Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report  

Science Conference Proceedings (OSTI)

The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and was used to develop an algorithm to normalize stopping data for weight and initial speed.

Lascurain, Mary Beth [ORNL] ORNL; Capps, Gary J [ORNL] ORNL; Franzese, Oscar [ORNL] ORNL

2013-10-01T23:59:59.000Z

2

Development of a Vehicle Stability Control Strategy for a Hybrid Electric Vehicle Equipped With Axle Motors.  

E-Print Network (OSTI)

??Hybrid-electric vehicles have been available to consumers for over a decade, and plug-in hybrid and pure electric vehicles are rapidly becoming mainstream products with the (more)

Bayar, Kerem

2011-01-01T23:59:59.000Z

3

Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 3, 2010 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Facebook Tweet about Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Twitter Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Google Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Delicious Rank Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Digg Find More places to share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on AddThis.com...

4

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicle (NGV) Weight Exemption

5

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Weight Limit Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on AddThis.com... More in this section... Federal State Advanced Search

6

Materials Development for Vehicle Weight Reduction and the ...  

Science Conference Proceedings (OSTI)

For example, weight reduction can also enable wider use of electric and hybrid drive vehicles by improving range or reducing battery size. Heavy-duty trucks can ...

7

Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems  

DOE Patents (OSTI)

An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

8

Preliminary Assessment of Overweight Mainline Vehicles  

DOE Green Energy (OSTI)

The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

2011-11-01T23:59:59.000Z

9

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

10

Weights and Measures  

Science Conference Proceedings (OSTI)

... OIML) to bring efficiency and cost savings to US manufacturers and other ... Metrology Seminar November 4-15, 2013. 2013-11-18: Vehicle and Axle ...

2013-11-05T23:59:59.000Z

11

Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.  

E-Print Network (OSTI)

Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

Cheah, Lynette W. (Lynette Wan Ting)

2010-01-01T23:59:59.000Z

12

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with an auxiliary power unit or other idle reduction technology may exceed the gross, single axle, tandem axle, or

13

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

14

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle or combination of vehicles equipped with idle reduction technology is allowed to exceed the maximum gross vehicle and axle weight

15

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A motor vehicle equipped with idle reduction or emissions reduction technology may exceed the maximum gross vehicle weight and axle weight

16

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption The maximum gross weight limit and axle weight limit for any vehicle or combination of vehicles equipped with idle reduction technology may exceed

17

Apparatus for weighing and identifying characteristics of a moving vehicle  

DOE Patents (OSTI)

Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight. 15 figures.

Muhs, J.D.; Jordan, J.K.; Tobin, K.W. Jr.; LaForge, J.V.

1993-11-09T23:59:59.000Z

18

Apparatus for weighing and identifying characteristics of a moving vehicle  

DOE Patents (OSTI)

Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight.

Muhs, Jeffrey D. (Clinton, TN); Jordan, John K. (Oak Ridge, TN); Tobin, Jr., Kenneth W. (Harriman, TN); LaForge, John V. (Knoxville, TN)

1993-01-01T23:59:59.000Z

19

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with idle reduction technology may exceed the state's gross and axle weight limits by up to 400

20

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with idle reduction technology may exceed the state's gross, axle, and bridge vehicle weight limits by up to 400 pounds to

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with a qualified auxiliary power unit (APU) may exceed the state's gross vehicle and axle weight limits by up to 400 pounds to

22

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with idle reduction technology may exceed the state's gross and axle weight limits by up to 400

23

Heavy and Overweight Vehicle Defects Interim Report  

SciTech Connect

The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL

2012-12-01T23:59:59.000Z

24

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with qualified idle reduction technology may exceed the state's gross and axle weight limits by up to 400 pounds to compensate

25

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state gross and axle weight limits to compensate for the added

26

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state gross, axle, tandem, or bridge weight limits by up to 400

27

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with idle reduction technology may exceed the state gross, axle, and tandem weight limits by up to 400 pounds to account

28

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any heavy-duty vehicle equipped with an auxiliary power unit or other qualified idle reduction technology may exceed the state gross, axle,

29

2013-09-10: Vehicle and Axle-Load Scales  

Science Conference Proceedings (OSTI)

... Students should bring a calculator. Materials & Supplies: ... Students who do not fulfill these requirements will not receive a certificate of completion. ...

2013-08-29T23:59:59.000Z

30

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

31

WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

208 VAC 3-Phase 2008 Electric Transportation Applications All Rights Reserved Base Vehicle: 2008 Roush Industries Roush REV VIN: 9BFBT32N767991505 Seatbelt Positions: Two...

32

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

SciTech Connect

This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

Wenzel, Thomas P.

2010-03-02T23:59:59.000Z

33

Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles  

E-Print Network (OSTI)

incentives. The federal Qualified Plug-In Electric Drive Motor Vehicle Tax Credit is available for PEV. Advances in electric-drive technologies enabled commercializa- tion of hybrid electric vehicles (HEVs That Affect All-Electric and Hybrid Electric Vehicle Efficiency and Range section). The time required to fully

Michalek, Jeremy J.

34

Vehicle Technologies Office: Fact #475: June 25, 2007 Light Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 25, 2007 Light Vehicle Weight on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 475: June 25, 2007 Light Vehicle Weight on the Rise on Facebook...

35

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

36

The e-Axle and Its Application to a Floating Windmill  

Science Conference Proceedings (OSTI)

We describe and analyze a magnetic bearing built using a permanent magnet assembly. The magnetic bearing comprises a conical female magnet assembly and a rotationally symmetric identically polarized male piece. The opposition of the two parts produces ... Keywords: $\\epsilon$-axle, floating windmill, magnetic levitation

Sanza Kazadi; Chan-Hee Koh; Kevin Kim; Kyle Jung; Brian Kim; Hubert Wang

2008-10-01T23:59:59.000Z

37

Hybrid Control of a Truck and Trailer Vehicle  

Science Conference Proceedings (OSTI)

A hybrid control scheme is proposed for the stabilization of backward driving along simple paths for a miniature vehicle composed of a truck and a two-axle trailer. When reversing, the truck and trailer can be modelled as an unstable nonlinear system ...

Claudio Altafini; Alberto Speranzon; Karl Henrik Johansson

2002-03-01T23:59:59.000Z

38

In High Gear: Weights and Measures Week 2013  

Science Conference Proceedings (OSTI)

... the fuel for your vehicle to a cab ... for vehicles using alternative fuels, including electric vehicles. ... groups and regulated industries celebrate Weights ...

2013-03-05T23:59:59.000Z

39

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Under hood above powertrain Under hood above powertrain Nominal System Voltage: 333 V Rated Capacity (C/3): 40 Ah Cooling Method: Glycol / Water mix Powertrain Motor Type: DC Brushless Number of Motors: One Motor Cooling Type: Glycol / Water mix Drive Wheels: Rear Wheel Drive Transmission: None (gear ratio only in rear axle) Charger Location: Underhood Charger Port: Driver's side, front quarter panel Type: Conductive (J1772 connector) Input Voltage(s): 120 or 240 VAC Chassis Aluminum Body on Steel Frame Rear Suspension: Solid Axle with Leaf Springs Front Suspension: Dual A-arm with Coil Springs Weights Design Curb Weight: 3250 lbs Delivered Curb Weight: 3310 lbs 7 Distribution F/R: 55.2/44.8% GVWR: 4450 lbs Max Payload: 940 lbs + 200 lbs driver 1 Performance Goal Payload: 1000 lbs + 200 lbs driver

40

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Motor generator electric automotive vehicle  

SciTech Connect

A motor generator electric automotive vehicle is described comprising in combination, a traction drive motor coupled by a first drive shaft to a differential of an axle of the vehicle, a main battery bank electrically connected by wires to a small electric motor driving a large D.C. generator having a second drive shaft therebetween, an on-off switch in series with one of the wires to the small motor, a speed control unit attached to an accelerator pedal of the vehicle being coupled with a double pole-double throw reverse switch to the traction drive motor, a charger regulator electrically connected to the generator, a bank of solar cells coupled to the charge regulator, an electric extension cord from the charge regulator having a plug on its end for selective connection to an exterior electric power source, a plurality of pulleys on the second drive shaft, a belt unit driven by the pulley, one the belt unit being connected to a present alternator of the vehicle which is coupled to a present battery and present regulator of the vehicle, and other of the units being connected to power brakes and equipment including power steering and an air conditioner.

Weldin, W.

1986-07-29T23:59:59.000Z

42

Vehicle Technologies Office: Materials Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

materials such as high-strength steel, magnesium (Mg) alloys, aluminum (Al) alloys, carbon fiber, and polymer composites can directly reduce the weight of a vehicle's body...

43

How Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

simulates cycling. The energy required to move the rollers can be adjusted to account for wind resistance and the vehicle's weight. Photo: Driver running car through test cycle on...

44

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

45

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

46

Retrofiting survivability of military vehicles  

SciTech Connect

In Iraq the terrain was such that vehicles could be distributed horizontally, which reduced the effectiveness of mines. In the mountainous terrain of Pakistan and Afghanistan vehicles are forced to use the few, passable roads, which are dirt and easily seeded with plentiful, cheap, intelligent mines. It is desirable to reduce the losses to such mines, preferably by retrofit means that do not greatly increase weight or cost or reduce maneuverability. V-bottom vehicles - A known approach to reducing vulnerability is the Buffalo, a large vehicle developed by South Africa to address mine warfare. It has large tires, high axles, and a reinforced, v-shaped bottom that deflects the blast from explosions below. It is developed and tested in combat, but is expensive and has reduced off-road mobility. The domestic MRAP has similar cost and mobility issue. The addition of v-shaped blast deflectors to vehicles such as Humvees could act much as the deflector on a Buffalo, but a Humvee is closer to the ground, so the explosive's expansion would be reduced. The deflector would also reduce a Humvee's clearance for rough terrain, and a deflector of adequate thickness to address the blast by itself could further increase cost and reduce mobility. Reactive armor is developed and has proven effective against shaped and explosive charges from side or top attack. It detects their approach, detonates, and defeats them by interfering with jet formation. If the threat was a shaped charge from below, they would be a logical choice. But the bulk of the damage to Humvees appears to be from the blast from high explosive mines for which the colliding shock from reactive armor could increase that from the explosive. Porous materials such as sand can strongly attenuate the kinetic energy and pressure of a strong shock. Figure 1 shows the kinetic energy (KE), momentum (Mu), velocity (u), and mass (M) of a spherically expanding shock as functions of radius for a material with a porosity of 0.5. Over the range from 0.5 to 4.5 cm the shock KE is attenuated by a factor of {approx}70, while its momentum is changed little. The shock and particle velocity falls by a factor of 200 while the mass increases by a factor of 730. In the limit of very porous media u {approx} 1/M, so KE {approx} 1/M, which falls by a factor of {approx}600, while momentum Mu does not change at all. Figure 2 shows the KE, Mu, u, and M for a material with a porosity of 1.05, for which the KE changes little. In the limit of media of very low porosity, u {approx} 1/{radical}M, so KE is constant while Mu {approx} {radical}M, which increases by a factor of 15. Thus, if the goal is to reduce the peak pressure from strong explosions below, very porous materials, which strongly reduce pressure but do not increase momentum, are preferred to non-porous materials, which amplify momentum but do not decrease pressure. These predictions are in qualitative accord with the results of experiments at Los Alamos in which projectiles from high velocity, large caliber cannons were stopped by one to two sandbags. The studies were performed primarily to determine the effectiveness of sand in stopping fragments of various sizes, but could be extended to study sand's effectiveness in attenuating blast pressure. It would also be useful to test the above predictions on the effectiveness of media with higher porosity. Water barriers have been discussed but not deployed in previous retrofit survivability studies for overseas embassies. They would detect the flash from the mine detonation below, trigger a thin layer of explosive above a layer of water, and drive water droplets into the approaching blast wave. The blast loses energy in evaporating the droplets and loses momentum in slowing them. Under favorable conditions that could attenuate the pressure in the blast enough to prevent the penetration or disruption of the vehicle. However, such barriers would depend on prompt and reliable detonation detection and water droplet dispersal, which have not been tested. There is a large literature on the theoretical effec

Canavan, Gregory H [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

47

Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Weight Restriction Weight Restriction Increase for Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Digg Find More places to share Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on AddThis.com... More in this section... Federal State Advanced Search

48

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

49

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

50

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

51

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

52

Unmanned submarine vehicle  

SciTech Connect

An unmanned self-propelled submarine vehicle is provided with a material exchanger-container having a vertical axis of symmetry aligned with both the vehicle's center of gravity and its center of volume. The exchanger-container has a moveable diaphragm which divides the interior into two compartments, a lower ballast compartment equipped with an unloading apparatus and an upper compartment adapted to receive collected material. Ballast is unloaded during material loading to maintain the weight of the vehicle constant during loading.

Hervieu

1984-05-15T23:59:59.000Z

53

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

54

Vehicle Setup Information Downloadable Dynamometer Database ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Test cell location 2WD Advanced Powertrain Research Facility Document date 872013 Vehicle Dynamometer Input Revision number 3 Notes: Test weight lb Target A lb...

55

Front Vehicle Setup Information Downloadable Dynamometer Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

7222013 Advanced Powertrain Research Facility Test weight lb 3500 Vehicle dynamometer Input Document date 7222013 Revision Number 1 Advanced Powertrain Research Facility Test...

56

System and method for weighing and characterizing moving or stationary vehicles and cargo  

DOE Patents (OSTI)

A weigh-in-motion device and method having at least one transducer pad, each transducer pad having at least one transducer group with transducers positioned essentially perpendicular to the direction of travel. At least one pad microcomputer is provided on each transducer pad having a means for calculating first output signal indicative of weight, second output signal indicative of time, and third output signal indicative of speed. At least one host microcomputer is in electronic communication with each pad microcomputer, and having a means for calculating at least one unknown selected from the group consisting of individual tire weight, individual axle weight, axle spacing, speed profile, longitudinal center of balance, and transverse center of balance.

Beshears, David L [Knoxville, TN; Scudiere, Matthew B [Oak Ridge, TN; White, Clifford P [Seymour, TN

2008-05-20T23:59:59.000Z

57

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

58

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

59

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

60

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

62

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

63

VEHICLE SPECIFICATIONS Vehicle Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 Mazda 3 VIN: JMZBLA4G601111865 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD Weights Design Curb Weight: 2,954 lb Delivered Curb Weight: 2,850 lb Distribution F/R (%): 63/37 GVWR: 4,050 lb GAWR F/R: 2,057/1,896 lb Payload 1 : 1,096 lb Performance Goal: 400 lb Dimensions Wheelbase: 103.9 in Track F/R: 60.4/59.8 in Length: 175.6 in Width: 69.1 in Height: 57.9 in Ground Clearance: 6.1 in Performance Goal: 5.0 in Tires Manufacturer: Yokohama Model: YK520 Size: P205/55R17 Pressure F/R: 35/33 psi

64

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

65

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

66

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

67

Vehicle systems design optimization study  

DOE Green Energy (OSTI)

The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

Gilmour, J. L.

1980-04-01T23:59:59.000Z

68

Vehicle Technologies Office: FY 2004 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on

69

Vehicle Technologies Office: FY 2005 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on

70

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

71

Vehicle Technologies Office: Fact #625: May 31, 2010 Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact 625: May 31, 2010 Distribution of Trucks by On-Road...

72

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

James, A cost comparison of fuel-cell and battery electricHowever, battery electric vehicles have lower fuel cost, usebattery-electric vehicles in terms of weight, volume, GHGs and cost,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

73

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

74

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

75

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

76

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

77

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

78

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

79

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

80

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

82

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

83

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive 3 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013 #804 Tool Available to Print Used Vehicle Fuel Economy Window Stickers November 18, 2013 #803 Average Number of Transmission Gears is on the Rise November 11, 2013 #802 Market Share by Transmission Type November 4, 2013 #801 Gasoline Direct Injection Continues to Grow October 28, 2013 #800 Characteristics of New Light Vehicles over Time October 21, 2013 #799 Electricity Generation by Source, 2003-2012 September 30, 2013

84

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

85

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

86

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

87

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

88

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

89

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

90

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

91

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

92

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

93

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

94

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

95

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

96

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

97

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

98

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

99

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

100

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sms_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sms_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

102

,"California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

103

,"South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

104

,"Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_swa_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_swa_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

105

,"Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_smn_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smn_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

106

,"Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_spa_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_spa_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

107

,"Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sma_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sma_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

108

,"Wisconsin Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_swi_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_swi_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

109

,"South Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssc_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssc_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

110

,"Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

111

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

112

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

113

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

114

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

115

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

116

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

117

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

118

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

119

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

120

Wireless Power Transfer for Electric Vehicles  

SciTech Connect

As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

122

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

123

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

124

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

125

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

126

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A heavy-duty vehicle equipped with an auxiliary power unit may exceed the state's gross vehicle weight limit by up to 400 pounds to compensate for

127

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state's vehicle weight limits by up to 400 pounds to compensate

128

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with qualifying idle reduction technology may exceed the state's gross vehicle weight limits by up to 400 pounds to compensate

129

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with idle reduction technology may exceed the gross vehicle or internal bridge weight by the amount equal to the

130

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy: 0.5 kWh Weight of Pack: 65 lb Pack Location: TrunkRear Seat Cooling: Active - Fan cooled MotorGenerator Max. PowerTorque: 15 kW107 Nm Max. Generator Speed: 6000 rpm...

131

Housing assembly for electric vehicle transaxle  

DOE Patents (OSTI)

Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

Kalns, Ilmars (Northville, MI)

1981-01-01T23:59:59.000Z

132

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

133

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

134

Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs.  

NLE Websites -- All DOE Office Websites (Extended Search)

0: July 5, 2010 0: July 5, 2010 Fuel Economy vs. Weight and Performance to someone by E-mail Share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Facebook Tweet about Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Twitter Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Google Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Delicious Rank Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Digg Find More places to share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on AddThis.com...

135

Vehicle Technologies Office: FY 2003 Progress Report for High-Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for High-Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on

136

ORNL light-duty vehicles PC system  

Science Conference Proceedings (OSTI)

This data system, designed by the Oak Ridge National Laboratory (ORNL) and funded by the US Department of Energy (DOE), monitors information on every light-duty vehicle (automobiles and light-duty trucks) sold in the United States since model year 1976. The data are specified in two days. One way is on a model basis (i.e, engine and transmission combinations) and includes data on city, highway, and combined fuel economies; engine size; drive-train; fuel type (gasoline or diesel); interior volume; body type; and other vehicle attributes. The other way is on a make basis (e.g., Ford Escort, Oldsmobile 98) and includes data on sales; Environmental Protection Agency (EPA) size class; the sales-weighted fuel economy; sales-weighted interior volume; sales-weighted engine displacement (cid); curb weight; and other attributes. A unique identification number is assigned to a specific vehicle category. This identification number contains information on the manufacturer, the location of the manufacturer (domestic or import), and the sponsorship of the vehicle (domestic or import). Fuel economies, model year sales and various vehicle characteristics for every make of the 164 million light-duty vehicles sold in the US since model year 1976 can be obtained from this data system. 2 figs., 4 tabs.

Hu, P.S.; Patterson, P.D. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

137

Weighted Guidelines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

───────────────────────────────────Chapter 15.4-2 (July 2010) 1 Weighted Guidelines [References: FAR 15.4, DEAR 915.4] Overview This section provides guidance for applying the Department of Energy's (DOE) structured approach in determining profit/fee. Background The Federal Acquisition Regulation (FAR) requires consideration of certain factors (described in 15.404-4 as "profit-analysis factors" or "common factors") in developing a structured profit/fee approach. It does not prescribe specific government-wide procedures for profit/fee analysis. Actual profit/fee may vary (FAR 15.404-4(a) (1)) as you perform your profit/fee analysis;

138

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:26 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,34 33419,9 33785,9 34150,8 34515,22

139

,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:14 PM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SFL_2" "Date","Florida Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,7 33785,9 34150,27 34515,68 34880,75

140

,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:04 PM" "Back to Contents","Data 1: Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAL_2" "Date","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,3 33419,0 33785,3 34150,4 34515,3 34880,4

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"California Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:08 PM" "Back to Contents","Data 1: California Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCA_2" "Date","California Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,4 33419,9 33785,27 34150,255 34515,550

142

,"Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sma_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sma_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:28 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SMA_2" "Date","Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,1 33785,2 34150,2

143

,"Idaho Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:19 PM" "Back to Contents","Data 1: Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SID_2" "Date","Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,10 34880,19

144

,"Arizona Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_saz_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_saz_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:07 PM" "Back to Contents","Data 1: Arizona Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAZ_2" "Date","Arizona Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,37 33785,46 34150,44 34515,61 34880,118

145

,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM" "Back to Contents","Data 1: Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAR_2" "Date","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,3 34880,2

146

,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM" "Back to Contents","Data 1: Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SDE_2" "Date","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,1 34880,1

147

,"Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sct_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sct_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM" "Back to Contents","Data 1: Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCT_2" "Date","Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,2

148

,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:57 PM" "Back to Contents","Data 1: South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSD_2" "Date","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,2 33785,5 34150,7 34515,5

149

,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:24 PM" "Back to Contents","Data 1: Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SKS_2" "Date","Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,10 34880,2

150

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 35611,284 35976,0 36341,380 36707,0 37072,0 37437,0 37802,0 38168,0

151

A Light-Weight Instrumentation System Design  

Science Conference Proceedings (OSTI)

To meet challenging constraints on telemetry system weight and volume, a custom Light-Weight Instrumentation System was developed to collect vehicle environment and dynamics on a short-duration exo-atmospheric flight test vehicle. The total telemetry system, including electronics, sensors, batteries, and a 1 watt transmitter weighs about 1 kg. Over 80 channels of measurement, housekeeping, and telemetry system diagnostic data are transmitted at 128 kbps. The microcontroller-based design uses the automotive industry standard Controller Area Network to interface with and support in-flight control fimctions. Operational parameters are downloaded via a standard asynchronous serial communications intefiace. The basic design philosophy and functionality is described here.

Kidner, Ronald

1999-06-02T23:59:59.000Z

152

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with fully functional idle

153

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

154

Vehicle barrier  

DOE Patents (OSTI)

A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

Hirsh, Robert A. (Bethel Park, PA)

1991-01-01T23:59:59.000Z

155

Hybrid options for light-duty vehicles.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

156

Investigation of Class 2b Trucks (Vehicles of 8,500 to 10,000...  

NLE Websites -- All DOE Office Websites (Extended Search)

weight rating HD heavy-duty lbs pounds LDT light-duty trucks LEV low-emission vehicle LNG liquefied natural gas LPG liquefied petroleum gas MDPV medium-duty passenger vehicle MY...

157

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

158

MathCAD model for the estimation of cost and main characteristics of air-cushion vehicles in the preliminary design stage  

E-Print Network (OSTI)

In the naval architecture terminology, the term ACV (Air Cushion Vehicle) refers to this category of vehicles, in which a significant portion of the weight (or all the weight) is supported by forces arising from air pressures ...

Gougoulidis, Georgios

2005-01-01T23:59:59.000Z

159

PASSIVE DETECTION OF VEHICLE LOADING  

SciTech Connect

The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

Garrett, A.

2012-01-03T23:59:59.000Z

160

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,

Delucchi, Mark

1992-01-01T23:59:59.000Z

162

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

163

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

164

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. What's Your PEV Readiness Score? PEV readiness...

165

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

166

Vehicles and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about exciting technologies and ongoing research in alternative and advanced vehiclesor vehicles that run on fuels other than traditional petroleum.

167

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

168

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

169

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

170

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

171

Vehicle Technologies Office: Fact #257: March 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: March 3, 2003 Vehicle Occupancy by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 257: March 3, 2003 Vehicle Occupancy by Type of Vehicle on...

172

Vehicle Technologies Office: Fact #253: February 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: February 3, 2003 Vehicle Age by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 253: February 3, 2003 Vehicle Age by Type of Vehicle on Facebook...

173

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

174

Apps for Vehicles: Why should I care what data is in my car and...  

Open Energy Info (EERE)

interested in vehicle performance may use it to compare engine operations given different oil weights or gasoline octane ratings to determine what engine inputs provide optimal...

175

Assessment of Thermal Control Technologies for Cooling Electric Vehicle Power Electronics  

DOE Green Energy (OSTI)

NREL is assessing thermal control technologies to improve the thermal performance of power electronics devices for electric vehicles, while reducing the cost, weight, and volume of the system.

Kelly, K.; Abraham, T.; Bennion, K.; Bharathan, D.; Narumanchi, S.; O'Keefe, M.

2008-01-01T23:59:59.000Z

176

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

177

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

178

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

This report contains data on the number of onroad alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities and data on the use of alternative fueled vehicles and the amount of fuel they consume.

Information Center

2013-04-08T23:59:59.000Z

179

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

180

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

182

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

183

Weighted Guidelines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weighted Guidelines Weighted Guidelines Weighted Guidelines More Documents & Publications Weighted Guidelines DOE F 4220.23 OPAM Policy Acquisition Guides...

184

Weighted Guidelines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weighted Guidelines Weighted Guidelines Weighted Guidelines More Documents & Publications Weighted Guidelines OPAM Policy Acquisition Guides DOE F 4220.23...

185

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

186

Load calculation and system evaluation for electric vehicle climate control  

DOE Green Energy (OSTI)

This paper presents an analysis of the applicability of alternative systems for electric vehicle (EV) heating and air conditioning (HVAC). The paper consists of two parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can provide the desired cooling and heating in EVs. These systems are ranked according to their overall weight The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation. The system with the minimum overall weight is considered to be the best, because minimum vehicle weight decreases the energy required for propulsion, and therefore increases the vehicle range. Three systems are considered as the best choices for EV HVAC. These are, vapor compression, ice storage and adsorption systems. These systems are evaluated, including calculations of system weight, system volume, and COP. The paper also includes a calculation on how the battery energy storage capacity affects the overall system weights and the selection of the optimum system. The results indicate that, at the conditions analyzed in this paper, an ice storage system has the minimum weight of all the systems considered. Vapor compression air conditioners become the system with the minimum weight for battery storage capacities above 230 kJ/kg.

Aceves, S.M.; Comfort, W.J. III

1994-09-12T23:59:59.000Z

187

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A heavy-duty vehicle that is equipped with qualified idle reduction technology may exceed the Arizona weight limitations specified in Arizona

188

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles  

SciTech Connect

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

Janice Thomas

2010-05-31T23:59:59.000Z

189

Advanced Vehicle Testing Activity: Urban Electric Vehicle Special...  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

190

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

191

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

192

Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

193

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

194

Advanced Vehicle Testing Activity: Urban Electric Vehicle Specificatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

195

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

196

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

197

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specificati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

198

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

199

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

200

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network (OSTI)

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase of the owning Unit. Vehicle Homebase: Enter the City, Zip Code, Building, or other location designation. Week

Johnston, Daniel

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Search for Model Year 2014 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Model Year: 2014 Select Class... Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles...

202

Search for Model Year 2000 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

203

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

204

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

205

Intelligent Systems Software for Unmanned Air Vehicles  

E-Print Network (OSTI)

weighted fuzzy AND and OR nodes, but can also have pre-trained neural networks as nodes. Fuzzy logic, where vehicles use a consensus algorithm based upon graph theory in order to arrive at the correct., and Gibson, R. E., "A Fuzzy-Logic Architecture for Autonomous Multisensor Data Fusion," IEEE Trans. Ind

206

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

207

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

208

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

209

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

210

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

211

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

212

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

213

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

214

Vehicle Setup Information Downloadable Dynamometer Database (D  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture Architecture Conventional 2013 Nissan Altima Test Cell Location 2WD Advanced Powertrain Research Facility Document Date 8/7/2013 Vehicle Dynamometer Input 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE LIMITED Revision Number 3 Notes: Test weight [lb] Target A [lb] 3500 42.94 Target B [lb/mph] Target C [lb/mph^2] -0.4448 0.02333 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE LIMITED Test Fuel Information 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE

215

Adsorption air conditioner for electric vehicle applications. Revision 1  

DOE Green Energy (OSTI)

This paper shows an analysis of the applicability of an adsorption system for electric vehicle (EV) air conditioning. Adsorption systems are designed and optimized to provide the required cooling for four combinations of vehicle characteristics and driving cycles. The resulting adsorption systems are compared with vapor compression air conditioners that can satisfy the cooling load. The objective function is the overall system weight, which includes the cooling system weight and the weight of the battery necessary to provide energy for air conditioner operation. The system with the minimum overall weight is considered to be the best, because a lower weight results in an increased vehicle range. The results indicate that, for the conditions analyzed in this paper, vapor compression air conditioners are superior to adsorption systems not only because they are lighter, but also because they have a higher COP and are more compact.

Aceves, S.M.

1994-07-27T23:59:59.000Z

216

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

217

FY06 High Strength Weight Reduction Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HigH StrengtH HigH StrengtH WeigHt reduction MaterialS U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2006 Progress Report for High Strength Weight Reduction Materials Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Advanced Materials Technologies Edward Wall Program Manager, OFCVT Rogelio Sullivan Advanced Materials Technologies Team Leader James Eberhardt Chief Scientist March 2006 High Strength Weight Reduction Materials FY 2006 Progress Report CONTENTS 1. INTRODUCTION................................................................................................................................... 1 2. MATERIALS DEVELOPMENT .......................................................................................................... 3

218

Emission Impacts of Electric Vehicles  

E-Print Network (OSTI)

greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

1990-01-01T23:59:59.000Z

219

The Case for Electric Vehicles  

E-Print Network (OSTI)

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

220

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Vehicle Conversions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

222

Vehicle Detection by Sensor Network Nodes  

E-Print Network (OSTI)

frequency. Table 4.2: ? and ? Ground truth (# of vehicles)truth (# of vehicles) Detection result (# of vehicles) Tabletruth ( of vehicles) Detection result ( of vehicles) Table

Ding, Jiagen; Cheung, Sing-Yiu; Tan, Chin-woo; Varaiya, Pravin

2004-01-01T23:59:59.000Z

223

,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sut_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sut_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:03 PM"

224

,"U.S. Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_nus_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_nus_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:03 PM"

225

,"Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sin_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sin_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:23 PM"

226

,"Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sco_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sco_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM"

227

,"Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sok_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sok_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:51 PM"

228

,"Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sva_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sva_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:04 PM"

229

,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sky_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sky_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:26 PM"

230

,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM"

231

,"Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:15 PM"

232

,"Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sga_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sga_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:16 PM"

233

,"Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_saz_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_saz_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:08 PM"

234

,"Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_smt_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smt_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:37 PM"

235

,"Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_stx_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_stx_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:01 PM"

236

,"Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_snv_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_snv_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:47 PM"

237

,"Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_swy_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_swy_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:09 PM"

238

,"Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:20 PM"

239

,"Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM"

240

,"Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_smi_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smi_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:32 PM"

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

,"Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_soh_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_soh_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:50 PM"

242

,"Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_smo_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smo_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:34 PM"

243

,"Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sor_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sor_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:52 PM"

244

Vehicle Technologies Office: Fact #586: August 31, 2009 New Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact 586: August 31, 2009 New Vehicle Fuel Economies by...

245

Advanced Vehicle Testing Activity - Stop-Start Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop-Start Vehicles Stop-start Vehicles allow the internal combustion engine to shut-down when the vehicle stops in traffic, and re-start quickly to launch the vehicle. Fuel is...

246

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

247

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Basics to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing...

248

Advanced Vehicle Testing Activity: Full-Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity:...

249

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

250

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

251

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with idle reduction technology may exceed the state's

252

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with an auxiliary power unit (APU) or other idle

253

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with idle reduction technology may exceed the state's

254

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the maximum

255

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with qualified idle reduction technology may exceed the

256

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A motor vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the

257

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A commercial vehicle equipped with idle reduction technology may exceed the

258

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

259

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

260

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 6,598 All operation Overall gasoline fuel economy (mpg) 73.7 Overall AC electrical energy consumption (AC Whmi) 170...

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 145 Number of vehicle days driven: 6,817 All operation Overall gasoline fuel economy (mpg) 66.6 Overall AC electrical energy consumption (AC Whmi) 171...

262

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All operation Overall gasoline fuel economy (mpg) 68.6 Overall AC electrical energy consumption (AC Whmi) 175...

263

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Number of vehicles: 66 Number of vehicle days driven: 845 All operation Overall gasoline fuel economy (mpg) 85.0 Overall AC electrical energy consumption (AC Whmi) 181...

264

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 5,795 All operation Overall gasoline fuel economy (mpg) 67.8 Overall AC electrical energy consumption (AC Whmi) 180...

265

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 110 Number of vehicle days driven: 3,227 All operation Overall gasoline fuel economy (mpg) 74.8 Overall AC electrical energy consumption (AC Whmi) 185...

266

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 144 Number of vehicle days driven: 7,129 All operation Overall gasoline fuel economy (mpg) 72.5 Overall AC electrical energy consumption (AC Whmi) 166...

267

Social networking in vehicles  

E-Print Network (OSTI)

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

268

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

269

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

270

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

271

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

272

Flexible Fuel Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one.

273

Realising low carbon vehicles  

E-Print Network (OSTI)

MorganMotorCompany #12;Hybrid and electric vehicle design and novel power trains Cranfield has an impressive track record in the design and integration of near-to-market solutions for hybrid, electric and fuel cell vehicles coupe body the vehicle is powered by advanced lithium-ion batteries, and also features a novel all-electric

274

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

275

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

276

VEHICLE FOR SLAVE ROBOT  

DOE Patents (OSTI)

A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

Goertz, R.C.; Lindberg, J.F.

1962-01-30T23:59:59.000Z

277

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

278

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

279

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

280

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

NLE Websites -- All DOE Office Websites (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

282

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

283

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

284

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

285

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

286

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

October 1-2, 2013 2013 Natural Gas Vehicle Conference & Expo November 18-21, 2013 World LNG Fuels Conference & Expo January 21-23, 2014 More Events Contacts | Web Site Policies |...

287

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

288

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29359 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for Joint Base...

289

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29360 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for NAS...

290

Weights and Measures Division Connections  

Science Conference Proceedings (OSTI)

Office of Weights and Measures Connections. Welcome to the Office of Weights and Measures newsletter Weights and ...

2013-09-11T23:59:59.000Z

291

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2650 lbs 2650 lbs Delivered Curb Weight 9 : 2615 lbs Distribution F/R 9 (%): 58.6/41.4 GVWR: 3164 lbs GAWR F/R: 1797/1378lbs Payload 5 : 564 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 95.9 in Track F/R: 59.6/59.1 in Length: 160.6 in Width: 68.5 in Height: 54.9 in Ground Clearance: 5.3 in Performance Goal: 5.0 in TIRES Tire Mfg: Dunlop Tire Model: SP Sport 1000m Tire Size: 195 / 55 R16 86V Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 1.5 L I4 Output 8 : 122 hp @ 6000 rpm Configuration: Inline Four-cylinder Displacement: 1.5 L Fuel Tank Capacity: 10.6 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2011 Honda CRZ EX Hybrid VIN: JHMZF1C64BS002982

292

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

245 lbs 245 lbs Delivered Curb Weight: 4118 lbs GVWR: 5675 lbs GAWR F/R: 2865/3130 lbs Distribution F/R: 59/41 % Payload: 1557 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106.7 in Track F/R: 61.9/61.1 in Length: 185.3 in Width: 71.5 in Height: 68.6 in Ground Clearance: 5.9 in Performance Goal: 5.0 in TIRES Tire Mfg: Goodyear Tire Model: Integrity Tire Size: P225/65R17 Tire Pressure F/R: 32/32 Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Highlander VIN: JTEDW21A860005681 Seatbelt Positions: Seven Standard Features: Air Conditioning

293

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

365 lbs 365 lbs Delivered Curb Weight: 4510 lbs Distribution F/R: 57/43 % GVWR: 5520 lbs GAWR F/R: 2865/2865 lbs Payload: 1010 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 107.0 inches Track F/R: 62/61.2 inches Length: 187.2 inches Width: 72.6 inches Height: 66.4 inches Ground Clearance: 7.1 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Goodyear Tire Model: Eagle RS-A Tire Size: P215/55R18 Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: DOHC V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 Gallons Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Lexus RX 400h VIN: JTJHW31U160002575 Seatbelt Positions: Five

294

Search for Model Year 2001 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

295

Search for Model Year 2004 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Bifuel (Propane) Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

296

Search for Model Year 2008 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

297

Search for Model Year 2003 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

298

Search for Model Year 2002 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

299

Energy Star Concepts for Highway Vehicles  

Science Conference Proceedings (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

300

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

302

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

303

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

304

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

305

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

306

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

307

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

308

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

309

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

310

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

311

Prospects for electric vehicles  

Science Conference Proceedings (OSTI)

This paper discusses the current state-of- the-art of electric vehicles (EVs) with examples of recently developed prototype vehicles - Electric G-Van, Chrysler TEVan, Eaton DSEP and Ford/GE ETX-II. The acceleration, top speed and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress being made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles and their potential for reduction of air pollution and utility load management are postulated.

Patil, P.G. (Research and Development, Electric and Hybrid Propulsion Div., U.S. Dept. of Energy, Washington, DC (US))

1990-12-01T23:59:59.000Z

312

c32a.xls  

Gasoline and Diesel Fuel Update (EIA)

. . 580 986 471 12,407 22,762 13,304 46.8 43.3 35.4 Building Floorspace (Square Feet) 1,001 to 5,000 .................................. 86 103 61 1,245 1,271 659 69.0 81.0 92.1 5,001 to 10,000 ................................ 57 101 60 1,154 1,932 883 49.4 52.3 67.6 10,001 to 25,000 .............................. 105 174 65 2,452 3,390 1,982 42.6 51.2 32.7 25,001 to 50,000 .............................. 92 117 62 1,895 3,008 1,702 48.4 38.7 36.3 50,001 to 100,000 ............................ 70 131 69 1,672 3,629 2,198 41.6 36.0 31.2 100,001 to 200,000 .......................... 64 137 66 1,538 3,363 2,644 41.8 40.7 24.8 200,001 to 500,000 .......................... 45 108 51 1,520 2,874 1,499 29.9 37.5 34.2 Over 500,000 ................................... 62 117 38 933 3,294 1,737 66.4 35.4 22.0 Principal Building Activity Education .........................................

313

c11a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings .................................. Buildings .................................. 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ........................................ 63 423 334 808 5,378 3,687 78.3 78.6 90.7 Food Sales ...................................... 144 Q Q 765 467 Q 188.5 Q Q Food Service ................................... 318 108 Q 986 664 Q 322.9 163.2 Q Health Care ..................................... 32 104 457 445 835 1,883 71.8 125.1 242.9 Inpatient ........................................ N Q 436 N 182 1,723 N Q 252.9 Outpatient ...................................... 32 66 Q 445 652 160 71.8 100.5 Q Lodging ........................................... 29 207 273 260 2,274 2,563 111.0 91.2 106.7 Mercantile ........................................ 171 482 369 1,944 5,204 4,044 87.9 92.6 91.2 Retail (Other Than Mall) ................

314

c1a.xls  

Gasoline and Diesel Fuel Update (EIA)

Dec 2006 Next CBECS will be conducted in 2007 Primary Site All Buildings .................................... 4,859 71,658 6,523 10,746 3,559 2,100 228 636 District Heat Table C1A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD ..................... 882 11,529 1,086 1,412 468 468 63 88 5,500-7,000 HDD ............................ 1,229 18,808 1,929 2,621 868 737 67 257 4,000-5,499 HDD ............................ 701 12,503 1,243 1,947 645 368 91 140 Fewer than 4,000 HDD ................... 1,336 17,630 1,386 2,686 890 389 6 101 2,000 CDD or More and --

315

c36a.xls  

Gasoline and Diesel Fuel Update (EIA)

,437 ,437 178 130 82 1.10 1.04 1.21 1.28 0.22 0.06 0.03 Q Building Floorspace (Square Feet) 1,001 to 10,000 ................................. 460 Q Q Q 1.21 Q Q Q 0.60 Q Q Q 10,001 to 100,000 ............................. 444 70 Q Q 1.10 1.12 1.29 1.31 0.25 0.11 Q Q Over 100,000 .................................... 533 22 48 Q 1.03 1.06 1.08 1.26 0.14 0.01 0.01 Q Principal Building Activity Education .......................................... 293 Q Q Q 1.04 Q Q Q 0.31 Q Q Q Health Care........................................ Q Q 19 8 Q 1.06 1.08 1.16 Q Q 0.02 0.03 Office ................................................ 122 8 18 Q 1.16 1.32 1.26 1.44 0.09 0.01 0.01 0.00 All Others .......................................... 980 Q 64 50 1.12 1.02 1.34 1.26 0.26 0.10 0.03 Q Year Constructed 1945 or Before .................................. 620 Q Q Q 1.10 Q Q Q 0.29

316

c29a.xls  

Gasoline and Diesel Fuel Update (EIA)

68 68 185 165 5,453 3,263 5,644 30.9 56.6 29.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 29 18 Q 334 266 363 87.9 68.5 60.2 5,001 to 10,000 ................................. 25 Q Q 545 291 514 45.6 62.7 54.4 10,001 to 25,000 ............................... 20 45 26 626 699 844 32.1 63.9 30.6 25,001 to 50,000 ............................... 18 25 23 552 521 831 32.8 48.4 27.4 50,001 to 100,000 ............................. 21 Q 21 992 Q 821 20.7 Q 25.9 100,001 to 200,000 ........................... 20 Q 15 958 Q 754 21.4 Q 19.3 200,001 to 500,000 ........................... Q Q 14 502 Q 687 21.0 Q 20.6 Over 500,000 .................................... Q Q Q Q Q Q Q Q Q Principal Building Activity Education .......................................... 16 21 28 797 420 802 20.6 48.8 34.8 Food Sales .......................................

317

c27a.xls  

Gasoline and Diesel Fuel Update (EIA)

85 85 364 550 1,861 8,301 10,356 45.4 43.8 53.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... Q 42 69 Q 427 741 Q 98.4 92.9 5,001 to 10,000 ................................. Q 32 49 Q 518 743 Q 62.1 65.5 10,001 to 25,000 ............................... Q 47 102 Q 952 1,860 Q 49.7 54.6 25,001 to 50,000 ............................... Q 42 78 Q 900 1,567 Q 47.1 49.6 50,001 to 100,000 ............................. Q 49 77 Q 1,421 1,611 Q 34.4 47.7 100,001 to 200,000 ........................... Q 44 73 Q 1,531 1,454 Q 28.4 50.4 200,001 to 500,000 ........................... Q 55 58 Q 1,484 1,323 Q 37.3 43.5 Over 500,000 .................................... Q 52 45 Q 1,068 1,056 Q 48.6 43.0 Principal Building Activity Education .......................................... Q 49 99 Q 1,247 1,804 Q 39.5 54.6 Food Sales .......................................

318

c9a.xls  

Gasoline and Diesel Fuel Update (EIA)

684 684 446 617 9,022 4,207 8,613 75.8 106.1 71.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 87 44 64 788 466 871 110.9 94.8 73.0 5,001 to 10,000 ................................. 67 39 84 957 465 878 69.7 84.8 95.1 10,001 to 25,000 ............................... 77 91 89 1,555 933 1,429 49.4 97.2 62.4 25,001 to 50,000 ............................... 70 56 71 1,062 568 1,239 65.8 98.2 57.5 50,001 to 100,000 ............................. 92 49 78 1,514 492 1,092 61.0 100.2 71.2 100,001 to 200,000 ........................... 119 Q 79 1,426 346 1,007 83.4 Q 78.0 200,001 to 500,000 ........................... 60 Q 68 749 339 977 80.4 Q 69.6 Over 500,000 .................................... Q Q Q Q Q 1,119 Q Q Q Principal Building Activity Education .......................................... 74 53 76 1,198

319

c1a.xls  

Gasoline and Diesel Fuel Update (EIA)

October 2006 October 2006 Next CBECS will be conducted in 2007 Primary Site All Buildings .................................... 4,859 71,658 6,523 10,746 3,559 2,100 228 636 District Heat Table C1A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD ..................... 882 11,529 1,086 1,412 468 468 63 88 5,500-7,000 HDD ............................ 1,229 18,808 1,929 2,621 868 737 67 257 4,000-5,499 HDD ............................ 701 12,503 1,243 1,947 645 368 91 140 Fewer than 4,000 HDD ................... 1,336 17,630 1,386 2,686 890 389 6 101 2,000 CDD or More and --

320

c34a.xls  

Gasoline and Diesel Fuel Update (EIA)

per Building per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings .................................... 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 ................................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................... 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................... 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 ............................. 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................... 12,639 0.09 13.1 0.09 1.03 200,001 to 500,000 ........................... 22,181 0.08 23.4 0.08 1.05 Over 500,000 .................................... 14,248 0.02 14.7 0.02 1.03 Principal Building Activity

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

c33a.xls  

Gasoline and Diesel Fuel Update (EIA)

2 per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings .................................... 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 ................................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................... 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................... 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 ............................. 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................... 12,639 0.09 13.1 0.09 1.03 200,001 to 500,000 ........................... 22,181 0.08 23.4 0.08 1.05 Over 500,000 ....................................

322

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Dec 2006 Next CBECS will be conducted in 2007 Electricity Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings .................................... 4,617 70,181 15.2 10,746 3,559 1,043 82,783 Floorspace per Building (thousand square feet) Total (million dollars) Table C13A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Site Number of Buildings (thousand) Floorspace (million square feet) Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD ..................... 836 11,300 13.5 1,412 468 137 10,479 5,500-7,000 HDD ............................ 1,185 18,549 15.7 2,621 868 254 19,181 4,000-5,499 HDD ............................ 670 12,374 18.5 1,947 645

323

c23a.xls  

Gasoline and Diesel Fuel Update (EIA)

2 25th Per- centile Median 75th Per- centile per Building (thousand dollars) per Square Foot (dollars) per Thousand Cubic Feet (dollars) All Buildings .................................. 803 42.0 17.9 37.4 71.0 6.3 0.33 7.86 Building Floorspace (Square Feet) 1,001 to 5,000 ................................. 220 78.6 23.8 46.8 92.0 2.0 0.70 8.93 5,001 to 10,000 ............................... 410 54.8 15.0 29.6 66.2 3.4 0.46 8.41 10,001 to 25,000 ............................. 685 43.8 16.2 31.0 55.9 5.8 0.37 8.45 25,001 to 50,000 ............................. 1,464 40.9 16.0 31.0 55.4 11.1 0.31 7.60 50,001 to 100,000 ............................ 2,519 35.8 10.8 28.6 48.9 20.1 0.29 7.97 100,001 to 200,000 .......................... 4,898 35.4 6.4 23.8 51.9 36.1 0.26 7.36 200,001 to 500,000 .......................... 10,109 34.7

324

c4a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings .................................... Buildings .................................... 4,859 71,658 14.7 107,897 22.2 1.51 16.54 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 2,586 6,922 2.7 13,083 5.1 1.89 19.08 5,001 to 10,000 ................................. 948 7,033 7.4 10,443 11.0 1.48 18.56 10,001 to 25,000 ............................... 810 12,659 15.6 15,689 19.4 1.24 17.46 25,001 to 50,000 ............................... 261 9,382 36.0 11,898 45.6 1.27 16.04 50,001 to 100,000 ............................. 147 10,291 70.2 15,171 103.5 1.47 16.62 100,001 to 200,000 ........................... 74 10,217 138.6 16,087 218.2 1.57 15.12 200,001 to 500,000 ........................... 26 7,494 287.6 10,940 419.8 1.46 14.56 Over 500,000 .................................... 8 7,660 937.6 14,586 1785.5 1.90 16.11 Principal Building Activity

325

c18a.xls  

Gasoline and Diesel Fuel Update (EIA)

66 66 254 57 5,523 13,837 3,546 12.0 18.3 16.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 10 28 7 821 1,233 481 12.4 22.4 15.4 5,001 to 10,000 ................................. 7 20 5 681 1,389 386 10.8 14.4 13.3 10,001 to 25,000 ............................... 9 31 12 1,204 2,411 842 7.8 12.8 14.1 25,001 to 50,000 ............................... 15 29 6 949 1,867 490 16.1 15.5 11.7 50,001 to 100,000 ............................. 9 35 13 664 1,797 749 13.1 19.2 17.0 100,001 to 200,000 ........................... 8 50 Q 614 2,422 Q 12.3 20.6 Q 200,001 to 500,000 ........................... Q 23 Q Q 1,148 Q Q 20.4 Q Over 500,000 .................................... Q 38 Q Q 1,572 Q Q 24.3 Q Principal Building Activity Education .......................................... 5 39 Q 549 2,445 Q 8.8 16.0 Q Food Sales .......................................

326

c37a.xls  

Gasoline and Diesel Fuel Update (EIA)

2 per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings .................................... 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... Q Q Q Q Q 5,001 to 10,000 ................................. Q Q Q Q Q 10,001 to 25,000 ............................... Q Q Q Q Q 25,001 to 50,000 ............................... Q Q Q Q Q 50,001 to 100,000 ............................. Q Q Q Q Q 100,001 to 200,000 ........................... 17,452 118.10 Q Q Q 200,001 to 500,000 ........................... 34,658 121.16 Q Q Q Over 500,000 .................................... 77,419 93.60 834.8 1.01 10.78 Principal Building Activity Education ..........................................

327

c30a.xls  

Gasoline and Diesel Fuel Update (EIA)

454 454 715 356 378 134 8,486 14,122 8,970 11,796 5,098 53.5 50.6 39.7 32.0 26.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 57 84 35 58 16 666 1,015 427 832 234 84.8 83.1 81.9 69.6 66.6 5,001 to 10,000 .............................. 50 57 33 61 17 666 1,030 639 1,243 392 75.2 54.9 51.2 49.2 44.0 10,001 to 25,000 ............................ 98 121 53 55 15 1,831 2,415 1,024 1,994 561 53.7 50.1 52.1 27.5 27.4 25,001 to 50,000 ............................ 61 95 56 39 19 1,340 1,963 1,138 1,662 501 45.7 48.3 49.5 23.3 37.8 50,001 to 100,000 .......................... 64 97 47 45 16 1,217 2,300 1,453 1,744 786 52.3 42.2 32.7 25.9 19.8 100,001 to 200,000 ......................... 38 123 34 Q 12 1,075 2,316 1,431 1,833 889 35.6 53.0 23.5 32.8 13.5 200,001 to 500,000 ......................... 55 62 40 31 16 1,036 1,517 1,439 1,186 714

328

c21a.xls  

Gasoline and Diesel Fuel Update (EIA)

Square Square Feet All Buildings .................................... 201 412 431 13,124 31,858 25,200 15.3 12.9 17.1 Principal Building Activity Education .......................................... 9 55 45 806 5,378 3,687 11.1 10.2 12.2 Food Sales ....................................... 36 24 Q 747 467 Q 48.8 51.1 Q Food Service ..................................... 47 16 Q 986 664 Q 47.8 24.5 Q Health Care ....................................... 6 17 50 445 835 1,883 13.1 20.5 26.3 Inpatient .......................................... N Q 47 N Q 1,723 N Q 27.0 Outpatient ....................................... 6 11 Q 445 652 Q 13.1 17.4 Q Lodging ............................................. 4 31 34 260 2,274 2,563 14.0 13.5 13.5 Mercantile ......................................... 28 99 89 1,944 5,204 4,044 14.2 19.0 21.9 Retail (Other Than Mall) ..................

329

c7a.xls  

Gasoline and Diesel Fuel Update (EIA)

345 345 1,052 1,343 3,452 10,543 12,424 99.8 99.7 108.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 37 86 147 383 676 986 95.9 127.9 148.9 5,001 to 10,000 ................................. 39 68 83 369 800 939 106.0 85.4 88.2 10,001 to 25,000 ............................... Q 121 187 674 1,448 2,113 Q 83.4 88.4 25,001 to 50,000 ............................... Q 84 155 366 1,022 1,763 Q 82.5 87.6 50,001 to 100,000 ............................. Q 155 160 590 1,682 1,712 Q 92.0 93.3 100,001 to 200,000 ........................... Q 161 224 448 1,790 1,872 Q 90.0 119.6 200,001 to 500,000 ........................... Q 177 218 Q 1,673 1,847 Q 105.8 117.9 Over 500,000 .................................... Q Q Q Q 1,451 1,192 Q Q Q Principal Building Activity Education ..........................................

330

c5a.xls  

Gasoline and Diesel Fuel Update (EIA)

96 96 1,799 2,265 1,063 13,995 18,103 26,739 12,820 99.8 99.4 84.7 82.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................. 123 207 248 108 1,059 1,908 2,618 1,337 116.4 108.3 94.7 80.6 5,001 to 10,000 ............................... 107 128 204 123 1,169 1,676 2,844 1,343 91.9 76.5 71.7 91.6 10,001 to 25,000 ............................. 166 258 295 180 2,122 3,317 4,859 2,361 78.3 77.7 60.7 76.1 25,001 to 50,000 ............................. 117 261 236 127 1,388 2,712 3,474 1,808 84.6 96.3 67.9 70.3 50,001 to 100,000 ........................... 234 225 326 127 2,272 2,376 4,059 1,584 103.2 94.9 80.3 80.2 100,001 to 200,000 ......................... 224 273 449 118 2,238 2,486 4,140 1,353 100.3 109.7 108.4 87.5 200,001 to 500,000 ......................... 189 252 207 103 1,781 2,288 2,109 1,316 106.3 110.0 98.3 78.3

331

c16a.xls  

Gasoline and Diesel Fuel Update (EIA)

6,907 6,907 15,677 31,849 18,350 0.10 0.07 0.07 0.10 1.22 0.88 1.22 1.46 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 1,685 2,415 4,257 2,190 0.12 0.08 0.08 0.12 1.63 1.39 1.77 1.69 5,001 to 10,000 ................................. 1,364 1,347 3,064 2,424 0.12 0.08 0.08 0.12 1.21 0.86 1.16 1.84 10,001 to 25,000 ............................... 2,126 2,539 4,651 2,856 0.10 0.08 0.08 0.10 1.02 0.77 0.98 1.22 25,001 to 50,000 ............................... 1,414 2,202 3,480 2,084 0.10 0.07 0.07 0.10 1.02 0.84 1.05 1.18 50,001 to 100,000 ............................. 2,744 1,996 4,585 2,368 0.10 0.06 0.07 0.10 1.21 0.84 1.13 1.52 100,001 to 200,000 ........................... 2,640 2,261 5,238 1,823 0.10 0.06 0.06 0.08 1.18 0.91 1.28 1.35 200,001 to 500,000 ........................... 1,985 1,631 2,655 1,592

332

c25a.xls  

Gasoline and Diesel Fuel Update (EIA)

448 448 728 511 350 10,162 14,144 15,260 8,907 44.1 51.5 33.5 39.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 50 92 68 40 547 1,086 912 629 90.6 84.6 74.5 63.7 5,001 to 10,000 ................................. 39 63 69 46 661 1,064 1,439 806 59.2 59.4 48.1 57.4 10,001 to 25,000 ............................... 58 133 81 70 1,293 2,656 2,332 1,542 45.2 50.1 34.7 45.7 25,001 to 50,000 ............................... 48 122 52 48 1,048 2,407 1,797 1,352 45.5 50.7 29.2 35.5 50,001 to 100,000 ............................. 66 98 68 37 1,841 2,009 2,486 1,164 35.7 48.9 27.3 31.6 100,001 to 200,000 ........................... 69 93 77 28 1,816 1,967 2,685 1,077 37.9 47.1 28.6 26.4 200,001 to 500,000 ........................... 60 73 44 28 1,588 1,765 1,527 1,012 37.6 41.4 28.7 27.3 Over 500,000 ....................................

333

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Dec 2006 Dec 2006 Next CBECS will be conducted in 2007 Electricity Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings .................................... 4,617 70,181 15.2 10,746 3,559 1,043 82,783 Floorspace per Building (thousand square feet) Total (million dollars) Table C13A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Site Number of Buildings (thousand) Floorspace (million square feet) Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD ..................... 836 11,300 13.5 1,412 468 137 10,479 5,500-7,000 HDD ............................ 1,185 18,549 15.7 2,621 868 254 19,181 4,000-5,499 HDD ............................ 670 12,374 18.5 1,947 645

334

c10a.xls  

Gasoline and Diesel Fuel Update (EIA)

1,086 1,929 1,243 1,386 879 11,529 18,808 12,503 17,630 11,189 94.2 102.6 99.4 78.6 78.6 Building Floorspace (Square Feet) 1,001 to 5,000 ............................... 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 ............................. 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7 10,001 to 25,000 ........................... 183 286 146 166 118 2,406 3,506 1,498 3,176 2,073 75.9 81.6 97.6 52.3 56.9 25,001 to 50,000 ........................... 146 212 125 152 107 1,547 2,424 1,382 2,381 1,647 94.4 87.6 90.3 63.7 64.8 50,001 to 100,000 ......................... 149 273 183 191 118 1,480 2,780 2,011 2,352 1,668 100.8 98.0 90.8 81.2 70.6 100,001 to 200,000 ....................... 117 336 187 283 141 1,311 2,889 1,881 2,597 1,538 89.4 116.3 99.2 109.1 91.7 200,001 to 500,000 .......................

335

c6a.xls  

Gasoline and Diesel Fuel Update (EIA)

24,395 23,398 38,398 21,706 17.47 13.01 16.95 20.42 1.74 1.29 1.44 1.69 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,398 3,255 4,899 2,530 19.47 15.75 19.77 23.46 2.26 1.71 1.87 1.89 5,001 to 10,000 .............................. 1,978 1,887 3,761 2,816 18.42 14.71 18.44 22.90 1.69 1.13 1.32 2.10 10,001 to 25,000 ............................ 3,015 3,667 5,526 3,482 18.15 14.22 18.72 19.37 1.42 1.11 1.14 1.47 25,001 to 50,000 ............................ 2,054 3,252 4,095 2,497 17.50 12.45 17.36 19.65 1.48 1.20 1.18 1.38 50,001 to 100,000 .......................... 4,190 2,843 5,443 2,695 17.87 12.61 16.69 21.21 1.84 1.20 1.34 1.70 100,001 to 200,000 ......................... 3,686 3,388 6,850 2,163 16.43 12.42 15.27 18.26 1.65 1.36 1.65 1.60 200,001 to 500,000 ......................... 2,877 2,951

336

c20a.xls  

Gasoline and Diesel Fuel Update (EIA)

137 137 254 189 261 202 11,300 18,549 12,374 17,064 10,894 12.1 13.7 15.3 15.3 18.5 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 19 27 14 32 23 1,210 1,631 923 1,811 903 15.7 16.4 15.0 17.8 25.8 5,001 to 10,000 .............................. 12 18 15 27 14 1,175 1,639 1,062 1,855 914 10.2 10.9 14.3 14.3 15.5 10,001 to 25,000 ............................ 22 36 24 31 29 2,354 3,506 1,479 3,133 2,022 9.2 10.4 16.2 9.8 14.5 25,001 to 50,000 ............................ 19 26 17 30 24 1,547 2,341 1,382 2,303 1,525 12.3 11.1 12.5 13.1 15.7 50,001 to 100,000 .......................... 19 39 29 36 29 1,480 2,780 2,011 2,326 1,668 12.8 14.2 14.5 15.6 17.6 100,001 to 200,000 ......................... 18 46 26 49 32 1,311 2,878 1,872 2,570 1,538 13.6 15.9 14.1 19.3 21.1 200,001 to 500,000 ......................... 14 28 22 27 21 1,150 2,007

337

c14a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings .................................... Buildings .................................... 226 14.9 3.8 8.8 18.1 17.9 1.18 0.079 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 48 17.8 3.8 9.0 20.0 4.4 1.63 0.092 5,001 to 10,000 ................................. 96 12.9 4.0 8.2 15.5 9.2 1.23 0.096 10,001 to 25,000 ............................... 178 11.4 3.1 7.2 15.0 15.2 0.97 0.086 25,001 to 50,000 ............................... 459 12.8 4.4 9.6 16.9 36.2 1.01 0.079 50,001 to 100,000 ............................. 1,049 14.9 5.2 11.4 20.7 80.1 1.14 0.076 100,001 to 200,000 ........................... 2,344 16.9 6.1 15.8 24.3 163.1 1.18 0.070 200,001 to 500,000 ........................... 4,374 15.2 6.1 13.2 20.6 307.6 1.07 0.070 Over 500,000 .................................... 17,978 19.2 11.5 18.0 23.4 1366.9 1.46 0.076 Principal Building Activity

338

c35a.xls  

Gasoline and Diesel Fuel Update (EIA)

02 02 172 107 64 6,464 2,909 4,663 2,230 0.20 0.06 0.02 Q Building Floorspace (Square Feet) 1,001 to 10,000 ............................... 381 Q Q Q 763 Q 274 Q 0.50 Q 0.10 Q 10,001 to 100,000 ........................... 404 63 Q Q 1,806 648 985 351 0.22 0.10 Q Q Over 100,000 .................................. 517 21 45 Q 3,894 2,055 3,404 1,780 0.13 0.01 0.01 Q Principal Building Activity Education ........................................ 282 Q Q Q 933 Q Q Q 0.30 Q Q Q Health Care...................................... Q Q 17 7 Q 492 786 262 Q Q 0.02 0.03 Office .............................................. 105 6 14 1 1,379 714 1,235 748 0.08 0.01 0.01 0.00 All Others ........................................ 873 Q 47 40 3,810 1,358 2,186 1,091 0.23 Q 0.02 Q Year Constructed 1945 or Before ................................ 562 Q Q Q 2,162 Q Q Q 0.26 Q Q Q 1946 to 1959 ...................................

339

c8a.xls  

Gasoline and Diesel Fuel Update (EIA)

456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ... 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to...

340

c21a.xls  

Gasoline and Diesel Fuel Update (EIA)

... 10 21 19 850 1,851 1,233 11.6 11.2 Q Public Order and Safety ... 2 6 Q 231 390 Q 10.4 14.9 Q Religious Worship...

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

c38a.xls  

Gasoline and Diesel Fuel Update (EIA)

District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures Energy Information Administration 2003...

342

c37a.xls  

Annual Energy Outlook 2012 (EIA)

District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures Energy Information Administration 2003...

343

c6a.xls  

Gasoline and Diesel Fuel Update (EIA)

24,395 23,398 38,398 21,706 17.47 13.01 16.95 20.42 1.74 1.29 1.44 1.69 Building Floorspace (Square Feet) 1,001 to 5,000 ... 2,398 3,255 4,899 2,530...

344

c18a.xls  

Annual Energy Outlook 2012 (EIA)

66 254 57 5,523 13,837 3,546 12.0 18.3 16.2 Building Floorspace (Square Feet) 1,001 to 5,000 ... 10 28 7 821 1,233 481 12.4 22.4 15.4 5,001 to...

345

c26a.xls  

Gasoline and Diesel Fuel Update (EIA)

3,883 5,215 4,356 2,557 8.66 7.16 8.53 7.31 0.38 0.37 0.29 0.29 Building Floorspace (Square Feet) 1,001 to 5,000 ... 489 788 632 318 9.87 8.58 9.30...

346

c19a.xls  

Annual Energy Outlook 2012 (EIA)

Moun- tain Pacific All Buildings ... 141 68 117 8,634 4,165 8,376 16.3 16.3 14.0 Building Floorspace (Square Feet) 1,001 to 5,000...

347

c24a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings ... 803 42.0 17.9 37.4 71.0 6.3 0.33 7.86 Building Floorspace (Square Feet) 1,001 to 5,000 ... 220 78.6 23.8...

348

c31a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings ... 467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education ... Q 137...

349

c14a.xls  

Annual Energy Outlook 2012 (EIA)

Buildings ... 226 14.9 3.8 8.8 18.1 17.9 1.18 0.079 Building Floorspace (Square Feet) 1,001 to 5,000 ... 48 17.8...

350

c22a.xls  

Annual Energy Outlook 2012 (EIA)

Buildings ... 162 538 343 17,509 32,945 19,727 9.2 16.3 17.4 Building Floorspace (Square Feet) 1,001 to 5,000 ......

351

c2a.xls  

Annual Energy Outlook 2012 (EIA)

Buildings ... 4,859 71,658 107,897 82,783 16,010 1,826 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ......

352

c11a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings ... 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ......

353

c23a.xls  

Annual Energy Outlook 2012 (EIA)

that have the end use, not consumption specifically for that particular end use. HVAC Heating, Ventilation, and Air Conditioning. Due to rounding, data may not sum...

354

c5a.xls  

Gasoline and Diesel Fuel Update (EIA)

... 171 219 301 129 1,683 2,541 3,983 1,667 101.6 86.3 75.5 77.6 Food Sales ... Q 70 91 Q 238 320 487 Q Q 219.1 187.7 Q Food...

355

c4a.xls  

Gasoline and Diesel Fuel Update (EIA)

... 386 9,874 25.6 12,008 31.1 1.22 14.64 Food Sales ... 226 1,255 5.6 4,990 22.1 3.98 19.91 Food...

356

c3a.xls  

Annual Energy Outlook 2012 (EIA)

Education ... 386 9,874 25.6 820 2,125 83.1 Food Sales ... 226 1,255 5.6 251 1,110 199.7 Food Service...

357

c1a.xls  

Annual Energy Outlook 2012 (EIA)

that have the end use, not consumption specifically for that particular end use. HVAC Heating, Ventilation, and Air Conditioning. Due to rounding, data may not sum to...

358

c30a.xls  

Annual Energy Outlook 2012 (EIA)

33.0 25.6 76.8 Table C30A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zone a for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet)...

359

c20a.xls  

Gasoline and Diesel Fuel Update (EIA)

15.8 14.5 13.1 Q Table C20A. Electricity Consumption and Conditional Energy Intensity by Climate Zone a for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total...

360

c10a.xls  

Gasoline and Diesel Fuel Update (EIA)

Q 718 6,125 Q 95.1 78.8 96.4 63.5 Q Table C10A. Consumption and Gross Energy Intensity by Climate Zone a for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total...

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

c35a.xls  

Annual Energy Outlook 2012 (EIA)

to 2003 ... Q 18 Q 6 1,029 806 1,377 391 0.07 0.02 Q Q Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD...

362

c36a.xls  

Annual Energy Outlook 2012 (EIA)

to 2003 ... Q 21 Q Q 1.09 1.16 1.19 Q 0.07 0.03 Q Q Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD...

363

c33a.xls  

Annual Energy Outlook 2012 (EIA)

Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD...

364

c17a.xls  

Gasoline and Diesel Fuel Update (EIA)

41 131 168 3,430 10,469 12,202 12.0 12.5 13.8 Building Floorspace (Square Feet) 1,001 to 5,000 ... 5 9 20 369 662 921 12.9 13.9 21.9 5,001 to 10,000...

365

c1a.xls  

Gasoline and Diesel Fuel Update (EIA)

... 3,825 63,560 6,149 10,402 3,445 1,987 181 536 Buildings with Water Heating ... 3,659 62,827 6,158 10,202 3,379 2,035 218 525 Notes: Site...

366

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings ... 4,617 70,181 15.2 10,746 3,559...

367

c22a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings .................................... Buildings .................................... 162 538 343 17,509 32,945 19,727 9.2 16.3 17.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 24 54 38 2,072 2,767 1,640 11.4 19.4 23.0 5,001 to 10,000 ................................. 16 41 29 1,919 3,154 1,572 8.2 13.0 18.4 10,001 to 25,000 ............................... 28 69 45 3,201 5,610 3,683 8.7 12.3 12.2 25,001 to 50,000 ............................... 17 63 36 2,412 4,383 2,303 7.2 14.5 15.5 50,001 to 100,000 ............................. 16 78 59 2,095 4,763 3,406 7.8 16.4 17.3 100,001 to 200,000 ........................... 20 88 63 2,150 4,671 3,350 9.5 18.9 18.9 200,001 to 500,000 ........................... 22 61 29 2,054 3,623 1,692 10.6 16.8 17.2 Over 500,000 .................................... 19 84 44 1,606 3,974 2,080 11.6 21.1

368

c8a.xls  

Gasoline and Diesel Fuel Update (EIA)

456 456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to 10,000 ................................. 45 111 27 738 1,468 420 61.6 75.4 63.2 10,001 to 25,000 ............................... 71 145 74 1,204 2,443 861 59.0 59.3 Q 25,001 to 50,000 ............................... 107 133 Q 949 1,867 545 112.5 71.1 Q 50,001 to 100,000 ............................. 66 163 71 664 1,797 749 99.0 90.4 95.1 100,001 to 200,000 ........................... 49 278 Q 614 2,422 Q 79.8 114.8 Q 200,001 to 500,000 ........................... Q 118 Q 441 1,148 Q Q 102.4 Q Over 500,000 .................................... Q 171 Q Q 1,572 Q Q 109.0 Q Principal Building Activity Education .......................................... 45 198 Q

369

c12a.xls  

Gasoline and Diesel Fuel Update (EIA)

1,522 3,228 1,772 18,031 33,384 20,243 84.4 96.7 87.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................. 193 300 193 2,168 2,904 1,850 89.0 103.2 104.2 5,001 to 10,000 ............................... 134 263 165 2,032 3,217 1,784 66.0 81.9 92.5 10,001 to 25,000 ............................. 241 432 226 3,273 5,679 3,707 73.6 76.1 60.9 25,001 to 50,000 ............................. 181 370 191 2,517 4,518 2,347 71.8 81.8 81.5 50,001 to 100,000 ............................ 156 473 285 2,095 4,763 3,433 74.3 99.3 82.9 100,001 to 200,000 .......................... 219 523 323 2,161 4,706 3,350 101.1 111.1 96.5 200,001 to 500,000 .......................... 221 371 160 2,179 3,623 1,692 101.4 102.3 94.3 Over 500,000 ................................... 179 497 Q 1,606 3,974 2,080 111.2 125.0 Q Principal Building Activity

370

c31a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings .................................... Buildings .................................... 467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education .......................................... Q 137 101 419 3,629 2,997 53.9 37.6 33.7 Food Sales ....................................... 16 Q Q 339 Q Q 46.6 Q Q Food Service ..................................... 149 48 N 774 622 N 192.5 77.2 N Health Care ....................................... 12 37 187 233 520 1,792 49.5 70.8 104.4 Inpatient .......................................... N Q 181 N Q 1,662 N Q 109.0 Outpatient ....................................... 12 20 Q 233 377 Q 49.5 52.3 Q Lodging ............................................. Q 83 113 Q 1,750 2,374 Q 47.6 47.4 Mercantile ......................................... 60 134 61 1,094 3,572 3,205 55.2 37.6 19.1 Retail (Other Than Mall) ..................

371

c24a.xls  

Gasoline and Diesel Fuel Update (EIA)

Buildings .................................. Buildings .................................. 803 42.0 17.9 37.4 71.0 6.3 0.33 7.86 Building Floorspace (Square Feet) 1,001 to 5,000 ................................. 220 78.6 23.8 46.8 92.0 2.0 0.70 8.93 5,001 to 10,000 ............................... 410 54.8 15.0 29.6 66.2 3.4 0.46 8.41 10,001 to 25,000 ............................. 685 43.8 16.2 31.0 55.9 5.8 0.37 8.45 25,001 to 50,000 ............................. 1,464 40.9 16.0 31.0 55.4 11.1 0.31 7.60 50,001 to 100,000 ............................ 2,519 35.8 10.8 28.6 48.9 20.1 0.29 7.97 100,001 to 200,000 .......................... 4,898 35.4 6.4 23.8 51.9 36.1 0.26 7.36 200,001 to 500,000 .......................... 10,109 34.7 10.0 23.2 47.2 69.1 0.24 6.83 Over 500,000 ................................... 34,579 36.4 4.0 17.5 48.8 239.4 0.25 6.92 Principal Building Activity

372

c38a.xls  

Gasoline and Diesel Fuel Update (EIA)

Building Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings .................................... 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... Q Q Q Q Q 5,001 to 10,000 ................................. Q Q Q Q Q 10,001 to 25,000 ............................... Q Q Q Q Q 25,001 to 50,000 ............................... Q Q Q Q Q 50,001 to 100,000 ............................. Q Q Q Q Q 100,001 to 200,000 ........................... 17,452 118.10 Q Q Q 200,001 to 500,000 ........................... 34,658 121.16 Q Q Q Over 500,000 .................................... 77,419 93.60 834.8 1.01 10.78 Principal Building Activity Education .......................................... 5,223 116.63 Q Q Q Food Sales .......................................

373

eia757a.xls  

U.S. Energy Information Administration (EIA) Indexed Site

- 1 2 3 Operator Company: PART 3. CONTACTS Section A: Contact information during an emergency (such as a hurricane): Processing Plant Operations Contact: Secondary Contact:...

374

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

375

Mobile Autonomous Vehicle Obstacle Detection and ...  

Science Conference Proceedings (OSTI)

... vehicles from different manufacturers and to ... for Automated Guided Vehicle Safety Standards ... Control of Manufacturing Vehicles Research Towards ...

2013-01-11T23:59:59.000Z

376

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

377

Vehicle Technologies Office: Ultracapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

converter, which would increase the cost of the vehicle. The use of ultracapacitors for regenerative braking can greatly improve fuel efficiency under stop-and-go urban driving...

378

MOTOR VEHICLE MANUFACTURING TECHNOLOGY  

Science Conference Proceedings (OSTI)

... about half of the value added in light vehicles ... Selected Program White Papers. ... This white paper defines a program which supports the development ...

2011-10-19T23:59:59.000Z

379

VEHICLE TECHNOLOGIES PROGRAM - Energy  

75 vehicle technologies program ed wall, program manager ed.wall@ee.doe.gov (202) 586-8055 venture capital technology showcase aug 21 and 22, 2007

380

Electric Vehicle Public Charging -  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Public Charging - Time vs. Energy March, 2013 A critical factor for successful PEV adoption is the deployment and use of charging infrastructure in non-...

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electric Vehicle Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

A98 0577 Electric Vehicle Fleet Operations in the United States Jim Francfort Presented to: 31st International Symposium on Automotive Technology and Automation Dusseldorf, Germany...

382

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

383

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

384

Vehicle Technologies Program Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program Awards Vehicle Technologies Program Awards vtpnum.zip More Documents & Publications Advanced Vehicle Technologies Awards Table Advanced Vehicle...

385

Vehicle Technologies Program (EERE) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) information about the Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) More Documents...

386

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Vehicles Inc Jump to: navigation, search Name American Electric Vehicles Inc Place Palmer Lake, Colorado Zip 80133 Sector Vehicles Product American Electric Vehicles (AEV) builds...

387

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

388

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

389

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

390

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

391

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

392

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Fleet and Reliability Test Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Fleet and Reliability Test...

393

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...

394

Vehicle Technologies Office: Fact #322: May 31, 2004 Hybrid Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: May 31, 2004 Hybrid Vehicle Registrations to someone by E-mail Share Vehicle Technologies Office: Fact 322: May 31, 2004 Hybrid Vehicle Registrations on Facebook Tweet about...

395

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C67BS004466 Electric Machine 1 : 10 kW (peak), permanent magnet...

396

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C64BS002982 Electric Machine 1 : 10 kW (peak), permanent magnet...

397

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

398

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

399

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Research and Development to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Research and Development on Facebook Tweet about...

400

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Powertrain & Vehicle Research Centre  

E-Print Network (OSTI)

the engine, transmission and aftertreatment systems. Optimising such a system for ultra low fuel consumption emulating hardware in the test cell environment Engine testing becomes a combination of real world and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine Vehicle

Burton, Geoffrey R.

402

Fuel and emission impacts of heavy hybrid vehicles.  

DOE Green Energy (OSTI)

Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

An, F.; Eberhardt, J. J.; Stodolsky, F.

1999-03-02T23:59:59.000Z

403

Optimum flywheel sizing for parallel and series hybrid vehicles  

DOE Green Energy (OSTI)

Flywheels have the possibility of providing high turnaround efficiency and high specific power output. These characteristics are very important for the successful manufacture of parallel and series hybrid vehicles, which have the potential for providing high fuel economy and very low emissions with range and performance comparable to today`s light-duty vehicles. Flywheels have a high specific power output, but relatively low specific energy output. Therefore, it is of importance to determine energy and power requirements for flywheels applied to light-duty vehicles. Vehicle applications that require an energy storage system with high power and low energy are likely to benefit from a flywheel. In this paper, a vehicle simulation code and a flywheel model are applied to the calculation of optimum flywheel energy storage capacity for a parallel and a series hybrid vehicle. A conventional vehicle is also evaluated as a base-case, to provide an indication of the fuel economy gains that can be obtained with flywheel hybrid vehicles. The results of the analysis indicate that the optimum flywheel energy storage capacity is relatively small. This results in a low weight unit that has a significant power output and high efficiency. Emissions generated by the hybrid vehicles are not calculated, but have the potential of being significantly lower than the emissions from the conventional car.

Aceves, S.M.; Smith, J.R.

1996-12-20T23:59:59.000Z

404

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

405

Advanced Vehicle Testing Activity - Hybrid Electric Vehicle and...  

NLE Websites -- All DOE Office Websites (Extended Search)

max speed, braking, & handling DOE - Advanced Vehicle Testing Activity Hybrid Electric Vehicle Testing * Fleet and accelerated reliability testing - 6 Honda Insights...

406

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

are substantially higher, particularly for the Toyota Prius.In 2004, Toyota updated the Prius, introducing a larger,vehicles, including the Toyota Prius. Vehicle 2004 Sales (11

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

407

NREL: Vehicles and Fuels Research - 2013 Vehicle Buyer's Guide...  

NLE Websites -- All DOE Office Websites (Extended Search)

options, including hybrids, flex-fuel vehicles, and vehicles that run on natural gas, propane, electricity, or biodiesel. In addition to a comprehensive list of this year's...

408

Advanced Vehicle Testing Activity - Full Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Size Electric Vehicles What's New Baseline Performance Testing for 2011 Nissan Leaf Battery Testing for 2011 Nissan Leaf - When New The Advanced Vehicle Testing Activity...

409

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

410

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

411

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

412

Propane Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Propane Vehicles August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are...

413

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

414

Vehicle body cover  

SciTech Connect

This patent describes a vehicle body covered with a vehicle body cover which comprises: a front cover part, a rear cover part, a pair of side cover parts, and a roof cover part: the front cover part having portions adapted to cover only a hood, an area around a windshield and tops of front fenders of a vehicle body. The portion covering the hood is separated from the portions covering the tops of the fenders by cuts in the front cover part, the front cover part having an un-cut portion corresponding to a position at which the hood is hinged to the car body. The front cover part has a cut-out at a position corresponding to the windshield of the vehicle body and the front cover part has at least one cut-out at a position corresponding to where a rear view mirror is attached to the vehicle body; and the rear cover part having portions adapted to cover an area around a rear window, a trunk lid and a rear end of the vehicle body, the portion covering the trunk lid separated from the rest of the rear cover part by cuts corresponding to three sides of the trunk lid and an un-cut portion corresponding to a position at which the trunk lid is hinged to the vehicle body. The rear cover part has a hole at position corresponding to a trunk lid lock, a cut-out portion at a position corresponding to the rear window of the vehicle body, a cut-out at a position corresponding to a license plate of the vehicle body and cut-outs at positions corresponding to rear taillights of the vehicle body.

Hirose, T.

1987-01-13T23:59:59.000Z

415

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

416

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

417

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

418

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

419

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

420

Electric Vehicle Field Operations Program  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle performance information. The final product is a report describing energy use, miles driven, maintenance requirements, and overall vehicle performance. Fleet Testing....

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EERE: Vehicle Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Site Map Printable Version Share this resource Send a link to EERE: Vehicle Technologies Office - Webmaster to someone by E-mail Share EERE: Vehicle Technologies Office -...

422

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

423

Vehicle Technologies Office: Workforce Development  

NLE Websites -- All DOE Office Websites (Extended Search)

electric vehicle supply equipment (EVSE, also known as electric vehicle chargers). EVSE Residential Charging Installation introductory videos: Clean Cities provides a video...

424

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

425

Motor Vehicle Parts Compliance Requirements  

Science Conference Proceedings (OSTI)

... The OVSC compliance testing program is a strong incentive for manufacturers of motor vehicles and items of motor vehicle equipment to ...

2012-09-24T23:59:59.000Z

426

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in...

427

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

Electric vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred...

428

Load calculation and system evaluation for electric vehicle climate control  

DOE Green Energy (OSTI)

Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

Aceves-Saborio, S.; Comfort, W.J. III

1993-10-27T23:59:59.000Z

429

Lightweight materials in the light-duty passenger vehicle market: Their market penetration potential and impacts  

DOE Green Energy (OSTI)

This paper summarizes the results of a lightweight materials study. Various lightweight materials are examined and the most cost effective are selected for further analysis. Aluminum and high-performance polymer matrix composites (PMCS) are found to have the highest potential for reducing the weight of automobiles and passenger-oriented light trucks. Weight reduction potential for aluminum and carbon fiber-based PMCs are computed based on a set of component-specific replacement criteria (such as stiffness and strength), and the consequent incremental cost scenarios are developed. The authors assume that a materials R and D program successfully reduces the cost of manufacturing aluminum and carbon fiber PMC-intensive vehicles. A vehicle choice model is used to project market shares for the lightweight vehicles. A vehicle survival and age-related usage model is employed to compute energy consumption over time for the vehicle stock. After a review of projected costs, the following two sets of vehicles are characterized to compete with the conventional materials vehicles: (1) aluminum vehicles with limited replacement providing 19% weight reduction (AIV-Mid), and (2) aluminum vehicles with the maximum replacement providing 31% weight reduction (AIV-Max). Assuming mass-market introduction in 2005, the authors project a national petroleum energy savings of 3% for AIV-Mid and 5% for AIV-Max in 2030.

Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States); Vyas, A.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

1995-06-01T23:59:59.000Z

430

VEHICLE ACCESS PORTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

431

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

432

Blast resistant vehicle seat  

DOE Patents (OSTI)

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

433

Understanding Corn Test Weight  

E-Print Network (OSTI)

Corn test weight (TW) is an often discussed topic of conversation among corn growers. The topic moves to the forefront in years when corn has been stressed at some point during the grain filling period or when the growing season is ended by frost before physiological maturity is reached. In many cases, the concept of test weight is misunderstood. Test weight is volumetric measurement. An official bushel measures 1.244 cubic feet. To measure TW, we usually take the weight of some smaller unit of measure and make a conversion. The official minimum allowable TW for U.S. No. 1 yellow corn is 56 lbs. per bushel, while No. 2 corn is 54 lbs. per bushel. It's unknown how this all started hundreds of years ago, but perhaps it was easier and more fair to sell things based on volume (length x width x height), something a person could see, instead of weight. Today, of course, corn is sold by weight and often in 56-pound blocks that we, for some reason, still call a bushel. Because weight is contingent on moisture content, grain buyers base their price on a "standard " moisture of (usually) 15 or 15.5 percent. Test weight and yield... Sometimes high TW is associated with high grain yield and low TW is associated with low grain yield. In fact, there is a poor relationship between TW and yield. The same TW can exist across a

Mike Rankin

2009-01-01T23:59:59.000Z

434

Search for Model Year 2013 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

435

Search for Model Year 2012 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

436

Search for Model Year 2011 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

437

Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2009 DOE Hydrogen Program and

438

Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2010 DOE Hydrogen Program and

439

Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DOE Hydrogen 1 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2011 DOE Hydrogen Program and

440

Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

3: September 9, 3: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries to someone by E-mail Share Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Facebook Tweet about Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Twitter Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Google Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Delicious Rank Vehicle Technologies Office: Fact #233: September 9, 2002

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

442

VEHICLE SPECIFICATIONS Vehicle Features Base Vehicle: 2010 Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Honda Civic Hybrid VIN: JHMFA3F24AS005577 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Regenerative Braking Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD State of Charge Meter 1 Weights Design Curb Weight: 2877 lb Delivered Curb Weight: 2982 lb Distribution F/R (%): 57/43 GVWR: 3792 lb GAWR F/R: 1973/1841 lb Payload 2 : 810 lb Performance Goal: 400 lb Dimensions Wheelbase: 106.3 in Track F/R: 59.1/60.2 in Length: 177.3 in Width: 69.0 in Height: 56.3 in Ground Clearance: 6.0 in Performance Goal: 5.0 in Tires Manufacturer: Bridgestone

443

VEHICLE SPECIFICATIONS Vehicle Features Base Vehicle: 2010 Smart  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Smart Fortwo MHD VIN: WME4513341K406476 Seatbelt Positions: 2 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Drum Brakes Rear Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD player Weights Design Curb Weight:1,818 lb Delivered Curb Weight: 1.742 lb Distribution F/R (%):44/56 GVWR: 2,244 lb GAWR F/R: 968/1,452 lb Payload 1 : 426 lb Performance Goal: 400 lb Dimensions Wheelbase: 73.5 in Track F/R: 50.5/54.5 in Length: 106.1 in Width: 61.4 in Height: 60.7 in Ground Clearance: 6.25 in Performance Goal: 5.0 in Tires Manufacturer: Continental Model: ContiproContact Size: Front -P155/60/R15

444

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

445

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

446

Vehicle Technologies Office: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

in light-duty vehicles (including passe Details Bookmark & Share View Related Clean Cities Now Vol. 17, No. 2 The Fall 2013 issue of the biannual newsletter for the U.S....

447

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

448

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 416...

449

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2,405,406 Average Ambient Temperature (deg F) 61.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 355...

450

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

451

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

452

Materials - Vehicle Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

end-of-life vehicles are shredded, along with other metal bearing items such as home appliances, process equipment and demolition debris, and their metals content is recovered for...

453

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

454

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

local gasoline taxes ($/gal) This is equal to total motorgasoline tax in cents/mi) Vehicle efficiency parameters: input data 0.89 0.89 Once-through efficiency of electric motor,

Delucchi, Mark

1992-01-01T23:59:59.000Z

455

Household Vehicles Energy Consumption  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

Mark Schipper

2005-11-30T23:59:59.000Z

456

Electric Vehicle Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure JOHN DAVIS: Nearly everyone who owns a plug-in electric vehicle has some capacity to replenish the battery at home, either with a dedicated 220-volt charger, or by...

457

Vehicle Management Driver Safety Program  

E-Print Network (OSTI)

in the city of La Rochelle [1], using fully automated electric and communicating road vehicles, better known campus was implemented using fully automated electric and communicating vehicles. The vehicles behavior. Safety Autonomous vehicles may need to stop in a progressive way in the case of obstacles in the way

Machel, Hans

458

A desiccant dehumidifier for electric vehicle heating  

DOE Green Energy (OSTI)

Vehicle heating requires a substantial amount of energy. Engines in conventional cars produce enough waste heat to provide comfort heating and defogging/defrosting, even under very extreme conditions. Electric vehicles (EVs), however, generate little waste heat. Using battery energy for heating may consume a substantial fraction of the energy storage capacity, reducing the vehicle range, which is one of the most important parameters in determining EV acceptability. Water vapor generated by the vehicle passengers is in large part responsible for the high heating loads existing in vehicles. In cold climates, the generation of water vapor inside the car may result in water condensation on the windows, diminishing visibility. Two strategies are commonly used to avoid condensation on windows: windows are kept warm, and a large amount of ambient air is introduced in the vehicle. Either strategy results in a substantial heating load. These strategies are often used in combination, and a trade-off exists between them. If window temperature is decreased, ventilation rate has to be increased. Reducing the ventilation rate requires an increase of the temperature of the windows to prevent condensation. An alternative solution is a desiccant dehumidifier, which adsorbs water vapor generated by the passengers. Window temperatures and ventilation rates can then be reduced, resulting in a substantially lower heating load. This paper explores the dehumidifier heating concept. The first part shows the energy savings that could be obtained by using this technology. The second part specifies the required characteristics and dimensions of the system. The results indicate that the desiccant system can reduce the steady-state heating load by 60% or more under typical conditions. The reduction in heating load is such that waste heat may be enough to provide the required heating under most ambient conditions. Desiccant system dimensions and weight appear reasonable for packaging in an EV.

Aceves, S.M.; Smith, J.R.

1996-09-01T23:59:59.000Z

459

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

460

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

462

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

463

A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)  

Science Conference Proceedings (OSTI)

A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is ...

MacConochie Ian O.

2000-10-01T23:59:59.000Z

464

MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPRESSED NATURAL GAS VEHICLES ... 5 LIQUEFIED PETROLEUM GAS (PROPANE) VEHICLES ...... 5 DIESEL VEHICLES ......

465

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle  

SciTech Connect

In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

1997-02-01T23:59:59.000Z

466

GRR/Section 6-CO-a - Extra-Legal Vehicle Permitting Process | Open Energy  

Open Energy Info (EERE)

6-CO-a - Extra-Legal Vehicle Permitting Process 6-CO-a - Extra-Legal Vehicle Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-CO-a - Extra-Legal Vehicle Permitting Process 06COAExtraLegalVehiclePermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Department of Transportation Regulations & Policies Rules and Regulations of the Colorado Department of Transportation Pertaining to Transport Permits for the Movement of Extra-Legal Vehicles or Loads C.R.S § 42-4-505: Longer Vehicle Combinations C.R.S § 42-4-510: Permits for Excess Size and Weight Triggers None specified Click "Edit With Form" above to add content 06COAExtraLegalVehiclePermittingProcess.pdf Error creating thumbnail: Page number not in range.

467

Near-term electric test vehicle ETV-2. Phase II. Final report  

DOE Green Energy (OSTI)

A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

Not Available

1981-04-01T23:59:59.000Z

468

Weighted Association Rule Mining using weighted support and significance framework  

Science Conference Proceedings (OSTI)

We address the issues of discovering significant binary relationships in transaction datasets in a weighted setting. Traditional model of association rule mining is adapted to handle weighted association rule mining problems where each item is allowed ... Keywords: WARM algorithm, Weighted Association Rule Mining, significant relationship, weighted downward closure property, weighted support

Feng Tao; Fionn Murtagh; Mohsen Farid

2003-08-01T23:59:59.000Z

469

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

470

Advanced Vehicle Testing Activity: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

471

Vehicle Technologies Office: 2009 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

472

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

473

Vehicle Technologies Office: Active Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Solicitations to Active Solicitations to someone by E-mail Share Vehicle Technologies Office: Active Solicitations on Facebook Tweet about Vehicle Technologies Office: Active Solicitations on Twitter Bookmark Vehicle Technologies Office: Active Solicitations on Google Bookmark Vehicle Technologies Office: Active Solicitations on Delicious Rank Vehicle Technologies Office: Active Solicitations on Digg Find More places to share Vehicle Technologies Office: Active Solicitations on AddThis.com... Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage

474

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

475

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

476

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing Activity:...

477

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles The Advanced Vehicle Testing Activity (AVTA) is tasked by the U.S. Department of Energy's (DOE) Vehicle Technology Office (VTO) to conduct...

478

The Evolution of Sustainable Personal Vehicles  

E-Print Network (OSTI)

Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

Jungers, Bryan D

2009-01-01T23:59:59.000Z

479

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name Miles Electric Vehicles Place Santa Monica, California Zip 90405 Sector Vehicles Product California-based developer of...

480

Solar Electrical Vehicles | Open Energy Information  

Open Energy Info (EERE)

California Zip 91361 Sector Solar, Vehicles Product US-based manufacturer of solar battery chargers for hybrid vehicles. References Solar Electrical Vehicles1 LinkedIn...

Note: This page contains sample records for the topic "vehicle axle weight" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Commercial Motor Vehicle Brake-Related Research  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

482

Middleware for Cooperative Vehicle-Infrastructure Systems  

E-Print Network (OSTI)

Cooperative vehicle-infrastructure systems." COM Safety:of Transportation. Vehicle-Infrastructure Integration (VII).for Cooperative Vehicle-Infrastructure Systems Christian

Manasseh, Christian; Sengupta, Raja

2008-01-01T23:59:59.000Z

483

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

in the last century. Hybrid electric vehicles (HEVs) reduceon their design, hybrid electric vehicles employ electricof this paper, hybrid electric vehicles are a broad set of

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

484

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Vehicle Coalition Jump to: navigation, search Name US Ethanol Vehicle Coalition Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is the...

485

Social Implications of Vehicle Choice and Use  

E-Print Network (OSTI)

Prices by Vehicle Type and Manufacturer Fuel Efficient andto understand how vehicle manufacturers and dealers sharePrices by Vehicle Type and Manufacturer Section 3.4. Section

Langer, Ashley Anne

2010-01-01T23:59:59.000Z

486

What's a hydrogen blended fueled vehicle?  

NLE Websites -- All DOE Office Websites (Extended Search)

available for testing. However, development of fuel cell vehicles continues in earnest by vehicle manufacturers and other groups such as DOE's FreedomCar & Vehicle Technologies...

487

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

the first green vehicle, manufacturers created the first market for safety in vehicles, manufacturers were initiallymanufacturers are convinced that car buyers are interested in green vehicles and

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

488

Front Vehicle Setup Information Downloadable Dynamometer Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Volt- 20F Test cell location Front Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture EREV Vehicle dynamometer...

489

California's Zero-Emission Vehicle Mandate  

E-Print Network (OSTI)

in a Shared Electric Vehicle Program. In Transporta- tionadvanced technologies and electric vehicles i n Japan. Earlysur vey. Nearly 50 electric vehicles were used, including

Shaheen, Susan

2004-01-01T23:59:59.000Z

490

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

2001-01-01T23:59:59.000Z

491

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

492

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Preferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Neighborhood Electric Vehicle Workshop Proceedings While

Lipman, Timothy

1994-01-01T23:59:59.000Z

493

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Preferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Ro Warf Pacific Electric Vehicles Research and Development

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

494

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

to protect the electric vehicle industry and limit liabilityElectric Vehicle Workshop brought together leaders from industry,duty electric vehicles. To provide flexibility to industry

Lipman, Timothy

1994-01-01T23:59:59.000Z

495

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Safety...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas |...

496

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

gasoline vehicles, hybrid electric vehicles, aircraft, high-Gasoline Vehicle (CGV), Hybrid Electric Vehicle (HEV),Plug-in Hybrid Electric Vehicle (PHEV), and Battery Electric

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

497

Hybrid electric vehicles TOPTEC  

SciTech Connect

This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

1994-06-21T23:59:59.000Z

498

Vehicle brake testing system  

SciTech Connect

This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

2002-11-19T23:59:59.000Z

499

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

500

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems