Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging  

E-Print Network [OSTI]

1 Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging Sung-Guk Yoon Member, which is called demand response. Under demand response, retailers determine their electricity prices cost solution and the result of the equal- charging scheme. Index Terms--demand response, electric

Bahk, Saewoong

2

Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response  

Science Journals Connector (OSTI)

Abstract In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50kW which allows a typical passenger vehicle to be 80% charged in 1015min, compared with 68h for a 6.6kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges. Depending on the utility rate structure, a DC fast charger can experience annual demand charges of several thousand dollars. Therefore in these cases there is an opportunity to mitigate or even avoid the demand charges incurred by coupling the unit with an appropriately sized energy storage system and coordinating the way in which it integrates. This paper explores the technical and economical suitability of coupling a ground energy storage system with a DC fast charge unit for mitigation or avoidance of demand charges and lessening the impact on the local electricity network. This paper also discusses the concept of having the system participate in demand response programs in order to provide grid support and to further improve the economic suitability of an energy storage system.

Donald McPhail

2014-01-01T23:59:59.000Z

3

Distributed Solar Photovoltaics for Electric Vehicle Charging...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DISTRIBUTED SOLAR PHOTOVOLTAICS FOR ELECTRIC VEHICLE CHARGING REGULATORY AND POLICY CONSIDERATIONS ABSTRACT Increasing demand for electric vehicle (EV) charging provides an...

4

Genetic algorithm-based demand response scheme for electric vehicle charging  

Science Journals Connector (OSTI)

This paper presents a design and evaluates the performance of a charging task scheduler for electric vehicles, aiming at reducing the peak load and improving the service ratio in charging stations. Based on a consumption profile and the real-time task model consisting of actuation time, operation length, and deadline, the proposed scheduler fills the time table, by which the power controller turns on or off the electric connection switch to the vehicle on each time slot boundary. Genetic evolutions yield better results by making the initial population include both heuristic-generated schedules for fast convergence and randomly generated schedules for diversity loss compensation. Our heuristic scheme sequentially fills the time slots having lowest load for different orders such as deadline and operation length. The performance measurement result obtained from a prototype implementation reveals that our scheme can reduce the peak load for the given charging task sets by up to 4.9%, compared with conventional schemes.

Junghoon Lee; Gyung-Leen Park

2013-01-01T23:59:59.000Z

5

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967"...

6

taking charge : optimizing urban charging infrastructure for shared electric vehicles  

E-Print Network [OSTI]

This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

Subramani, Praveen

2012-01-01T23:59:59.000Z

7

Congestion control in charging of electric vehicles  

E-Print Network [OSTI]

The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

Carvalho, Rui; Gibbens, Richard; Kelly, Frank

2015-01-01T23:59:59.000Z

8

Evaluating Electric Vehicle Charging Impacts and Customer Charging...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) Evaluating Electric Vehicle Charging...

9

Commercial Fleet Demand for Alternative-Fuel Vehicles in California  

E-Print Network [OSTI]

Precursors of demand for alternative-fuel vehicles: resultsFLEET DEMAND FOR ALTERNATIVE-FUEL VEHICLES IN CALIFORNIA*AbstractFleet demand for alternative-fuel vehicles (AFVs

Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

1996-01-01T23:59:59.000Z

10

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

11

Vehicle Technologies Office: Workplace Charging Challenge Partner:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bloomberg LP to someone by E-mail Bloomberg LP to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

12

Strategic dynamic vehicle routing with spatio-temporal dependent demands  

E-Print Network [OSTI]

Dynamic vehicle routing problems address the issue of determining optimal routes for a set of vehicles, to serve a given set of demands that arrive sequentially in time. Traditionally, demands are assumed to be generated ...

Feijer, Diego (Diego Francisco Feijer Rovira)

2011-01-01T23:59:59.000Z

13

Help Your Employer Install Electric Vehicle Charging | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Help Your Employer Install Electric Vehicle Charging Help Your Employer Install Electric Vehicle Charging Help Your Employer Install Electric Vehicle Charging Educate your employer...

14

Vehicle Technologies Office: Workplace Charging Challenge Partner:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fraunhofer Center for Sustainable Energy Systems to Fraunhofer Center for Sustainable Energy Systems to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable Energy Systems on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable Energy Systems on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable Energy Systems on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable Energy Systems on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable Energy Systems on Digg Find More places to share Vehicle Technologies Office: Workplace

15

Optimal Decentralized Protocols for Electric Vehicle Charging  

E-Print Network [OSTI]

1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging. The algorithms exploit the elasticity and controllability of electric vehicle loads in order to fill the valleys

Low, Steven H.

16

Vehicle Technologies Office: Workplace Charging Challenge Partner:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lynda.com to someone by E-mail lynda.com to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

17

Vehicle Technologies Office: Workplace Charging Challenge Partner:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BookFactory to someone by E-mail BookFactory to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

18

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

19

Strategic Dynamic Vehicle Routing with Spatio-Temporal Dependent Demands  

E-Print Network [OSTI]

We study a zero-sum game formulation of a dynamic vehicle routing problem: a system planner seeks to design dynamic routing policies for a team of vehicles to minimize the average waiting time of demands that are strategically ...

Feijer Rovira, Diego Francisc

20

Install Electric Vehicle Charging at Work  

Broader source: Energy.gov [DOE]

Employers who install workplace charging for plug-in electric vehicles (PEVs) demonstrate leadership, show a willingness to adopt advanced technology, and increase consumer exposure and access to...

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vehicle Technologies Office: EV Everywhere Workplace Charging...  

Broader source: Energy.gov (indexed) [DOE]

States are parked at overnight locations with access to plugs, providing a great foundation for the country's plug-in electric vehicle (PEV) charging infrastructure. However,...

22

Electric Vehicle Charging Infrastructure Deployment Guidelines: British  

Open Energy Info (EERE)

Electric Vehicle Charging Infrastructure Deployment Guidelines: British Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Agency/Company /Organization: Natural Resources Canada, British Columbia Hydro and Power Authority Focus Area: Vehicles Topics: Best Practices Website: www.bchydro.com/etc/medialib/internet/documents/environment/EVcharging A major component of winning public acceptance for plug-in vehicles is the streamlining of the private electric vehicle charging or supply equipment permitting and installation process as well as the public and commercial availability of charging locations. These guidelines are intended to anticipate the questions and requirements to ensure customer satisfaction.

23

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Stations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Electric Vehicle Charging Stations

24

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

all days Percentage of charging units connected on single calendar day with peak electricity demand Charging Demand: Range of Aggregate Electricity Demand versus Time of Day...

25

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

Vehicles on the US Power Grid." The 25th World Battery,infrastructure assignment and power grid impacts assessmentfrom the vehicle to the power grid and overcome its current

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

26

Alternative Fuels Data Center: Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle (EV) Electric Vehicle (EV) Charging Infrastructure Availability to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on AddThis.com... More in this section...

27

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development

28

Vehicle Technologies Office: Workplace Charging Challenge Pledge and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workplace Charging Workplace Charging Challenge Pledge and Benefits to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors

29

Vehicles on demand... Why drive your own vehicle  

E-Print Network [OSTI]

to renter. Vehicle should be returned with no less than a half tank of gas (local gas stations on next page *Daily Rate $50 *Includes gas, unlimited miles, mainte- nance and insurance. No smoking. Hands

30

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Max electricity demand across all days Min electricity demand across all days Electricity demand on single calendar day with highest peak Charging Unit Usage Residential Level 2...

31

Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pepco Holdings, Inc. to someone by E-mail Pepco Holdings, Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

32

Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DTE Energy to someone by E-mail DTE Energy to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

33

Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ford Motor Company to someone by E-mail Ford Motor Company to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

34

Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OSRAM SYLVANIA to someone by E-mail OSRAM SYLVANIA to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources

35

Vehicle Technologies Office: Workplace Charging Challenge Partner: National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Grid to someone by E-mail National Grid to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

36

Vehicle Technologies Office: Workplace Charging Challenge Partner: The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hartford to someone by E-mail Hartford to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

37

Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verizon to someone by E-mail Verizon to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

38

Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facebook to someone by E-mail Facebook to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

39

Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dell Inc. to someone by E-mail Dell Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

40

Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Eli Lilly to someone by E-mail Eli Lilly to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vehicle Technologies Office: Workplace Charging Challenge Partner: City of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sacramento to someone by E-mail Sacramento to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners

42

Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Samsung Electronics to someone by E-mail Samsung Electronics to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

43

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

44

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual...

45

Wireless Plug-in Electric Vehicle (PEV) Charging  

Broader source: Energy.gov (indexed) [DOE]

a convenient, safe and flexible means to charge electric vehicles. Vehicle to WPT base unit communications (radio) in regulation outer loop Lightest, most compact secondary coil,...

46

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

47

Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dominion Resources, Inc. to someone by E-mail Dominion Resources, Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on AddThis.com... Goals Research & Development

48

Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AVL Powertrain Engineering, Inc. to someone by E-mail AVL Powertrain Engineering, Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on

49

Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JLA Public Involvement to someone by E-mail JLA Public Involvement to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on AddThis.com... Goals Research & Development Testing and Analysis

50

Household demand and willingness to pay for hybrid vehicles  

Science Journals Connector (OSTI)

Abstract This paper quantitatively evaluates consumers' willingness to pay for hybrid vehicles by estimating the demand of hybrid vehicles in the U.S. market. Using micro-level data on consumer purchases of hybrid and non-hybrid vehicles from National Household Travel Survey 2009, this paper formulates a mixed logit model of consumers' vehicle choices. Parameter estimates are then used to evaluate consumers' willingness to pay for hybrids. Results suggest that households' willingness to pay for hybrids ranges from $963 to $1718 for different income groups, which is significantly lower than the average price premium (over $5000) of hybrid vehicles, even when taking the fuel costs savings of hybrid vehicles into consideration. The differences reveal that although the market has shown increasing interest in hybrid vehicles, consumers' valuation of the hybrid feature is still not high enough to compensate for the price premium when they make new purchases. Policy simulations are conducted to examine the effects of raising federal tax incentives on the purchase of hybrid vehicles.

Yizao Liu

2014-01-01T23:59:59.000Z

51

Promote Plug-In Electric Vehicles and Workplace Charging Infrastructure  

Broader source: Energy.gov [DOE]

Drivers of conventional vehicles often learn about plug-in electric vehicles (PEVs) and charging infrastructure from PEV-driving employees and from employers who support workplace charging. Use the...

52

Vehicle Technologies Office: EV Everywhere Workplace Charging Challenge  

Broader source: Energy.gov [DOE]

The EV Everywhere Workplace Charging Challenge page has moved to http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge.

53

Renewable energy-combined scheduling for electric vehicle charging  

Science Journals Connector (OSTI)

This paper designs a heuristic-based charging scheduler capable of integrating renewable energy for electric vehicles, aiming at reshaping power load induced from the large deployment of electric vehicles. Based on the power consumption profile as well as the preemptive charging task model which includes the time constraint on the completion time, a charging schedule is created as a form of time tables. Each entry indicates the source of power supply, namely, either regular power or renewable energy, and how much power is supplied to a vehicle. Basically, it assigns the charging operation to those slots having the smallest power load one at a time, taking different allocation orders according to slack, operation length, and per-slot power demand. Finally, the peaking task of the peaking slot is iteratively picked to assign renewable energy stored in the station battery. The performance measurement result shows that our scheme can reduce the peak load by up to 37.3% compared with the earliest allocation scheme for the given parameter set.

Junghoon Lee; Gyung-Leen Park

2014-01-01T23:59:59.000Z

54

Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Charging Incentive - Xcel Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

55

Vehicle Technologies Office: Workplace Charging Challenge Partner: GM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GM to someone by E-mail GM to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Workplace Charging Challenge Partner: GM

56

ranking of utilities by demand charge? | OpenEI Community  

Open Energy Info (EERE)

ranking of utilities by demand charge? ranking of utilities by demand charge? Home > Groups > Utility Rate Sorry..simple question because i am a bit dumb. How do I download the utility rate data in CSV so i can sort by demand charge? Or can i sort by demand charge in the API? New to this API stuff. Many thanks/ Submitted by Apin101 on 26 November, 2013 - 07:12 1 answer Points: 0 There is currently no way to sort the responses, but since you are downloading in a CSV format you can sort most responses in Excel (or a spreadsheet editor). Another option is to run direct Ask queries and specify a property to sort on (see massive URL below). To do any sorting on an element of a packed array like DemandWeekdaySchedule would require custom logic in the result spreadsheet, or custom scripting of some kind. The new utility rate custom

57

ranking of utilities by demand charge? | OpenEI Community  

Open Energy Info (EERE)

ranking of utilities by demand charge? ranking of utilities by demand charge? Home > Groups > Utility Rate Sorry..simple question because i am a bit dumb. How do I download the utility rate data in CSV so i can sort by demand charge? Or can i sort by demand charge in the API? New to this API stuff. Many thanks/ Submitted by Apin101 on 26 November, 2013 - 07:12 1 answer Points: 0 There is currently no way to sort the responses, but since you are downloading in a CSV format you can sort most responses in Excel (or a spreadsheet editor). Another option is to run direct Ask queries and specify a property to sort on (see massive URL below). To do any sorting on an element of a packed array like DemandWeekdaySchedule would require custom logic in the result spreadsheet, or custom scripting of some kind. The new utility rate custom

58

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH  

E-Print Network [OSTI]

.......................................................................................................... 5 2.1 AUTOMOBILE DEMAND MODELS.....................................................................................................................20 2.2.4 The Application of Diffusion Models to Automobile Demand.......................................................................................................................................36 3.1.5 Electric Vehicles

Levinson, David M.

59

Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Retail Electric Retail Electric Vehicle (EV) Charging Regulations to someone by E-mail Share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Facebook Tweet about Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Twitter Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Google Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Delicious Rank Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Digg Find More places to share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

60

Smart Frequency-Sensing Charge Controller for Electric Vehicles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

licensing:System uses frequency-sensing charge controllers that provide automatic demand response and regulation service to the grid by reducing or turning the charging load...

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tlus is

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

62

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network [OSTI]

market share for alternative-fuel vehicles drop from thePreferences for Alternative-Fuel Vehicles, Brownstone DavidA Dynamic Household Alternative-fuel Vehicle Demand Model

Sheng, Hongyan

1999-01-01T23:59:59.000Z

63

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tlus is

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

64

Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014)  

Broader source: Energy.gov [DOE]

This report provides the results of six SGIG projects to help individual utilities determine how long existing electric distribution infrastructure will remain sufficient to accommodate demand growth from electric vehicles, and when and what type of capacity upgrades or additions may be needed. The report also examines when consumers want to recharge vehicles, and to what extent pricing and incentives can encourage consumers to charge during off-peak periods.

65

Orlando Plugs into Electric Vehicle Charging Stations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Lindsay Gsell What are the key facts? Coulomb highlighted in the Vice President's report on 100 Recovery Act Projects That Are Changing America Orlando will receive nearly 300 electric vehicle charging systems. 1 of 9 cities receiving charging systems from Coulomb-$15 million in Recovery Act funding. This scene is closer to reality as Orlando, Fla., prepares to get nearly

66

Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biogen Idec Inc to someone by E-mail Biogen Idec Inc to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Biogen Idec Inc on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources

67

Vehicle Technologies Office: Workplace Charging Challenge Partner: City of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Auburn Hills to someone by E-mail Auburn Hills to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Auburn Hills on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Auburn Hills on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Auburn Hills on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Auburn Hills on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Auburn Hills on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Auburn Hills on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

68

Vehicle Technologies Office: Workplace Charging Challenge Partner: San  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

San Diego Gas and Electric to someone by E-mail San Diego Gas and Electric to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: San Diego Gas and Electric on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: San Diego Gas and Electric on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: San Diego Gas and Electric on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: San Diego Gas and Electric on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: San Diego Gas and Electric on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: San Diego Gas and Electric on AddThis.com... Goals Research & Development

69

Vehicle Technologies Office: Workplace Charging Challenge Partner: New York  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New York Power Authority to someone by E-mail New York Power Authority to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: New York Power Authority on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: New York Power Authority on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: New York Power Authority on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: New York Power Authority on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: New York Power Authority on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: New York Power Authority on AddThis.com... Goals Research & Development

70

Vehicle Technologies Office: Workplace Charging Challenge Partner: The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Venetian and The Palazzo to someone by E-mail The Venetian and The Palazzo to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: The Venetian and The Palazzo on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: The Venetian and The Palazzo on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: The Venetian and The Palazzo on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: The Venetian and The Palazzo on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: The Venetian and The Palazzo on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: The Venetian and The Palazzo on AddThis.com...

71

Now Available: Evaluating Electric Vehicle Charging Impacts and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

changes that will be needed to handle large vehicle charging loads. Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and...

72

Energy Jobs: Electric Vehicle Charging Station Installer | Department...  

Energy Savers [EERE]

-- here an electric vehicle owner uses a local charging station. | Photo Courtesy of the Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of...

73

EV Project Electric Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

period: January 2011 through March 2011 Number of EV Project vehicles in region: 35 Private Publicly Publicly Residential Nonresidential Available Available Charging Unit...

74

AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports  

Broader source: Energy.gov [DOE]

These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

75

Design of a Sustainable Electric Vehicle Charging Station:.  

E-Print Network [OSTI]

??Electric vehicles only become useful in reducing greenhouse gas emissions, if the electricity used to charge their batteries comes from renewable energy sources. This thesis (more)

Bakolas, B.V.E.

2012-01-01T23:59:59.000Z

76

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network [OSTI]

expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

Michalek, Jeremy J.

77

Siting public electric vehicle charging stations in Beijing using big-data informed travel patterns of the taxi fleet  

Science Journals Connector (OSTI)

Abstract Charging infrastructure is critical to the development of electric vehicle (EV) system. While many countries have implemented great policy efforts to promote EVs, how to build charging infrastructure to maximize overall travel electrification given how people travel has not been well studied. Mismatch of demand and infrastructure can lead to under-utilized charging stations, wasting public resources. Estimating charging demand has been challenging due to lack of realistic vehicle travel data. Public charging is different from refueling from two aspects: required time and home-charging possibility. As a result, traditional approaches for refueling demand estimation (e.g. traffic flow and vehicle ownership density) do not necessarily represent public charging demand. This research uses large-scale trajectory data of 11,880 taxis in Beijing as a case study to evaluate how travel patterns mined from big-data can inform public charging infrastructure development. Although this study assumes charging stations to be dedicated to a fleet of PHEV taxis which may not fully represent the real-world situation, the methodological framework can be used to analyze private vehicle trajectory data as well to improve our understanding of charging demand for electrified private fleet. Our results show that (1) collective vehicle parking hotspots are good indicators for charging demand; (2) charging stations sited using travel patterns can improve electrification rate and reduce gasoline consumption; (3) with current grid mix, emissions of CO2, PM, SO2, and \\{NOx\\} will increase with taxi electrification; and (4) power demand for public taxi charging has peak load around noon, overlapping with Beijings summer peak power.

Hua Cai; Xiaoping Jia; Anthony S.F. Chiu; Xiaojun Hu; Ming Xu

2014-01-01T23:59:59.000Z

78

Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)  

SciTech Connect (OSTI)

Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

Not Available

2014-09-01T23:59:59.000Z

79

An Online Mechanism for Multi-Speed Electric Vehicle Charging  

E-Print Network [OSTI]

range of such vehicles, and EVs are expected to represent close to 10% of all vehicle sales by 2020 in electric vehicles (EVs). New hybrid de- signs, equipped with both an electric motor and an internal- nisms to schedule the charging of EVs, such that the local constraints of the distribution network

Southampton, University of

80

Novolyte Charging Up Electric Vehicle Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Joshua DeLung What does this mean for me?

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Washington DC's First Electric Vehicle Charging Station | Department of  

Broader source: Energy.gov (indexed) [DOE]

Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station November 17, 2010 - 11:28am Addthis Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Shannon Brescher Shea Communications Manager, Clean Cities Program It's always exciting to attend a grand opening, especially when it represents a "first" for an entire region. Yesterday, the U.S. Department of Energy and the city of Washington, DC joined together to

82

Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA 70, Article 625 Electric Vehicle Charging System. This article does not provide all of the information necessary for the installation of electric vehicle charging equipment. Please refer to the current edition of the electrical code adopted by the local jurisdiction for additional installation requirements. Reference to the 2011 NEC may be

83

Demand side management of electric car charging: Benefits for consumer and grid  

Science Journals Connector (OSTI)

Ireland is currently striving to source 10% of the energy required for its transport fleet from renewable energy sources by 2020. As part of the measures being implemented in order to help realise this ambitious target a number of Government schemes have been introduced to financially subsidise the purchase of alternative energy vehicles in an effort to achieve 10% EV (electric vehicle) penetration in the country's road fleet by 2020. The replacement of ICE (internal combustion engine) vehicles with EV equivalents poses challenges for grid operators while simultaneously offering opportunities in terms of distributed energy storage and flexible load. This paper examines how optimising the charging cycles of an electric car using DSM (Demand Side Management) based on a number of criteria could be used to achieve financial savings, increased demand on renewable energy, reduce demand on thermal generation plant, and reduce peak load demand. The results demonstrate that significant gains can be achieved using currently available market data which highlights the point that DSM can be implemented without any further technological advents.

P. Finn; C. Fitzpatrick; D. Connolly

2012-01-01T23:59:59.000Z

84

Analysis of the influence of residential location on light passenger vehicle energy demand.  

E-Print Network [OSTI]

??New Zealand???s current urban environment assumes a constant availability and affordability of energy (oil) and as such the energy demand of private vehicles is rarely (more)

Williamson, Mark

2013-01-01T23:59:59.000Z

85

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

March 2013 Number of Charging Units Charging Electricity Charging Unit - Private Not Installed to Events Consumed By Region Residential Commercia Public Specified Date...

86

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

June 2013 Number of Charging Units Charging Electricity Charging Unit - Private Not Installed to Events Consumed By Region Residential Commercia Public Specified Date Performed...

87

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

December 2012 Number of Charging Units Charging Electricity Charging Unit - Private Not Installed to Events Consumed By Region Residential Commercia Public Specified Date...

88

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Report Project Status to Date through: March 2012 Number of Charging Units Charging Electricity Charging Unit - Private Installed to Events Consumed By State Residential...

89

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

September 2012 Number of Charging Units Charging Electricity Charging Unit - Private Installed to Events Consumed By State Residential Commercial Public Not Specified Date...

90

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

June 2012 Number of Charging Units Charging Electricity Charging Unit - Private Installed to Events Consumed By State Residential Commercial Public Not Specified Date Performed...

91

Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.  

SciTech Connect (OSTI)

This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

2011-07-01T23:59:59.000Z

92

Definition: Plug-in Electric Vehicle Charging Station | Open Energy  

Open Energy Info (EERE)

Plug-in Electric Vehicle Charging Station Plug-in Electric Vehicle Charging Station Jump to: navigation, search Dictionary.png Plug-in Electric Vehicle Charging Station A device or station that provides power to charge the batteries of an electric vehicle. These chargers are classified according to output voltage and the rate at which they can charge a battery. Level 1 charging is the slowest, and can be done through most wall outlets at 120 volts and 15 amps AC. Level 2 charging is faster, and is done at less than or equal to 240 volts and 60 amps AC, with a power output of less than or equal to 14.4 kW. Level 3 charging is fastest, and can be done with power output of greater than 14.4 kW. Level 1 and 2 charging can be done at home with the proper equipment, and Level 2 and 3 charging can be done at fixed public charging

93

Vehicle Technologies Office Merit Review 2014: Wireless Charging  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless charging.

94

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

energy storage and demand management can complement solarwith energy storage to firm the resource, or solar thermaland solar generation. And demand response or energy storage

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

95

The Vehicle Scheduling Problem with Intermittent Customer Demands W. C. Benton  

E-Print Network [OSTI]

Engineering The Ohio State University May 9, 1991 revised June 11, 2008 #12;Abstract The vehicle scheduling is to minimize the total cost of operating the vehicle fleet. The key cost components are labor, fuelThe Vehicle Scheduling Problem with Intermittent Customer Demands W. C. Benton Academic Faculty

Rossetti, Manuel D.

96

how can I sort utilities by demand charge? | OpenEI Community  

Open Energy Info (EERE)

sort utilities by demand charge? Home am looking to find a way to sort the utility rate data by demand charge. Any ideas how to do? Thanks Submitted by Apin101 on 26 November, 2013...

97

The Charging-Scheduling Problem for Electric Vehicle Networks  

E-Print Network [OSTI]

and Design, Singapore University of New Mexico, USA {zhumingpassional, yanglet, linghe.kong, rmshen, shu, mwu}@sjtu.edu.cn Abstract--Electric vehicle (EV) is a promising transportation with plenty of advantages, e.g., low carbon emission, high energy efficiency. However, it requires frequent and long time charging. In public charging

98

Smart charging and appliance scheduling approaches to demand side management  

Science Journals Connector (OSTI)

Abstract Various forms of demand side management (DSM) programs are being deployed by utility companies for load flattening amongst the residential power users. These programs are tailored to offer monetary incentives to electricity customers so that they voluntarily consume electricity in an efficient way. Thus, DSM presents households with numerous opportunities to lower their electricity bills. However, systems that combine the various DSM strategies with a view to maximizing energy management benefits have not received sufficient attention. This study therefore proposes an intelligent energy management framework that can be used to implement both energy storage and appliance scheduling schemes. By adopting appliance scheduling, customers can realize cost savings by appropriately scheduling their power consumption during the low peak hours. More savings could further be achieved through smart electricity storage. Power storage allows electricity consumers to purchase power during off-peak hours when electricity prices are low and satisfy their demands when prices are high by discharging the batteries. For optimal cost savings, the customers must constantly monitor the price fluctuations in order to determine when to switch between the utility grid and the electricity storage devices. However, with a high penetration of consumer owned storage devices, the charging of the batteries must be properly coordinated and appropriately scheduled to avoid creating new peaks. This paper therefore proposes an autonomous smart charging framework that ensures both the stability of the power grid and customer savings.

Christopher O. Adika; Lingfeng Wang

2014-01-01T23:59:59.000Z

99

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Figure 34. Regional electricity cost duration curves in 2010especially focus on electricity costs and grid compositionrelatively higher electricity costs. If electricity demand

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

100

Charging Infrastructure for Electric Vehicles (Smart Grid Project) | Open  

Open Energy Info (EERE)

Charging Infrastructure for Electric Vehicles (Smart Grid Project) Charging Infrastructure for Electric Vehicles (Smart Grid Project) Jump to: navigation, search Project Name Charging Infrastructure for Electric Vehicles Country Sweden Headquarters Location Gothenburg, Sweden Coordinates 57.696995°, 11.9865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.696995,"lon":11.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

2. Well-to-wheel vehicle GHG emissions rates as a functionplant type and average GHG emissions rates by scenario (Generation and average GHG emissions in 2050 for scenarios

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

102

Intelligent Vehicle Charging Benefits Assessment Using EV Project Data  

SciTech Connect (OSTI)

PEVs can represent a significant power resource for the grid. An IVCI with bi-direction V2G capabilities would allow PEVs to provide grid support services and thus generate a source of revenue for PEV owners. The fleet of EV Project vehicles represents a power resource between 30 MW and 90 MW, depending on the power rating of the grid connection (5-15 kW). Aggregation of vehicle capacity would allow PEVs to participate in wholesale reserve capacity markets. One of the key insights from EV Project data is the fact that vehicles are connected to an EVSE much longer than is necessary to deliver a full charge. During these hours when the vehicles are not charging, they can be participating in wholesale power markets providing the high-value services of regulation and spinning reserves. The annual gross revenue potential for providing these services using the fleet of EV Project vehicles is several hundred thousands of dollars to several million dollars annually depending on the power rating of the grid interface, the number of hours providing grid services, and the market being served. On a per vehicle basis, providing grid services can generate several thousands of dollars over the life of the vehicle.

Letendre, Steven; Gowri, Krishnan; Kintner-Meyer, Michael CW; Pratt, Richard M.

2013-12-01T23:59:59.000Z

103

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

10 regions Illinois Colorado, Xcel Energy service area LADWPVehicle Charging in the Xcel Energy Colorado Servicecomprised 30% of LDVs in Xcel Energys Colorado service

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

104

Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support  

Science Journals Connector (OSTI)

Abstract Demand fluctuation in electric power systems is undesirable from many points of view; this has sparked an interest in demand-side strategies that try to establish mechanisms that allow for a flatter demand curve. Particularly interesting is load shifting, a strategy that considers the shifting of certain amounts of energy demand from some time periods to other time periods with lower expected demand, typically in response to price signals. In this paper, an optimization-based model is proposed to perform load shifting in the context of smart grids. In our model, we define agents that are responsible for load, generation and storage management; in particular, some of them are electric vehicle aggregators. An important feature of the proposed approach is the inclusion of electric vehicles with vehicle-to-grid capabilities; with this possibility, electric vehicles can provide certain services to the power grid, including load shifting and congestion management. Results are reported for a test system based on the IEEE 37-bus distribution grid; the effectiveness of the approach and the effect of the hourly energy prices on flattening the load curve are shown.

M.A. Lpez; S. de la Torre; S. Martn; J.A. Aguado

2015-01-01T23:59:59.000Z

105

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

106

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

units 2,413 0 170 0 2,583 Number of charging events 118,239 0 2,258 0 120,497 Electricity consumed (AC MWh) 852.17 0.00 14.15 0.00 866.31 Percent of time with a vehicle...

107

EV Project Electric Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

units 3,338 0 1,483 0 4,821 Number of charging events 223,930 0 27,023 0 250,953 Electricity consumed (AC MWh) 1,885.86 0.00 208.63 0.00 2,094.49 Percent of time with a vehicle...

108

Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage  

SciTech Connect (OSTI)

The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

Castello, Charles C [ORNL; LaClair, Tim J [ORNL; Maxey, L Curt [ORNL

2014-01-01T23:59:59.000Z

109

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations  

E-Print Network [OSTI]

engine vehicles refuel at gas stations, EVs might also be charged at other facilities which provideAnalysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs

Wong, Vincent

110

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

at Home to someone by E-mail at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public Vehicles

111

Real-time push middleware and mobile application for electric vehicle smart charging and aggregation  

Science Journals Connector (OSTI)

This paper presents a real-time push middleware and mobile application for data and multimedia content delivery to enable electric vehicle smart charging and aggregation. Intelligent aggregation and charge scheduling software can leverage the battery capacity of an EV to level peak loads by delaying or throttling charging during peak loads, 'valley fill' during off-peak times, and contribute to demand response and spinning reserves by sending electricity into the grid. EV users are updated on the status of their vehicle and may set their charge parameters via web or native mobile application. Facility and utility operators can monitor and control garage and microgrid status through a separate web or mobile application. The content to facilitate aggregated smart charging and monitoring may come from a variety of sources including web servers, ftp servers, Bluetooth or Zigbee or other protocol sensors, and local or remote databases. The middleware will accept content upload and database storage, securely provide content to outside entities, match content to user subscriptions, use user context including connection speed, device type, and location to deliver appropriately formatted content, and provide a reliable mechanism for push content delivery to a multitude of devices including mobile phones and tablet.

Siddhartha Mal; Rajit Gadh

2013-01-01T23:59:59.000Z

112

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on AddThis.com...

113

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

in Electric in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

114

Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Oregon Leads the Oregon Leads the Charge for Plug-In Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Google Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Delicious Rank Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Digg Find More places to share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on AddThis.com...

115

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate - APS to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

116

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

In Electric In Electric Vehicle (PEV) Charging Signage and Parking Regulations to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on

117

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - NV Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on AddThis.com...

118

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

119

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on

120

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on AddThis.com...

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Workplace Charging Challenge Partner: Southern California Edison...  

Broader source: Energy.gov (indexed) [DOE]

of determining the need for PEV charging at the workplace and the prospect for demand response application. Grey plug-in electric vehicle at charging station. Additional...

122

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

in Public to someone by E-mail in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public

123

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Charging Requirements to someone by E-mail Charging Requirements to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

124

Now Available: Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors- Experiences from Six SGIG Projects (December 2014)  

Broader source: Energy.gov [DOE]

Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. The report is now available for downloading.

125

Optimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low  

E-Print Network [OSTI]

Abstract-- Motivated by the power-grid-side challenges in the integration of electric vehicles, we proposeOptimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low a decentralized protocol for negotiating day-ahead charging schedules for electric vehicles. The overall goal

Low, Steven H.

126

Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms  

E-Print Network [OSTI]

different settings. Index Terms--Optimal power flow, electric vehicle charging, valley-filling, onlineForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms, IEEE. Abstract--Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence

Tan, Chee Wei

127

Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions  

E-Print Network [OSTI]

electric cars and petrol-driven ones and in particular which include the respondents' own cars to electric cars on vehicle preferences. Opinion and perception data are also collected to capture the impact) and currently, few charging stations and infrastructures are available. The electric car user is hence compelled

Bierlaire, Michel

128

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

SCE to someone by E-mail SCE to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on AddThis.com... More in this section... Federal State Advanced Search

129

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Digg Find More places to share Alternative Fuels Data Center: Plug-In

130

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Digg Find More places to share Alternative Fuels Data Center: Plug-In

131

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

LADWP to someone by E-mail LADWP to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on AddThis.com... More in this section... Federal State

132

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In

133

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Digg

134

Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure), Vehicle Testing and Integration Facility (VTIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Testing and Integration Facility Vehicle Testing and Integration Facility Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil- fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year-not only to get from point A to point B, but also to keep passengers comfortable with air condi- tioning and heat. At the National Renewable Energy Laboratory (NREL), three instal- lations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are develop-

135

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

136

Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

2007-01-01T23:59:59.000Z

137

Real-time push middleware and mobile application for electric vehicle smart charging and aggregation  

Science Journals Connector (OSTI)

This paper presents a real-time push middleware and mobile application for data and multimedia content delivery to enable electric vehicle smart charging and aggregation. Intelligent aggregation and charge scheduling software can leverage the battery ...

Siddhartha Mal; Rajit Gadh

2013-06-01T23:59:59.000Z

138

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

SciTech Connect (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

139

Harmonization of Road Signs for Electric Vehicle Charging Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Avenue Louise 200 Box 113 1050 Brussels Belgium 1 Avenue Louise 200 Box 113 1050 Brussels Belgium 1 32.2.647.3218 Mobile 32.473.284.603 jseisler@cleanfuelsconsulting.org www.cleanfuelsconsulting.org Harmonization of Road Signs for Electric Vehicle Charging Stations Prepared for: Argonne National Laboratory and the U.S. Department of Energy November 2012 Avenue Louise 200 Box 113 1050 Brussels Belgium 2 32.2.647.3218 Mobile 32.473.284.603 jseisler@cleanfuelsconsulting.org www.cleanfuelsconsulting.org This page is intentionally blank. Avenue Louise 200 Box 113 1050 Brussels Belgium 3 32.2.647.3218 Mobile 32.473.284.603 jseisler@cleanfuelsconsulting.org www.cleanfuelsconsulting.org TABLE OF CONTENTS ACKNOWLEDGMENTS ............................................................................................................. 5

140

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

SciTech Connect (OSTI)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Impacts of high penetration level of fully electric vehicles charging loads on the thermal ageing of power transformers  

Science Journals Connector (OSTI)

Abstract This paper develops a methodology to determine the impacts of high penetration level of fully electric vehicles (FEVs) charging loads on the thermal ageing of power distribution transformers. The method proposed in this paper is stochastically formulated by modelling the transformer life consumption due to \\{FEVs\\} charging loads as a function of ambient temperature, start time of \\{FEVs\\} charging, initial state-of-charge and charging modes. \\{FEVs\\} loads are modelled using the results from an analytical solution that predicts a cluster of \\{FEVs\\} chargers. A UK generic LV distribution network model and real load demand data are used to simulate FEVs impacts on the thermal ageing of LV power distribution transformers. Results show that the ambient temperature, \\{FEVs\\} penetration level, and start time of charging are the main factors that affect the transformer life expectancy. It was concluded that the smart charging scenario generally shows the best outcome from the loss of life reduction perspective. Meanwhile, public charging which shifts a large percentage of charging load to commercial and industrial areas can significantly alleviate the residential transformer loading thus has little impact on the loss of life of transformers. The proposed method in this paper can be easily applied to the determination of the optimum charging time as a function of existing loads, and ambient temperature.

Kejun Qian; Chengke Zhou; Yue Yuan

2015-01-01T23:59:59.000Z

142

Solar-Assisted Electric Vehicle Charging Station Interim Report  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

2011-09-01T23:59:59.000Z

143

Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011

144

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

145

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

146

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

147

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

Cities Coalitions Charge Up Plug-In Electric Vehicles Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

148

Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

149

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network [OSTI]

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure infrastructure in US fleet. c Under US grid mix, PEVs provide minor GHG reductions and work chargers do little. c vehicles Plug-in hybrid electric vehicles Hybrid electric vehicles a b s t r a c t Electrified vehicles can

Michalek, Jeremy J.

150

As Electric Vehicles Take Charge, Costs Power Down | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager The record number of electric-drive vehicles on the floor of Detroit's

151

Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging  

Broader source: Energy.gov [DOE]

Data from a survey conducted between November 2010 and May 2011 show consumer preferences on electric vehicle (EV) charging times. Respondents from 17 different countries were asked for their...

152

Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction  

SciTech Connect (OSTI)

This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

Neubauer, J.; Simpson, M.

2015-01-01T23:59:59.000Z

153

Projections of highway vehicle population, energy demand, and CO{sub 2} emissions in India through 2040.  

SciTech Connect (OSTI)

This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.

Arora, S.; Vyas, A.; Johnson, L.; Energy Systems

2011-02-22T23:59:59.000Z

154

Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord  

SciTech Connect (OSTI)

This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

Steve Schey; Jim Francfort

2014-10-01T23:59:59.000Z

155

A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power  

Science Journals Connector (OSTI)

Abstract As a form of renewable and low-carbon energy resource, wind power is anticipated to play an essential role in the future energy structure. Whereas, its features of time mismatch with power demand and uncertainty pose barriers for the power system to utilize it effectively. Hence, a novel unit commitment model is proposed in this paper considering demand response and electric vehicles, which can promote the exploitation of wind power. On the one hand, demand response and electric vehicles have the feasibility to change the load demand curve to solve the mismatch problem. On the other hand, they can serve as reserve for wind power. To deal with the unit commitment problem, authors use a fuzzy chance-constrained program that takes into account the wind power forecasting errors. The numerical study shows that the model can promote the utilization of wind power evidently, making the power system operation more eco-friendly and economical.

Ning Zhang; Zhaoguang Hu; Xue Han; Jian Zhang; Yuhui Zhou

2015-01-01T23:59:59.000Z

156

Analysis of Ontario's hydrogen economy demands from hydrogen fuel cell vehicles  

Science Journals Connector (OSTI)

The Hydrogen Economy is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen \\{FCVs\\} in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen \\{FCVs\\} market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced.

Hui Liu; Ali Almansoori; Michael Fowler; Ali Elkamel

2012-01-01T23:59:59.000Z

157

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

(not modeled) instrumentation and data collection of vehicle charging demand and energy costs at Tacoma Power, in Tacoma Washington * Tested PHEVs with lithium batteries...

158

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Public Charging Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation deployment initiative . It is supported

159

Development of a measuring system for parking position Can wireless charging of electric vehicles deliver its full  

E-Print Network [OSTI]

of our projects aims to obtain a better understanding of wireless charging of electric vehicles regarding connection of electric vehicles to the grid. In order for wireless charging to be successful1 Development of a measuring system for parking position ­ Can wireless charging of electric

Zhao, Yuxiao

160

Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same  

DOE Patents [OSTI]

Some embodiments include a device to facilitate moving an electrical cable of an electric vehicle charging station. Other embodiments of related systems and methods are also disclosed.

Karner, Donald B

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electric Vehicle Charging Stations, Coming Soon to a City Near You |  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicle Charging Stations, Coming Soon to a City Near You Electric Vehicle Charging Stations, Coming Soon to a City Near You Electric Vehicle Charging Stations, Coming Soon to a City Near You October 19, 2010 - 10:00am Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs I recently attended AARP's annual conference in Orlando, Florida as an exhibitor with the Department of Energy's Office of Energy Efficiency and Renewable Energy. The event hosted over 20,000 attendees, several of whom provided great feedback at the exhibit booth-just another example of the growing interest in efficiency. Many attendees voiced their encouragement for more solar and wind energy projects while others shared their experiences with applying for tax credits to fund energy-efficient upgrades

162

Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy  

Open Energy Info (EERE)

Fixed Demand Charge Month 1 Fixed Demand Charge Month 1 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth1" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

163

Property:OpenEI/UtilityRate/DemandReactivePowerCharge | Open Energy  

Open Energy Info (EERE)

DemandReactivePowerCharge DemandReactivePowerCharge Jump to: navigation, search This is a property of type Number. Pages using the property "OpenEI/UtilityRate/DemandReactivePowerCharge" Showing 25 pages using this property. (previous 25) (next 25) 0 00b7ccdc-c7e0-40d2-907f-acb6ae828292 + 0.25 + 00e0b930-90c6-43c2-971a-91dade33f76a + 0.32 + 00e2a43f-6844-417a-b459-edf32d33b051 + 0.0092 + 00fb7dca-d0a6-4b11-b7de-791c2fb9f2e1 + 2.7 + 01a64840-7edc-4193-8073-ed5604e098ca + 0.83 + 035f3d22-3650-47cc-a427-bb35170db128 + 0.3 + 042f06f4-6a5b-424f-a31f-8e1c5a838700 + 0.27 + 0479cd85-894d-412b-b2ce-3b96912e9014 + 0.2 + 04bab597-fe1e-4507-8d90-144980aeba73 + 0.3 + 05211bd7-b6d3-425c-9f96-0845b7828c3c + 0.27 + 052fbe23-ac02-4195-b76d-e572cc53f669 + 0.68 + 05490683-8158-4d2f-ad96-66d5e4980890 + 0.25 +

164

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-In Electric Vehicle Handbook Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation

165

EV Project Electric Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

78 1,988 54 6,939 Number of charging events 341,828 1,699 36,990 8,089 388,606 Electricity consumed (AC MWh) 2,827.92 14.83 311.16 58.39 3,212.30 Percent of time with a...

166

EV Project Electric Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

251 2,675 87 9,154 Number of charging events 490,327 11,948 50,729 26,911 579,915 Electricity consumed (AC MWh) 3,808.41 143.89 437.69 222.52 4,612.51 Percent of time with a...

167

Vehicle-Grid Interface Key to Smart Charging Plug-in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrification is an important electrification is an important element in the nation's plan to transition from petroleum to electricity as the main energy source for urban/ suburban transportation - to enhance energy security, reduce environmental impact and maintain mobility in a carbon- constrained future. Well over half of America's passenger cars travel between 20 and 40 miles daily - a range that electric vehicles (EVs)

168

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absence of data on actual sales,EV, then we expect that 16-18%) of annual light-duty vehicle sales

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

169

Charging and Storage Infrastructure Design for Electric Vehicles MARJAN MOMTAZPOUR and PATRICK BUTLER, Virginia Tech  

E-Print Network [OSTI]

part of our societies. Smart grids are one of these modern systems that have attracted many research activities in recent years. Before utilizing the next generation of smart grids, we should have mining, electric vehicles, smart grids, storage, charging stations, synthetic populations. ACM Reference

Ramakrishnan, Naren

170

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

171

Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 11 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth11" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

172

Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 12 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth12" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

173

Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 10 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth10" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 10.59 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 2.71 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

174

Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Pages using the property "OpenEI/UtilityRate/DemandChargePeriod6" Showing 13 pages using this property. 0 0cbf0ab5-6819-42a2-bec6-1474dedf49c7 + 4.94 + 2 243d213c-25ea-4709-b421-6ff602b22d53 + 4.94 + 3 3436a635-b3b2-43a5-93ea-e0df37ef26c0 + 0 + 37ba48cd-8228-413b-b67c-8924492a64ce + 4.94 + 4 479553d6-3efc-4773-88d7-7c87804c0a65 + 0.13 + 4bc8edda-d0e1-40ee-aac2-c2b32603a6b4 + 0.406 + 4d4a192d-b047-4a30-b719-27b28886d52b + 0 + C C65fb7a2-3639-410b-9164-fc6aa9e8e68c + 0.18 + D D21bf95c-9259-4058-ba7c-21aabd1edf31 + 0 + Df73a354-dd92-4e20-91b2-db16bde25dbb + 6 + E E0f831df-88a7-45a7-853c-d3958e41be83 + 1.2 + F F43273e8-6ef9-443f-9cee-9e20ab9b47d0 + 4.94 + F71b0b63-1b9c-4afd-8481-7af45939042a + 0 +

175

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network [OSTI]

Potential Demand for Electric Cars, Journal of Economrtricsand one large car) and one mini electric car. The two modelsscenarios: (i) a subcompact electric car is introduced to

Sheng, Hongyan

1999-01-01T23:59:59.000Z

176

An Approach to Demand Response for Alleviating Power System Stress Conditions due to Electric Vehicle Penetration.  

E-Print Network [OSTI]

??Along with the growth of electricity demand and the penetration of intermittent renewable energy sources, electric power distribution networks will face more and more stress (more)

Shao, Shengnan

2011-01-01T23:59:59.000Z

177

Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Workplace Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for Workplace Charging . . . . . . . 9 Workplace Charging Management and Policy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Workplace Charging Installation . . . . . . . . . . . . . . . . . . . . . . 16 Electrifying Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clean Cities Helps Establish Charging Infrastructure The U .S . Department of Energy's Clean Cities program supports local actions to reduce petroleum use in transportation . Nearly 100 Clean Cities coalitions across the country work

178

Within-day recharge of plug-in hybrid electric vehicles: Energy impact of public charging infrastructure  

Science Journals Connector (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Jing Dong; Zhenhong Lin

2012-01-01T23:59:59.000Z

179

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

180

A procedure for derating a substation transformer in the presence of widespread electric vehicle battery charging  

SciTech Connect (OSTI)

This paper studies the effect of electric vehicle (EV) battery charging on a substation transformer that supplies commercial, residential, industrial, and EV load on a peak summer day. The analysis begins on modeling non-EV load with typical utility load shapes. EV load is modeled using the results from an analytical solution technique that predicts the net power and harmonic currents generated by a group of EV battery chargers. The authors evaluate the amount of transformer derating by maintaining constant daily transformer loss-of-life, with and without EV charging. This analysis shows that the time of day and the length of time during which the EVs begin charging are critical in determining the amount of transformer derating required. The results show that with proper control, EV charging may have very little effect on power system components at the substation level.

Staats, P.T.; Grady, W.M.; Arapostathis, A. [Univ. of Texas, Austin, TX (United States)] [Univ. of Texas, Austin, TX (United States); Thallam, R.S. [Salt River Project, Phoenix, AZ (United States)] [Salt River Project, Phoenix, AZ (United States)

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Distribution network planning integrating charging stations of electric vehicle with V2G  

Science Journals Connector (OSTI)

Abstract Accompanied by the popularization of EVs, the planning of electric vehicle (EV) charging stations becomes an important concern of distribution network planning. In this paper, the load density method is introduced to determine the optimal capacity of the EV charging stations in the areas to be planned, and the difference between 1 and the weight coefficients obtained by the analytic hierarchy process (AHP) method is used to calculate the cost coefficients of the charging station. The objective function of the optimal distribution network planning model should be the minimal cost of the fixed investments, the operational costs and the maintenance costs including the substations, charging stations and feeders. In this model, the effect of vehicle-to-grid (V2G) is considered, i.e., the EV is respectively treated as both the load and the source. Moreover, the electricity price volatility has been taken into consideration. In this case, EV owners can be guided to charge and discharge EV orderly. The ordinal optimization approach is applied to get the best solution. The results of the case study based on IEEE 54 nodes model show the feasibility and effectiveness of the proposed model.

Xiangning Lin; Jinwen Sun; Shengfang Ai; Xiaoping Xiong; Yunfei Wan; Dexian Yang

2014-01-01T23:59:59.000Z

182

Demand response control for PHEV charging stations by dynamic price adjustments  

Science Journals Connector (OSTI)

Because of their economical operation and low environmental pollution, PHEVs (Plug-in Hybrid Electric Vehicles) are rapidly substituting gasoline vehicles. However, there still exist obstacles to proliferating their use, such as their relatively short ...

Daehyun Ban; George Michailidis; Michael Devetsikiotis

2012-01-01T23:59:59.000Z

183

Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint  

SciTech Connect (OSTI)

The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

2014-11-01T23:59:59.000Z

184

Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy Information  

Open Energy Info (EERE)

Pages using the property "OpenEI/UtilityRate/DemandChargePeriod2" Pages using the property "OpenEI/UtilityRate/DemandChargePeriod2" Showing 25 pages using this property. (previous 25) (next 25) 0 0044fc17-f119-47eb-ae5d-0f489e09b203 + 12.94 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 3.49 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 10.865 + 00fb7dca-d0a6-4b11-b7de-791c2fb9f2e1 + 8.15 + 00ff280d-1664-4b09-979b-5ee1e370b704 + 0.26 + 018673f0-093a-4a53-869d-3ac77d260efb + 0 + 01dd3bae-411e-40ee-b067-b2a0430baba3 + 6.75 + 01f6f9b2-3658-45e2-aa3e-f7afaf9b481d + 17.96 + 024ac306-1e30-4870-94f8-ef12908abe23 + 16.89 + 0253037f-3371-4224-b225-523d48a5e4c8 + 0.0267 + 02f09bc0-ae05-47af-a5ec-0074226c199b + 4.03 + 0385ea12-8fa5-45aa-8fc9-05df0358cd07 + 23.65 + 05146a64-a5a4-4271-a5ad-cb3a9a1e9345 + 33.94 + 05490683-8158-4d2f-ad96-66d5e4980890 + 0 +

185

Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy Information  

Open Energy Info (EERE)

Pages using the property "OpenEI/UtilityRate/DemandChargePeriod5" Pages using the property "OpenEI/UtilityRate/DemandChargePeriod5" Showing 25 pages using this property. 0 0934dd86-7cbe-437a-8cc5-47f469d3a745 + 8.516 + 0cbf0ab5-6819-42a2-bec6-1474dedf49c7 + 12.05 + 1 15d745ce-504b-4b58-8398-bd0feecd6cd3 + 12.08 + 16c96f08-175e-4914-b959-38a16682f377 + 12.178 + 1f892ab7-b5e8-4c7d-9e3d-d8fd46472ccc + 1.66 + 2 243d213c-25ea-4709-b421-6ff602b22d53 + 11.89 + 3 3436a635-b3b2-43a5-93ea-e0df37ef26c0 + 15.42 + 37ba48cd-8228-413b-b67c-8924492a64ce + 12.34 + 4 479553d6-3efc-4773-88d7-7c87804c0a65 + 0.27 + 4bc8edda-d0e1-40ee-aac2-c2b32603a6b4 + 0.408 + 4d4a192d-b047-4a30-b719-27b28886d52b + 0 + 6 6431b6d0-4fce-4b94-ac92-b8e1634e144f + 1.66 + 9 98c27d12-986e-49f2-bba0-c6a507f49195 + 13.1 + A A8443e10-6622-42f0-ad0b-5dbf429bf993 + 11.778 +

186

On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems  

E-Print Network [OSTI]

Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

2011-01-01T23:59:59.000Z

187

Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

188

Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting  

Science Journals Connector (OSTI)

Abstract A battery storage dispatch strategy that optimizes demand charge reduction in real-time was developed and the discharge of battery storage devices in a grid-connected, combined photovoltaic-battery storage system (PV+system) was simulated for a summer month, July 2012, and a winter month, November 2012, in an operational environment. The problem is formulated as a linear programming (LP; or linear optimization) routine and daily minimization of peak non-coincident demand is sought to evaluate the robustness, reliability, and consistency of the battery dispatch algorithm. The LP routine leverages solar power and load forecasts to establish a load demand target (i.e., a minimum threshold to which demand can be reduced using a photovoltaic (PV) array and battery array) that is adjusted throughout the day in response to forecast error. The LP routine perfectly minimizes demand charge but forecasts errors necessitate adjustments to the perfect dispatch schedule. The PV+system consistently reduced non-coincident demand on a metered load that has an elevated diurnal (i.e., daytime) peak. The average reduction in peak demand on weekdays (days that contain the elevated load peak) was 25.6% in July and 20.5% in November. By itself, the PV array (excluding the battery array) reduced the peak demand on average 19.6% in July and 11.4% in November. PV alone cannot perfectly mitigate load spikes due to inherent variability; the inclusion of a storage device reduced the peak demand a further 6.0% in July and 9.3% in November. Circumstances affecting algorithm robustness and peak reduction reliability are discussed.

R. Hanna; J. Kleissl; A. Nottrott; M. Ferry

2014-01-01T23:59:59.000Z

189

Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy  

Open Energy Info (EERE)

Fuel Adj Fuel Adj Pages using the property "OpenEI/UtilityRate/DemandChargePeriod2FAdj" Showing 25 pages using this property. (previous 25) (next 25) 0 02317cd6-a0ec-4111-8627-09664a2c083c + 0.84 + 1 13087919-93aa-4ea4-a980-9651069273c7 + 7.31 + 16aa4028-86d4-4e27-be38-fe817b497238 + 0.497 + 1a72490d-bb6a-4115-99a7-7dbc54cb1824 + 11.49 + 2 2367240f-bd28-4b73-ae88-b8f1d7ed70c1 + 0.497 + 24f48897-8a68-4ae0-99d9-ecc0281f7ece + 8.73 + 3 3bbd220c-c3da-4420-99dc-f2eeb44ce2e3 + 0.0295 + 4 448aa8c8-e896-439a-82c8-b61a66a80429 + 0.412 + 479553d6-3efc-4773-88d7-7c87804c0a65 + 0.91 + 4bc8edda-d0e1-40ee-aac2-c2b32603a6b4 + 6.5e-4 + 4d4a192d-b047-4a30-b719-27b28886d52b + 1.5 + 4e7a224a-8960-4bbf-8843-321a81d7c3a8 + 0.888 + 4f0014b5-64b1-4487-8c74-3e19564df58e + 0.402 +

190

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network [OSTI]

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

191

Payment vehicle as an instrument to elicit economic demand for conservation  

Science Journals Connector (OSTI)

Abstract In this study we applied collective/mandatory and individual/voluntary payment vehicles to elicit public claim for governmental investments of urban coastal nature reserves; to verify the efficiency of either payment formats to recall protest voters declared under the other and sensitivity of respondents to reveal willingness to pay-WTP for maintenance and conservation of reserves. Results showed higher WTP bids and valuation under collective and mandatory payment format and supplied evidence that in developing countries people nurture expectancy on governmental actions and funding to conserve natural landscapes. The difference between the non-use values estimated under the two payment vehicles was USD 3.5 millions. For the purpose of this study, this indicates the amount claimed by local people for governmental investment in the coastal urban nature reserves. Ecological knowledge on the reserves have a positive effect on non-use values, underlining the role of information to increase people understanding on benefits supplied by nature reserve and to enable them to declared the utility attributed to these areas in economic terms.

Dborah Quinder Carneiro; Adriana Rosa Carvalho

2014-01-01T23:59:59.000Z

192

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

193

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy Laboratory 8 May 2012 NREL/PR-5400-55080 GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting Enablers Grid / Renewables Communities Vehicles SMART GRID & COMMUNI- CATION RENEWABLE GENERATION INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY MANAGE- MENT GRID OPERATION & RELIABILITY ENERGY STORAGE LIFE & COST STRATEGIC ENERGY ANALYSIS VEHICLE SYSTEMS ANALYSIS & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG 3 Vehicle Test Facilities at NREL

194

EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charging Infrastructure Charging Infrastructure Enabling Flexible EV Design July 30, 2012 Lee Slezak Technology Manager, Vehicle Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov Outline * Purpose - Establish Vision for Achieving EV Everywhere * Enable Strong Demand for EVs * Supply of Vehicles and Infrastructure * Current Status of Infrastructure and Vehicles * Desired Workshop Outputs * Approach - Design Candidate Infrastructure Strategies for 2022 10/12/2012 2 eere.energy.gov Achieving EV Everywhere - Enable Strong Demand for EVs 10/12/2012 3 EV Everywhere Consumer Acceptance EV Everywhere Consumer Acceptance Electric Vehicles * Safe * Cost Competitive * Utility meets consumer needs * Range

195

Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Many jurisdictions around the world are supporting the adoption of electric vehicles through incentives and the deployment of a charging infrastructure to reduce greenhouse gas emissions. Plug-in hybrid electric vehicles (PHEVs), with offer mature technology and stable performance, are expected to gain an increasingly larger share of the consumer market. The aggregated effect on power grid due to large-scale penetration of \\{PHEVs\\} needs to be analyzed. Nighttime-charging which typically characterizes \\{PHEVs\\} is helpful in filling the nocturnal load valley, but random charging of large PHEV fleets at night may result in new load peaks and valleys. Active response strategy is a potentially effective solution to mitigate the additional risks brought by the integration of PHEVs. This paper proposes a power system operation risk analysis framework in which charging load self-management is used to control system operation risk. We describe an interactive mechanism between the system and \\{PHEVs\\} in conjunction with a smart charging model is to simulate the time series power consumption of PHEVs. The charging load is managed with adjusting the state transition boundaries and without violating the users desired charging constraints. The load curtailment caused by voltage or power flow violation after outages is determined by controlling charging power. At the same time, the system risk is maintained under an acceptable level through charging load self-management. The proposed method is implemented using the Roy Billinton Test System (RBTS) and several PHEV penetration levels are examined. The results show that charging load self-management can effectively balance the extra risk introduced by integration of \\{PHEVs\\} during the charging horizon.

Zhe Liu; Dan Wang; Hongjie Jia; Ned Djilali

2014-01-01T23:59:59.000Z

196

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed, and fuel cell. Battery EDVs can store electricity, charging during low demand times and discharging when power is scarce and prices are high. Fuel cell and hybrid EDVs are sources of new power generation

Firestone, Jeremy

197

AVTA: PHEV Demand and Energy Cost Demonstration Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from a demonstration with Tacoma Power on plug-in hybrid electric vehicle demand and energy cost, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

198

Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

199

Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

200

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Workplace Charging Challenge Partner: El Camino Real Charter High School  

Broader source: Energy.gov [DOE]

El Camino Real Charter High School (ECRCHS) has installed 4 plug-in electric vehicle (PEV) chargers, with plans to expand if demand increases. The charging stations play an integral role in...

202

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Costs and Emissions Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Technical Report NREL/TP-640-41410 May 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Prepared under Task No. WR61.2001 Technical Report NREL/TP-640-41410 May 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

203

EV Everywhere: Americas Plug-In Electric Vehicle Market Charges Forward  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

204

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

205

A scenario of vehicle-to-grid implementation and its double-layer optimal charging strategy for minimizing load variance within  

E-Print Network [OSTI]

for minimizing load variance within regional smart grids Linni Jian a, , Xinyu Zhu a , Ziyun Shao b , Shuangxia Accepted 3 November 2013 Keywords: Electric vehicle Charging strategy Vehicle-to-grid Smart grid Load benefit the grid through flattening the power load curve, hence, increase the stability, security

Leung, Ka-Cheong

206

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

207

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

208

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Distribution Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

209

Design of an Autonomous Underwater Vehicle (AUV) charging system for underway, underwater recharging  

E-Print Network [OSTI]

Modern robotics have enabled the rapid proliferation of Autonomous Underwater Vehicles (AUVs) throughout the marine environment. As autonomy algorithms increase in robustness, complexity, and reliability, so too does the ...

Ewachiw, Mark Alexander, Jr

2014-01-01T23:59:59.000Z

210

Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project:...

211

Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL testing of...

212

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

213

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

Science Journals Connector (OSTI)

Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and \\{SUVs\\} in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives.

Scott B. Peterson; Jeremy J. Michalek

2013-01-01T23:59:59.000Z

214

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

215

Portunes: Privacy-Preserving Fast Authentication for Dynamic Electric Vehicle Charging  

E-Print Network [OSTI]

University of Illinois Urbana-Champaign hli52@illinois.edu Gy¨orgy D´an KTH Royal Institute of Technology gyuri@kth.se Klara Nahrstedt University of Illinois Urbana-Champaign klara@illinois.edu Abstract. In order to allow a significant amount of energy to be transmitted to an EV in a charging section

Nahrstedt, Klara

216

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300 Commercial EVSE...

217

A non-contact energy transferring system for an electric vehicle-charging system based on recycled products  

Science Journals Connector (OSTI)

A non-contact automatic charging system for electric vehicle application is presented. The principle is the same as that of the transformer where the primary and the secondary circuits are separable but coupled with each other without using the hand coupler. In this paper we present a possibility of removing the core of the secondary coil on the body for reducing the weight of the car. In our experiments the primary core which is placed on the earth floor is made of MnZn ferrite with square shape as 1 m 1 m 10 mm for a large cross-sectional area. The steel floor of the car assists to pass the magnetic flux. An efficiency rate over 90% with the test device of 2 kW is obtained without the conventional secondary core. The leakage inductance is well compensated by a resonance capacitor inserted in the secondary coil. In this experiment the distance between the primary and the secondary coil is 100 mm and the switching frequency is 100 kHz . In addition we developed a pavement method for the system. The method utilizes plates made from the waste of expanded polystyrene and rubber mats made from used tire. The plates are set up on the rubber mats and these mats are arranged over the non-contact charging system. The pavements can be replaced easily when the system is exchanged. Therefore this pavement method is not only practical for the non-contact charging system but is also useful for recycling of resources and reduction of waste matters.

Y. Matsuda; H. Sakamoto; H. Shibuya; S. Murata

2006-01-01T23:59:59.000Z

218

Demand Response Projects: Technical and Market Demonstrations  

E-Print Network [OSTI]

Demand Response Projects: Technical and Market Demonstrations Philip D. Lusk Deputy Director Energy Analyst #12;PLACE CAPTION HERE. #12;#12;#12;#12;City of Port Angeles Demand Response History energy charges · Demand charges during peak period only ­ Reduced demand charges for demand response

219

Cyber-Physical Systems for Optimal Energy Management Scheme of Autonomous Electric Vehicle  

Science Journals Connector (OSTI)

......consumption status and demand from AEV and charging...vehicle; energy management; event-based...the optimal energy management scheme for AEV with...of CPS for energy management framework (EMF...the consumption side to collect and analyze...consumption status and demand, and then make......

Jiafu Wan; Hehua Yan; Di Li; Keliang Zhou; Lu Zeng

2013-08-01T23:59:59.000Z

220

NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

Not Available

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Journals Connector (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

222

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

223

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

224

Workplace Charging Challenge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping build our...

225

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

226

Consumer Acceptance and Public Policy Charging Infrastructure Group E Breakout Session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Group E Charging Infrastructure Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure Scenarios * Infrastructure Scenarios * Domicile & Workplace Charging: Being available were vehicles spend a lot of time (Level 1/2) * Gas Station model * Fast charging * Battery Swap * Flow Batteries: Electrolyte swap for long distance traveling * Dynamic Wireless Charging * Strategically placed and visible * Widespread and visible Charging Infrastructure (Group E) July 30, 2012 Breakout Session #2 - Refine Consumer Acceptance Concepts and Infrastructure Scenarios * DOE Actions for Fast Charging Scenario: * R&D on power transfer rates for batteries * Energy storage research to minimize grid impacts and demand charges

227

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

228

AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing...  

Broader source: Energy.gov (indexed) [DOE]

Siemens-VersiCharge AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

229

Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles  

Broader source: Energy.gov [DOE]

In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many cold/warm starts.

230

Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs  

Broader source: Energy.gov [DOE]

Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

231

Vehicle Technologies Office: Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

232

Consumer Acceptance and Public Policy Charging Infrastructure Group D Breakout Session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

infrastructure infrastructure Group D Charging Infrastucture Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure Scenarios * Infrastructure Scenarios * Limited infrastructure * PHEVs (110V infrastructure suitable) * AEVs (tethered to home) * Make commercial charging free (to consumers) - Google model * Utilities are compensated * Value proposition for site host? Infrastructure provider? * Parking garage - put EVSEs on high floors * Free parking for EVs * Fast charging - needs to be worked from the vehicle OEMs * Premature to discuss at this point - "you gotta sell cars" - chicken & egg * Issues: installation costs, standards, vehicle availability, energy costs/demand costs * Electrification and automation * Wireless charging, platooning, let the grid be the energy carrier

233

AVTA: ChargePoint AC Level 2 Charging System Testing Results...  

Broader source: Energy.gov (indexed) [DOE]

AVTA: ChargePoint AC Level 2 Charging System Testing Results AVTA: ChargePoint AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing...

234

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

235

Vehicle-Grid Interoperability | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a test vehicle using the laboratory's solar-powered charging station. As plug-in electric vehicles (EVs) become more common, the challenges to managing their interactions with...

236

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

237

Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys Workplace Charging Challenge began in early 2013 and currently has about 150 businesses/universities/organizations that are partners in the Challenge. A survey of...

238

Workplace Charging Challenge Partner: Telefonix, Inc. | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Inc. Workplace Charging Challenge Partner: Telefonix, Inc. As an ISO 1400 certified manufacturer of plug-in electric vehicle (PEV) charging stations, workplace charging is a part...

239

Car Charging Group Inc | Open Energy Information  

Open Energy Info (EERE)

Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group, Inc.1 This...

240

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network [OSTI]

for forecasting demand for alternative-fuel vehicles. In:preferences for alternative-fuel vehicles David Brownstonespondents' preferences for alternative-fuel vehicles. The e

Brownston, David; Bunch, David S.; Train, Kenneth

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

On making energy demand and network constraints compatible in the last mile of the power grid  

Science Journals Connector (OSTI)

Abstract In the classical electricity grid power demand is nearly instantaneously matched by power supply. In this paradigm, the changes in power demand in a low voltage distribution grid are essentially nothing but a disturbance that is compensated for by control at the generators. The disadvantage of this methodology is that it necessarily leads to a transmission and distribution network that must cater for peak demand. So-called smart meters and smart grid technologies provide an opportunity to change this paradigm by using demand side energy storage to moderate instantaneous power demand so as to facilitate the supply-demand match within network limitations. A receding horizon model predictive control method can be used to implement this idea. In this paradigm demand is matched with supply, such that the required customer energy needs are met but power demand is moderated, while ensuring that power flow in the grid is maintained within the safe operating region, and in particular peak demand is limited. This enables a much higher utilisation of the available grid infrastructure, as it reduces the peak-to-base demand ratio as compared to the classical control methodology of power supply following power demand. This paper investigates this approach for matching energy demand to generation in the last mile of the power grid while maintaining all network constraints through a number of case studies involving the charging of electric vehicles in a typical suburban low voltage distribution network in Melbourne, Australia.

Iven Mareels; Julian de Hoog; Doreen Thomas; Marcus Brazil; Tansu Alpcan; Derek Jayasuriya; Valentin Menzel; Lu Xia; Ramachandra Rao Kolluri

2014-01-01T23:59:59.000Z

242

AVTA: Blink AC Level 2 Charging System Testing Results | Department...  

Broader source: Energy.gov (indexed) [DOE]

Blink AC Level 2 Charging System Testing Results AVTA: Blink AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries...

243

AVTA: Schneider AC Level 2 Charging System Testing Results |...  

Broader source: Energy.gov (indexed) [DOE]

Schneider AC Level 2 Charging System Testing Results AVTA: Schneider AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

244

AVTA: Aerovironment AC Level 2 Charging System Testing Results...  

Broader source: Energy.gov (indexed) [DOE]

Aerovironment AC Level 2 Charging System Testing Results AVTA: Aerovironment AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing...

245

AVTA: SPX AC Level 2 Charging System Testing Results | Department...  

Broader source: Energy.gov (indexed) [DOE]

AVTA: SPX AC Level 2 Charging System Testing Results AVTA: SPX AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

246

Advanced Technology Vehicle Benchmark and Assessment  

Broader source: Energy.gov (indexed) [DOE]

limitations due to thermal transients *Consumption impacts of vehicle variability *Charge energy variability 13 Accomplishments: Collaborations Contributing to Technology...

247

PEV Grid Integration Research: Vehicles, Buildings, and Renewables...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Focus Areas o Managed charging systems providing flexibility, demand response capability o Bi-directional power to minimize local demand charge and grid...

248

Fordonsgas frn deponier; Vehicle fuel from landfill gas.  

E-Print Network [OSTI]

?? The demand for biogas as vehicle fuel has risen sharply and there is a great need for increased production. A possible addition of vehicle (more)

Willn, Jessica

2010-01-01T23:59:59.000Z

249

Driving change : evaluating strategies to control automotive energy demand growth in China ; Evaluating strategies to control automotive energy demand growth in China .  

E-Print Network [OSTI]

??As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with (more)

Bonde kerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

250

Energy demand  

Science Journals Connector (OSTI)

The basic forces pushing up energy demand are population increase and economic growth. From ... of these it is possible to estimate future energy requirements.

Geoffrey Greenhalgh

1980-01-01T23:59:59.000Z

251

EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov (indexed) [DOE]

Melissa Lapsa 2014 DOE Vehicle Technologies Office Review Presentation EV Project - Solar- Assisted Charging Demo VSS138 2014 U.S. DOE Hydrogen Program and Vehicle Technologies...

252

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

253

Vehicle Technologies Office: Fact #702: November 21, 2011 Consumer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: November 21, 2: November 21, 2011 Consumer Preferences on Electric Vehicle Charging to someone by E-mail Share Vehicle Technologies Office: Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging on Facebook Tweet about Vehicle Technologies Office: Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging on Twitter Bookmark Vehicle Technologies Office: Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging on Google Bookmark Vehicle Technologies Office: Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging on Delicious Rank Vehicle Technologies Office: Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging on Digg Find More places to share Vehicle Technologies Office: Fact #702:

254

Vehicle Technologies Market Report  

E-Print Network [OSTI]

· Diesel comprised 73% of the class 3-8 trucks sold in 2010, down from 84% in 2006 · Class 8 combination 2011 · There are more than 4,400 electric vehicle charging stations throughout the nation · Single wide stop sites across the country to reduce truck idling time Policy · Plug-in hybrids and electric vehicle

255

Jointly Optimizing Cost, Service, and Environmental Performance in Demand-Responsive Transit Scheduling  

E-Print Network [OSTI]

Jointly Optimizing Cost, Service, and Environmental Performance in Demand-Responsive Transit-cycle environmental consequences in vehicle routing and scheduling, which we develop for a demand- responsive

Dessouky, Maged

256

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

257

Driving change : evaluating strategies to control automotive energy demand growth in China  

E-Print Network [OSTI]

As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

Bonde kerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

258

Workplace Charging Challenge Partner: Bentley Systems, Inc. ...  

Broader source: Energy.gov (indexed) [DOE]

additional installations at its corporate headquarters near Philadelphia, Pennsylvania. red electric vehicle charging at outdoor charging station Fast Facts Joined the Workplace...

259

EV Everywhere Workplace Charging Challenge: Resources | Department...  

Office of Environmental Management (EM)

Best Practices for Workplace Charging report. Expanding Commuter Options and Reducing GHG Emissions with Workplace Plug-in Electric Vehicle Charging - This webcast, hosted by...

260

Workplace Charging Challenge Partner: WESCO International, Inc...  

Broader source: Energy.gov (indexed) [DOE]

Charging Challenge Partner: WESCO International, Inc. As a leading distributor of electrical products, WESCO provides plug-in electric vehicle (PEV) charging stations to...

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ChargePoint America | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ChargePoint America ChargePoint America 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

262

Electric Drive Vehicle Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid * Help...

263

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents [OSTI]

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

264

AVTA: Bidirectional Fast Charging Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

265

Plug-In Electric Vehicle Handbook for Fleet Managers  

E-Print Network [OSTI]

Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Choosing Electric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Photo from Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires

266

Vehicle Technologies Office Merit Review 2014: INL Testing of...  

Broader source: Energy.gov (indexed) [DOE]

INL Testing of Wireless Charging Systems Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems Presentation given by Idaho National Laboratory at...

267

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand ........................................................................ 28 Possible Future Trends for Plug-in Hybrid Electric Vehicles .............................................................. 23 Electricity Demand Growth in the West

268

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

269

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

270

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

271

Thirteen Major Companies Join Energy Department's Workplace Charging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

availability of workplace charging, increasing the convenience of plug-in electric vehicles (PEVs) and providing drivers with more options. "The market for electric vehicles is...

272

Workplace Charging Challenge Partner: Nissan North America, Inc...  

Broader source: Energy.gov (indexed) [DOE]

Charging Partner Nissan. View more videos on the Alternative Fuels and Advanced Vehicles Data Center. Red Nissan Leaf on highway. Text version Old vehicle on muddy road. Text...

273

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

of light-duty vehicles in Xcel Energy service territory inVehicle Charging in the Xcel Energy Colorado Service

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

274

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

275

Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

276

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

277

Vehicle Technologies Office News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

September 19, 2014 An electric vehicle charging at a Zappos workspace. | Photo credit Ron Carney U.S. Employers Drive Change with Workplace Charging This is the final post in a...

278

Chinese Oil Demand: Steep Incline Ahead  

U.S. Energy Information Administration (EIA) Indexed Site

Chinese Oil Demand: Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million Barrels/Day China South Korea Japan India IEA China Oil Forecast 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 16.3 mbd 12.7 mbd IEA China Oil Forecasts 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 WEO 2006 WEO 2004 WEO 2002 Vehicle Sales in China 0 2 4 6 8 10 1990 1995 2000 2005 2010 Million Vehicles/Year Vehicle Registrations in China 0 10 20 30 40 50 1990 1995 2000 2005 2010 Million Vehicles/Year Vehicle Density vs GDP per Capita 0 20 40 60 80 100 120 140 160 180 200 0 4,000 8,000 12,000 16,000 GDP per capita, 2005$ PPP Vehicles per thousand people Taiwan South Korea China Vehicle Density vs GDP per Capita

279

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

280

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

282

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

283

Page 1 of 9 Vehicle Buyers' Guide  

E-Print Network [OSTI]

in Part 3 of the survey. We will discuss vehicles that can be powered by gasoline only, electricity only, or both. We will also discuss how the vehicles that are powered by electricity can be recharged. In Part 3: · With a fully charged battery, the vehicle is powered by electricity for the first 16 to 64 kilometres

284

Vehicle Technologies Office: Benchmarking  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

285

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm  

E-Print Network [OSTI]

powered vehicles [Kirsch, 2000, Anderson and Anderson, 2010]. Electric Vehicles (EVs) are currentlyBattery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online n current demands in electric vehicles. When serving a demand, the current allocation might be split

Tamir, Tami

286

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

287

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

288

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network [OSTI]

the commercial building electricity costs distributed energydegradation costs electricity sales fixed electricity costsvariable electricity costs (energy and demand charges) EV

Stadler, Michael

2012-01-01T23:59:59.000Z

289

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

290

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

291

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Digg Find More places to share Alternative Fuels Data Center: Electric

292

An examination of factors affecting high occupancy/toll lane demand  

E-Print Network [OSTI]

In recent years, high occupancy/toll (HOT) lanes have gained increasing recognition as a potential method of managing traffic congestion. HOT lanes combine pricing and vehicle occupancy restrictions to optimize the demand for high occupancy vehicle...

Appiah, Justice

2004-11-15T23:59:59.000Z

293

Workplace Charging Challenge Partner: Facebook  

Broader source: Energy.gov [DOE]

Facebook employees are early adopters and the company now has a significant number of plug-in electric vehicles (PEVs) on campus to respond to employee demand. As part of Facebook's aggressive...

294

Dynamic incentive scheme for rental vehicle fleet management  

E-Print Network [OSTI]

Mobility on Demand is a new transportation paradigm aimed to provide sustainable transportation in urban settings with a fleet of electric vehicles. Usage scenarios prpopsed by Mobility on Demand systems must allow one-way ...

Zhou, SiZhi

2012-01-01T23:59:59.000Z

295

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

D. (1985), 'The market share of diesel cars in the USA,diesel passenger cars. Models exploring automotive demand have been aggregate, predicting vehicle market

Martin, Elliott William

2009-01-01T23:59:59.000Z

296

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

D. (1985), 'The market share of diesel cars in the USA,diesel passenger cars. Models exploring automotive demand have been aggregate, predicting vehicle market

Martin, Elliot William

2009-01-01T23:59:59.000Z

297

Summary Report: Clean Cities Plug-In Electric Vehicle Community Readiness Partners Discussion Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org 2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org MAY 7, 2012 4:30 PM - 6:00 PM LOS ANGELES, CA SUMMARY REPORT: CLEAN CITIES PLUG-IN ELECTRIC VEHICLE COMMUNITY READINESS PARTNERS DISCUSSION GROUP By: Nick Nigro, Center for Climate and Energy Solutions An opportunity to discuss challenges and share best practices regarding efforts to prepare your community/region for plug-in electric vehicles and charging infrastructure deployment Center for Climate and Energy Solutions 2 Table of Contents Table of Contents 2 About this Report 3 Disclaimer 3 Acknowledgements 3 Session Overview 4 Vehicle Demand and Availability 4 Law and Regulatory Environment 5 Public EVSE Signage 5 ADA Compliance 7 Multi-unit Dwellings 7

298

Vehicle Technologies Office: 2011 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Archive 1 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011 #702 Consumer Preferences on Electric Vehicle Charging November 21, 2011 #701 How Much More Would You Pay for an Electric Vehicle? November 14, 2011 #700 Biodiesel Consumption is on the Rise for 2011 November 7, 2011 #699 Transportation Energy Use by Mode and Fuel Type, 2009 October 31, 2011 #698 Changes in the Federal Highway Administration Vehicle Travel Data October 24, 2011 #697 Comparison of Vehicles per Thousand People in Selected Countries/Regions October 17, 2011

299

Electric Drive Vehicles: A Huge New Distributed Energy Resource  

E-Print Network [OSTI]

with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

Firestone, Jeremy

300

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

302

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

303

Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel vehicles have become a  

E-Print Network [OSTI]

Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel and adopted. Electric vehicles (EVs) in particular are leading the charge, with car manufacturers stepping up these vehicles; the current market for electric vehicles; the results from existing pilot project; as well

Hickman, Mark

304

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

305

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

306

Learn More About the Fuel Economy Label for Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

307

Advanced Demand Responsive Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

308

DOE Hydrogen Analysis Repository: Hydrogen Demand and Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Demand and Infrastructure Deployment Hydrogen Demand and Infrastructure Deployment Project Summary Full Title: Geographically-Based Hydrogen Demand and Infrastructure Deployment Scenario Analysis Project ID: 189 Principal Investigator: Margo Melendez Keywords: Hydrogen fueling; infrastructure; fuel cell vehicles (FCV) Purpose This analysis estimates the spatial distribution of hydrogen fueling stations necessary to support the 5 million fuel cell vehicle scenario, based on demographic demand patterns for hydrogen fuel cell vehicles and strategy of focusing development on specific regions of the U.S. that may have high hydrogen demand. Performer Principal Investigator: Margo Melendez Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401-3393 Telephone: 303-275-4479

309

Power Conditioning for Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

Farhangi, Babak

2014-07-25T23:59:59.000Z

310

Workplace Charging Challenge Partner: North Central College ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has two plug-in electric vehicle (PEV) charging stations. Both stations may be used free of charge by students, faculty, staff and campus visitors. Serious in its efforts to...

311

Workplace Charging Challenge Partner: Portland General Electric  

Broader source: Energy.gov [DOE]

Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric vehicle (PEV) charging for its employees. With the advent of the modern Level 2 and DC Quick-Charging standards,...

312

AVTA: ChargePoint AC Level 2 Charging System Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the ChargePoint AC Level 2 charging system for plug-in electric vehicles.

313

A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study  

Science Journals Connector (OSTI)

Growing environmental concerns and oil price volatility have led to increasing interest in the potential demand for alternative fuel vehicles. Dedicated fuel vehicles such as EV and CNG vehicles use only the alte...

Stephane Hess; Mark Fowler; Thomas Adler; Aniss Bahreinian

2012-05-01T23:59:59.000Z

314

Chapter 18 - Perfect Partners: Wind Power and Electric Vehicles A New Zealand Case Study  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses how getting the right price signals for charging \\{EVs\\} and the use of dynamic demand control (DDC) can considerably reduce the integration costs of both large-scale wind generation and a high uptake of \\{EVs\\} in New Zealand. Their use also provides the opportunity to reduce the magnitude of the perennial problem of large frequency fluctuations on island power systems. While the latter issue may be specific to New Zealand and some other islanded systems, the remainder of the findings should be applicable for most other markets, where wind and \\{EVs\\} are seen as key parts of a future, low-carbon energy system. New Zealand's island power system currently experiences large frequency fluctuations. These fluctuations are expected to increase with the connection of large-scale wind generation and the charging of large numbers of electric vehicles unless there is some coordination of these resources. There is also a great opportunity to reduce wind and EV integration costs by coordinating the charging of \\{EVs\\} with the variability of wind generation output. This chapter uses a New Zealand case study to illustrate how wind power and electric vehicles can work together to manage integration costs into the New Zealand power system, a rather smallish and isolated network posing unique challenges. The New Zealand system exhibits behavior not seen in larger, interconnected networks, which makes large-scale wind generation and large numbers of electric vehicles complementary when enabled by a smart grid, supporting rather than challenging the operation of the power system. The chapter's main contribution is to show how market integration costs can be lowered and investment in generation, transmission, and distribution deferred through linking the charging of electric vehicles to system frequency as well as price signals. Electric vehicles, wind energy storage, New Zealand

Magnus Hindsberger; John Boys; Graeme Ancell

2012-01-01T23:59:59.000Z

315

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

316

The Future is Now for Advanced Vehicles | Department of Energy  

Office of Environmental Management (EM)

key facts? Rechargeable batteries are 40% cheaper than just three years ago. Hydrogen fuel cells are 30% cheaper than in 2008. Workplace charging stations for electric vehicles...

317

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

318

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

319

Vehicle Technologies Office: Modeling, Testing and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling, Testing and Modeling, Testing and Analysis to someone by E-mail Share Vehicle Technologies Office: Modeling, Testing and Analysis on Facebook Tweet about Vehicle Technologies Office: Modeling, Testing and Analysis on Twitter Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Google Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Delicious Rank Vehicle Technologies Office: Modeling, Testing and Analysis on Digg Find More places to share Vehicle Technologies Office: Modeling, Testing and Analysis on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by

320

Enhancing Location Privacy for Electric Vehicles (at the right time)  

E-Print Network [OSTI]

An electric vehicle (also known as EV) is powered by an electric motor instead of a gasoline engine sudden demands for power). In future development, it has been proposed that such use of electric vehiclesEnhancing Location Privacy for Electric Vehicles (at the right time) Joseph K. Liu1 , Man Ho Au2

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Diesel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

322

An improved energy management strategy for FC/UC hybrid electric vehicles propelled by motor-wheels  

Science Journals Connector (OSTI)

Abstract The hybridization of the fuel-cell electric-vehicle (FCEV) by a second energy source has the advantage of improving the system's dynamic response and efficiency. Indeed, an ultra-capacitor (UC) system used as an energy storage device fulfills the FC slowest dynamics during fast power transitions and recovers the braking energy. In FC/UC hybrid vehicles, the search for a suitable power management approach is one of the main objectives. In this paper, an improved control strategy managing the active power distribution between the two energy sources is proposed. The UC reference power is calculated through the DC link voltage regulation. For the FC power demand, an algorithm with five operating modes is developed. This algorithm, depending on the UC state of charge (SOC) and the vehicle speed level, minimizes the FC power demand transitions and therefore ameliorates its durability. The traction power is provided using two permanent magnetic synchronous motor-wheels to free more space in the vehicle. The models of the FC/UC vehicle system parts and the control strategy are developed using MATLAB software. Simulation results show the effectiveness of the proposed energy management strategy.

Islem Lachhab; Lotfi Krichen

2014-01-01T23:59:59.000Z

323

Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands  

Science Journals Connector (OSTI)

A synchronized and responsive flow of materials, information, funds, processes and services is the goal of supply chain planning. Demand planning, which is the very first step of supply chain planning, determines the effectiveness of manufacturing and logistic operations in the chain. Propagation and magnification of the uncertainty of demand signals through the supply chain, referred to as the bullwhip effect, is the major cause of ineffective operation plans. Therefore, a flexible and robust supply chain forecasting system is necessary for industrial planners to quickly respond to the volatile demand. Appropriate demand aggregation and statistical forecasting approaches are known to be effective in managing the demand variability. This paper uses the bivariate VAR(1) time series model as a study vehicle to investigate the effects of aggregating, forecasting and disaggregating two interrelated demands. Through theoretical development and systematic analysis, guidelines are provided to select proper demand planning approaches. A very important finding of this research is that disaggregation of a forecasted aggregated demand should be employed when the aggregated demand is very predictable through its positive autocorrelation. Moreover, the large positive correlation between demands can enhance the predictability and thus result in more accurate forecasts when statistical forecasting methods are used.

Argon Chen; Jakey Blue

2010-01-01T23:59:59.000Z

324

Vehicle Technologies Office: Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partners Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about these leading employers in your area. U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center orkplace Charging Challenge Partners 3M ABB Inc. AVL Baxter Healthcare Corporation Bentley Systems Biogen Idec Bloomberg LP BookFactory CFV Solar Test Laboratory, Inc. Chrysler Cisco Systems City of Auburn Hills City of Sacramento The Coca-Cola Company Dell Dominion Resources, Inc. DTE Energy Duke Energy Eli Lilly EMC Corporation Facebook Ford Fraunhofer Center for Sustainable Energy Systems General Electric

325

Living Labs of Electric Vehicle Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Living Labs of Electric Vehicle Integration Living Labs of Electric Vehicle Integration Speaker(s): Johan Driesen Date: May 11, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay Electric vehicles and plug-in hybrid vehicles are key to making transportation sustainable and climate change neutral. This talk will focus on the electricity grid integration aspects of wide-scale charging infrastructure: the impact on generation capacity, transmission and distribution are dealt with through measurements, modeling and scenario simulations. The advantages and problems of the possible business models to pay for the charging are discussed. Alternative charging and grid-coupling technology (e.g. wireless inductive charging) is considered. The relationship with the transition towards "smart cities" is discussed. In

326

Mass Market Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

327

Demand Response Assessment INTRODUCTION  

E-Print Network [OSTI]

Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

328

Transportation Demand This  

Gasoline and Diesel Fuel Update (EIA)

(VMT) per vehicle by fleet type stays constant over the forecast period based on the Oak Ridge National Laboratory fleet data. Fleet fuel economy for both conventional and...

329

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

330

AVTA: Hasdec DC Fast Charging Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Hasdec DC fast charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

331

A Novel Quantum Particle Swarm Optimization for Power Grid with Plug-In Electric Vehicles in Shanghai  

Science Journals Connector (OSTI)

This paper studies the plug-in electric vehicles charging/discharging mode under the intelligent power grid in Shanghai with the objective of minimizing ... vehicles charging/discharging optimization model is bui...

Jinwei Gu; Manzhan Gu; Quansheng Shi

2014-01-01T23:59:59.000Z

332

Policy Implications from: -Charging Surveys  

E-Print Network [OSTI]

? · Do customers have a garage? · Can users install charging? Vehicle Purchase · When, where, and how infrastructure needs 2-4 times Free charging decreases electric miles for BEVs Modeling shows that with larger project in San Diego (Ecotality) State rebate program (CCSE) Data collected February-March 2012 New

California at Davis, University of

333

Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Authorization for Authorization for Plug-In Electric Vehicle Charging Rate Incentives to someone by E-mail Share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Facebook Tweet about Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Twitter Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Google Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Delicious Rank Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Digg Find More places to share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on

334

Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Provision for Plug-In Provision for Plug-In Electric Vehicle (PEV) Charging Incentives to someone by E-mail Share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Facebook Tweet about Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Twitter Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Google Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Delicious Rank Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Digg Find More places to share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on AddThis.com...

335

EV Charging Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charging Infrastructure Charging Infrastructure JOHN DAVIS: Virtually anywhere in the U.S. you can bring light to a room with the flick of a finger. We take it for granted, but creating the national electric grid to make that possible took decades to accomplish. Now, in just a few years, we've seen the birth of a new infrastructure that allows electric vehicles to quickly recharge their batteries at home, work, or wherever they may roam. But this rapid growth has come with a few growing pains. Starting with less than 500 in 2009, there are now over 19,000 public-access charging outlets available to electric vehicles owners at commuter lots, parking garages, airports, retail areas and thousands of

336

NREL/CP-5400-60098. Posted with permission. Presented at the SAE 2013 Commercial Vehicle  

E-Print Network [OSTI]

the performance of power through the electric motor so that the demand on the their vehicles, whether it is better between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In by reducing harmful The main purpose of this study was to evaluate and vehicle emissions. Hybrid electric

337

Identifying Challenges for Sustained Adoption of Alternative Fuel Vehicles and Infrastructure  

E-Print Network [OSTI]

This paper develops a dynamic, behavioral model with an explicit spatial structure to explore the co-evolutionary dynamics between infrastructure supply and vehicle demand. Vehicles and fueling infrastructure are ...

Struben, Jeroen J.R.,

2007-04-27T23:59:59.000Z

338

A global analysis and market strategy in the electric vehicle battery industry  

E-Print Network [OSTI]

As use of electric vehicles has been expected to grow, the batteries for the electric vehicles have become critical because the batteries are a key part of the paradigm shift in the automotive industry. However, the demand ...

Kim, Young Hee, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

339

Demand response enabling technology development  

E-Print Network [OSTI]

Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing SenSys 2003,

2006-01-01T23:59:59.000Z

340

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

342

Demand Response Programs for Oregon  

E-Print Network [OSTI]

Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

343

Demand response enabling technology development  

E-Print Network [OSTI]

behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

344

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

345

Vehicle Battery Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

346

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

347

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

348

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

349

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

350

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

351

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

352

Vehicles News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

353

Fact #558: February 16, 2009 Transit Vehicle Age and Cost | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2007 Graph showing the average age of transit vehicles (bus, trolleybus, vanpool, demand response, light rail, commuter rail, commuter rail locomotive, and heavy rail). Heavy rail...

354

Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization  

SciTech Connect (OSTI)

Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicles mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

Stephen Schey; Jim Francfort

2014-08-01T23:59:59.000Z

355

U.S. Employers Drive Change with Workplace Charging | Department...  

Energy Savers [EERE]

PEVs that are as affordable for the average American family as today's gasoline powered vehicles by 2022. As partners in the EV Everywhere Workplace Charging Challenge, more...

356

Workplace Charging Challenge Partner: Fraunhofer Center for Sustainabl...  

Energy Savers [EERE]

work and at home. By installing electric vehicle charging stations at their Albuquerque solar test laboratory, employees who now drive longer distances to work can consider the use...

357

Electric Vehicle Charging as an Enabling Technology  

E-Print Network [OSTI]

energy reduction the system can be expected to see. Other findings include the impact of varying the time plant generation, emissions and fuel consumption. Interim Technical Report This report summary

358

Expert Panel: Forecast Future Demand for Medical Isotopes  

Broader source: Energy.gov (indexed) [DOE]

Expert Panel: Expert Panel: Forecast Future Demand for Medical Isotopes March 1999 Expert Panel: Forecast Future Demand for Medical Isotopes September 25-26, 1998 Arlington, Virginia The Expert Panel ............................................................................................. Page 1 Charge To The Expert Panel........................................................................... Page 2 Executive Summary......................................................................................... Page 3 Introduction ...................................................................................................... Page 4 Rationale.......................................................................................................... Page 6 Economic Analysis...........................................................................................

359

THE ROLE OFLOAD DEMAND ELASTICITY IN CONGESTION MANAGEMENTAND PRICING  

E-Print Network [OSTI]

THE ROLE OFLOAD DEMAND ELASTICITY IN CONGESTION MANAGEMENTAND PRICING EttoreBompard, Enrico that demand responsiveness can play in competitive electricity markets. Typically, the task of congestion and to determine transmission system usage charges. The actions of price responsive loads may be represented

Gross, George

360

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Consumed By State Installed Performed (AC MWh) California 657 75,775 511.66 Connecticut 5 1,258 5.89 District of Columbia 14 284 2.31 Florida 97 760 3.24 Maryland 37 2,197...

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Events Performed Electricity Consumed (AC MWh) California 422 21,269 142.32 Connecticut 3 324 1.64 District of Columbia 14 126 0.98 Florida 41 57 0.13 Maryland 22 612 3.87...

362

Evaluating Electric Vehicle Charging Impacts and Customer Charging...  

Energy Savers [EERE]

based on the distance from the charger to the nearest electric distribution system transformer, host site requirements for underground wiring, and Americans with Disabilities Act...

363

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

364

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

365

Wireless Charging  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

366

Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Developing Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on AddThis.com...

367

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

368

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

369

RTP Customer Demand Response  

Science Journals Connector (OSTI)

This paper provides new evidence on customer demand response to hourly pricing from the largest and...real-time pricing...(RTP) program in the United States. RTP creates value by inducing load reductions at times...

Steven Braithwait; Michael OSheasy

2002-01-01T23:59:59.000Z

370

World Energy Demand  

Science Journals Connector (OSTI)

A reliable forecast of energy resources, energy consumption, and population in the future is a ... So, instead of absolute figures about future energy demand and sources worldwide, which would become...3.1 correl...

Giovanni Petrecca

2014-01-01T23:59:59.000Z

371

What Are Your Thoughts on Electric Vehicles? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thoughts on Electric Vehicles? Thoughts on Electric Vehicles? What Are Your Thoughts on Electric Vehicles? October 21, 2010 - 7:30am Addthis On Tuesday, Erin told you about some pilot programs to install residential and commercial charging stations throughout the United States. These pilot programs will help researchers determine where the best locations are for these charging stations (outside the home). With the ramp-up in charging stations, tell us: What are your thoughts on electric vehicles? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Electric Vehicle Charging Stations, Coming Soon to a City Near You

372

Environmental Implication of Electric Vehicles in China  

Science Journals Connector (OSTI)

Today, electric vehicles (EVs) are being proposed in China as one of the potential options to address the dramatically increasing energy demand from on-road transport. ... The annual increase rate of electricity consumption in the U.S. was 0.5% during 2000 and 2009 and is projected by the U.S. Energy Information Administration (EIA) to be 0.8% during 2005 and 2035 (11). ... Vehicle use could be reduced in the future, because China is in a period of rapid growth in vehicle stock, and when people own more cars, each individual car would be used less intensively. ...

Hong Huo; Qiang Zhang; Michael Q. Wang; David G. Streets; Kebin He

2010-05-24T23:59:59.000Z

373

Design of a fuzzy controller for energy management of a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the design of a control scheme based on Fuzzy Logic to minimize automobile fuel consumption and exhaust emissions while maximizing battery state of charge (SOC) for hybrid vehicles. The advantages the hybrid vehicle has over...

Estrada Gutierrez, Pedro Cuauhtemoc

1997-01-01T23:59:59.000Z

374

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

problems, Electric Power Systems Research, 73(2): p. 169-problems, Electric Power Systems Research, 77(3-4): p. 212-decomposition, Electric Power Systems Research, 77(7): p.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

375

Solving the Vehicle Routing Problem with Stochastic Demands ...  

E-Print Network [OSTI]

Oct 9, 2003 ... Neuro Dynamic Programming has been used to implement techniques based on ...... Let qa be a measure in R such that if qa(r) = 0 then.

2004-06-24T23:59:59.000Z

376

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

turbine NGST Natural gas steam turbine NWPP Northwest Powerfrom natural gas steam turbine (NGST) and natural gasNGST = Natural gas steam turbine; NWPP = Northwest Power

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

377

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

121]. Like other renewable resources and nuclear power, inhydro, nuclear, or renewable resources, and average GHGsupplied by each renewable resource and the capacity of

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

378

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

wind turbines, biomass, or geothermal power. By 2050, thebiomass, geothermal, and nuclear power plants arebiomass Nuclear, geothermal, and biomass power plants are

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

379

Ancillary Service Revenue Opportunities from Electric Vehicles via Demand Response.  

E-Print Network [OSTI]

??Driven by a variety of factors including falling costs, environmental impacts, and state mandates, the integration of renewable energy on the U. S. electrical grid (more)

Moss, Brian

2011-01-01T23:59:59.000Z

380

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Generation from wind and solar power plants can be highlygrid. When wind stops blowing, another power plant must bethan intermittent wind availability or uncertain power plant

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Implementation Analysis (Preliminary Results), California Public Utilities Commission. NREL (2008) 20% Wind Energy

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

382

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

natural gas-fired power plant heat rates and generation,natural gas-fired power plant heat rates and generation,natural gas-fired power plants Total incremental generation

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

383

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Palm Springs solar insolation, and California electricityConcentrating Solar Power in California, NREL/SR-550-39291,generation from wind and solar in California could be very

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

384

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

109 Figure 57. Assumed natural gas and coal prices in LEDGE-in Figure 57. The coal price stays relatively constantAssumed natural gas and coal prices in LEDGE-CA [152]. It

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

385

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Biomass Geothermal Small Hydro Solar Wind Statewide CA-N CA-with a relatively small hydro resource require additionaldairy Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

386

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

IGCC Integrated gasification combined cycle IID ImperialCorporation NGCC Natural gas combined-cycle NGCT Natural gas79% from natural gas combined cycle (NGCC) power plants, and

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

387

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

near term. Local distribution infrastructure and reliabilityand distribution constraints, Reliability constraints,It does not depict reliability and distribution constraints,

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

388

Workplace Charging Challenge Partner: City of Hillsboro  

Broader source: Energy.gov [DOE]

The City of Hillsboro is proud to offer plug-in electric vehicle (PEV) charging for employees, its fleets, and the public at multiple locations in the downtown area. Beginning in 2009, the City has...

389

Workplace Charging Challenge Partner: Samsung Electronics  

Broader source: Energy.gov [DOE]

Samsung Electronics demonstrated an early commitment to plug-in electric vehicle (PEV) charging when it installed 2 EVSEs at its Rancho Dominguez, CA office in 2011. The company is committed to...

390

Workplace Charging Challenge Partner: Prairie State College  

Broader source: Energy.gov [DOE]

As part of Prairie State College's sustainability initiatives, the college installed two Level 2 plug-in electric vehicle (PEV) charging stations that are available for employee, student and...

391

Workplace Charging Challenge Partner: Avista Utilities  

Broader source: Energy.gov [DOE]

Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista installed two stations for a total of four charging outlets for...

392

Workplace Charging Challenge Partner: Lawrence Berkeley National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has made plug-in electric vehicle (PEV) readiness a major focus of its site sustainability strategy. The laboratory began PEV charging for employees on a modest scale in May...

393

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

394

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

395

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

396

Evaluating the Impact of Plug-in Hybrid Electric Vehicles on Regional Electricity Supplies  

SciTech Connect (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) have the potential to increase the use of electricity to fuel the U.S. transportation needs. The effect of this additional demand on the electric system will depend on the amount and timing of the vehicles' periodic recharging on the grid. We used the ORCED (Oak Ridge Competitive Electricity Dispatch) model to evaluate the impact of PHEVs on the Virginia-Carolinas (VACAR) electric grid in 2018. An inventory of one million PHEVs was used and charging was begun in early evening and later at night for comparison. Different connection power levels of 1.4 kW, 2 kW, and 6 kW were used. The results include the impact on capacity requirements, fuel types, generation technologies, and emissions. Cost information such as added cost of generation and cost savings versus use of gasoline were calculated. Preliminary results of the expansion of the study to all regions of the country are also presented. The results show distinct differences in fuels and generating technologies when charging times are changed. At low specific power and late in the evening, coal was the major fuel used, while charging more heavily during peak times led to more use of combustion turbines and combined cycle plants.

Hadley, Stanton W [ORNL

2007-01-01T23:59:59.000Z

397

AVTA: ChargePoint America Recovery Act project map of charging units  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S.

398

Plug-In Hybrid Electric Vehicles - Prototypes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

399

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Vehicle Testing and Demonstration Activities Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities 2009 DOE Hydrogen Program and Vehicle...

400

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Changing Energy Demand Behavior: Potential of Demand-Side Management  

Science Journals Connector (OSTI)

There is a great theoretical potential to save resources by managing our demand for energy. However, demand-side management (DSM) programs targeting behavioral patterns of...

Dr. Sylvia Breukers; Dr. Ruth Mourik

2013-01-01T23:59:59.000Z

402

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

403

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

404

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network [OSTI]

1990). The Economics of Alternative Fuel Use: SubstitutingAn Empirical Study of Alternative Fuel Vehicle Choice byFleet Demand for Alternative-Fuel Vehicles, with T. Golob,

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

405

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

406

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

407

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

408

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

409

HH22 Reformer, Fuel Cell Power Plant,Reformer, Fuel Cell Power Plant, & Vehicle Refueling System& Vehicle Refueling System  

E-Print Network [OSTI]

sufficient hydrogen demand develops. #12;4 Relevant DOE Program Objectives Reduce dependence on foreign oil Promote use of diverse, domestic energy resources ­ Natural gas reformation Develop and demonstrate on test fill tank, CNG/H2 ICE vehicles and H2 Fuel Cell vehicles. Fuel dispensing integrated with City

410

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Natural Gas Infrastructure Charging Rate Reduction - and Natural Gas Infrastructure Charging Rate Reduction - SDG&E to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Digg

411

Demand Response In California  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

412

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

413

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

414

Visualizing Electric Vehicle Sales | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist More on eGallon: Read more about electric vehicle sales and eGallon's continued consistency. Check out our first blog post on the eGallon launch. Read the eGallon Q&A to learn more about the new tool. Last week, we reported on how electric vehicle sales have taken off in the last few months as prices have dropped and more manufacturers install fast charging stations across the country. Using the data we released last week, we created an interactive chart that

415

Visualizing Electric Vehicle Sales | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist More on eGallon: Read more about electric vehicle sales and eGallon's continued consistency. Check out our first blog post on the eGallon launch. Read the eGallon Q&A to learn more about the new tool. Last week, we reported on how electric vehicle sales have taken off in the last few months as prices have dropped and more manufacturers install fast charging stations across the country. Using the data we released last week, we created an interactive chart that

416

AVTA: Vehicle to EVSE Smart Grid Communications Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from research and testing on vehicle to EVSE smart grid communications interfaces, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

417

Optimal Location of Compressed Natural Gas (CNG) Refueling Station Using the Arc Demand Coverage Model  

Science Journals Connector (OSTI)

In this paper a model that locates Compressed Natural Gas (CNG) refueling stations to cover the full volume of vehicle flows is developed and applied. The model inputs consist of a road network include nodes and arcs, the volume of vehicle flows between ... Keywords: Compressed Natural Gas, Arc Demand Coverage Model, Optimal Location, Network

Abtin Boostani; Reza Ghodsi; Ali Kamali Miab

2010-05-01T23:59:59.000Z

418

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

419

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

420

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FC/Battery Power Management for Electric Vehicle Based Interleaved dc-dc Boost Converter Topology  

E-Print Network [OSTI]

FC/Battery Power Management for Electric Vehicle Based Interleaved dc- dc Boost Converter Topology power systems in electric vehicle application, in order to decrease the FC current ripple. Therefore the performance of the FC system during transient and instantaneous peak power demands in electric vehicle

Paris-Sud XI, Université de

422

Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*,  

E-Print Network [OSTI]

Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*, , Student Member, IEEE.edu Abstract--Electric vehicles create a demand for additional electrical power. As the popularity of electric power to electric vehicles on a smart grid. We simulate the mechanisms using published data

Maxemchuk, Nicholas F.

423

An Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application  

E-Print Network [OSTI]

during transient and instantaneous peak power demands of an electric vehicle (EV) and to recover energyAn Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application F. Khoucha, A and lower device stress than conventional designs, for solar electric vehicle (SEV) applications

Boyer, Edmond

424

IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014 861 An Optimal and Distributed Demand Response  

E-Print Network [OSTI]

of demand response management for the future smart grid that integrates plug-in electric vehicles for augmented Lagrangian. I. INTRODUCTION I N THE electricity market, demand response [1] is a mech- anism to manage users' consumption behavior under spe- cific supply conditions. The goal of demand response

Nehorai, Arye

425

Vehicle suspension  

SciTech Connect (OSTI)

This patent describes a vehicle consisting of sprung and unsprung masses, the combination of struts and support springs for the weight of the sprung mass, an axis defined by pivots between sprung and unsprung masses, with a front pivot approximately midway between the wheels and near the vertical and horizontal planes through the front axles, with a rear pivot lying in an axis through the front pivot and in a plane through the center-of-gravity of the sprung mass, with the plane parallel to the centrifugal force vector through the center-of-gravity of the sprung mass, and with the rear pivot positioned approximately midway between the rear wheels, means for transmitting the centrifugal force component on the front pivot to the front wheels and ground, and means for transmitting the centrifugal force component on the rear pivot to the rear wheels and ground.

Mikina, S.J.

1986-08-05T23:59:59.000Z

426

LEAFing Through New Vehicle Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology May 26, 2010 - 11:32am Addthis An artist’s rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project Joshua DeLung Oil and gas price fluctuations and environmental concerns are driving innovators to find new ways to power our vehicles. That's the focus of The EV Project, a new program of ECOtality North America, which was awarded a $114.8 million Recovery Act grant from the U.S. Department of Energy. The EV Project will create a network of charging stations for participants' electric vehicles and gather data on the stations' usage. "As [Energy] Secretary [Steven] Chu rightly pointed out, the only way

427

Workplace Charging Challenge Partner: San Diego Gas & Electric...  

Broader source: Energy.gov (indexed) [DOE]

load management, influenced by local energy management systems andor utility Demand Response (DR) systems. Workplace charging The project reinforces SDG&E's commitment to the...

428

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: Energy.gov [DOE]

Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's)...

429

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Studies and Tools Speaker(s): Peng Xu Date: March 9, 2007 - 12:00pm Location: 90-3122 The idea of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling energy in the building thermal mass and thereby reducing cooling loads during the peak periods. Savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Case studies in a number of office buildings in California has found that a simple demand limiting strategy reduced the chiller power by 20-100% (0.5-2.3W/ft2) during six

430

Ford Escape Advanced Research Vehicle Report Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Vehicle Advanced Research Vehicle Report Notes 1 "Overall AC electrical energy consumption (AC Wh/mi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven during all trips in the reporting period. 2 "Overall DC electrical energy consumption (DC Wh/mi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance driven during all trips in the reporting period. DC Wh/mi may not be comparable to AC Wh/mi if AC electricity charged prior to the reporting period was discharged during driving within the reporting period, or if AC electricity charged during the reporting period was not discharged during driving within the reporting period.

431

Hybrid Electric Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

432

Vehicle & Systems Simulation & Testing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

penetration of advanced vehicles and systems to displace petroleum consumption, reduce GHG emissions, and achieve vehicle electrification goals. Evaluate technology targets...

433

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

434

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

435

NREL: Vehicles and Fuels Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 December 13, 2011 NREL Adds Electric Vehicle to its Advanced Vehicle Fleet NREL will use the new electric vehicle for studies related to charge management and performance, bi-directional charging, and electric vehicle grid integration. December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles These projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. December 7, 2011 NREL Releases Report on Testing Electric Vehicles to Optimize their Performance with Power Grids Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have released a technical report that could help improve

436

AVTA: Aerovironment AC Level 2 Charging System Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Aerovironment AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

437

AVTA: Leviton AC Level 2 Charging System Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Leviton Level 2 charging system for plug-in electric vehicles.

438

AVTA: Clipper Creek AC Level 2 Charging System Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the ClipperCreek AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

439

AVTA: Eaton AC Level 2 Charging System Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Eaton AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

440

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optimized control studies of a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the development of a control scheme to maximize automobile fuel economy and battery state-of-charge (SOC) while meeting exhaust emission standards for parallel hybrid electric vehicles, which are an alternative to conventional...

Bougler, Benedicte Bernadette

1995-01-01T23:59:59.000Z

442

AVTA: ARRA EV Project Vehicle Placement Maps | Department of...  

Broader source: Energy.gov (indexed) [DOE]

together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700...

443

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

444

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

445

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

446

International Transportation Energy Demand Determinants (ITEDD...  

U.S. Energy Information Administration (EIA) Indexed Site

type Commercial Vehicle Sales Comm Sales by Technology Type Personal Vehicle Sales Private Sales by Technology Type Stock Accounting by Vehicle and Techn Type Policy...

447

Use of a thermophotovoltaic generator in a hybrid electric vehicle  

Science Journals Connector (OSTI)

Viking 29 is the Worlds first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration speed and handling compare to modern high performance sports cars while emissions are cleaner than current internal combustion engine vehicles.

Orion Morrison; Michael Seal; Edward West; William Connelly

1999-01-01T23:59:59.000Z

448

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

449

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

450

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

451

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

452

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

453

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 11, 2010 August 11, 2010 Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University The Future of Electric Vehicles and Arizona State University's MAIL Battery Building cost-effective EVs just got a little easier. August 11, 2010 Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Novolyte Charging Up Electric Vehicle Sector Just outside Baton Rouge in Zachary, Louisiana, sits Novolyte Technologies, a battery component manufacturer in business since the early 1970s, making components for batteries used in everything from calculators to hearing

454

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

455

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

456

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

457

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

458

Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Vehicle Transportation Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional Alternative Transportation Vehicles - Compressed Air Vehicles (CAVs) * Use electricity from the grid to power air compressor that stores compressed air - Natural Gas Vehicles (NGVs) * Connection to grid is in competing demand for fuel * Still an internal combustion engine (ICE) - Hydrogen Vehicles * Use fuel cell technology, no connection to electricity grid 4 General Takeaways * CAVs - Unproven technology - Poor environmental performance - High cost * NGVs - Poor environmental performance - Lack of refueling infrastructure - Cheaper fuel cost than ICEs - No direct impact on electric power grid * Hydrogen - Unproven technology

459

Demand Response | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

460

Understanding and Analysing Energy Demand  

Science Journals Connector (OSTI)

This chapter introduces the concept of energy demand using basic micro-economics and presents the three-stage decision making process of energy demand. It then provides a set of simple ... (such as price and inco...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

462

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

463

Marketing Demand-Side Management  

E-Print Network [OSTI]

they the only game in town, enjoying a captive market. Demand-side management (DSM) again surfaced as a method for increasing customer value and meeting these competitive challenges. In designing and implementing demand-side management (DSM) programs we... have learned a great deal about what it takes to market and sell DSM. This paper focuses on how to successfully market demand-side management. KEY STEPS TO MARKETING DEMAND-SIDE MANAGEMENT Management Commitment The first key element in marketing...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

464

Challenges for the vehicle tester in characterizing hybrid electric vehicles  

SciTech Connect (OSTI)

Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

Duoba, M.

1997-08-01T23:59:59.000Z

465

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

466

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase (rev. 10/2005-ecb) #12;Vehicle Usage Log Instructions General instructions: The details of the use

Yang, Zong-Liang

467

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drivers, number of vehicles in operation, and total vehicle miles traveled. Fact 842 Dataset Supporting Information Population and Vehicle Growth Comparison, 1950-2012 Year...

468

Price Responsive Demand in New York Wholesale Electricity Market using  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Price Responsive Demand in New York Wholesale Electricity Market using Price Responsive Demand in New York Wholesale Electricity Market using OpenADR Title Price Responsive Demand in New York Wholesale Electricity Market using OpenADR Publication Type Report LBNL Report Number LBNL-5557E Year of Publication 2012 Authors Kim, Joyce Jihyun, and Sila Kiliccote Date Published 06/2012 Publisher LBNL/NYSERDA Keywords commercial, demand response, dynamic pricing, mandatory hourly pricing, open automated demand response, openadr, pilot studies & implementation, price responsive demand Abstract In New York State, the default electricity pricing for large customers is Mandatory Hourly Pricing (MHP), which is charged based on zonal day-ahead market price for energy. With MHP, retail customers can adjust their building load to an economically optimal level according to hourly electricity prices. Yet, many customers seek alternative pricing options such as fixed rates through retail access for their electricity supply. Open Automated Demand Response (OpenADR) is an XML (eXtensible Markup Language) based information exchange model that communicates price and reliability information. It allows customers to evaluate hourly prices and provide demand response in an automated fashion to minimize electricity costs. This document shows how OpenADR can support MHP and facilitate price responsive demand for large commercial customers in New York City.

469

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

470

ERCOT Demand Response Paul Wattles  

E-Print Network [OSTI]

ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

Mohsenian-Rad, Hamed

471

Pricing data center demand response  

Science Journals Connector (OSTI)

Demand response is crucial for the incorporation of renewable energy into the grid. In this paper, we focus on a particularly promising industry for demand response: data centers. We use simulations to show that, not only are data centers large loads, ... Keywords: data center, demand response, power network, prediction based pricing

Zhenhua Liu; Iris Liu; Steven Low; Adam Wierman

2014-06-01T23:59:59.000Z

472

Image-based Vehicle Classification System  

E-Print Network [OSTI]

Electronic toll collection (ETC) system has been a common trend used for toll collection on toll road nowadays. The implementation of electronic toll collection allows vehicles to travel at low or full speed during the toll payment, which help to avoid the traffic delay at toll road. One of the major components of an electronic toll collection is the automatic vehicle detection and classification (AVDC) system which is important to classify the vehicle so that the toll is charged according to the vehicle classes. Vision-based vehicle classification system is one type of vehicle classification system which adopt camera as the input sensing device for the system. This type of system has advantage over the rest for it is cost efficient as low cost camera is used. The implementation of vision-based vehicle classification system requires lower initial investment cost and very suitable for the toll collection trend migration in Malaysia from single ETC system to full-scale multi-lane free flow (MLFF). This project ...

Ng, Jun Yee

2012-01-01T23:59:59.000Z

473

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

474

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

475

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

476

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

477

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

478

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

479

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

480

DOE Releases New Analysis Showing Significant Advances in Electric Vehicle  

Broader source: Energy.gov (indexed) [DOE]

New Analysis Showing Significant Advances in Electric New Analysis Showing Significant Advances in Electric Vehicle Deployment DOE Releases New Analysis Showing Significant Advances in Electric Vehicle Deployment February 8, 2011 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today released One Million Electric Vehicles by 2015 (pdf - 220 kb), an analysis of advances in electric vehicle deployment and progress to date in meeting President Obama's goal of putting one million electric vehicles on the road by 2015. The analysis shows that while the goal is ambitious, it is also achievable based on steps already taken as part of the Recovery Act and additional policy initiatives proposed by President Obama -- including improvements to existing consumer tax credits, programs to help cities prepare for the growing demand for electric vehicles, and strong support

Note: This page contains sample records for the topic "vehicle charging demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

Malikopoulos, Andreas [ORNL

2014-01-01T23:59:59.000Z

482

Overview of Demand Response  

Broader source: Energy.gov (indexed) [DOE]

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

483

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

484

PHEVs are More about the grid than the vehicles  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

NONE

2009-01-15T23:59:59.000Z

485

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

486

Vehicle Research Laboratory - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

487

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

488

Charged Condensation  

E-Print Network [OSTI]

We consider Bose-Einstein condensation of massive electrically charged scalars in a uniform background of charged fermions. We focus on the case when the scalar condensate screens the background charge, while the net charge of the system resides on its boundary surface. A distinctive signature of this substance is that the photon acquires a Lorentz-violating mass in the bulk of the condensate. Due to this mass, the transverse and longitudinal gauge modes propagate with different group velocities. We give qualitative arguments that at high enough densities and low temperatures a charged system of electrons and helium-4 nuclei, if held together by laboratory devices or by force of gravity, can form such a substance. We briefly discuss possible manifestations of the charged condensate in compact astrophysical objects.

Gregory Gabadadze; Rachel A. Rosen

2007-08-24T23:59:59.000Z

489

Workplace Charging Case Study: Charging Station Utilization at a Work Site with AC Level 1, AC Level 2, and DC Fast Charging Units  

SciTech Connect (OSTI)

This paper describes the use of electric vehicle charging stations installed at a large corporate office complex. It will be published to the INL website for viewing by the general public.

John Smart; Don Scoffield

2014-06-01T23:59:59.000Z

490

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

491

Optimal Planning and Operation of Smart Grids with Electric Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning and Operation of Smart Grids with Electric Vehicle Planning and Operation of Smart Grids with Electric Vehicle Interconnection Title Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5251E Year of Publication 2012 Authors Stadler, Michael, Chris Marnay, Maximillian Kloess, Gonçalo Cardoso, Gonçalo Mendes, Afzal S. Siddiqui, Ratnesh Sharma, Olivier Mégel, and Judy Lai Journal Journal of Energy Engineering, American Society of Civil Engineers (ASCE): Special Issue: Challenges and opportunities in the 21st century energy infrastructure Volume 138 Issue 2 Date Published 06/2012 Abstract Connection of electric storage technologies to smartgrids will have substantial implications for building energy systems. Local storage will enable demand response. When connected to buildings, mobile storage devices such as electric vehicles (EVs) are in competition with conventional stationary sources at the building. EVs can change the financial as well as environmental attractiveness of on-site generation (e.g. PV or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions and solved for 2020 technology assumptions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. Special constraints for the available PV, solar thermal, and EV parking lots at the commercial buildings are considered. The research shows that EV batteries can be used to reduce utility-related energy costs at the smart grid or commercial building due to arbitrage of energy between buildings with different tariffs. However, putting more emphasis on CO2 emissions makes stationary storage more attractive and stationary storage capacities increase while the attractiveness of EVs decreases. The limited availability of EVs at the commercial building decreases the attractiveness of EVs and if PV is chosen by the optimization, then it is mostly used to charge the stationary storage at the commercial building and not the EVs connected to the building.

492

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

493

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis  

E-Print Network [OSTI]

-based relationship between income growth and travel demand, turnover of the vehicle stock, and cost-driven investment both in reduction of internal combustion engine (ICE) vehicle fuel consumption as well as in adoptionClimate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling

494

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

Not Available

2012-06-01T23:59:59.000Z

495

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

496

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

497

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

498

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

499

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

500

Vehicles | Open Energy Information  

Open Energy Info (EERE)

renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the...