, the use of an isentropic coordinate virtually eliminates discretization errors for vertical advection since isentropic surfaces are ...

Celal S. Konor; Akio Arakawa

2000-11-01T23:59:59.000Z

262

Choice and Chance: A Conceptual Model of Paths to Information Security Compromise  

Science Conference Proceedings (OSTI)

No longer the exclusive domain of technology experts, information security is now a management issue. Through a grounded approach using interviews, observations, and secondary data, we advance a model of the information security compromise process from ... Keywords: computer crime, information security management, information systems risk management

Sam Ransbotham; Sabyasachi Mitra

2009-03-01T23:59:59.000Z

263

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives  

DOE Green Energy (OSTI)

Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

Giorgio Rizzoni

2005-09-30T23:59:59.000Z

264

Evaluation of an OPNET model for unmanned aerial vehicle (UAV) networks  

Science Conference Proceedings (OSTI)

The concept of Unmanned Aerial Vehicles (UAV) was first used as early as the American Civil War, when the North and the South launched balloons with explosive devices. Since the American Civil War, the UAV concept has been used in some form in subsequent ... Keywords: mobile ad hoc networks, simulation validation, unmanned aerial vehicle

Clifton M. Durham; Todd R. Andel; Kenneth M. Hopkinson; Stuart H. Kurkowski

2009-03-01T23:59:59.000Z

265

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers

Vermont, University of

266

Incident detection using the Standard Normal Deviate model and travel time information from probe vehicles  

E-Print Network (OSTI)

One application of travel time information explored in this thesis is freeway incident detection. It is vital to develop reliable methods for automatically detecting incidents to facilitate the quick response and removal of incidents before they cause breakdowns in traffic flow. The use of real-time travel time data to monitor freeway conditions has the advantages over conventional loop detectors of taking into account the dynamic, longitudinal nature of traffic flow and requiring data from only a portion of the traffic stream. This study employed the Standard Normal Deviate (SND) Model to test the feasibility of using travel time data to detect lane blocking incidents. The fundamental concept of the SND Model was based on the comparison of real-time travel time data to historical travel time data for given freeway segments during specified times. The travel time and incident reports used were collected through the Real-Time Traffic Information System (RTTIS) in the north freeway corridor of Houston, Texas using probe vehicles equipped with cellular telephones. The data were compiled on 39 freeway links from October 1991 through August 1992 on weekdays during morning and afternoon data collection periods. The results of incident detection tests, applying the SND Model to incident and travel time me data from the North Freeway, indicated high successful incident detection rates. However, high false alarm rates also resulted from the SND Model test applications. An optimum SND value of 2.0 was observed for the North Freeway test data. At this value the SND tests produced successful incident detection rates of 70 percent and higher during both the morning and afternoon periods. False alarm rates were also 70 percent. The best results were achieved on those freeway sections where the most incident and travel time data had been collected. The overall results of the incident detection tests on the North Freeway demonstrated that the SND Model was a feasible incident detection algorithm, but required an extensive historical travel time data base.

Mountain, Christopher Eugene

1993-01-01T23:59:59.000Z

267

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

268

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

269

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

270

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

271

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

272

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

273

A comparison of modeled and measured energy use in hybrid electric vehicles  

DOE Green Energy (OSTI)

CarSim 2.5.4, written by AeroVironment, Inc. of Monrovia, California and SIMPLEV 3.0, written by Idaho National Engineering Laboratory were used to simulate two series-configured hybrid electric vehicles that competed in the 1994 Hybrid Electric Vehicle Challenge. Vehicle speed and battery energy use were measured over a 0.2-km maximum effort acceleration and a 58-km range event. The simulations` predictions are compared to each other and to measured data. A rough uncertainty analysis of the validation is presented. The programs agree with each other to within 5% and with the measured energy data within the uncertainty of the experiment.

Cuddy, M.

1995-01-01T23:59:59.000Z

274

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

variables, on 13-state casualty risk per crash, lightvariables, on 13-state casualty risk per crash, lighton crashes with heavier light-duty trucks, by case vehicle

Wenzel, Tom

2013-01-01T23:59:59.000Z

275

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

276

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

277

Vehicle Technologies Office: Fact #430: June 26, 2006 Trends...  

NLE Websites -- All DOE Office Websites (Extended Search)

important to you in your choice of your next vehicle?" was the question asked in a June 2006 survey. The choices were dependability, safety, fuel economy, quality, and low price....

278

Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.  

SciTech Connect

The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

2010-03-31T23:59:59.000Z

279

News and Information about Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Electric Vehicles New Models for 2014 Vehicle EPA MPGE Estimates* Price (MSRP) Chevrolet Spark EV Subcompact Car Chevrolet Spark EV Chart: City, 128 mpge; Highway,...

280

Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle  

E-Print Network (OSTI)

mproving the performance of modular, low-cost autonomous underwater vehicles (AUVs) in such applications as long-range oceanographic survey, autonomous docking, and shallow-water mine countermeasures requires improving the ...

Prestero, Timothy (Timothy Jason), 1970-

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The electric vehicle experiment : developing the theoretical model for 2.672  

E-Print Network (OSTI)

The purpose of this project was to develop a computer simulation of the proposed 2.672 electric vehicle experiment (EVE) to estimate the magnitudes of the powers required in different components of the drive train, piecewise ...

Zedler, Matthew R. (Matthew Robert)

2007-01-01T23:59:59.000Z

282

Electric vehicle charging infrastructure deployment : policy analysis using a dynamic behavioral spatial model  

E-Print Network (OSTI)

The United States government is committed to promoting a market for electric vehicles. To ensure that this electrification program does not result in the same failure that has come be associated with its predecessor programs, ...

Kearney, Michael J. (Michael Joseph)

2011-01-01T23:59:59.000Z

283

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

stored electricity) Battery capacity (each vehicle) 16 kWhcan use this additional battery capacity to lower its energyto 21h. This stationary battery capacity is fully charged by

Mendes, Goncalo

2013-01-01T23:59:59.000Z

284

Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems  

DOE Green Energy (OSTI)

Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

Cao, J.; Bharathan, D.; Emadi, A.

2007-01-01T23:59:59.000Z

285

Heavy Vehicle and Engine Resource Guide  

DOE Green Energy (OSTI)

The Heavy Vehicle and Engine Resource Guide is a catalog of medium- and heavy-duty engines and vehicles with alternative fuel and advanced powertrain options. This edition covers model year 2003 engines and vehicles.

Not Available

2004-03-01T23:59:59.000Z

286

Lightweight materials in the light-duty passenger vehicle market: Their market penetration potential and impacts  

DOE Green Energy (OSTI)

This paper summarizes the results of a lightweight materials study. Various lightweight materials are examined and the most cost effective are selected for further analysis. Aluminum and high-performance polymer matrix composites (PMCS) are found to have the highest potential for reducing the weight of automobiles and passenger-oriented light trucks. Weight reduction potential for aluminum and carbon fiber-based PMCs are computed based on a set of component-specific replacement criteria (such as stiffness and strength), and the consequent incremental cost scenarios are developed. The authors assume that a materials R and D program successfully reduces the cost of manufacturing aluminum and carbon fiber PMC-intensive vehicles. A vehicle choice model is used to project market shares for the lightweight vehicles. A vehicle survival and age-related usage model is employed to compute energy consumption over time for the vehicle stock. After a review of projected costs, the following two sets of vehicles are characterized to compete with the conventional materials vehicles: (1) aluminum vehicles with limited replacement providing 19% weight reduction (AIV-Mid), and (2) aluminum vehicles with the maximum replacement providing 31% weight reduction (AIV-Max). Assuming mass-market introduction in 2005, the authors project a national petroleum energy savings of 3% for AIV-Mid and 5% for AIV-Max in 2030.

Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States); Vyas, A.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

1995-06-01T23:59:59.000Z

287

NREL: Vehicles and Fuels Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about alternative and advanced transportation technologies and systems. NREL Publications Database This database features a wide variety of publications produced by NREL from 1977 to the present. Search the database or find publications according to these popular key words: Advanced vehicles and systems | Alternative fuels | Batteries | Electric vehicles | Energy storage | Fuel cell vehicles | Hybrid electric vehicles | Plug-in electric vehicles | Vehicle analysis | Vehicle modeling | Vehicle emissions Selected Publications Read selected publications related to our vehicles and fuels projects:

288

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

289

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

DOE Green Energy (OSTI)

Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

Kuss, M.; Markel, T.; Kramer, W.

2011-01-01T23:59:59.000Z

290

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of Distribution Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

291

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

292

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

293

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

294

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

295

Qualitative choice modeling of energy-conservation decisions: a micro-economic analysis of the determinants of residential space-heating energy demand  

Science Conference Proceedings (OSTI)

This study develops an economic model of household decisions to install major conservation measures such as storm windows, attic insulation, and wall insulation. The structural core of the model is the neoclassical economic paradigm of constrained discounted expected utility maximization. Household choices are modeled as being determined by household preferences across space-heating comfort levels and a composite of all other goods and services. These preferences interact with alternative household budget constraints which are determined by the household's conservation decisions. Nested Logit estimation techniques, using the observed discrete choices of a representative sample of households (in owner-occupied, single-family dwellings), are shown to be superior to simple Multinomial Logit estimation. This superiority arises from the importance of correlation among the error terms associated with indirect utility derived from certain subsets of available conservation alternatives.

Cameron, T.A.

1982-01-01T23:59:59.000Z

296

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

297

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Guide Listings / 1 Understanding the Guide Listings / 1 * Why Some Vehicles Are Not Listed / 1 * Vehicle Classes Used in This Guide / 2 * Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 3 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2011 Fuel Economy Leaders / 4 * 2011 Model Year Vehicles / 6 * Battery Electric Vehicles / 18 * Plug-in Hybrid Electric Vehicles / 19 * Hybrid Electric Vehicles / 20 * Compressed Natural Gas Vehicles / 22 * Diesel Vehicles / 22 * Ethanol Flexible Fuel Vehicles / 24 * Fuel Cell Vehicles / 28 * Index / 29 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their

298

Power management of plug-in hybrid electric vehicles using neural network based trip modeling  

Science Conference Proceedings (OSTI)

The plug-in hybrid electric vehicles (PHEV), utilizing more battery power, has become a next-generation HEV with great promise of higher fuel economy. Global optimization charge-depletion power management would be desirable. This has so far been hampered ...

Qiuming Gong; Yaoyu Li; Zhongren Peng

2009-06-01T23:59:59.000Z

299

Technology Optimization Process for Heavy Hybrid Electric Vehicle Systems Using Computational Models  

DOE Green Energy (OSTI)

We have developed a computer-based technology optimization process to define vehicle systems that meet specified goals and constraints using a minimum amount of resources. In this paper, we describe the technology optimization process, with a focus on technical target setting, and illustrate its use with a simple example.

OKeefe, M.; Walkowicz, K.; Hendricks, T.

2005-01-01T23:59:59.000Z

300

TIMEOPTIMAL CONTROL FOR UNDERWATER VEHICLES  

E-Print Network (OSTI)

TIME­OPTIMAL CONTROL FOR UNDERWATER VEHICLES M. Chyba #,1 N.E. Leonard #,1 E.D. Sontag ##,2 problems for a special class of controlled mechanical systems, underwater vehicles. Lie algebras associated­optimal trajectories. We apply the general theory to a model of an underwater vehicle and illustrate our results

Sontag, Eduardo

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

302

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

303

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

304

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

305

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

306

User's guide to DIANE Version 2. 1: A microcomputer software package for modeling battery performance in electric vehicle applications  

DOE Green Energy (OSTI)

DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh'' batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user-input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers. 7 refs.

Marr, W.W.; Walsh, W.J. (Argonne National Lab., IL (USA). Energy Systems Div.); Symons, P.C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA (USA))

1990-06-01T23:59:59.000Z

307

Modelling of Components for Conventional Car and Hybrid Electric Vehicle in Modelica; Modellering av komponenter för vanlig bil och hybridbil i Modelica.  

E-Print Network (OSTI)

?? Hybrid electric vehicles have two power sources - an internal combustion engine and an electric motor. These vehicles are of great interest because they… (more)

Wallén, Johanna

2004-01-01T23:59:59.000Z

308

A New Approach to Modeling Vehicle-Induced Heat and Its Thermal Effects on Road Surface Temperature  

Science Conference Proceedings (OSTI)

The distribution of vehicle-induced wind velocity in the transversal direction of roads is measured. A statistical analysis is also performed to find the vehicle stopping time and stopping position at traffic signals. These results are used to ...

Akihiro Fujimoto; Akira Saida; Teruyuki Fukuhara

2012-11-01T23:59:59.000Z

309

StreetSmart : modeling vehicle fuel consumption with mobile phone sensor data through a participatory sensing framework  

E-Print Network (OSTI)

Vehicle energy efficiency has become a priority of governments, researchers, and consumers in the wake of rising fuels costs over the last decade. Traditional Internal Combustion Engine (ICE) vehicles are particularly ...

Oehlerking, Austin Louis

2011-01-01T23:59:59.000Z

310

Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use ...  

U.S. Energy Information Administration (EIA)

11 "Vehicles in Use" data represent accumulated acquisitions, ... some vehicle manufacturers began including E85-fueling capability in certain model lines of vehicles.

311

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network (OSTI)

Modeling of Plug-in Electric Vehicle Interactions with aV. (2010). “Plug-in Electric Vehicle Interactions with aof Smart Grids with Electric Vehicle Interconnection M.

Stadler, Michael

2012-01-01T23:59:59.000Z

312

Fuzzy Clustering Based Multi-model Support Vector Regression State of Charge Estimator for Lithium-ion Battery of Electric Vehicle  

Science Conference Proceedings (OSTI)

Based on fuzzy clustering and multi-model support vector regression, a novel lithium-ion battery state of charge (SOC) estimating model for electric vehicle is proposed. Fuzzy C-means and Subtractive clustering combined algorithm is employed to implement ...

Xiaosong Hu; Fengchun Sun

2009-08-01T23:59:59.000Z

313

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

314

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

315

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

316

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

317

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

318

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

319

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

320

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

322

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

323

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

324

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 2 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2012 Fuel Economy Leaders / 4 * 2012 Model Year Vehicles / 5 * Diesel Vehicles / 25 * Compressed Natural Gas Vehicles / 25 * Electric Vehicles / 26 * Hybrid Electric Vehicles / 27 * Plug-in Hybrid Electric Vehicles / 29 * Ethanol Flexible Fuel Vehicles / 30 * Fuel Cell Vehicles / 35 * Index / 36 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their needs. The Guide is published in print and on the Web at www.fueleconomy.gov. For additional print copies,please call

325

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

326

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

327

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

328

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

329

Gas Mileage of 2012 Vehicles by Tesla  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Tesla Vehicles EPA MPG MODEL City Comb Hwy 2012 Tesla Model S Automatic (A1), Electricity Compare 2012 Tesla Model S...

330

Household Vehicles Energy Use: Latest Data and Trends - Table A04  

U.S. Energy Information Administration (EIA)

... Buildings & Industry > Transportation Surveys > Household Vehicles Energy ... U.S. Vehicles by Model ... Office of Coal, Nuclear, Electric, and Alternate ...

331

Vehicle Technologies Office: 2007 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Archive to someone 7 Archive to someone by E-mail Share Vehicle Technologies Office: 2007 Archive on Facebook Tweet about Vehicle Technologies Office: 2007 Archive on Twitter Bookmark Vehicle Technologies Office: 2007 Archive on Google Bookmark Vehicle Technologies Office: 2007 Archive on Delicious Rank Vehicle Technologies Office: 2007 Archive on Digg Find More places to share Vehicle Technologies Office: 2007 Archive on AddThis.com... 2007 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007

332

Selection of Lightweighting Strategies for Use Across an Automaker's Vehicle Fleet  

E-Print Network (OSTI)

Vehicle lightweighting, or mass reduction, via materials substitution is a common approach to improve fuel economy. The many subsystems in a vehicle, choices of materials, and manufacturing processes available, though, ...

Kirchain, Randolph E., Jr.

333

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

334

Personal vehicles preferred by urban Americans: household automobile holdings and new car purchases projected to the year 2000  

DOE Green Energy (OSTI)

A procedure is described for modeling the choices made in urban American households among personal vehicles on the bases of cost, passenger capacity, and engine technology, and it projects those preferences to the year 1990 and 2000. The results of this disaggregate technique are used by the other predictive research tasks undertaken by Argonne National Laboratory in a project entitled Technology Assessment of Productive Conservation in Urban Transportation (TAPCUT). The vehicle preferences reported here furnish data for the overall TAPCUT objective of forecasting the probable effects of energy conservation policies in transportation. In our projections, vehicles with standard spark-ignition (Otto-cycle) engines continue to dominate automobile holdings and new car purchases in either of two socioeconomic scenarios under any of three settings (an existing policy set and two alternative conservation strategies). From 1990, small cars (seating four or fewer passengers) dominate urban holdings and sales in two of the three TAPCUT energy strategies - the exception being the strategy that emphasizes individual travel - and this holds true with only a minor variation for both socioeconomic scenarios (an optimistic one and a slightly pessimistic one). Advanced-technology vehicles are most successful under the Individual Travel Strategy. It appears that vehicle charateristics are far more significant than demographic descriptors in estimating household vehicle choice using this modeling approach.

Saricks, C.L.; Vyas, A.D.; Bunch, J.A.

1982-01-01T23:59:59.000Z

335

Incorporating uncertainty in vehicle miles traveled projections of the National Energy Modeling System.  

E-Print Network (OSTI)

??The National Energy Modeling System (NEMS) is a computational model that forecasts the production, consumption, and prices of energy in the United States. Although NEMS… (more)

Poetting, David Michael

2011-01-01T23:59:59.000Z

336

Design of a Freeway-Capable Narrow Lane Vehicle  

E-Print Network (OSTI)

electric vehicle model with the specifications described above. Safetv and Convenience Accessories A list of safety

Kornbluth, Kurt K.; Burke, Andrew F.; Wardle, Geoff; Nickell, Nathan

2003-01-01T23:59:59.000Z

337

Standardizing model-based in-vehicle infotainment development in the German automotive industry  

Science Conference Proceedings (OSTI)

Based on the analysis of existing HMI development processes in the automotive domain, a reference process for software engineering has been developed. This process was used to develop a domain data model and a model-based specification language in order ... Keywords: HMI, automotive, domain data model, interaction design, model-based language, specification, user interface design

Steffen Hess; Anne Gross; Andreas Maier; Marius Orfgen; Gerrit Meixner

2012-10-01T23:59:59.000Z

338

EIA projects rapid growth in unconventional vehicle sales - Today ...  

U.S. Energy Information Administration (EIA)

Unconventional vehicles - vehicles using diesel, ... Manufacturers receive credits towards meeting CAFE standards by selling FFVs for all model years through 2016.

339

Vehicle Technologies Office: Fact #387: August 29, 2005 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

details. Note: Market share is based on model year sales projections submitted to EPA by vehicle manufacturers. Supporting Information New Light Vehicle Market Shares by EPA Size...

340

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0 to 70  

Science Conference Proceedings (OSTI)

An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of ...

Asbury Scott C.; Capone Francis J.

1995-12-01T23:59:59.000Z

342

A novel combination of Particle Swarm Optimization and Genetic Algorithm for Pareto optimal design of a five-degree of freedom vehicle vibration model  

Science Conference Proceedings (OSTI)

In this paper, at first, a novel combination of Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) is introduced. This hybrid algorithm uses the operators such as mutation, traditional or classical crossover, multiple-crossover, and PSO formula. ... Keywords: Genetic Algorithm, Hybrid algorithms, Multi-objective problems, Particle Swarm Optimization, Single-objective problems, Vehicle vibration model

M. J. Mahmoodabadi; A. Adljooy Safaie; A. Bagheri; N. Nariman-Zadeh

2013-05-01T23:59:59.000Z

343

Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now  

E-Print Network (OSTI)

a battery that can be recharged by an internal combustion engine or at a charging station. Economic planning approaches that seek to reduce operating costs, maintain customers' service levels, and GHG costs into fleet vehicle replacement-type models, analyzing the competitiveness of current engine

Bertini, Robert L.

344

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

345

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

346

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

347

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

348

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

349

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

350

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

351

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

352

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

353

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

354

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

355

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network (OSTI)

Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performanceAdvanced Vehicle Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office · Supports HIL/RCP · Fuel cell models ­ Net power vs. fuel consumption ­ Engineering · ADvanced Vehicle

356

Gas Mileage of 1992 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1992 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1992 Mercury Capri View MPG Estimates Shared By Vehicle...

357

Gas Mileage of 1984 Vehicles by Volkswagen  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles EPA MPG MODEL City Comb Hwy 1984 Volkswagen Jetta 4 cyl, 1.6 L, Manual 5-spd, Diesel Compare 1984 Volkswagen Jetta View MPG Estimates Shared By Vehicle Owners 33 City 35...

358

Gas Mileage of 2013 Vehicles by MINI  

NLE Websites -- All DOE Office Websites (Extended Search)

3 MINI Vehicles EPA MPG MODEL City Comb Hwy 2013 MINI Cooper 4 cyl, 1.6 L, Automatic (S6), Premium Gasoline Compare 2013 MINI Cooper View MPG Estimates Shared By Vehicle Owners 28...

359

Gas Mileage of 2013 Vehicles by Scion  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Scion Vehicles EPA MPG MODEL City Comb Hwy 2013 Scion FR-S 4 cyl, 2.0 L, Automatic (S6), Premium Gasoline Compare 2013 Scion FR-S View MPG Estimates Shared By Vehicle Owners 25...

360

Gas Mileage of 2013 Vehicles by Acura  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Acura Vehicles EPA MPG MODEL City Comb Hwy 2013 Acura ILX 4 cyl, 2.0 L, Automatic (S5), Premium Gasoline Compare 2013 Acura ILX View MPG Estimates Shared By Vehicle Owners 24...

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas Mileage of 2013 Vehicles by Subaru  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Subaru Vehicles EPA MPG MODEL City Comb Hwy 2013 Subaru BRZ 4 cyl, 2.0 L, Automatic (S6), Premium Gasoline Compare 2013 Subaru BRZ View MPG Estimates Shared By Vehicle Owners 25...

362

Gas Mileage of 2013 Vehicles by Hyundai  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Hyundai Vehicles EPA MPG MODEL City Comb Hwy 2013 Hyundai Accent 4 cyl, 1.6 L, Automatic 6-spd, Regular Gasoline Compare 2013 Hyundai Accent View MPG Estimates Shared By Vehicle...

363

Gas Mileage of 2013 Vehicles by Kia  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Kia Vehicles EPA MPG MODEL City Comb Hwy 2013 Kia Forte 4 cyl, 2.0 L, Automatic 6-spd, Regular Gasoline Compare 2013 Kia Forte View MPG Estimates Shared By Vehicle Owners 26 City...

364

Gas Mileage of 2013 Vehicles by Volkswagen  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Volkswagen Vehicles EPA MPG MODEL City Comb Hwy 2013 Volkswagen Beetle 4 cyl, 2.0 L, Manual 6-spd, Diesel Compare 2013 Volkswagen Beetle View MPG Estimates Shared By Vehicle...

365

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

366

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower- cost) indicate PHEV greenhouse gas emissions to be about half of that of current gasoline and diesel motor fuels model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation

Eppstein, Margaret J.

367

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

E-Print Network (OSTI)

Own-Elasticities for Space Conditioning Equipment Equipmenta homeowner to all space conditioning costs. By this notion,Versus Alternative Space Conditioning Systems: A Model to

Wood, D.J.

2010-01-01T23:59:59.000Z

368

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

E-Print Network (OSTI)

whether to have central air conditioning or not, and, givencaptures a sense of air conditioning desirability) in theSpace heating and air conditioning decisions are modeled

Wood, D.J.

2010-01-01T23:59:59.000Z

369

VISION Model: Description of Model Used to Estimate the Impact of Highway Vehicle Technologies and Fuels on Energy Use and Carbon Emissions to 2050  

NLE Websites -- All DOE Office Websites (Extended Search)

ESD/04-1 ESD/04-1 VISION Model: Description of Model Used to Estimate the Impact of Highway Vehicle Technologies and Fuels on Energy Use and Carbon Emissions to 2050 Center for Transportation Research Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes

370

VEHICLE SPECIFICATIONS Vehicle Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 Mazda 3 VIN: JMZBLA4G601111865 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD Weights Design Curb Weight: 2,954 lb Delivered Curb Weight: 2,850 lb Distribution F/R (%): 63/37 GVWR: 4,050 lb GAWR F/R: 2,057/1,896 lb Payload 1 : 1,096 lb Performance Goal: 400 lb Dimensions Wheelbase: 103.9 in Track F/R: 60.4/59.8 in Length: 175.6 in Width: 69.1 in Height: 57.9 in Ground Clearance: 6.1 in Performance Goal: 5.0 in Tires Manufacturer: Yokohama Model: YK520 Size: P205/55R17 Pressure F/R: 35/33 psi

371

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

372

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

373

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

374

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

375

IMPACTT5A model : enhancements and modifications since December 1994 - with special reference to the effect of tripled-fuel-economy vehicles on fuel-cycle energy and emissions.  

DOE Green Energy (OSTI)

Version 5A of the Integrated Market Penetration and Anticipated Cost of Transportation Technologies (IMPACTT5A) model is a spreadsheet-based set of algorithms that calculates the effects of advanced-technology vehicles on baseline fuel use and emissions. Outputs of this Argonne National Laboratory-developed model include estimates of (1) energy use and emissions attributable to conventional-technology vehicles under a baseline scenario and (2) energy use and emissions attributable to advanced- and conventional-technology vehicles under an alternative market-penetration scenario. Enhancements to IMPACIT made after its initial documentation in December 1994 have enabled it to deal with a wide range of fuel and propulsion system technologies included in Argonne's GREET model in a somewhat modified three-phased approach. Vehicle stocks are still projected in the largely unchanged STOCK module. Vehicle-miles traveled, fuel use, and oil displacement by advanced-technology vehicles are projected in an updated USAGE module. Now, both modules can incorporate vehicle efficiency and fuel share profiles consistent with those of the Partnership for a New Generation of Vehicles. Finally, fuel-cycle emissions of carbon monoxide, volatile organic compounds, nitrogen oxides, toxics, and greenhouse gases are computed in the EMISSIONS module via an interface with the GREET model that was developed specifically to perform such calculations. Because of this interface, results are now more broadly informative than were results from earlier versions of IMPACTT.

Mintz, M. M.; Saricks, C. L.

1999-08-28T23:59:59.000Z

376

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

377

The Choice of a Vertical Grid for a 2.5D Numerical Model of the Middle Atmosphere  

Science Conference Proceedings (OSTI)

The consequences of choosing an unstaggered grid (UG), Charney-Phillips-type grid (CPG), or Lorenz-type grid (LG) in the vertical for a 2.5D model are examined. Analytical solutions for the linearized and scaled eddy equations in spherical ...

Joseph L. Sabutis

1994-12-01T23:59:59.000Z

378

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

379

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

380

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives and Disincentives / 2 Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 2 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2010 Fuel Economy Leaders / 4 * 2010 Model Year Vehicles / 5 * Hybrid-Electric Vehicles / 16 * Ethanol Flexible Fuel Vehicles / 17 * Diesel Vehicles / 20 * Compressed Natural Gas Vehicles / 21 * Fuel Cell Vehicles / 21 * Index / 22 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel- efficient vehicle that meets their needs. The Guide is published in print and on the Web at www.fueleconomy.gov. For additional print copies, please call the EERE Information Center at 1-877-337- 3463 or mail your request to EERE

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean Cities 2014 Vehicle Buyer's Guide (Brochure)  

DOE Green Energy (OSTI)

This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

Not Available

2013-12-01T23:59:59.000Z

382

Clean Cities 2011 Vehicle Buyer's Guide  

DOE Green Energy (OSTI)

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

383

Managing the transition toward self-sustaining alternative fuel vehicle markets : policy analysis using a dynamic behavioral spatial model  

E-Print Network (OSTI)

Designing public policy or industry strategy to bolster the transition to alternative fuel vehicles (AFVs) is a formidable challenge as demonstrated by historical failed attempts. The transition to new fuels occurs within ...

Supple, Derek R. (Derek Richard)

2007-01-01T23:59:59.000Z

384

Using Information Technology to Reduce a Health Risk| Effect of a Mercury Calculator on Consumer Fish Choices and Test of a Model for Technology Acceptance by Fish Consumers.  

E-Print Network (OSTI)

?? Research indicates consumers lack adequate information about the mercury content of fish to make informed choices about eating fish. Information technology can be used… (more)

Wallace, Sharon D.

2013-01-01T23:59:59.000Z

385

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

386

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

387

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

388

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

389

Modeling and analysis of transient vehicle underhood thermo- hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Tentner, A.; Froehle, P.; Wang, C.; Nuclear Engineering Division

2004-01-01T23:59:59.000Z

390

Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Froehle, P.; Tentner, A.; Wang, C.

2003-09-05T23:59:59.000Z

391

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

392

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

393

New and Upcoming Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 Model Year Diesels Vehicle EPA MPG Estimates Price (MSRP) Audi A6 quattro Midsize Car Audi A6 quattro Chart: City, 24; Highway, 38; Combined, 29 45,200-57,500 Audi A7...

394

Independence and interdependence in the nest-site choice by honeybee swarms: agent-based models, analytical approaches and pattern formation  

E-Print Network (OSTI)

In a recent paper List, Elsholtz and Seeley [Phil. Trans. Roy. Soc. B. 364 (2009) 755] have devised an agent-based model of the the nest-choice dynamics in swarms of honeybees, and have concluded that both interdependence and independence are needed for the bees to reach a consensus on the best nest site. We here present a simplified version of the model which can be treated analytically with the tools of statistical physics and which largely has the same features as the original dynamics. Based on our analytical approaches it is possible to characterize the co-ordination outcome exactly on the deterministic level, and to a good approximation if stochastic effects are taken into account, reducing the need for computer simulations on the agent-based level. In the second part of the paper we present a spatial extension, and show that transient non-trivial patterns emerge, before consensus is reached. Approaches in terms of Langevin equations for continuous field variables are discussed.

Galla, Tobias

2009-01-01T23:59:59.000Z

395

Vehicle/guideway interaction and ride comfort in maglev systems  

DOE Green Energy (OSTI)

The importance of vehicle/guideway dynamics in maglev systems is discussed. The particular interest associated with modeling vehicle guide-way interactions and explaining response characteristics of maglev systems for a multicar, multiload vehicle traversing on a single- or double-span flexible guideway are considered, with an emphasis on vehicle/guideway coupling effects, comparison of concentrated and distributed loads, and ride comfort. Coupled effects of vehicle/guideway interactions over a wide range of vehicle speeds with various vehicle and guideway parameters are investigated, and appropriate critical vehicle speeds or crossing frequencies are identified.

Cai, Y.; Chen, S.S.; Rote, D.M.; Coffey, H.T.

1993-10-01T23:59:59.000Z

396

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

397

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive 3 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013 #804 Tool Available to Print Used Vehicle Fuel Economy Window Stickers November 18, 2013 #803 Average Number of Transmission Gears is on the Rise November 11, 2013 #802 Market Share by Transmission Type November 4, 2013 #801 Gasoline Direct Injection Continues to Grow October 28, 2013 #800 Characteristics of New Light Vehicles over Time October 21, 2013 #799 Electricity Generation by Source, 2003-2012 September 30, 2013

398

Colorado's clean energy choices  

DOE Green Energy (OSTI)

The daily choices made as consumers affect the environment and the economy. Based on the state of today's technology and economics, Colorado consumers can include energy efficiency and renewable energy into many aspects of their lives. These choices include where they obtain electricity, how they use energy at home, and how they transport themselves from one place to another. In addition to outlining how they can use clean energy, Colorado's Clean Energy Choices gives consumers contacts and links to Web sites for where to get more information.

Strawn, N.; Jones, J.

2000-04-15T23:59:59.000Z

399

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles,” Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

400

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles,” Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

402

How Happiness Affects Choice  

E-Print Network (OSTI)

Consumers want to be happy, and marketers are increasingly trying to appeal to consumers’ pursuit of happiness. However, the results of six studies reveal that what happiness means varies, and consumers’ choices reflect ...

Mogilner, Cassie

403

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

404

ELECTRIC VEHICLES MODELLING AND  

E-Print Network (OSTI)

Chapter 12 Multiobjective Optimal Design of an Inverter Fed Axial Flux Permanent Magnet In-Wheel Motor Study of Two Permanent Magnets Motors Structures with Interior and Exterior Rotor 333 Naourez Ben Hadj Lorkovic Technical Editor Teodora Smiljanic Cover Designer Jan Hyrat Image Copyright AlexRoz, 2010. Used

Schaltz, Erik

405

COMMUNITY CHOICE AGGREGATION PILOT PROJECT  

E-Print Network (OSTI)

COMMUNITY CHOICE AGGREGATION PILOT PROJECT APPENDIX B: Arnold Schwarzenegger Governor Project Reports on California Public Utilities Commission Decisions on Community Choice Aggregation Prepared For Participants FROM: John Dalessi, NCI SUBJECT: CPUC COMMUNITY CHOICE AGGREGATION PHASE 1 DECISION On December 16

406

Arnold Schwarzenegger COMMUNITY CHOICE AGGREGATION  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor COMMUNITY CHOICE AGGREGATION PILOT PROJECT APPENDIX G Aggregation Guide is the interim report for the Community Choice Aggregation Pilot Program project (Contract Community Choice Aggregation Guide. California Energy Commission, PIER Renewable Energy Technologies

407

Arnold Schwarzenegger COMMUNITY CHOICE AGGREGATION  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor COMMUNITY CHOICE AGGREGATION PILOT PROJECT PIERFINALPROJECTREPORT Rosenfeld. Please cite this report as follows: Stoner, G. Patrick. 2008. Community Choice Aggregation Pilot Aggregation Pilot Project Final Report is the final report for the Community Choice Aggregation Pilot Project

408

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain  

E-Print Network (OSTI)

, Dearborn, on engine misfire detection, and the application of fuzzy logic to the car-following problem. He in Bond Graph theory [10]. A causal stroke located at the end of a power bond indicated that effort Electric Vehicle Powertrain Test Cell Using Bond Graphs Mariano Filippa, Student Member, IEEE, Chunting Mi

Mi, Chunting "Chris"

409

Natural Gas Residential Choice Programs  

Gasoline and Diesel Fuel Update (EIA)

www.ai.orgiurcgasnipsco.html http:www.nipsco.comOur-ServicesNIPSCO-ChoiceChoice-Suppliers.aspx Lists activeparticipating marketers Kentucky 3 3 http:...

410

COMMUNITY CHOICE AGGREGATION PILOT PROJECT  

E-Print Network (OSTI)

COMMUNITY CHOICE AGGREGATION PILOT PROJECT APPENDIX H: Arnold Schwarzenegger Governor Berkeley have been investigating and analyzing a program for the implementation of Community Choice Aggregation

411

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

412

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

413

Vehicle barrier  

DOE Patents (OSTI)

A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

Hirsh, Robert A. (Bethel Park, PA)

1991-01-01T23:59:59.000Z

414

The Response of the Auto Industry and Consumers to Changes in the Exhaust Emission and Fuel Economy Standards (1975-2003): A Historical Review of Changes in Technology, Prices and Sales of Various Classes of Vehicles  

E-Print Network (OSTI)

are given by vehicle class, manufacturer, and model group.sales of vehicle models from many manufacturers for of thefor California vehicles (only early imports) Manufacturer

Burke, Andy; Abeles, Ethan; Chen, Belinda

2004-01-01T23:59:59.000Z

415

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

416

Gas Mileage of 2013 Vehicles by CODA Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 CODA Automotive Vehicles EPA MPG MODEL City Comb Hwy 2013 CODA Automotive CODA Automatic (A1), Electricity Compare 2013...

417

Gas Mileage of 2012 Vehicles by CODA Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CODA Automotive Vehicles EPA MPG MODEL City Comb Hwy 2012 CODA Automotive CODA Automatic (A1), Electricity Compare 2012...

418

Community Choice Community Choice Aggregation (CCA) enables California cities  

E-Print Network (OSTI)

Community Choice Community Choice Aggregation (CCA) enables California cities and counties, and are looking at Community Choice Aggregation as a mechanism for doing so. When California deregulated the same utilities that provided it before deregulation. Community Choice Aggregation offers an opportunity

419

Energy 101: Lighting Choices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Choices Energy 101: Lighting Choices Addthis Below is the text version for the Energy 101: Lighting Choices video: The video opens with "Energy 101: Lighting Choices."...

420

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

422

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,

Delucchi, Mark

1992-01-01T23:59:59.000Z

423

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

424

COMMUNITY CHOICE AGGREGATION PILOT PROJECT  

E-Print Network (OSTI)

COMMUNITY CHOICE AGGREGATION PILOT PROJECT APPENDIX A: Arnold Schwarzenegger Governor Community in this report. #12;1 COMMUNITY CHOICE AGGREGATION PILOT PROJECT APPENDIX A Community Choice Aggregation in the Community Choice Aggregation Demonstration project and assesses the costs and availability of renewable

425

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. What's Your PEV Readiness Score? PEV readiness...

426

Vehicles and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about exciting technologies and ongoing research in alternative and advanced vehicles—or vehicles that run on fuels other than traditional petroleum.

427

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

428

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

429

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

430

Mathematics achievement : the impact of America's choice in Kentucky's schools.  

E-Print Network (OSTI)

??Ph. D. This study examined student achievement scores in Kentucky elementary schools to determine the relationship between implementing the America's Choice comprehensive school reform model… (more)

Upton, Sonia James

2012-01-01T23:59:59.000Z

431

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

432

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

433

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

December 18, 2013 December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as part of more than $1.8 billion in funding for electric utility infrastructure projects in 25 states and one territory. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 18, 2013 Energy Department Releases Grid Energy Storage Report The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use. More

434

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

435

Vehicle Technologies Office: Fact #257: March 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: March 3, 2003 Vehicle Occupancy by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 257: March 3, 2003 Vehicle Occupancy by Type of Vehicle on...

436

Vehicle Technologies Office: Fact #253: February 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: February 3, 2003 Vehicle Age by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 253: February 3, 2003 Vehicle Age by Type of Vehicle on Facebook...

437

Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach  

Science Conference Proceedings (OSTI)

Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to ... Keywords: active learning, choice under risk, experimental design, model discrimination

Daniel R. Cavagnaro; Richard Gonzalez; Jay I. Myung; Mark A. Pitt

2013-02-01T23:59:59.000Z

438

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

industry experts believe that new vehicle designs based on fuel cells, electricElectric Power Research Institute, Pricing for Success: Using Auto Industry Models to Review Electric Vehicle

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

439

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

440

Alternative Fuels Data Center: Low Emission Vehicle Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Requirement on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Requirement on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle Requirement All Model Year (MY) 2007 and later heavy-duty vehicles sold, leased, or

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric vehicles, we wanted to take a moment to highlight how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. The basic principles behind the technology are this: the electric

442

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Electric Vehicles Energy 101: Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric vehicles, we wanted to take a moment to highlight how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. The basic principles behind the technology are this: the electric

443

A hybrid vehicle evaluation code and its application to vehicle design  

DOE Green Energy (OSTI)

This report describes a hybrid vehicle simulation model, which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates interactively, with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This report also documents the application of the code to a hybrid vehicle that operates with a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine-generator efficiency, flywheel efficiency, and flywheel energy and power capacities.

Aceves, S.M.; Smith, J.R.

1994-07-15T23:59:59.000Z

444

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

445

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

446

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

447

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

448

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

This report contains data on the number of onroad alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities and data on the use of alternative fueled vehicles and the amount of fuel they consume.

Information Center

2013-04-08T23:59:59.000Z

449

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network (OSTI)

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The… (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

450

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

Residual Oil Distillate Oil Motor Gasoline Other Petroleumthe use of lubricating oil by motor vehicles is based on theuse of lubricating oil related to motor- vehicle use (g/mi).

Delucchi, Mark

2003-01-01T23:59:59.000Z

451

MathCAD model for the estimation of cost and main characteristics of air-cushion vehicles in the preliminary design stage  

E-Print Network (OSTI)

In the naval architecture terminology, the term ACV (Air Cushion Vehicle) refers to this category of vehicles, in which a significant portion of the weight (or all the weight) is supported by forces arising from air pressures ...

Gougoulidis, Georgios

2005-01-01T23:59:59.000Z

452

Energy Department Announces Apps for Vehicles Challenge Winners |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces Apps for Vehicles Challenge Winners Energy Department Announces Apps for Vehicles Challenge Winners Energy Department Announces Apps for Vehicles Challenge Winners April 1, 2013 - 4:55pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to expand access to data and reduce fuel costs for consumers, the Energy Department today announced the winners of the Apps for Vehicles Challenge. The competition asked app developers and entrepreneurs to demonstrate how the open data available on most vehicles can be used to improve vehicle safety, fuel efficiency and comfort. The Department awarded New York City-based Dash the Judges' Prize and MyCarma, headquartered in Troy, Michigan, the Popular Choice prize. Green Button Gamer, based in Boston, Massachusetts,

453

Energy Department Announces Apps for Vehicles Challenge Winners |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces Apps for Vehicles Challenge Winners Energy Department Announces Apps for Vehicles Challenge Winners Energy Department Announces Apps for Vehicles Challenge Winners April 1, 2013 - 4:55pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to expand access to data and reduce fuel costs for consumers, the Energy Department today announced the winners of the Apps for Vehicles Challenge. The competition asked app developers and entrepreneurs to demonstrate how the open data available on most vehicles can be used to improve vehicle safety, fuel efficiency and comfort. The Department awarded New York City-based Dash the Judges' Prize and MyCarma, headquartered in Troy, Michigan, the Popular Choice prize. Green Button Gamer, based in Boston, Massachusetts,

454

Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 4, 5: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 to someone by E-mail Share Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Facebook Tweet about Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Twitter Bookmark Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Google Bookmark Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Delicious Rank Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Digg

455

Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 13, 2013 9: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric to someone by E-mail Share Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Facebook Tweet about Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Twitter Bookmark Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Google Bookmark Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Delicious Rank Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Digg

456

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

457

Burger King: Better Choices  

E-Print Network (OSTI)

Burger King: Better Choices: BK Veggie Burger w/o mayo 310 Calories, 7g fat, 1g sat* fat BK Chicken Whopper w/o mayo 420 Calories, 9g fat, 3 g sat fat Chicken Caesar w/o dressing & croutons 160 Calories, 6g: Extra Crispy, 1 Breast 470 Calories, 28g fat, 8g sat fat Popcorn Chicken, 1 Large Order 620 Calories, 40

de la Torre, José R.

458

Biofuels, Climate Policy and the European Vehicle Fleet  

E-Print Network (OSTI)

We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

Rausch, Sebastian

459

Vehicle Technologies Office: Fact #798: September 23, 2013Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Driving Range For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric...

460

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

and even buyers of hybrid vehicles. The interviews unfoldedarticles contended that hybrid vehicles cost $2,000 to $Our small group of hybrid vehicle buyers confessed they had

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

and even buyers of hybrid vehicles. The interviews unfoldedarticles contended that hybrid vehicles cost $2,000 to $Our small group of hybrid vehicle buyers confessed they had

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

462

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

463

Advanced design and simulation of a hybrid electric vehicle.  

E-Print Network (OSTI)

??This thesis illustrates the modeling of power electronics components for a two- mode hybrid electric vehicle. The model designed is for a Texas Tech University… (more)

Sidhanthi, Swathi

2010-01-01T23:59:59.000Z

464

Gas Mileage of 2008 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Ford Vehicles 8 Ford Vehicles EPA MPG MODEL City Comb Hwy 2008 Ford Crown Victoria FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Ford Crown Victoria FFV View MPG Estimates Shared By Vehicle Owners Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2008 Ford Edge AWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2008 Ford Edge AWD View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 2008 Ford Edge FWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2008 Ford Edge FWD View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 2008 Ford Escape 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Ford Escape 4WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 24

465

Gas Mileage of 2001 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2001 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 27 Highway 2001 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

466

Gas Mileage of 1991 Vehicles by Volvo  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Volvo Vehicles 1 Volvo Vehicles EPA MPG MODEL City Comb Hwy 1991 Volvo 240 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1991 Volvo 240 View MPG Estimates Shared By Vehicle Owners 18 City 20 Combined 23 Highway 1991 Volvo 240 4 cyl, 2.3 L, Manual 5-spd, Regular Gasoline Compare 1991 Volvo 240 View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 26 Highway 1991 Volvo 240 Wagon 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1991 Volvo 240 Wagon 18 City 20 Combined 23 Highway 1991 Volvo 240 Wagon 4 cyl, 2.3 L, Manual 5-spd, Regular Gasoline Compare 1991 Volvo 240 Wagon View MPG Estimates Shared By Vehicle Owners 19 City 22 Combined 26 Highway 1991 Volvo 740 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1991 Volvo 740 View MPG Estimates Shared By Vehicle Owners

467

Gas Mileage of 2002 Vehicles by Toyota  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Toyota Vehicles 2 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2002 Toyota 4Runner 2WD 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 2002 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 18 Highway 2002 Toyota 4Runner 4WD 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 2002 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 18 Highway 2002 Toyota Avalon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2002 Toyota Avalon View MPG Estimates Shared By Vehicle Owners 19 City 22 Combined 27 Highway 2002 Toyota Camry 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 2002 Toyota Camry View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 2002 Toyota Camry 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline

468

Gas Mileage of 2004 Vehicles by Volkswagen  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Volkswagen Vehicles 4 Volkswagen Vehicles EPA MPG MODEL City Comb Hwy 2004 Volkswagen GTI 4 cyl, 1.8 L, Manual 5-spd, Premium Gasoline Compare 2004 Volkswagen GTI View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 28 Highway 2004 Volkswagen GTI 4 cyl, 1.8 L, Automatic (S5), Premium Gasoline Compare 2004 Volkswagen GTI View MPG Estimates Shared By Vehicle Owners 19 City 22 Combined 27 Highway 2004 Volkswagen GTI 6 cyl, 2.8 L, Manual 6-spd, Premium Gasoline Compare 2004 Volkswagen GTI View MPG Estimates Shared By Vehicle Owners 19 City 22 Combined 27 Highway 2004 Volkswagen Golf 4 cyl, 1.9 L, Manual 5-spd, Diesel Compare 2004 Volkswagen Golf View MPG Estimates Shared By Vehicle Owners 32 City 36 Combined 42 Highway 2004 Volkswagen Golf 4 cyl, 1.9 L, Automatic (S5), Diesel Compare 2004 Volkswagen Golf

469

Gas Mileage of 2007 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Ford Vehicles 7 Ford Vehicles EPA MPG MODEL City Comb Hwy 2007 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2007 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2007 Ford Crown Victoria 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2007 Ford Crown Victoria View MPG Estimates Shared By Vehicle Owners Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2007 Ford Edge AWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2007 Ford Edge AWD View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 22 Highway 2007 Ford Edge FWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2007 Ford Edge FWD View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 23

470

Gas Mileage of 2001 Vehicles by BMW  

NLE Websites -- All DOE Office Websites (Extended Search)

1 BMW Vehicles 1 BMW Vehicles EPA MPG MODEL City Comb Hwy 2001 BMW 325ci 6 cyl, 2.5 L, Automatic 5-spd, Premium Gasoline Compare 2001 BMW 325ci View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 2001 BMW 325ci 6 cyl, 2.5 L, Manual 5-spd, Premium Gasoline Compare 2001 BMW 325ci View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 27 Highway 2001 BMW 325ci Convertible 6 cyl, 2.5 L, Automatic 5-spd, Premium Gasoline Compare 2001 BMW 325ci Convertible View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 24 Highway 2001 BMW 325ci Convertible 6 cyl, 2.5 L, Manual 5-spd, Premium Gasoline Compare 2001 BMW 325ci Convertible View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 24 Highway 2001 BMW 325i 6 cyl, 2.5 L, Automatic 5-spd, Premium Gasoline

471

Gas Mileage of 1997 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1997 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1997 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 17 Highway 1997 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

472

Gas Mileage of 2008 Vehicles by Dodge  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Dodge Vehicles 8 Dodge Vehicles EPA MPG MODEL City Comb Hwy 2008 Dodge Avenger 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 2008 Dodge Avenger View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 30 Highway 2008 Dodge Avenger 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline Compare 2008 Dodge Avenger View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 26 Highway 2008 Dodge Avenger 6 cyl, 2.7 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Dodge Avenger View MPG Estimates Shared By Vehicle Owners Gas 19 City 22 Combined 27 Highway E85 13 City 16 Combined 20 Highway 2008 Dodge Avenger 6 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 2008 Dodge Avenger View MPG Estimates Shared By Vehicle Owners 19 City 22 Combined 27 Highway 2008 Dodge Avenger AWD 6 cyl, 3.5 L, Automatic 6-spd, Regular Gasoline

473

The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Truck Regulation  

E-Print Network (OSTI)

Cir. 1972). Motor Vehicle Manufacturers Association of theon the vehicle model and manufacturer. [31] An additionalgreatly across manufacturers and vehicle segments leading to

Abeles, Ethan

2004-01-01T23:59:59.000Z

474

Advanced Vehicle Testing Activity: Urban Electric Vehicle Specificatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

475

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

476

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

477

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specificati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

478

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

479

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

480

Advanced Vehicle Testing Activity: Urban Electric Vehicle Special...  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

Note: This page contains sample records for the topic "vehicle choice models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

482

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

483

Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

484

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network (OSTI)

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase of the owning Unit. Vehicle Homebase: Enter the City, Zip Code, Building, or other location designation. Week

Johnston, Daniel

485

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

486

COMMUNITY CHOICE AGGREGATION PILOT PROJECT  

E-Print Network (OSTI)

COMMUNITY CHOICE AGGREGATION PILOT PROJECT APPENDIX E: Arnold Schwarzenegger Governor Community in this report. #12;«CCA_Name» - DRAFT - COMMUNITY CHOICE AGGREGATION IMPLEMENTATION PLAN «Date Choice Aggregation Implementation Plan Template Prepared For: California Energy Commission Prepared By

487

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

488

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

489

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

490

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

491

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

492

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

493

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

494

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

495

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

496

Alternative Fuels Data Center: Vehicle Conversions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

497

Vehicle Detection by Sensor Network Nodes  

E-Print Network (OSTI)

frequency. Table 4.2: ? and ? Ground truth (# of vehicles)truth (# of vehicles) Detection result (# of vehicles) Tabletruth ( of vehicles) Detection result ( of vehicles) Table

Ding, Jiagen; Cheung, Sing-Yiu; Tan, Chin-woo; Varaiya, Pravin

2004-01-01T23:59:59.000Z

498

Emission Impacts of Electric Vehicles  

E-Print Network (OSTI)

greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

1990-01-01T23:59:59.000Z

499

The Case for Electric Vehicles  

E-Print Network (OSTI)

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

500

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY)