Sample records for vehicle charging station

  1. CHARGING STATION FOR ELECTRIC VEHICLES GREEN PARKING

    E-Print Network [OSTI]

    Vellend, Mark

    CHARGING STATION FOR ELECTRIC VEHICLES P 3 P 3 P 6 GREEN PARKING UNIVERSITÉ DE SHERBROOKE YELLOW (CAR-POOLING) PERMITS HOSPITAL PARKING PARKING-PERMIT DISPENSERS RESERVED DISABLED PARKING PLACES ONE

  2. Competitive Charging Station Pricing for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Huang, Jianwei

    . To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

  3. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  4. Solar-Assisted Electric Vehicle Charging Station Interim Report

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

    2011-09-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

  5. Assessing the viability of level III electric vehicle rapid-charging stations

    E-Print Network [OSTI]

    Gogoana, Radu

    2010-01-01T23:59:59.000Z

    This is an analysis of the feasibility of electric vehicle rapid-charging stations at power levels above 300 kW. Electric vehicle rapid-charging (reaching above 80% state-of-charge in less than 15 minutes) has been ...

  6. Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations

    E-Print Network [OSTI]

    Wong, Vincent

    initial policy. Simulation results confirm the convergence of the game between EVCSs. The results also assumed that EVs are charged only at home. However, considering that conventional internal combustion engine vehicles refuel at gas stations, EVs might also be charged at other facilities which provide

  7. Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same

    DOE Patents [OSTI]

    Karner, Donald B

    2014-04-29T23:59:59.000Z

    Some embodiments include a device to facilitate moving an electrical cable of an electric vehicle charging station. Other embodiments of related systems and methods are also disclosed.

  8. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect (OSTI)

    John Smart

    2013-01-01T23:59:59.000Z

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  9. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01T23:59:59.000Z

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  10. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  11. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  12. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01T23:59:59.000Z

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  13. Microgrid V2G Charging Station Interconnection Testing (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2013-07-01T23:59:59.000Z

    This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

  14. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  15. Joachim Skov Johansen Fast-Charging Electric Vehicles

    E-Print Network [OSTI]

    Firestone, Jeremy

    to charge from an inexpensive AC charging station feeding power directly from the electric grid are an effective catalyst for considerably expanding fast-charging infrastructure. With AC fast-charging, high-powerJoachim Skov Johansen Fast-Charging Electric Vehicles using AC Master's Thesis, September 2013 #12

  16. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State0ButtonWeb site

  17. Electric Vehicle Charging as an Enabling Technology

    E-Print Network [OSTI]

    Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

  18. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  19. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling EfficientState Electric Vehicle Workplace

  20. Optimal Decentralized Protocols for Electric Vehicle Charging

    E-Print Network [OSTI]

    Low, Steven H.

    into the electric power grid. EV charging increases the electricity demand, and potentially amplifies the peak1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging

  1. Workplace Charging Case Study: Charging Station Utilization at a Work Site with AC Level 1, AC Level 2, and DC Fast Charging Units

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-06-01T23:59:59.000Z

    This paper describes the use of electric vehicle charging stations installed at a large corporate office complex. It will be published to the INL website for viewing by the general public.

  2. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    Open Energy Info (EERE)

    to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia AgencyCompany Organization: Natural...

  3. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Energy Savers [EERE]

    The report also examines when consumers want to recharge vehicles, and to what extent pricing and incentives can encourage consumers to charge during off-peak periods. Evaluating...

  4. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31T23:59:59.000Z

    The research and development project supported the engineering, design and implementation of onroad Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: ? Short Commute: Defined as EVs performing in limited duration, routine commutes. ? Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. ? Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehiclerelated greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  5. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

  6. Mississippi Agricultural and Forestry Experiment Station Vehicle Rental Request Form

    E-Print Network [OSTI]

    Ray, David

    Mississippi Agricultural and Forestry Experiment Station Vehicle Rental Request Form Driver Name Date: Travel Destination: Account #: Vehicle Information 1995 Crown Victoria 1995 Crown Victoria 1995 with the MSU Authorized Vehicle Use Policy. You further acknowledge that you have executed the Mississippi

  7. Congestion control in charging of electric vehicles

    E-Print Network [OSTI]

    Carvalho, Rui; Gibbens, Richard; Kelly, Frank

    2015-01-01T23:59:59.000Z

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

  8. A Dynamic Algorithm for Facilitated Charging of Plug-In Electric Vehicles

    E-Print Network [OSTI]

    Taheri, Nicole; Ye, Yinyu

    2011-01-01T23:59:59.000Z

    Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can reduce greenhouse gas emissions and change the way vehicles obtain power. PEV charging stations will most likely be available at home and at work, and occasionally be publicly available, offering flexible charging options. Ideally, each vehicle will charge during periods when electricity prices are relatively low, to minimize the cost to the consumer and maximize societal benefits. A Demand Response (DR) service for a fleet of PEVs could yield such charging schedules by regulating consumer electricity use during certain time periods, in order to meet an obligation to the market. We construct an automated DR mechanism for a fleet of PEVs that facilitates vehicle charging to ensure the demands of the vehicles and the market are met. Our dynamic algorithm depends only on the knowledge of a few hundred driving behaviors from a previous similar day, and uses a simple adjusted pricing scheme to instantly assign feasible and satisfactory c...

  9. Brussels, Belgium, November 19-22, 2012 Energy Demand Prediction in a Charge Station: A

    E-Print Network [OSTI]

    Boyer, Edmond

    EEVC Brussels, Belgium, November 19-22, 2012 Energy Demand Prediction in a Charge Station over a real database which can be associated with the energy demand generated by electric vehicles simplifying assumptions about the EV drivers' energy demand. To improve the accuracy of the modelling

  10. Vehicle Technologies Office Merit Review 2014: DC Fast Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE...

  11. The Charging-Scheduling Problem for Electric Vehicle Networks

    E-Print Network [OSTI]

    The Charging-Scheduling Problem for Electric Vehicle Networks Ming Zhu, Xiao-Yang Liu, Linghe Kong}@sjtu.edu.cn Abstract--Electric vehicle (EV) is a promising transportation with plenty of advantages, e.g., low carbon method to reduce the total charging time for EVs. We study the Electric Vehicle Charging-Scheduling (EVCS

  12. Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets

    E-Print Network [OSTI]

    Martin, Jean Mario Nations

    2012-01-01T23:59:59.000Z

    As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

  13. Vehicle Technologies Office Merit Review 2014: Wireless Charging...

    Office of Environmental Management (EM)

    Charging Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  14. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Energy Savers [EERE]

    data below is from an electric vehicle charging infrastructure project run by the New York State Energy Research and Development Authority (NYSERDA). The reports describe...

  15. Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)

    Broader source: Energy.gov [DOE]

    Jurisdiction's can use this template to develop a standard permit for residential charging stations that allows for quick, safe installation of EVSE.

  16. EV Project Electric Vehicle Charging Infrastructure Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    days 2013 ECOtality 7302013 8:20:32 AM INLMIS-10-19479 4 of 116 Vehicles Charged Car sharing fleet Nissan Leaf Chevrolet Volt Unknown Percent of charging events 53% 6%...

  17. EV Project Electric Vehicle Charging Infrastructure Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    all days 2012 ECOtality 212013 9:44:51 AM INLMIS-10-19479 4 of 89 Vehicles Charged Car sharing fleet Nissan Leaf Chevrolet Volt Unknown Percent of charging events 22% 20%...

  18. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22T23:59:59.000Z

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  19. Online Mechanism Design for Electric Vehicle Charging Enrico H. Gerding

    E-Print Network [OSTI]

    Chen, Yiling

    Online Mechanism Design for Electric Vehicle Charging Enrico H. Gerding eg@ecs.soton.ac.uk Valentin electric vehicles are expected to place a consid- erable strain on local electricity distribution networks mechanisms are evaluated in depth, using data from a real-world trial of electric vehicles in the UK

  20. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  1. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16T23:59:59.000Z

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  2. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Broader source: Energy.gov (indexed) [DOE]

    document establishes the California Fuel Cell Partnership's current consensus vision of next steps for vehicles and hydrogen stations in California. 200707completevisiondeployme...

  3. Vehicles and E85 Stations Needed to Achieve Ethanol Goals

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    This paper presents an analysis of the numbers of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85). The paper does not analyze issues related to the supply of ethanol which may turn out to be of even greater concern. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived and preliminary results for 2010, 2017 and 2030 consistent with the President s 2007 biofuels program goals are presented (1). A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85, and that 125 to 200 million flexible fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: (1) there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline, (2) the future prices of E85 and gasoline are uncertain; and (3) the method of analysis used is highly aggregated; it does not consider the potential benefits of regional strategies nor the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce FFVs and insure widespread availability of E85.

  4. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  5. Advanced Plug-in Electric Vehicle Travel and Charging

    E-Print Network [OSTI]

    California at Davis, University of

    miles across all available vehicles, not only the one being studied. Find out where the "other" gasoline/needs, Important destinations, HOV usage · Home and work charging infrastructure · Electricity prices · Purchase · Charging behavior · Location · Time · Frequency · Power · Level · Efficiency · Gasoline operation · MPG

  6. PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging

    E-Print Network [OSTI]

    Bigelow, Stephen

    have a valid UCSB parking permit displayed on my vehicle. Purchase a Power-only permit for the amount of time required to charge your vehicle. I do not have a valid UCSB parking permit. Purchase a Power. Valid UCSB parking permit holders pay for power only. Non-UCSB permit holders pay for power and parking

  7. Intelligent Vehicle Charging Benefits Assessment Using EV Project Data

    SciTech Connect (OSTI)

    Letendre, Steven; Gowri, Krishnan; Kintner-Meyer, Michael CW; Pratt, Richard M.

    2013-12-01T23:59:59.000Z

    PEVs can represent a significant power resource for the grid. An IVCI with bi-direction V2G capabilities would allow PEVs to provide grid support services and thus generate a source of revenue for PEV owners. The fleet of EV Project vehicles represents a power resource between 30 MW and 90 MW, depending on the power rating of the grid connection (5-15 kW). Aggregation of vehicle capacity would allow PEVs to participate in wholesale reserve capacity markets. One of the key insights from EV Project data is the fact that vehicles are connected to an EVSE much longer than is necessary to deliver a full charge. During these hours when the vehicles are not charging, they can be participating in wholesale power markets providing the high-value services of regulation and spinning reserves. The annual gross revenue potential for providing these services using the fleet of EV Project vehicles is several hundred thousands of dollars to several million dollars annually depending on the power rating of the grid interface, the number of hours providing grid services, and the market being served. On a per vehicle basis, providing grid services can generate several thousands of dollars over the life of the vehicle.

  8. After the gas station : redevelopment opportunities from rethinking America's vehicle refueling infrastructure

    E-Print Network [OSTI]

    Turco, Andrew

    2014-01-01T23:59:59.000Z

    Gas stations are found throughout the US, but their ubiquity causes them to go largely unnoticed. Because their purpose - refueling vehicles - is so uniform and so integral to the existing automotive transportation system, ...

  9. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect (OSTI)

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01T23:59:59.000Z

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  10. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01T23:59:59.000Z

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  11. Robust Broadcast-Communication Control of Electric Vehicle Charging

    E-Print Network [OSTI]

    Turitsyn, Konstantin; Backhaus, Scott; Chertkov, Misha

    2010-01-01T23:59:59.000Z

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  12. Robust broadcast-communication control of electric vehicle charging

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  13. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    SciTech Connect (OSTI)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01T23:59:59.000Z

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  14. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs, Texas(April 2012)Energy Energy

  15. Orlando Plugs into Electric Vehicle Charging Stations | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1ofGeothermal and SolarEnergy

  16. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen| DepartmentTracking Database, INLDepartment

  17. Washington DC's First Electric Vehicle Charging Station | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUMEWORKFORCE DIVERSITY TOWNDepartment

  18. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities Reflects onAFDCSchools

  19. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North CarolinaE85: An Alternative

  20. Charging Games in Networks of Electrical Vehicles Olivier Beaude, Samson Lasaulce, and Martin Hennebel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Charging Games in Networks of Electrical Vehicles Olivier Beaude, Samson Lasaulce, and Martin charging in electrical vehicle (EV) networks is proposed. This formulation allows one to model games, electrical vehicle, distribution net- works, potential games, Nash equilibrium, price of anarchy

  1. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C [ORNL; LaClair, Tim J [ORNL; Maxey, L Curt [ORNL

    2014-01-01T23:59:59.000Z

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  2. Electric vehicle system for charging and supplying electrical power

    DOE Patents [OSTI]

    Su, Gui Jia

    2010-06-08T23:59:59.000Z

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  3. US residential charging potential for electric vehicles Elizabeth J. Traut a

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    US residential charging potential for electric vehicles Elizabeth J. Traut a , TsuWei Charlie market, conventional vehicles (CV) make up the vast majority of market share, hy- brid electric vehicles (HEVs) represent less than 4% share, and sales of plug-in electric vehicles (PEVs), including plug-in hy

  4. A First Look at the Impact of Electric Vehicle Charging on the...

    Broader source: Energy.gov (indexed) [DOE]

    EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS26 Los Angeles, California, May 6-9, 2012 A First Look at the Impact of Electric Vehicle Charging...

  5. 20,000 and Counting: Alternative Fueling and Charging Stations...

    Broader source: Energy.gov (indexed) [DOE]

    gas, electricity, E85 (up to 85% ethanol), hydrogen, liquefied natural gas, and propane. The Station Locator offers drivers several ways to search for and sort information:...

  6. Vehicle remote charge-all electric transportation system

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The development of a pollution-free transportation system that utilizes technology from the defense industry combines two industries in a commercial venture. In conjunction with the abatement of pollution that an all-electric transportation system would realize, the defense industry is looking for a commercial market for the technology that it has developed over the years. This new transportation system will accomplish both these goals. To date, the most reliable electric source has been overhead tethered lines or on-ground tracks in public transportation. But these greatly reduce the convenience of route changes and are at the mercy of small traffic pattern changes which can cause traffic tie-ups. The ideal electric bus would have a completely mobile energy source, such as a battery pack. But the limited range of a battery powered vehicle has diminished its use to only specific cases. In private vehicles also, the limited range of zero-pollution battery power has reduced the desirability of all-electric transportation. The electric transportation system proposed here will eliminate these problems. Buses will be sent out on their routes with convenient in-route charging. There will be minimum route changes to accommodate vehicle recharging. The buses will have full mobility and can avoid any traffic tie-ups. The charging of these on-board electrical energy storage systems will take place via a wireless power transmission network that will be established along the roadside on existing power line (telephone) poles or new stand-alone poles that would be in conjunction with the existing poles. Radio frequency (RF) wavelengths such as a microwave or a millimeterwave system or optical frequencies (OF), a laser based system, are wireless energy transmission systems. Utilizing this means to establish a nationwide transportation system will take a technology that has been defense based and use it in a commercial application.

  7. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou [ORNL; Jones, Perry T [ORNL; Onar, Omer C [ORNL; Starke, Michael R [ORNL

    2014-01-01T23:59:59.000Z

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  8. SPIDERS Bi-Directional Charging Station Interconnection Testing

    SciTech Connect (OSTI)

    Simpson, M.

    2013-09-01T23:59:59.000Z

    The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) program is a multi-year Department of Defense-Department of Energy (DOE) collaborative effort that will demonstrate integration of renewables into island-able microgrids using on-site generation control, demand response, and energy storage with robust security features at multiple installations. Fort Carson, Colorado, will be the initial development and demonstration site for use of plug-in electric vehicles as energy storage (also known as vehicle-to-grid or V2G).

  9. Plug-In Electric Vehicle Handbook for Public Charging

    E-Print Network [OSTI]

    about the new generation of plug-in electric vehicles (PEVs) like the Chevy Volt and Nissan Leaf. You. Gasoline- and diesel-powered ICE vehicles ended

  10. Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011

  11. NREL, Clean Cities, and industry leaders join forces to create the first comprehensive online locator for electric vehicle

    E-Print Network [OSTI]

    locator for electric vehicle charging stations. The National Renewable Energy Laboratory (NREL) and the U-in electric vehicles (PEVs) can easily find charging stations across the United States. These leaders in PEV, comprehensive source of locations for electric vehicle supply equipment (EVSE)--better known as charging

  12. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  13. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Charging Up in King County, Washington

    ScienceCinema (OSTI)

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

    2013-05-29T23:59:59.000Z

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  15. Charging Up in King County, Washington

    Broader source: Energy.gov [DOE]

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

  16. Sample Employee Survey for Workplace Charging Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle (ex. Chevy Volt, Ford C-MAX, etc.) b. Electric vehicle (ex. Nissan Leaf, BMW Active-E, etc.) 5. Do you or would you have the ability to install a charging station...

  17. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    vehicles: the case of natural gas vehicles. Energy Policywith compressed natural gas vehicles in New Zealand andin California and natural gas vehicles in New Zealand (

  18. Electric vehicle smart charging and vehicle-to-grid operation, International Journal of Parallel, Emergent and Distributed Systems, vol. 27, no. 3. March 2012.

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Electric vehicle smart charging and vehicle-to-grid operation, International Journal of Parallel operator. Index Terms-- Charge Scheduling, EV, Smart Grid, V2G I. INTRODUCTION One million electric and application to facilitate "smart" charging has been proposed [6], however integration of the mobile component

  19. Smart Frequency-Sensing Charge Controller for Electric Vehicles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for licensing:System uses frequency-sensing charge controllers that provide automatic demand response and regulation service to the grid by reducing or turning the charging...

  20. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charge Grid Impacts with Renewables and Energy Storage AVTA: Bidirectional Fast Charging Report AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  1. Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station Tomislav to intolerable stresses in the near future scenario where there will be a large number of public FCS spread across the network. This paper proposes an internal power balancing strategy for FCS based on flywheel

  2. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage. Flywheel has been selected as the means of storing energy as it provides high power density and does the energy stored in flywheel to compensate for the peak of power introduced by HEV charger, avoiding big

  3. GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge

    E-Print Network [OSTI]

    INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY MANAGE- MENT GRIDGREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts-55080 #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting

  4. Optimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low

    E-Print Network [OSTI]

    Low, Steven H.

    is to shift the load due to electric vehicles to fill the overnight electricity demand valley. In each iteration of the proposed protocol, electric vehicles choose their own charging profiles for the following day according to the price profile broadcast by the utility, and the utility updates the price profile

  5. Wireless Plug-in Electric Vehicle (PEV) Charging

    Broader source: Energy.gov (indexed) [DOE]

    efficiency in a test and demonstration vehicle - Loosely coupled magnetic resonant transformers having air core cannot meet health and safety targets, therefore, novel soft...

  6. Wireless Plug-in Electric Vehicle (PEV) Charging

    Broader source: Energy.gov (indexed) [DOE]

    over moderate distances in stationary setting - Loosely coupled magnetic resonant transformers have the potential to accomplish this goal. - Target for Vehicle application: Level...

  7. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  8. Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.

    E-Print Network [OSTI]

    California at Davis, University of

    Improving Grid Performance with Electric Vehicle Charging © 2011San Diego Gas & Electric Company · Education SDG&E Goal ­ Grid Integrated Charging · More plug-in electric vehicles · More electric grid to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8

  9. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01T23:59:59.000Z

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  10. Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms with different EV battery charging rate constraints, that is distributed across a smart power grid network the power grid. One way to tackle this problem is to adopt a "smart grid" solution, which allows EVs

  11. Demonstrating Dynamic Wireless Charging of an Electric Vehicle - The benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller (JNJ), John M. [JNJ-Miller PLC] [JNJ-Miller PLC; Onar, Omer C [ORNL] [ORNL; White, Cliff P [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Coomer, Chester [ORNL] [ORNL; Seiber, Larry Eugene [ORNL] [ORNL; Sepe, Raymond B [ORNL] [ORNL; Steyerl, Anton [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The wireless charging of an electric vehicle (EV) while it is in motion presents challenges in terms of low-latency communications for roadway coil excitation sequencing and maintenance of lateral alignment, plus the need for power-flow smoothing. This article summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at the Oak Ridge National Laboratory (ORNL) using various combinations of electrochemical capacitors at the grid side and in the vehicle. Electrochemical capacitors of the symmetric carbon carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories (ESL) fabricated the passive and active parallel lithium-capacitor (LiC) unit used to smooth the grid-side power. The power pulsation reduction was 81% on the grid by the LiC, and 84% on the vehicle for both the LiC and the carbon ultracapacitors (UCs).

  12. Proxy Mobile IPv6 for Electric Vehicle Charging Service: Use Cases and Analysis

    E-Print Network [OSTI]

    Gesbert, David

    requirement to get energical and economical benefits from Smart-grid and EVs is to reach an optimal scheduling for individual mobility in the cities. In order to gain the customer acceptance of the EV, the charging drivers and the Grid operators. Second, the type of charging stations will range This work has been

  13. Now Available: Evaluating Electric Vehicle Charging Impacts and...

    Energy Savers [EERE]

    from Six SGIG Projects (December 2014) December 18, 2014 - 10:28am Addthis The electric power industry expects a 400% growth in annual sales of plug-in electric vehicles by 2023,...

  14. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  15. Development of a measuring system for parking position Can wireless charging of electric vehicles deliver its full

    E-Print Network [OSTI]

    Zhao, Yuxiao

    of our projects aims to obtain a better understanding of wireless charging of electric vehicles regarding connection of electric vehicles to the grid. In order for wireless charging to be successful1 Development of a measuring system for parking position ­ Can wireless charging of electric

  16. Vehicle Technologies Office Merit Review 2015: Wireless Charging of Electric Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless...

  17. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2003-06-24T23:59:59.000Z

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  18. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Bremson, J.; Solo, K.

    2013-01-01T23:59:59.000Z

    The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

  19. Vehicle Technologies Office: Workplace Charging Challenge 2015 Annual Survey Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides an update on the Workplace Charging Challenge initiative, describes the survey, discusses why the Survey input is essential, and walks through the log-in and submission process.

  20. Cover: PNNL's Photovoltaic array produces electricity for our super-computing facility and adjacent car charging stations. IN THIS REPORT

    E-Print Network [OSTI]

    #12;Cover: PNNL's Photovoltaic array produces electricity for our super-computing facility and adjacent car charging stations. #12;IN THIS REPORT 2 Message From the Director 3 PNNL Overview 5

  1. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  2. Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    ForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms infrastructure cost. On the other hand, we can adopt a "smart grid" solution, which allows EVs to communicate and unacceptable voltage variation that overload the power grid [1]. To tackle this problem, we may increase

  3. Real-Time Load Elasticity Tracking and Pricing for Electric Vehicle Charging

    E-Print Network [OSTI]

    Giannakis, Georgios

    owners may also benefit from lower energy cost in the face of spiking gasoline prices. Although1 Real-Time Load Elasticity Tracking and Pricing for Electric Vehicle Charging Nasim Yahya Soltani price intelligently for individual customers to elicit desirable load curves. In this context

  4. U.S. Shared-Use Vehicle Survey Findings on Carsharing and Station Car Growth

    E-Print Network [OSTI]

    Shaheen, Susan

    2004-01-01T23:59:59.000Z

    auto insurance for nonprofit car- sharing organizations. Theuse vehicle model. Car- sharing typically aims to assess

  5. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Electric Vehicle Charging Impact Review for MultiUser Residential Buildings in British Columbia

    E-Print Network [OSTI]

    596 Electric Vehicle Charging ­ Impact Review for Multi User Residential Buildings in British .......................................................................................................................................... 4 3 Electric Vehicles in British Columbia .................................................................................................................................... 27 6.1 City of Vancouver ­ Electric Vehicle Provision Regulations

  6. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES:of Energy ChargePointReports |

  7. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

  8. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b s t r a c t Federal electric vehicle (EV) policies in the United States currently include vehicle

  9. Stochastic Distributed Protocol for Electric Vehicle Charging with Discrete Charging Rate

    E-Print Network [OSTI]

    Winfree, Erik

    including those in the integration into the electric power grid. For example, EV charging potentially studies demonstrate that adopting "smart" charging strategies can mitigate some of the integration Gan, Ufuk Topcu, Member, IEEE, and Steven H. Low, Fellow, IEEE Abstract--To address the grid

  10. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01T23:59:59.000Z

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  11. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01T23:59:59.000Z

    in the analysis of hydrogen energy stations, additionalattractiveness of the hydrogen energy station scheme in bothECONOMIC ANALYSIS OF HYDROGEN ENERGY STATION CONCEPTS: ARE '

  12. On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems

    E-Print Network [OSTI]

    Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

    2011-01-01T23:59:59.000Z

    Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

  13. Control method for high-pressure hydrogen vehicle fueling station dispensers

    DOE Patents [OSTI]

    Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.

    2006-06-13T23:59:59.000Z

    A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.

  14. Abstract--In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures,

    E-Print Network [OSTI]

    da Silva, Alberto Rodrigues

    Abstract--In this work is proposed the design of a system to create and handle Electric Vehicles network limitation and absence of smart meter devices, Electric Vehicles charging should be performed application to assist the EV driver on these processes. This proposed Smart Electric Vehicle Charging System

  15. Dynamic Wireless Charging of Electric Vehicle Demonstrated at Oak Ridge National Laboratory: Benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller, John M [ORNL] [ORNL; Onar, Omer C [ORNL] [ORNL; White, Cliff P [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Coomer, Chester [ORNL] [ORNL; Seiber, Larry Eugene [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Abstract Wireless charging of an electric vehicle while in motion presents challenges in terms of low latency communications for roadway coil excitation sequencing, and maintenance of lateral alignment, plus the need for power flow smoothing. This paper summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at Oak Ridge National Laboratory using various combinations of electrochemical capacitors at the grid-side and in-vehicle. Electrochemical capacitors of the symmetric carbon-carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories fabricated the passive and active parallel lithium-capacitor unit used to smooth grid-side power. Power pulsation reduction was 81% on grid by LiC, and 84% on vehicle for both lithium-capacitor and the carbon ultracapacitors.

  16. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01T23:59:59.000Z

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  17. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01T23:59:59.000Z

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  18. Optimization of compression and storage requirements at hydrogen refueling stations.

    SciTech Connect (OSTI)

    Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

    2008-01-01T23:59:59.000Z

    The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

  19. AVTA: GE Energy WattStation AC Level 2 Charging System Testing...

    Energy Savers [EERE]

    2012 More Documents & Publications AVTA: Aerovironment AC Level 2 Charging System Testing Results AVTA: GE Smart Grid Capable AC Level 2 Testing Results AVTA: Siemens-VersiCharge...

  20. Effect of propane-air on NGVs and vehicle fueling stations. Topical report, January 1-October 1, 1993

    SciTech Connect (OSTI)

    Liss, W.E.; Moulton, D.S.

    1994-06-01T23:59:59.000Z

    Propane-air (P/A) peakshaving is an important element of peak-load management for some U.S. gas utilities. P/A is used as a supplemental energy medium with natural gas and has been shown to operate satisfactorily in most natural gas applications. The propane levels injected are compatible with the pressures (under 200 psig) and temperatures (over 40 F) found in utility distribution networks. However, P/A can create problems for natural gas vehicles (NGVs) operating on compressed gas as well as NGV fueling stations. This report contains information on P/A peakshaving and its compatibility with NGVs by documenting condensation impacts at nine conditions--i.e., three propane levels and three temperatures. These data portray the depressurization of a vehicle tank, an area selected because it illustrates NGV operation and can discriminate between acceptable and potentially non-acceptable operating points. These analyses show, not surprisingly, a correlation exists between propane level, ambient temperature, and condensation.

  1. Fact #795: September 2, 2013 Electric Vehicle Charging Stations by State |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoices for2013Department

  2. Electric Vehicle Charging Stations, Coming Soon to a City Near You |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup ReportLowandDepartment of Energy

  3. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicleEducationRecovery Vision andVision for

  4. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicleEducationRecovery Vision andVision

  5. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01T23:59:59.000Z

    fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

  6. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  7. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  8. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01T23:59:59.000Z

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  9. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

  10. Portunes: Privacy-Preserving Fast Authentication for Dynamic Electric Vehicle Charging

    E-Print Network [OSTI]

    Nahrstedt, Klara

    a charging section, and the EV's battery is charged through magnetic induction between the coils simultaneously charge multiple EVs with different battery types and coils. While the micro charging pad approach charging parameters, such as the desired charging rate, battery type, coil type, etc. Second, the charging

  11. Qualification of Class 1E static battery charges and inverters for nuclear power generating stations

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This standard describes methods for qualifying static battery chargers and inverters for Class 1E installations in environmentally controlled areas outside containment in nuclear power generating stations. The purpose of this standard is to provide specific procedures to meet the requirements of IEEE Std. 323-1974.

  12. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01T23:59:59.000Z

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  13. Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. PROJECT REPORT Energy Management for EV Charge Station in Distributed Power System

    E-Print Network [OSTI]

    He, Lei

    of few batteries which connected to the DPS generator, super capacitors(or other energy storage device capacitors, we want to obtain an optimal battery and super capacitor discharging schedule from distributed. Then the second one is conventional power grid will only connected to super capacitors and charge them when needed

  16. Fact #717: March 5, 2012 Availability of Electric Charging Stations Has

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment of EnergyVehicle?Energy

  17. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  18. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  19. Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    -rate charging of plug-in electric vehicles allows demand to be rapidly modulated, providing an alter- native growing electricity sources in the United States [3], wind can be expected to meet a large proportion vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from power

  20. Vehicle Technologies Office Merit Review 2015: Wireless & Conductive Charging Testing to support Code & Standards

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless and...

  1. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  2. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  3. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect (OSTI)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01T23:59:59.000Z

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  5. Electric vehicle charging infrastructure deployment : policy analysis using a dynamic behavioral spatial model

    E-Print Network [OSTI]

    Kearney, Michael J. (Michael Joseph)

    2011-01-01T23:59:59.000Z

    The United States government is committed to promoting a market for electric vehicles. To ensure that this electrification program does not result in the same failure that has come be associated with its predecessor programs, ...

  6. Vehicle Technologies Office Merit Review 2015: Traction Drive Systems with Integrated Wireless Charging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about traction drive...

  7. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    batteries for vehicle applications. Unfortunately the graphite/graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (graphite/NiCoMn chemistry. In general, it is possible to design high power batteries (

  8. Design of an Autonomous Underwater Vehicle (AUV) charging system for underway, underwater recharging

    E-Print Network [OSTI]

    Ewachiw, Mark Alexander, Jr

    2014-01-01T23:59:59.000Z

    Modern robotics have enabled the rapid proliferation of Autonomous Underwater Vehicles (AUVs) throughout the marine environment. As autonomy algorithms increase in robustness, complexity, and reliability, so too does the ...

  9. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  10. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

  11. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  12. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 7, SEPTEMBER 2013 2919 Optimizing Electric Vehicle Charging

    E-Print Network [OSTI]

    Tang, Jian "Neil"

    ) instead of traditional internal combustion engine vehicles is considered as a promising solution. Compared solution for current gas shortage and emission problems. To maximize the benefits of using EVs, regulated. INTRODUCTION AS THE shortage of petroleum storage and the increase in CO2, SO2, and NOx emissions receive

  13. EECBG Success Story: Beep Beep! King County, Washington Is Charging Up Savings

    Broader source: Energy.gov [DOE]

    Residents of King County, Washington, are seeing several improvements in their community thanks to a $6.1 million Energy Efficiency and Conservation Block Grant (EECBG). The grant has allowed King County to conduct a variety of public and commercial energy efficiency upgrades, including the installation of electric vehicle charging stations, county vehicle fleet upgrades and senior housing energy improvements. Learn more.

  14. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State0 Cleanr Clean

  15. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  16. EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJune 30, 2015Vehicles | Department|

  17. Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of&Systems andFacility |

  18. Wireless Plug-in Electric Vehicle (PEV) Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofoftoMay 8,EnergyWinning2 DOE Hydrogen

  19. Wireless Plug-in Electric Vehicle (PEV) Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofoftoMay 8,EnergyWinning2 DOE Hydrogen1

  20. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  1. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  2. > 070131-073Vehicle

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    on collaborative control ofAutonomous Underwater Vehicles (AUV), Unmanned Aerial Vehicles (UAV) and Autonomous. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus Terms-Autonomous Surface Vehicles, ocean robotics, marine science operations, unmanned survey vessels. I

  3. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Energy Savers [EERE]

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  4. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructureFuels inDuneCharging Plug-In

  5. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructureFuels inDuneCharging

  6. AVTA: ChargePoint America Recovery Act project map of charging units

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe the distribution of charging infrastructure through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  7. Vehicle to Grid Communication Standards Development, Testing and Validation - Status Report

    SciTech Connect (OSTI)

    Gowri, Krishnan; Pratt, Richard M.; Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-09-01T23:59:59.000Z

    In the US, more than 10,000 electric vehicles (EV) have been delivered to consumers during the first three quarters of 2011. A large majority of these vehicles are battery electric, often requiring 220 volt charging. Though the vehicle manufacturers and charging station manufacturers have provided consumers options for charging preferences, there are no existing communications between consumers and the utilities to manage the charging demand. There is also wide variation between manufacturers in their approach to support vehicle charging. There are in-vehicle networks, charging station networks, utility networks each using either cellular, Wi-Fi, ZigBee or other proprietary communication technology with no standards currently available for interoperability. The current situation of ad-hoc solutions is a major barrier to the wide adoption of electric vehicles. SAE, the International Standards Organization/International Electrotechnical Commission (ISO/IEC), ANSI, National Institute of Standards and Technology (NIST) and several industrial organizations are working towards the development of interoperability standards. PNNL has participated in the development and testing of these standards in an effort to accelerate the adoption and development of communication modules.

  8. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electric vehicle customers have a positive fueling experience relative to conventional gasolinediesel stations as vehicles are introduced (2015-2017) and transition to advanced...

  9. AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siemens-VersiCharge AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

  10. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    and the delivery cost for fuel cell vehicles, however, itfueling stations, cost, Shanghai, fuel cell vehicles 1.0hydrogen cost therefore depend on the fleet of fuel cell

  11. Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

    2005-01-01T23:59:59.000Z

    Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

  12. Vehicle Technologies Office Merit Review 2015: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  13. Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  14. Decentralized Charging Control for Large Populations of Plug-in Electric Vehicles: Application of the Nash Certainty Equivalence Principle

    E-Print Network [OSTI]

    Hiskens, Ian A.

    strategy results in valley filling, i.e. the total demand, consisting of aggregated PEV charging load PEVs, is responsive to the total demand of the grid, which is the summation of the inelastic non-PEV base demand together with the aggregated charging rates of the whole population of PEVs. Because

  15. An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

    E-Print Network [OSTI]

    Yeh, Sonia

    2007-01-01T23:59:59.000Z

    579–594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.of NGVs versus number of natural gas refueling stations in

  16. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 311 Optimizing Electric Vehicle Charging With Energy

    E-Print Network [OSTI]

    Tang, Jian "Neil"

    With Energy Storage in the Electricity Market Chenrui Jin, Member, IEEE, Jian Tang, Member, IEEE, and Prasanta) that are currently under development for future smart grid systems can enable load aggregators to have bidirectional commu- nications with both the grid and Electric Vehicles (EVs) to obtain real-time price and load

  17. Fact #874: May 25, 2015 Number of Electric Stations and Electric...

    Energy Savers [EERE]

    74: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing - Dataset Fact 874: May 25, 2015 Number of Electric Stations and Electric Charging Units...

  18. Fuel Station Procedure Applicability All

    E-Print Network [OSTI]

    Moore, Paul A.

    Fuel Station Procedure Applicability All Last Revised 11/20/12 Procedure Owner Andrew Grant agrant for the purchasing and distribution of fuel for vehicles owned by Bowling Green State University (BGSU). This centralization is important to ensure compliance for BGSU employees who use the centralized fuel station and fuel

  19. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Energy Savers [EERE]

    DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

  20. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  1. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Impact of battery weight and charging patterns on the economic and environmental benefits of plug, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA c Department of Civil and Environmental Engineering Article history: Received 22 July 2008 Accepted 24 February 2009 Available online 1 April 2009 Keywords

  2. Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems Jasper Schuijbroek School station, and designing (near-)optimal vehicle routes to rebalance the inventory. Since finding provably : vehicle routing and scheduling, inventory, queues: applications, programming: integer, programming

  3. Electric Drive Vehicle Infrastructure Deployment

    Broader source: Energy.gov (indexed) [DOE]

    pricing encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid *...

  4. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24T23:59:59.000Z

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  5. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    of Smart Grids with Electric Vehicle Interconnection,”Economy of 2012 Electric Vehicles. ” [Online]. Available:Plug-in Hybrid Electric Vehicle Charging Infrastructure

  6. Roadmap for Testing and Validation of Electric Vehicle Communication Standards

    SciTech Connect (OSTI)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2012-07-12T23:59:59.000Z

    Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  7. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2011-01-01T23:59:59.000Z

    Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

  8. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting arravt053tibolton2012o.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

  9. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-11, 2010 -- Washington D.C. tiarravt053bolton2010p.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

  10. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation arravt053tibolton2011p.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

  11. CEOAS VEHICLE POLICY CEOAS has 4 vehicles for use by CEOAS personnel.

    E-Print Network [OSTI]

    Kurapov, Alexander

    CEOAS VEHICLE POLICY CEOAS has 4 vehicles for use by CEOAS personnel. 1) A Dodge ¾ ton cargo van; vehicle # 096813, located on Orchard Street in a reserved parking space, south of Burt Hall. This cargo/log book. OSU approves charging vehicle use to grants. If logs show the vehicle to be underutilized (thus

  12. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,”Year 2006 UCD—ITS—RR—06—04 Hydrogen Refueling Station Costs

  13. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-07-21T23:59:59.000Z

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  15. Vehicle Technologies Office Merit Review 2014: EV Project: Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Project: Solar-Assisted Charging Demo Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo Presentation given by Oak Ridge National Laboratory...

  16. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    Aug. 24, 2013. [8] R. Gadh, C. Chung, L. Qiu, and C. Chu, ”Nov. 30, 2011. [9] R. Gadh, A. Chattophadhyay, C. Chung, P.Aug. 2, 2011. [10] R. Gadh, S. Mal, S. Prabhu, C. Chu, J.

  17. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    Energy Research Center (SMERC) is developing a software-The enhancements bring SMERC research one step closer to a

  18. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10T23:59:59.000Z

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  20. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31T23:59:59.000Z

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

  1. Electric Vehicle Communication Standards Testing and Validation Phase I: SAE J2847/1

    SciTech Connect (OSTI)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2011-09-21T23:59:59.000Z

    Executive Summary Vehicle to grid communication standards are critical to the charge management and interoperability among vehicles, charging stations and utility providers. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee / HomePlug Alliance are developing requirements for communication messages and protocols. While the standard development is in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers and utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified performance requirements and test plan based on possible communication pathways using power line communication over the control pilot and mains. Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This report presents a test plan and results from initial testing of two power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  2. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFull Text ManagementDOE REALGC GUIDANCE

  3. Workplace Charging Challenge Partner: University of North Carolina...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eerevehiclesev-everywhere-workplace-charging-challenge July 15, 2014 Campus to get electric car-charging stations Last month, the university became the first institution in...

  4. Self-learning control system for plug-in hybrid vehicles

    DOE Patents [OSTI]

    DeVault, Robert C [Knoxville, TN

    2010-12-14T23:59:59.000Z

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  5. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01T23:59:59.000Z

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  6. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  7. Smart Grid Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    charging station This solar-powered electric vehicle charging station is located near Building 201. Vehicles in Argonne's "green" fleet are charged at this unit....

  8. Plug-In Electric Vehicle Handbook for Fleet Managers

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires at www.cleancities.energy.gov. #12;Plug-In Electric Vehicle Handbook for Fleets 3 You've heard the buzz

  9. Abstract--This paper examines the problem of optimizing the charge trajectory of a plug-in hybrid electric vehicle (PHEV),

    E-Print Network [OSTI]

    Krstic, Miroslav

    Abstract-- This paper examines the problem of optimizing the charge trajectory of a plug-in hybrid this optimization with two objectives in mind, namely, (i) minimizing the overall cost of daily PHEV energy the power grid. Two objectives are considered in this optimization. First, we minimize the total cost

  10. Armored Vehicle 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  11. An optimized international vehicle monitor

    SciTech Connect (OSTI)

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1997-03-01T23:59:59.000Z

    The security plans for many DOE facilities require the monitoring of pedestrians and vehicles to control the movement of special nuclear material (SNM). Vehicle monitors often provide the outer-most barrier against the theft of SNM. Automatic monitors determine the presence of SNM by comparing the gamma-ray and neutron intensity while occupied, to the continuously updated background radiation level which is measured while the unit is unoccupied. The most important factors in choosing automatic vehicle monitors are sensitivity, cost and in high traffic applications total monitoring time. The two types of automatic vehicle monitors presently in use are the vehicle monitoring station and the drive-through vehicle monitor. These two types have dramatically different cost and sensitivities. The vehicle monitoring station has a worst-case detection sensitivity of 40 g of highly enriched uranium, HEU, and a cost approximately $180k. This type of monitor is very difficult to install and can only be used in low traffic flow locations. The drive-through vehicle portal has a worst-case detection sensitivity of 1 kg of HEU and a cost approximately $20k. The world`s political situation has created a pressing need to prevent the diversion of SNM from FSU nuclear facilities and across international borders. Drive-through vehicle monitors would be an effective and practical nuclear material proliferation deterrent if their sensitivity can be improved to a sufficient level. The goal of this project is to evaluate different detector configurations as a means of improving the sensitivity of these instruments to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of SNM.

  12. Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel vehicles have become a

    E-Print Network [OSTI]

    Hickman, Mark

    Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel and adopted. Electric vehicles (EVs) in particular are leading the charge, with car manufacturers stepping up these vehicles; the current market for electric vehicles; the results from existing pilot project; as well

  13. Fuel Cell Vehicles and Hydrogen in Preparing for market launch

    E-Print Network [OSTI]

    California at Davis, University of

    Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

  14. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  15. Power Conditioning for Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25T23:59:59.000Z

    Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

  16. Workplace Charging Challenge Partner: University of Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to become a part of the Workplace Charging Challenge. "We are delighted to be the first health care institution in Maryland to provide charging stations for our employees, staff...

  17. Roadway Powered Electric Vehicle Project Parametric Studies: Phase 3D Final Report

    E-Print Network [OSTI]

    Systems Control Technology

    1996-01-01T23:59:59.000Z

    battery charging done by RPEV-equipped vehicles). The analysis in this report focuses on the life cycle costs

  18. City of College Station's Thermographic Mobile Scan

    E-Print Network [OSTI]

    Shear, C. K.

    1986-01-01T23:59:59.000Z

    During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

  19. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01T23:59:59.000Z

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  20. DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION

    E-Print Network [OSTI]

    from central production plants; however, the next phase to fostering the hydrogen economy will likely of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. In order to demonstrateDEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION David E. Guro Air Products

  1. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  2. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01T23:59:59.000Z

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  3. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Energy Savers [EERE]

    Tolerant Wireless Charging of EVs Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  4. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  5. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

    2011-11-01T23:59:59.000Z

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

  6. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    also novel new on-site hydrogen storage systems. In relationfor fuel cells and hydrogen storage), fuel cell durability,firms) on vehicle hydrogen storage pressure and station

  7. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  8. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  9. Quick charge battery

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  10. Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Smith, K.; Pesaran, A. A.

    2009-05-01T23:59:59.000Z

    Describes NREL's R&D on the petroleum displacement potential of plug-in hybrid vehicles; vehicles charged during the day would save about 5% more fuel than those charged at night.

  11. Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Brochure on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and ReCharge Integrated Demonstration System. Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year - not only to get from point A to point B, but also to keep passengers comfortable with air conditioning and heat. At the National Renewable Energy Laboratory (NREL), three installations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle-grid integration and minimizing fuel consumption related to vehicle climate control. Part of NREL's Center for Transportation Technologies and Systems (CTTS), the VTIF is dedicated to renewable and energy efficient solutions. This facility showcases technology and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for electric vehicle (EV) components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies and industry partners. Research conducted at the VTIF examines the interaction of building energy systems, utility grids, renewable energy sources and PEVs, integrating energy management solutions, and maximizing potential greenhouse gas (GHG) reduction, while smoothing the transition and reducing costs for EV owners. NREL's collaboration with automakers, charging station manufacturers, utilities and fleet operators to assess technologies using VTIF resources is designed to enable PEV communication with the smart grid and create opportunities for vehicles to play an active role in building and grid management. Ultimately, this creates value for the vehicle owner and will help renewables be deployed faster and more economically, making the U.S. transportation sector more flexible and sustainable.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  14. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  15. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  16. SEP Success Story: City in Colorado Fueling Vehicles with Gas...

    Office of Environmental Management (EM)

    Addthis Related Articles Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the...

  17. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  18. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  19. High Efficiency, Low EMI and Positioning Tolerant Wireless Charging...

    Office of Environmental Management (EM)

    Low EMI and Positioning Tolerant Wireless Charging of EVs 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  20. Softly landed electron-rich ions retain charge | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    insights into polyoxometalate anions to better control their performance in supercapacitors, which could lead to devices with more charge capacity for vehicles and portable...

  1. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction|(EVSE) Testing Data |

  2. Vehiculos de Combustible Flexible: Brindando Opciones en Combustible Renovable (Flexible Fuel Vehicles: Providing a Renewable Fuel Choice) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  3. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  4. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01T23:59:59.000Z

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  5. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles

    E-Print Network [OSTI]

    Firestone, Jeremy

    Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed, and fuel cell. Battery EDVs can store electricity, charging during low demand times and discharging when power is scarce and prices are high. Fuel cell and hybrid EDVs are sources of new power generation

  6. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01T23:59:59.000Z

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  7. Electric Vehicle Charging Infrastructure Deployment Guidelines: British

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldorado IvanpahGas WellsColumbia | Open Energy

  8. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22T23:59:59.000Z

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  9. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  14. Vehicle to MicroGrid: Leveraging Existing Assets for Reliable Energy Management Mike Simpson, Tony Markel, and Michael O'Keefe

    E-Print Network [OSTI]

    . Communities Vehicles POWER ELECTRONICS EFFICIENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES Electricity GCV MicroGrid The Smith Electric Newton allelectric truckFort Carson Photovoltaic Installation Managed Charging 3 Managed Bidirectional Charging ANALYSIS Courtesy of Smith Electric Vehicles

  15. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  16. Vehicle electrification is an important element in the nation's plan to transition

    E-Print Network [OSTI]

    Kemner, Ken

    or reliability of the grid. This requires smart charging, i.e., avoiding charging during peak demand periods and environmental impact while maintaining lifestyle). The key enabler to smart charging is the vehicle-grid/utility. As DOE and the utility industry implement a national Smart Grid Vehicle-Grid Interface Key to Smart

  17. Evaluating Electric Vehicle Charging Impacts and Customer Charging

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department of EnergyBehaviors: Experiences from

  18. Evaluating Electric Vehicle Charging Impacts and Customer Charging

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof1-SCORECARD-09-21-11 Page 1DepartmentBehaviors: Experiences

  19. Automatic parallel parking and platooning to redistribute electric vehicles in a car-sharing application

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Automatic parallel parking and platooning to redistribute electric vehicles in a car subscribers , as well as the electric car-sharing system autolib, comprising 2000 vehicles, 1200 stations this imbalance, vehicle redistribution strategies must be elaborated. As automatic relocation cannot be in place

  20. Revolutionizing Our Roadways The Challenges and Benefits of Making Automated Vehicles a Reality

    E-Print Network [OSTI]

    Revolutionizing Our Roadways The Challenges and Benefits of Making Automated Vehicles a Reality #12 of Making Automated Vehicles a Reality by Jason Wagner Associate Transportation Researcher Texas A Station, Texas 77843-3135 #12;iv | REVOLUTIONIZING OUR ROADWAYS #12;v Contents 1.0 Automated Vehicles

  1. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    hybrid vehicle applications ultracap energy stored Wh ultracap peak power kW systemhybrid-electric vehicles Type of hybrid System Useable energysystem. In the case of a charge sustaining hybrid, the useable energy

  2. Workplace Charging Challenge Partner: Lawrence Berkeley National...

    Broader source: Energy.gov (indexed) [DOE]

    has made plug-in electric vehicle (PEV) readiness a major focus of its site sustainability strategy. The laboratory began PEV charging for employees on a modest scale in May...

  3. Nissan Hypermini Urban Electric Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort; Robert Brayer

    2006-01-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

  4. Report of Progress at the Troupe Sub-Station, Smith County Texas.

    E-Print Network [OSTI]

    Hotchkiss, W.S.

    1909-01-01T23:59:59.000Z

    TEXAS AGRICULTUR 146-409-lorn [PERIMENT STATIONS BULLETIN NO. 121 FEBRUARY 1, 1909 REPORT OF PROGRESS AT THE TROUPE SUB-STATION, SMITH COUNTY, TEXAS W. H. HOTCHKISS, SUPERINTENDENT IN CHARGE POSTOFFICE COLLEGE STATION, BRAZOS COUNTY.... ..................................... C. W. CRISLER. .Chief Clerk. .................................. F. R. N~VAILLE. .Stenographer. ...................................... A. S. WARE.. .Stenographer. STATE SUBSTATIONS. ..................... H. H. HARRINGTON, Director. .College...

  5. MOUNTAIN LAKE BIOLOGICAL STATION

    E-Print Network [OSTI]

    Acton, Scott

    . . . . . 11 Garbage / Recycling . . . . 11 Vehicles / Parking . . . . 11 Guests collec ng has led to the deple on of the habitats surrounding many field sta ons. Therefore, please

  6. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Training Office Contact Administrative nav background Materials Test Station dotline Testing New Reactor Fuels that Reduce Radioactive Waste Mission Used...

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  8. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  9. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  10. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  11. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing...

  12. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  13. Adaptive powertrain control for plugin hybrid electric vehicles

    DOE Patents [OSTI]

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15T23:59:59.000Z

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  14. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2010-11-01T23:59:59.000Z

    This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

  15. Locating PHEV Exchange Stations in V2G

    E-Print Network [OSTI]

    Pan, Feng; Berscheid, Alan; Izraelevitz, David

    2010-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

  16. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  17. Optimized control studies of a parallel hybrid electric vehicle

    E-Print Network [OSTI]

    Bougler, Benedicte Bernadette

    1995-01-01T23:59:59.000Z

    This thesis addresses the development of a control scheme to maximize automobile fuel economy and battery state-of-charge (SOC) while meeting exhaust emission standards for parallel hybrid electric vehicles, which are an alternative to conventional...

  18. Path dependent receding horizon control policies for hybrid electric vehicles

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    Future hybrid electric vehicles (HEVs) may use path-dependent operating policies to improve fuel economy. In our previous work, we developed a dynamic programming (DP) algorithm for prescribing the battery state of charge ...

  19. Plug-in-hybrid electric vehicles park as virtual DVR

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    a PHEV according to variable price curves were reported in [3]. These previous studies have not dealt rpm, 2.5 L Lithium-Ion Vehicle Specification No. of cells Cell voltage System Voltage Charging Voltage

  20. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  1. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  2. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  3. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04T23:59:59.000Z

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  4. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Gustafson, K.

    1993-07-20T23:59:59.000Z

    A no loss liquid natural gas (LNG) delivery system is described comprising: (a) means for storing LNG and natural gas at low pressure; (b) means for delivering LNG from the means for storing to a use device including means for sub-cooling the LNG; (c) means for pre-cooling the means for sub-cooling before the LNG is delivered to the use device to substantially reduce vaporization of the initial LNG delivered to the use device; and (d) means for delivering a selectable quantity of the natural gas in said storing means to said use device with the LNG.

  5. Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction | Department ofDiveLocator |

  6. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTALnatural gas as aGC GUIDANCE ON

  7. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFunding Opportunities1 -of EnergyELECTRIC

  8. DOE Issues Guidance on Electric Vehicle Recharging Stations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offor Energy Delivery Systems

  9. Transfer stations and long-haul transport systems

    SciTech Connect (OSTI)

    Walsh, P.; Pferdehirt, W.; O'Leary, P. (Univ. of Wisconsin, Madison, WI (United States). Solid and Hazardous Waste Education Center)

    1993-12-01T23:59:59.000Z

    Transfer stations can be an important link between pickup at the curb and ultimate disposal, often allowing significant savings in the total costs to move wastes from the generator to the disposal site. A transfer station is simply a facility where collection trucks bring collected materials for loading into larger vehicles and subsequent shipment, usually to a landfill, waste-to-energy plant, or composting facility. Transferred wastes are typically shipped out in large trailers, but barges and railroad cars are also transport options. Although modern transfer stations usually include some provisions for handling recyclables, solid waste transfer dominates the operation of most facilities. Some communities have begun experimenting with transferring commingled, source-separated recyclables to regional processing centers. Transfer facilities can be as simple as a pavement slab and a front-end loader. Alternatively, transfer stations can cost millions of dollars and move thousands of tons of waste each day.

  10. Putting electric vehicles to the test

    E-Print Network [OSTI]

    the needs of the daily commuter? Can they match the performance we've come to expect from their fossil fuel sectors. Dr. Swan and his father have three electric vehicles ­ two 2000 Ford Ranger EV trucks and a 2002 uses a full charge in a day. He uses a Ranger to get to work and hauls any cargo or trailers he needs

  11. LNG to CNG refueling stations

    SciTech Connect (OSTI)

    Branson, J.D. [ECOGAS Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  12. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  13. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  14. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  15. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  16. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  17. In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)

    E-Print Network [OSTI]

    Harms, Kyle E.

    In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel) FY 2013 - 2014 July 1, 2013 - June 30, 2014 Enterprise must be used for all in-state vehicle rentals. Corporate Discount # Website Reservations Phone # Base Rental Charges Rental Location Surcharges Vehicle

  18. In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)

    E-Print Network [OSTI]

    Harms, Kyle E.

    In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel) FY 2011 - 2012 July 1, 2011 - June 30, 2012 Enterprise must be used for all in-state vehicle rentals. Corporate Discount # Website Reservations Phone # Base Rental Charges Rental Location Surcharges Vehicle

  19. In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)

    E-Print Network [OSTI]

    Harms, Kyle E.

    In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel) FY 2012 - 2013 July 1, 2012 - June 30, 2013 Enterprise must be used for all in-state vehicle rentals. Corporate Discount # Website Reservations Phone # Base Rental Charges Rental Location Surcharges Vehicle

  20. Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge

    SciTech Connect (OSTI)

    Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

    1995-06-01T23:59:59.000Z

    From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

  1. AVTA: ARRA EV Project Vehicle Placement Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  2. AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    -to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

  3. PHEVs are More about the grid than the vehicles

    SciTech Connect (OSTI)

    NONE

    2009-01-15T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

  4. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  5. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  6. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Energy Savers [EERE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  7. AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

  8. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29T23:59:59.000Z

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  9. Skate Station UF Services

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    friends, practice your English, and try new activities! Where: Skate Station Funworks We will be meeting and more orderly manner. Everyone will be served eventually. Fire Drills/Alarms: Whenever you hear a fire should park your bike in well-lighted areas and lock it up when you park it. The best lock is a U

  10. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  11. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    to maximize usage, educating the public and coordinating with utilities. The Vehicle Technologies Office is partnering with city governments, local organizations, and...

  12. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...

  13. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  14. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Environmental Management (EM)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  15. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  16. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  17. Electric Vehicle Communications Standards Testing and Validation - Phase II: SAE J2931/1

    SciTech Connect (OSTI)

    Pratt, Richard M.; Gowri, Krishnan

    2013-01-15T23:59:59.000Z

    Vehicle to grid communication standards enable interoperability among vehicles, charging stations and utility providers and provide the capability to implement charge management. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee/HomePlug Alliance are developing requirements for communication messages and protocols. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified vehicle to grid communication performance requirements and developed a test plan as part of SAE J2931/1 committee work. This laboratory test plan was approved by the SAE J2931/1 committee and included test configurations, test methods, and performance requirements to verify reliability, robustness, repeatability, maximum communication distance, and authentication features of power line carrier (PLC) communication modules at the internet protocol layer level. The goal of the testing effort was to select a communication technology that would enable automobile manufacturers to begin the development and implementation process. The EPRI/Argonne National Laboratory (ANL)/Pacific Northwest National Laboratory (PNNL) testing teams divided the testing so that results for each test could be presented by two teams, performing the tests independently. The PNNL team performed narrowband PLC testing including the Texas Instruments (TI) Concerto, Ariane Controls AC-CPM1, and the MAXIM Tahoe 2 evaluation boards. The scope of testing was limited to measuring the vendor systems communication performance between Electric Vehicle Support Equipment (EVSE) and plug-in electric vehicles (PEV). The testing scope did not address PEV’s CAN bus to PLC or PLC to EVSE (Wi-Fi, cellular, PLC Mains, etc.) communication integration. In particular, no evaluation was performed to delineate the effort needed to translate the IPv6/SEP2.0 messages to PEV’s CAN bus. The J2931/1 laboratory test results were presented to the SAE membership on March 20-22, 2012. The SAE committee decided to select HomePlug GreenPHY (HPGP) as the communication technology to use between the PEV and EVSE. No technology completely met all performance requirements. Both the MAXIM Tahoe 2 and TI Concerto met the 100Kbps throughput requirement, are estimated to meet the latency measurement performance, and met the control pilot impairment requirements. But HPGP demonstrated the potential to provide a data throughput rate of 10x of the requirement and either met or showed the potential to meet the other requirements with further development.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    as structures, machinery, and equipment necessary and integral to support a plug-in electric vehicle (PEV), including battery charging stations, rapid charging stations, and...

  19. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  20. Coordinating Automated Vehicles via Communication

    E-Print Network [OSTI]

    Bana, Soheila Vahdati

    2001-01-01T23:59:59.000Z

    1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

  1. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EfficiencyVehicle Technologies Vehicle Technologies Combustion Research Facility (CRF) Vehicle Technology programs at Sandia share a common goal: reducing dependence on...

  2. NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

  3. Abstract--It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of

    E-Print Network [OSTI]

    Mahat, Pukar

    and mitigate its intermittency. However, EV charging may have negative impact on the power grid. This paper adverse effect on the grid. The paper also proposes an alternate EV charging method where distribution into account. Index Terms-- Electrical vehicle, smart charging, spot electricity price. I. INTRODUCTION HE

  4. VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________

    E-Print Network [OSTI]

    Yang, Zong-Liang

    VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

  5. Hybrid Human Powered Vehicle (Phase 3) The Zero EMission (ZEM) Vehicle Project

    E-Print Network [OSTI]

    Su, Xiao

    Continuous charging batteries by solar PV while driving the vehicle in sunny days, and parking in open lot and testing P-2 Sponsors: SJSU-COE, SunPower Corp. San Jose, and Clean Battery Technologies Inc. Santa Clara Base: 4' wide x 8'-6" long Power Sources: Human pedaling/ Electricity/Solar PV Freight Weight: 1200 lbs

  6. Social networking in vehicles

    E-Print Network [OSTI]

    Liang, Philip Angus

    2006-01-01T23:59:59.000Z

    In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

  7. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    exposure for hydrogen and fuel cell vehicle technologies.10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

  8. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    exposure for hydrogen and fuel cell vehicle technologies10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

  9. Automated Vehicle-to-Vehicle Collision Avoidance at Intersections

    E-Print Network [OSTI]

    Del Vecchio, Domitilla

    Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

  10. Motor Vehicle Record Procedure Objective

    E-Print Network [OSTI]

    Kirschner, Denise

    Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

  11. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  12. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  13. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  14. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  15. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  16. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced Research Fellow A vehicles powertrain is a complex combination of interacting sub-systems which include complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task

  17. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S Akehurst, EPSRC Advanced Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development

  18. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2015-01-01T23:59:59.000Z

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  19. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  20. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  1. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01T23:59:59.000Z

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  2. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  3. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01T23:59:59.000Z

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  4. Fact #717: March 5, 2012 Availability of Electric Charging Stations...

    Energy Savers [EERE]

    0 136 Texas 3 511 Utah 0 13 Virginia 1 112 Vermont 2 8 Washington 3 510 Wisconsin 0 91 West Virginia 0 6 Wyoming 0 0 Total 465 6,033 Source: U.S. Department of Energy,...

  5. EV Charging Stations Take Off Across America | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJune 30, 2015

  6. EV Charging Stations Take Off Across America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEMEnergy Task Order FinancialET's HVAC,EV

  7. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities Reflects onAFDC PrintableE85EV

  8. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  9. Idaho_SheepStation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104Sheep Station Site

  10. Transit Infrastructure Finance Through Station Location Auctions

    E-Print Network [OSTI]

    Ian Carlton

    2009-01-01T23:59:59.000Z

    Numerous route and station options Strong real estate marketreal estate market Transit friendly constituents Numerous route and station options

  11. Capacitive charging system for high power battery charging

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

  12. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  13. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  14. Assessment of institutional barriers to the use of natural gas in automotive vehicle fleets

    SciTech Connect (OSTI)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-08-01T23:59:59.000Z

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified and assessed. Recommendations for barrier removal were then developed. The research technique was a combination of literature review and interviews of knowledgeable persons in government and industry, including fleet operators and marketers of natural gas vehicles and systems. Eight types of institutional barriers were identified and assessed. The most important were two safety-related barriers: (1) lack of a national standard for the safety design and certification of natural gas vehicles and refueling stations; and (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements. Other barriers addressed include: (3) need for clarification of EPA's tampering enforcement policy; (4) the US hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale-for-resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufacturers warranties; and (8) need for a natural gas to gasoline-equivalent-units conversion factor for use in calculation of state road use taxes. Insurance on natural gas vehicles, and state emissions and anti-tampering regulations were also investigated as part of the research but were not found to be barriers.

  15. General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications

    E-Print Network [OSTI]

    Gilbes, Fernando

    General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

  16. VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION

    E-Print Network [OSTI]

    Watson, Craig A.

    VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

  17. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  18. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  19. Accomodating Electric Vehicles

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  20. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  1. Wachs Cutter Tooling Station (4495)

    Broader source: Energy.gov (indexed) [DOE]

    purchase, build and install Wachs cutter tooling. The Wachs Cutter Tooling Station is similar to previously operated facility tooling and will utilize an existing hydraulic unit....

  2. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  3. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01T23:59:59.000Z

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  4. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    charge data using cellularWiFi based network Power and energy data using integral meter Event data using network synchronized clock All data merged and stored at...

  6. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  7. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  8. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  9. Georgia Tech Vehicle Acquisition and

    E-Print Network [OSTI]

    1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

  10. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  11. SOLAR-POWERED AUTONOMOUS UNDERWATER VEHICLE DEVELOPMENT James Jalbert, John Baker, John Duchesney, Paul Pietryka, William Dalton

    E-Print Network [OSTI]

    batteries daily using solar panels to convert solar energy to electrical energy. #12;· Operate at depthsSOLAR-POWERED AUTONOMOUS UNDERWATER VEHICLE DEVELOPMENT James Jalbert, John Baker, John Duchesney in such applications. The concept of a vehicle that would allow on-station recharging of batteries, using solar cells

  12. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  13. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  14. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  15. MKV Carrier Vehicle Sensor Calibration

    E-Print Network [OSTI]

    Plotnik, Aaron M.

    The Multiple Kill Vehicle (MKV) system, which is being developed by the US Missile Defense Agency (MDA), is a midcourse payload that includes a carrier vehicle and a number of small kill vehicles. During the mission, the ...

  16. The Vehicle Technologies Market Report

    E-Print Network [OSTI]

    The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

  17. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  18. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Strategy Phase 2 Demonstrator Vehicle (GDCI) 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: Stop start EMS Control Algorithms Calibration GDi pump...

  19. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Energy Efficiency On November 11, 2010, in Solid-State Lighting Vehicle Technologies Energy Efficiency News Energy Frontier Research Center for Solid-State...

  20. Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research Hossein Akhavan data set for PHEV-related research in the field of smart grid. Our developed data set is made available, publicly available data set, smart grid applications, experimental vehicle driving traces, state of charge

  1. Optimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Paderborn, Universität

    Optimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles consumption". As a constraint for the optimization, the state of charge (SOC) of the electrical energy storage-electric vehicle (HEV), control strategies, optimization. 1. Introduction Due to the structure of hybrid

  2. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  3. Vehicle potential measurements during electron emission in the ionosphere

    SciTech Connect (OSTI)

    Myers, N.B.

    1991-03-01T23:59:59.000Z

    CHARGE-2 was a sounding rocket experiment to study the interaction of an electron beam with the environment. Additionally, experiments on the interaction of a vehicle at high potential (up to 1 kV) with the ionosphere were performed. The payload consisted of two parts that were separated during the flight. A 1 -kV electron gun was flown on the mother vehicle along with numerous diagnostic Instruments. The daughter vehicle was deployed on a conducting, insulated tether to a distance of up to 426 m perpendicular to the geomagnetic field. The high potential was obtained by electron emission from the mother vehicle, and by voltage biasing of the daughter vehicle. Measurements of transient vehicle potential were obtained with a sample interval of 100 ns. Measurements of the steady-state vehicle potential were typically limited to about half of the lkV accelerating potential of the electron gun. The daughter vehicle collected current consistent with magnetically limited models of current collection.

  4. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01T23:59:59.000Z

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  5. A Verified Hybrid Controller For Automated Vehicles

    E-Print Network [OSTI]

    Lygeros, J.; Godbole, D. N.; Sastry, S.

    1997-01-01T23:59:59.000Z

    con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

  6. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  7. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  8. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    - 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

  9. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

  10. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12T23:59:59.000Z

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  11. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  12. A High-Altitude, Station-Keeping Astronomical Platform

    E-Print Network [OSTI]

    Robert A. Fesen

    2006-06-15T23:59:59.000Z

    Several commercial telecommunication ventures together with a well funded US military program make it a likely possibility that an autonomous, high-altitude, light-than-air (LTA) vehicle which could maneuver and station-keep for weeks to many months will be a reality in a few years. Here I outline how this technology could be used to develop a high-altitude astronomical observing platform which could return high-resolution optical data rivaling those from space-based platforms but at a fraction of the cost.

  13. A High-Altitude, Station-Keeping Astronomical Platform

    E-Print Network [OSTI]

    Fesen, R A

    2006-01-01T23:59:59.000Z

    Several commercial telecommunication ventures together with a well funded US military program make it a likely possibility that an autonomous, high-altitude, light-than-air (LTA) vehicle which could maneuver and station-keep for weeks to many months will be a reality in a few years. Here I outline how this technology could be used to develop a high-altitude astronomical observing platform which could return high-resolution optical data rivaling those from space-based platforms but at a fraction of the cost.

  14. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01T23:59:59.000Z

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  15. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully. Sample Workplace Charging Policy More Documents & Publications...

  16. AIR QUALITY IMPACTS OF ELECTRIC VEHICLE ADOPTION IN TEXAS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    by anticipating battery-charging decisions and power plant energy sources across Texas. Life-cycle impacts conventional passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision-duty vehicles. Use of coal for electricity production is a primary concern for PEV growth, but the energy

  17. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01T23:59:59.000Z

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  18. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    04 Hydrogen Refueling Station Costs in Shanghai Jonathan X.Hydrogen Refueling Station Costs in Shanghai Jonathan X.voltage connections) Capital costs for this equipment must

  19. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Kingdom; 2004. [8] Amos W. Costs of storing and transportingcon- nections). Capital costs for this equipment must bein an analysis of station costs. Total station construction

  20. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron...

  1. Stations; A Multimedia Performance for Eight Players

    E-Print Network [OSTI]

    Giracello, Robert Francis

    2010-01-01T23:59:59.000Z

    RIVERSIDE Stations; A Multimedia Performance for EightDISSERTATION Stations; A Multimedia Performance for Eightthe tragic drama in a multimedia theater environment. Table

  2. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of...

  3. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

  4. Celilo Converter Station - October 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asbestos has been removed from the station. Old, noisy, maintenance-in- tensive air-cooling has been replaced with an effi - cient, closed loop water-cooled system. Chemical...

  5. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Office of Environmental Management (EM)

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

  6. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicleEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  7. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

  8. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located within the Vehicle Technologies Office (VTO), within the Office of Energy Efficiency and Renewable Energy (EERE). The Office reports to the Deputy Assistant Secretary for...

  9. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

  10. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31T23:59:59.000Z

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  11. Electric vehicle test and evaluation data: preliminary analysis

    SciTech Connect (OSTI)

    Friedman, K.; Magro, W.

    1983-06-01T23:59:59.000Z

    The data in this paper summarizes the current experience of DOE private sector site operators and is based on information gathered from electric vehicle (EV) private sector site operators by Booz, Allen and Hamilton under contract to the U.S. Department of Energy. Since January 1980, Booz, Allen has collected and computerized on an IBM Personnel computer data from 16 private sector site operators covering nine vehicle types and over 1.3 million miles of vehicle travel. The paper summarizes key indicators of vehicle performance including energy consumption per mile and miles travelled per charge and reports on results of and plans for special analyses. More detailed information is available from the authors.

  12. Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

  13. Optimization of a CNG series hybrid concept vehicle

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

    1995-09-22T23:59:59.000Z

    Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

  14. Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86

    SciTech Connect (OSTI)

    Midgett, D.E.

    1996-02-01T23:59:59.000Z

    The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

  15. Robust statistical reconstruction for charged particle tomography

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  16. High power battery test methods for hybrid vehicle applications

    SciTech Connect (OSTI)

    Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

    1997-11-01T23:59:59.000Z

    Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

  17. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31T23:59:59.000Z

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  18. CX-001288: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    replacement project; 6) purchase electrical vehicle charging stations, 7) Light-emitting diode (LED) street light replacements; 8) purchase electric vehicles for city fleet....

  19. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  20. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20T23:59:59.000Z

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  1. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  2. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  3. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  4. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    waste heat recovery devices for vehicles Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling...

  5. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  6. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks...

  7. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities that provide data critical to the development and commercialization of next-generation vehicles Vehicle Electrification Advancing the future of electric vehicles...

  8. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  9. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

  10. Vehicle Technologies Office: Power Electronics and Electrical...

    Broader source: Energy.gov (indexed) [DOE]

    overview of electric drive vehicles, see the Alternative Fuels Data Center's pages on Hybrid and Plug-in Electric Vehicles. The Vehicle Technologies Office (VTO) supports...

  11. Specialty Vehicles and Material Handling Equipment

    Broader source: Energy.gov (indexed) [DOE]

    Benefits Environmental Benefits "Well-to-Tank" Greenhouse Gas Factors Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell...

  12. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  13. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  14. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  15. A Compact Wireless Charging System for Electric Vehicles

    SciTech Connect (OSTI)

    Ning, Puqi [ORNL] [ORNL; Miller, John M [ORNL] [ORNL; Onar, Omer C [ORNL] [ORNL; White, Cliff P [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In this paper, a compact high efficiency wireless power transfer system has been designed and developed. The detailed gate drive design, cooling system design, power stage development, and system assembling are presented. The successful tests verified the feasibility of wireless power transfer system to achieve over-all 90% efficiency.

  16. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

  17. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  18. Vehicle Technologies Office Merit Review 2014: Wireless Charging |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction | Department ofDive

  19. Charging Infrastructure for Electric Vehicles (Smart Grid Project) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI JumpChandradeepForms | OpenUsingEnergy

  20. Help Your Employer Install Electric Vehicle Charging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy CompletingPresented By: WALTER E.Help Your

  1. Now Available: Evaluating Electric Vehicle Charging Impacts and Customer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember 4,

  2. Power Charging and Supply System for Electric Vehicles - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7PowderPortal Power

  3. Novolyte Charging Up Electric Vehicle Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW

  4. Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalmsthe PriceOptimizationUSING CRon

  5. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  6. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01T23:59:59.000Z

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  7. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  8. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

    2002-11-19T23:59:59.000Z

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  9. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  12. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  13. Locating PHEV exchange stations in V2G

    SciTech Connect (OSTI)

    Pan, Feng [Los Alamos National Laboratory; Bent, Russell [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Izraelevitz, David [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  14. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01T23:59:59.000Z

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  15. Retrofiting survivability of military vehicles

    SciTech Connect (OSTI)

    Canavan, Gregory H [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    In Iraq the terrain was such that vehicles could be distributed horizontally, which reduced the effectiveness of mines. In the mountainous terrain of Pakistan and Afghanistan vehicles are forced to use the few, passable roads, which are dirt and easily seeded with plentiful, cheap, intelligent mines. It is desirable to reduce the losses to such mines, preferably by retrofit means that do not greatly increase weight or cost or reduce maneuverability. V-bottom vehicles - A known approach to reducing vulnerability is the Buffalo, a large vehicle developed by South Africa to address mine warfare. It has large tires, high axles, and a reinforced, v-shaped bottom that deflects the blast from explosions below. It is developed and tested in combat, but is expensive and has reduced off-road mobility. The domestic MRAP has similar cost and mobility issue. The addition of v-shaped blast deflectors to vehicles such as Humvees could act much as the deflector on a Buffalo, but a Humvee is closer to the ground, so the explosive's expansion would be reduced. The deflector would also reduce a Humvee's clearance for rough terrain, and a deflector of adequate thickness to address the blast by itself could further increase cost and reduce mobility. Reactive armor is developed and has proven effective against shaped and explosive charges from side or top attack. It detects their approach, detonates, and defeats them by interfering with jet formation. If the threat was a shaped charge from below, they would be a logical choice. But the bulk of the damage to Humvees appears to be from the blast from high explosive mines for which the colliding shock from reactive armor could increase that from the explosive. Porous materials such as sand can strongly attenuate the kinetic energy and pressure of a strong shock. Figure 1 shows the kinetic energy (KE), momentum (Mu), velocity (u), and mass (M) of a spherically expanding shock as functions of radius for a material with a porosity of 0.5. Over the range from 0.5 to 4.5 cm the shock KE is attenuated by a factor of {approx}70, while its momentum is changed little. The shock and particle velocity falls by a factor of 200 while the mass increases by a factor of 730. In the limit of very porous media u {approx} 1/M, so KE {approx} 1/M, which falls by a factor of {approx}600, while momentum Mu does not change at all. Figure 2 shows the KE, Mu, u, and M for a material with a porosity of 1.05, for which the KE changes little. In the limit of media of very low porosity, u {approx} 1/{radical}M, so KE is constant while Mu {approx} {radical}M, which increases by a factor of 15. Thus, if the goal is to reduce the peak pressure from strong explosions below, very porous materials, which strongly reduce pressure but do not increase momentum, are preferred to non-porous materials, which amplify momentum but do not decrease pressure. These predictions are in qualitative accord with the results of experiments at Los Alamos in which projectiles from high velocity, large caliber cannons were stopped by one to two sandbags. The studies were performed primarily to determine the effectiveness of sand in stopping fragments of various sizes, but could be extended to study sand's effectiveness in attenuating blast pressure. It would also be useful to test the above predictions on the effectiveness of media with higher porosity. Water barriers have been discussed but not deployed in previous retrofit survivability studies for overseas embassies. They would detect the flash from the mine detonation below, trigger a thin layer of explosive above a layer of water, and drive water droplets into the approaching blast wave. The blast loses energy in evaporating the droplets and loses momentum in slowing them. Under favorable conditions that could attenuate the pressure in the blast enough to prevent the penetration or disruption of the vehicle. However, such barriers would depend on prompt and reliable detonation detection and water droplet dispersal, which have not been tested. There is a large literature on the theoretical effec

  16. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  17. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  18. LIQUIDSLIQUIDS GISAXSGISAXSGISAXS/WAXS station

    E-Print Network [OSTI]

    Ohta, Shigemi

    Beamline CapabilitiesBeamline Capabilities Sector 12-ID. Poster updated March 2014. #12;LIQUIDSLIQUIDS GISAXSGISAXSGISAXS/WAXS station: * Energy range: 2.1 to 24 keV * Low divergence mode: * Energy range: 6.5 to 24 keV * Beam focus:

  19. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  20. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  1. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  2. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11T23:59:59.000Z

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  4. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  5. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  6. Optimizing Locations for a Vehicle Sharing System V. Prem Kumar Michel Bierlaire

    E-Print Network [OSTI]

    Bierlaire, Michel

    .bierlaire]@epfl.ch Car-sharing business provides members access to a fleet of shared-use vehicles in a network use without the costs and responsibilities of ownership. The primary advantage of car sharing by the car-sharing businesses is that of finding the "best" stations to place the facility. These locations

  7. BEV Charging Behavior Observed in The EV Project for 2013

    SciTech Connect (OSTI)

    Brion D. Bennett

    2014-01-01T23:59:59.000Z

    This fact sheet will be issued quarterly to report on the number of Nissan Leafs vehicle usage, charging locations, and charging completeness as part of the EV Project. It will be posted on the INL/AVTA and ECOtality websites and will be accessible by the general public. The raw data that is used to create the report is considered proprietary/OUO and NDA protected, but the information in this report is NOT proprietary nor NDA protected.

  8. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    SciTech Connect (OSTI)

    Hank Seiff

    2008-12-31T23:59:59.000Z

    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

  9. Sandia National Laboratories proof-of-concept robotic security vehicle

    SciTech Connect (OSTI)

    Harrington, J.J.; Jones, D.P.; Klarer, P.R.; Morrow, J.D.; Workhoven, R.M.; Wunderlin, F.

    1989-01-01T23:59:59.000Z

    Several years ago Sandia National Laboratories developed a prototype interior robot that could navigate autonomously inside a large complex building to air and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities. 2 refs., 3 figs.

  10. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  11. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

  12. UWO Vehicle ACCIDENT REPORTING FORM

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

  13. VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION

    E-Print Network [OSTI]

    VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

  14. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

  15. Vehicle Management Driver Safety Program

    E-Print Network [OSTI]

    Machel, Hans

    Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

  16. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  17. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Energy Savers [EERE]

    Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR...

  18. Vehicle Technologies Office: Workforce Development and Professional...

    Office of Environmental Management (EM)

    Education & Workforce Development Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and...

  19. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01T23:59:59.000Z

    Vehicles …………………………………………………………….. Ethanol Fuel Mixturesperformance of ethanol fuel mixtures vehicles ……….. Summaryon diesel, electricity, and ethanol fuel mixtures (ethanol/

  20. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  1. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  2. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect (OSTI)

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31T23:59:59.000Z

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  3. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION and Anitha Rednam, Comparative Costs of California Central Station Electricity Generation Technologies................................................................................................... 1 CHAPTER 1: Summary of Technology Costs

  4. 7.1.1. Fernbahnhof / Rail Station

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Fernbahnhofs 7.1.1.4.5 Kälteversorgung des Fernbahnhofs / Cooling Supply of Rail Station 7 Abwasserversorgung des Fernbahnhofs / Fresh and Used Water Supply of Rail Stations 7.1.1.4.1.1 Verfahren zur Fernbahnhofs 7.1.1.4.2 Stromversorgung des Fernbahnhofs / Power Supply of Rail Station 7

  5. Technical data HMS 760 X -36 stations

    E-Print Network [OSTI]

    Shoubridge, Eric

    water/rinse stations - 2 dry stations / or 2 pressure controlled DI stations - 60 slides per basket - 1. - Simultaneous multiple program execution for several programs. - Carriers for up to 2 slide baskets with 30 downwards ventilation flow and active charcoal filter. - Permanent program memory for more than 50 different

  6. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  7. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05T23:59:59.000Z

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  8. SERVICE STATION INFORMATION There are 2 campus service stations for use by University of Michigan vehicles. The Baxter Road Service

    E-Print Network [OSTI]

    Kirschner, Denise

    to alternative fuel by refining our biodiesel fuel to Ultra Low Sulfur B20 biodiesel meeting 2009 diesel fuel

  9. ChargePoint America

    Broader source: Energy.gov (indexed) [DOE]

    + Accelerate the development and production of electric vehicles to substantially reduce petroleum consumption, reduce greenhouse gas production, and create jobs. + Demonstrate...

  10. automated vehicle control for ground vehicles: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  11. Simulation of electric vehicles with hybrid power systems

    SciTech Connect (OSTI)

    Burke, A.F.; Cole, G.H.

    1990-01-01T23:59:59.000Z

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics. 2 refs., 7 figs., 14 tabs.

  12. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31T23:59:59.000Z

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  13. Vehicle Technologies Office: AVTA- All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  14. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  15. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  16. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  17. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  18. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

  19. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    capacity. Furthermore they were interested to see the effect of driving intensity on energy consumption differs for vehicle EV capability. Overall they feel this task is...

  20. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...