National Library of Energy BETA

Sample records for vehicle afv conversion

  1. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  2. Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-DutyCELLs more and

  3. Vehicle Technologies Office Merit Review 2014: Clean Fuels Ohio’s Fast Track to AFV Adoption in Ohio

    Broader source: Energy.gov [DOE]

    Presentation given by Clean Fuels Ohio at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Clean Fuels Ohio’s fast...

  4. ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel vehicles (FFV). A FFV is capable of operating on

    E-Print Network [OSTI]

    Kirschner, Denise

    vehicles (FFV). A FFV is capable of operating on unleaded, E85 (85% ethanol, 15% unleaded) or a mixture of 1992 (EPACT). Although FFV's fuel economy on E85 is somewhat less than when operating on gasoline is used. Using E85 also reduces CO2 emissions and provides significant reductions in emissions of many

  5. Fact #633: July 26, 2010 Alternative Fuel Vehicles

    Broader source: Energy.gov [DOE]

    The Energy Information Administration publishes estimates of the number of alternative fuel vehicles (AFVs) in use. Vehicles running on E85 make up the majority of AFVs, with 450,327 vehicles in...

  6. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01

    Infrastructure F. Current California CNG Vehicle UseCharacteristics of CNG Vehicles Review of Previous Studies/RP) Studies of AFVs/CNG Vehicles i. British Columbia, Canada

  7. Validating the role of AFVs in voluntary mobile source emission reduction programs.

    SciTech Connect (OSTI)

    Santini, D. J.; Saricks, C. L.

    1999-03-17

    Late in 1997, EPA announced new allowances for voluntary emission control programs. As a result, the US Department of Energy's (DOE) Clean Cities and other metro areas that have made an ongoing commitment to increasing participation by alternative fuel vehicles (AFVs) in local fleets have the opportunity to estimate the magnitude and obtain emission reduction credit for following through on that commitment. Unexpectedly large reductions in key ozone precursor emissions in key locations and times of the day can be achieved per vehicle-mile by selecting specific light duty AFV offerings from original equipment manufacturers (OEMs) in lieu of their gasoline-fueled counterparts. Additional benefit accrues from the fact that evaporative emissions of non-methane hydrocarbons (generated in the case of CNG, LNG, and LPG by closed fuel-system AFV technology) can be essentially negligible. Upstream emissions from fuel storage and distribution with the airshed of interest are also reduced. This paper provides a justification and outlines a method for including AFVs in the mix of strategies to achieve local and regional improvements in ozone air quality, and for quantifying emission reduction credits. At the time of submission of this paper, the method was still under review by the US EPA Office of Mobile Sources, pending mutually satisfactory resolution of several of its key points. Some of these issues are discussed in the paper.

  8. ChargeCar Community Conversions: Practical, Electric Commuter Vehicles Now!

    E-Print Network [OSTI]

    ChargeCar Community Conversions: Practical, Electric Commuter Vehicles Now! H. Ben Brown, Illah-range electric commuter vehicles (EVs) is here now! The ChargeCar project at Carnegie Mellon University aims to exploit today's technology to make efficient, clean, quiet, commuter electric vehicles avail- able

  9. AFV Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |RecentSulfonateAFV Solutions Inc Jump to:

  10. Is there an NGV technician in the house. [Natural Gas Vehicle

    SciTech Connect (OSTI)

    Donald, R.L.

    1994-09-01

    Passage of the Clean Air Act Amendments in 1990, along with the law's requirements for reducing automotive emissions, meant the climate for alternative-fueled vehicles (AFVs) was set for rapid growth. Two years later, the national Energy Policy Act (EPAct) essentially doubled fleet-conversion requirements and considerably expanded the number of those affected by the mandates. In only four years after passage--1996--EPAct requires 25 percent of all federal and 10 percent of all state fleets to run on alternative fuels. Realizing the importance of developing a properly trained pool of technicians to convert and service AFVs, the nonprofit Alliance for Environmental Education approached A.G.A. with a proposal to set up a national center for AFV training. Enter West Virginia University (WVU) and its National Research Center for Coal and Energy (NRCCE). In October 1992, Congress appropriated a grant to set up such a center and gave oversight

  11. Analysis and calibration of social factors in a consumer acceptance and adoption model for diffusion of diesel vehicle in Europe

    E-Print Network [OSTI]

    Zhang, Qi, S.M. Massachusetts Institute of Technology

    2008-01-01

    While large scale diffusion of alternative fuel vehicles (AFVs) is widely anticipated, the mechanisms that determine their success or failure are ill understood. Analysis of an AFV transition model developed at MIT has ...

  12. Alternative Fuels Data Center: Vehicle Conversion Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is on in St.

  13. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect (OSTI)

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  14. Alternative fuel information: Facts about CNG and LPG conversion

    SciTech Connect (OSTI)

    O`Connor, K.

    1994-06-01

    As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

  15. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  16. Vehicle Technologies Office- AVTA: All Electric USPS Long Life Vehicle Conversions

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following set of reports (part of the medium and heavy-duty truck data) describes performance data collected from all-electric conversions of U.S. Postal Service (USPS) Long-Life Vehicles. This research was conducted by Idaho National Laboratory, which has several additional reports available.

  17. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect (OSTI)

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  18. AVTA: Testing Results on the USPS Long-life Vehicle Conversions...

    Energy Savers [EERE]

    and development. The following reports describe results of testing conversions to all-electric vehicles of the U.S. Postal Service's standard Long-Life Vehicle used for postal...

  19. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  20. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  1. Perspectives on AFVs: 1996 Federal Fleet Manager Survey

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter toTRUCKS

  2. Managing the transition toward self-sustaining alternative fuel vehicle markets : policy analysis using a dynamic behavioral spatial model

    E-Print Network [OSTI]

    Supple, Derek R. (Derek Richard)

    2007-01-01

    Designing public policy or industry strategy to bolster the transition to alternative fuel vehicles (AFVs) is a formidable challenge as demonstrated by historical failed attempts. The transition to new fuels occurs within ...

  3. Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Blazek, C.F.; Rowley, P.F.; Grimes, J.W.

    1995-07-01

    The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

  4. Summary of results from the National Renewable Energy Laboratory`s vehicle evaluation data collection efforts

    SciTech Connect (OSTI)

    Whalen, P.; Kelly, K.; Motta, R.; Broderick, J.

    1996-05-01

    The U.S. DOE National Renewable Energy Laboratory conducted a data collection project for light-duty, alternative fuel vehicles (AFVs) for about 4 years. The project has collected data on 10 vehicle models (from the original equipment manufacturers) spanning model years 1991 through 1995. Emissions data have also been collected from a number of vehicles converted to natural gas (CNG) and liquefied petroleum gas (LPG). Most of the vehicles involved in the data collection and evaluation are part of the General Services Administration`s fleet of AFVs. This evaluation effort addressed the performance and reliability, fuel economy, and emissions of light- duty AFVs, with comparisons to similar gasoline vehicles when possible. Driver-reported complaints and unscheduled vehicle repairs were used to assess the performance and reliability of the AFVs compared to the comparable gasoline vehicles. Two sources of fuel economy were available, one from testing of vehicles on a chassis dynamometer, and the other from records of in-service fuel use. This report includes results from emissions testing completed on 169 AFVs and 161 gasoline control vehicles.

  5. Optimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required by

    E-Print Network [OSTI]

    US Army Corps of Engineers

    's Alternative Fuels and Advanced Vehicles Data Center: http://www.afdc.energy.gov/afdc/locator/stations/ which by Presidential Memorandum ­ Federal Fleet Performance, 24 May 2011 Alternative Fuel Vehicles (AFV): A) USACE hasOptimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required

  6. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  7. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  8. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  9. Alternative fuel vehicles for the state fleets: Results of the 5-year planning process

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

  10. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  11. Cost-effectiveness of freeway median high occupancy vehicle (HOV) facility conversion to rail guideway transit 

    E-Print Network [OSTI]

    Best, Matthew Evans

    1996-01-01

    Many freeways in the United States contain median high occupancy vehicle (HOV) facilities. These facilities have been envisioned by some as reserved space for future rail guideway transit. This thesis examines the cost-effectiveness of converting a...

  12. Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Bass, E.A.

    1993-06-01

    SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

  13. Model curriculum outline for Alternatively Fueled Vehicle (AFV) automotive technician training in light and medium duty CNG and LPG

    SciTech Connect (OSTI)

    1997-04-01

    This model curriculum outline was developed using a turbo-DACUM (Developing a Curriculum) process which utilizes practicing experts to undertake a comprehensive job and task analysis. The job and task analysis serves to establish current baseline data accurately and to improve both the process and the product of the job through constant and continuous improvement of training. The DACUM process is based on the following assumptions: (1) Expert workers are the best source for task analysis. (2) Any occupation can be described effectively in terms of tasks. (3) All tasks imply knowledge, skills, and attitudes/values. A DACUM panel, comprised of six experienced and knowledgeable technicians who are presently working in the field, was given an orientation to the DACUM process. The panel then identified, verified, and sequenced all the necessary job duty areas and tasks. The broad duty categories were rated according to relative importance and assigned percentage ratings in priority order. The panel then rated every task for each of the duties on a scale of 1 to 3. A rating of 3 indicates an {open_quotes}essential{close_quotes} task, a rating of 2 indicates an {open_quotes}important{close_quotes} task, and a rating of 1 indicates a {open_quotes}desirable{close_quotes} task.

  14. Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  16. Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

  17. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  18. Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane

    SciTech Connect (OSTI)

    Santini, D.J.; Saricks, C.L.

    1998-08-04

    Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled for gasoline-fueled heavy-duty vehicles. Finally, it raises and expands on the relevance of AFVs and their deployment to some other provisions embedded in EPA`s current guidance for implementing 1-hour NAAQS--standards which currently remain in effect--as tools to provide immediate reductions in ozone, without waiting for promised future clean technologies.

  19. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  20. AFV CoverSheet

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL(Technicalentanglements forusing LSST Photondistributions Los

  1. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  2. NOVA-NREL Optimal Vehicle Acquisition Analysis (Brochure)

    SciTech Connect (OSTI)

    Blakley, H.

    2011-03-01

    Federal fleet managers face unique challenges in accomplishing their mission - meeting agency transportation needs while complying with Federal goals and mandates. Included in these challenges are a variety of statutory requirements, executive orders, and internal goals and objectives that typically focus on petroleum consumption and greenhouse gas (GHG) emissions reductions, alternative fuel vehicle (AFV) acquisitions, and alternative fuel use increases. Given the large number of mandates affecting Federal fleets and the challenges faced by all fleet managers in executing day-to-day operations, a primary challenge for agencies and other organizations is ensuring that they are as efficient as possible in using constrained fleet budgets. An NREL Optimal Vehicle Acquisition (NOVA) analysis makes use of a mathematical model with a variety of fleet-related data to create an optimal vehicle acquisition strategy for a given goal, such as petroleum or GHG reduction. The analysis can helps fleets develop a vehicle acquisition strategy that maximizes petroleum and greenhouse gas reductions.

  3. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  4. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Driver Experience Project Multi-alternative fuel vehicle (AFV) demonstration project: CNG, LPG, and Hybrid-Electric. Penske will deploy the AFV vehicles at its full-service...

  5. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  6. Thermoelectric Conversion of Wate Heat to Electricity in an IC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

  7. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unit in an over-the-road truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle...

  8. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using thermoelectrics on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  9. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  10. Natural gas/diesel conversions - the outlook

    SciTech Connect (OSTI)

    Fiore, V.B.; Joyce, T.J.

    1986-01-01

    High conversion costs and technical inadequacies of available equipment have limited diesel to compressed natural gas (CNG) conversions, a process which can use either fumigation, pilot oil injection, or spark-ignition for vehicle ignition. An overview of Gas Research Institute conversion research projects includes a summary of major problems associated with performance, cost, and reliability of the systems. A summary table identifies projects by organization and location, then provides project objectives, funding, future plans, and comments where the information is available.

  11. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet Fuel to

  12. Alternative Fuels Data Center: Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on asPublications »Test

  13. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01

    the importance of fuel availability to choice of alternativeof adequate refueling availability for AFVs. Referenceslocate/enpol Refueling availability for alternative fuel

  14. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  15. Quantum conversion

    E-Print Network [OSTI]

    Michael Mazilu

    2015-08-06

    The electromagnetic momentum transferred transfered to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ($\\hbar k$) does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the transformation, including units, of the classical fields to wave-function equivalent fields.

  16. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

  17. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  18. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  19. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T estimated to be 500 oC deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  20. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  1. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  2. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  3. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  4. Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)

    E-Print Network [OSTI]

    Lee, Dongwon

    : · Vehicle integration and control expertise; · Alternative fuel infrastructure including hydrogen, LNG/Ultra-Capacitor Energy Storage System for Transit Vehicles for DARPA and US DOT · Conversion of Hybrid Vehicles Fueling Station Vehicle Testing Infrastructure Fuel Cell & Energy Storage Systems Research, Education

  5. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  6. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing...

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  11. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

    2005-01-01

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  12. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support The Clean Fuel Advanced Technology (CFAT) project provides grant funding to reducing transportation-related emissions...

  14. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  15. An answer to the NGV conundrum. [Natural Gas Vehicles

    SciTech Connect (OSTI)

    Katz, M.G.

    1994-09-01

    Natural gas utilities and others considering whether to build fueling stations for natural gas vehicles (NGVs) have been troubled for years by the question, ''Even if one builds them, will vehicle operators convert to natural gas '' Setting up an NGV fueling station, after all, can cost $250,000 to $500,000. Some local distribution companies (LDCs) are discovering success by working to create coalitions of public and private organizations interested in NGVs. Through such private/public coalitions, it is possible to get action simultaneously on both fueling stations and vehicle conversions to natural gas. That by itself can end the contradictory situation that has stymied NGV development for years: vehicle owners delaying vehicle conversion until there are more stations, and fueling companies delaying station construction until there are more NGVs. Coalition members include virtually anyone with a fleet of vehicles. The paper discusses the purposes of such coalitions and what they are accomplishing.

  16. Experimental studies on a natural gas vehicle

    SciTech Connect (OSTI)

    Ishii, Mitsunori; Ishizawa, Shizuo; Inada, Eiji; Idoguchi, Ryuichi; Sekiba, Toru

    1994-10-01

    This paper presents the results of several studies conducted on a natural gas vehicle. In one study of engine-out emissions performance, the exhaust emissions of the CNG engine were lower than those of the base gasoline engine. In another study of the conversion characteristics of three-way catalysts, it was found that the conversion efficiency of total hydrocarbons (THCs) was much lower in the lean-mixture region for the NGV. The reduced efficiency was traced to lower conversion and poor reactivity of low-end hydrocarbons and to a higher concentration of H2O. 12 refs., 20 figs., 2 tabs.

  17. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    solar energy conversion .This new paradigm of solar energy conversion, based on theon this field, solar energy conversion aimed at photovoltaic

  18. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsAlyssa...

  19. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  20. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  1. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  2. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  3. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  4. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy Savers [EERE]

    AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as...

  5. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  6. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...

  7. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...

  8. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  9. Preparation and Characterization of Iron-Oxide Catalysts for Orthohydrogen-Parahydrogen Conversion

    E-Print Network [OSTI]

    Collins, Gary S.

    EXECH001-Petit EXECH009-Petit EXJOT200-Petit MOTIVATION: UAV Liquid hydrogen fuel leads the aerospace Aerial Vehicles (UAV). ORTHO / PARA CONVERSION At room temperature hydrogen consists of 75% orthohyrogen

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  11. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research,...

  12. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  13. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  14. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  15. Unit 9: Spatial Data Conversion

    E-Print Network [OSTI]

    9, CCTP; Dodson, Rustin

    1998-01-01

    UNIT 9: SPATIAL DATA CONVERSION Written by Rustin Dodson,Programs Page 1 Unit 9: Spatial Data Conversion freezingPrograms Page 2 Unit 9: Spatial Data Conversion Export USGS

  16. DANISHBIOETHANOLCONCEPT Biomass conversion for

    E-Print Network [OSTI]

    DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISØ and DTU Anne Belinda Thomsen (RISØ) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

  17. Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience

    SciTech Connect (OSTI)

    Motta, R.C.; Kelly, K.J.; Warnock, W.W.

    1996-04-01

    The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

  18. Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanol BenefitsAvailability

  19. Alternative Fuels Data Center: Natural Gas Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuels andNatural GasSafety

  20. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers to someoneElectricityFeedstocks

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund The North Carolina State Energy Office administers the Energy Policy Act (EPAct) Credit Banking and Selling Program, which...

  2. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  3. Electrifying Vehicles Early Release

    E-Print Network [OSTI]

    Electrifying Vehicles Early Release Insights from the Canadian Plug-in Electric Vehicle Study #12;1 The Canadian Plug-in Electric Vehicle Study May 25 2015 Electric-mobility may be a key component-in electric vehicles will involve meaningful shifts in social and technical systems. This report considers

  4. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  5. Principal investigator: Majid Bahrami, PhD, P. Eng., Associate Professor Tier II Canada Research Chair in Alternative Energy Conversion Systems

    E-Print Network [OSTI]

    Bahrami, Majid

    technology for a range of uses, from alternative energy vehicles to batteries and building applications Chair in Alternative Energy Conversion Systems School of Mechatronic Systems Engineering, Simon Fraser for Alternative Energy Conversion seeks to improve energy conversion efficiency in devices such as compact heat

  6. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  7. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  8. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  9. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  10. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  11. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt066karner2010p...

  12. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

  13. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

  14. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  15. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  16. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

  17. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  18. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  19. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy Levels Counter Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy

  20. ENERGY CONVERSION Spring 2011

    E-Print Network [OSTI]

    Bahrami, Majid

    , 5th Edition Michael J. Moran and Howard N. Shapiro, John Wiley and Sons Inc., New York, NY, 2004, John Willey 2010. 3) Alternative Energy Systems and Applications, by B.K. Hodge, John Willey 2010. 41 ENSC 461 ENERGY CONVERSION Spring 2011 Instructor: Dr. Majid Bahrami 4372 Email

  1. Electric conversation of Porsche 914

    E-Print Network [OSTI]

    Sin, Emmanuel J

    2007-01-01

    With energy and environmental concerns becoming increasingly greater issues, electric vehicles are a promising alternative to internal combustion engine vehicles. More research and interest must be focused on battery ...

  2. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  3. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    ,500 for full battery electric vehicle (BEV) and $5,000 for plug- in hybrid electric vehicle (PHEV) · Financial 39 Tesla 39 BMW 26 Toyota 7 Honda 3 Cadillac 3 Mitsubishi 2 #12;Department of Public Utilities · DPU

  4. Propane vehicles : status, challenges, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

    2010-06-17

    Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

  5. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV - EVSE Interoperability Advanced Charging Grid Integration Vehicle Systems Optimization Fast and Wireless Charging Grid Integration Load Reduction, HVAC, & Preconditioning...

  6. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  8. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  9. Fuel composition effects on natural gas vehicle emission

    SciTech Connect (OSTI)

    Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States)

    1994-12-31

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart & Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level I electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 L MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  10. Fuel composition effects on natural gas vehicle emissions

    SciTech Connect (OSTI)

    Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States); Bailey, B.K.; Colucci, C. [National Renewable Energy Lab., Golden, CO (United States)

    1994-09-01

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  11. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  12. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  13. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    California, June (1986). General Electric, Direct Energy Conversion Programs, Feasibility Study ofSPE Fuel Cell Power Plants

  14. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy Biological Conversion of Sugars...

  15. Conversion of Questionnaire Data

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

  16. Proceedings of the 25th intersociety energy conversion engineering conference

    SciTech Connect (OSTI)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

  17. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  18. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  19. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  20. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  1. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    webinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates...

  2. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  3. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  4. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  5. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  6. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  7. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  8. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  9. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  10. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  11. Alternative Fuel Vehicle Forecasts Final report

    E-Print Network [OSTI]

    ....................................................................................................................................36 Commercial CNG and LNG Vehicles

  12. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  14. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    consumption improvement during European drivecycle Fuel consumption improvement during Motorway cruises for electrical heating to emulate thermal management of powertrain ·Installed in vehicle and drivecycle tested

  15. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  16. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  17. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  18. Energy Conversion and Storage Program: 1992 Annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  19. Cost-effectiveness analysis of TXDOT CNG fleet conversion. Volume 2. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-08-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes compressed natural gas (CNG). Based on an analysis of 30-year life-cycle costs, development of a natural gas vehicle (NGV) program for the Texas Department of Transportation (TxDOT) would cost about $47 million (in 1991 dollars). These costs include savings from lower priced natural gas, infrastructure costs for a fast-fueling station, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $596, or about 4.9 cents more per vehicle mile of travel. Based on the cost-effectiveness analysis and assumptions, there are currently no TxDOT stations suitable for conversion to compressed natural gas.

  20. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  1. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  2. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

  3. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  4. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  5. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

  6. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  7. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle Technologies Office Merit Review 2015: Overview of the DOEVTO...

  8. Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration

    E-Print Network [OSTI]

    Bahrami, Majid

    ) for vehicle air conditioning and refrigeration (A/C­R) applications. Adsorber beds should be specificallyAssessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration Amir Sharafian, Majid Bahrami n Laboratory for Alternative Energy Conversion

  9. A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon

    E-Print Network [OSTI]

    Pilon, Laurent

    of waste mechanical energy include fluid flow, household appliances, industrial equipment, motor vehiclesA novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon of a novel cycle converting thermal and mechanical energy directly into electrical energy. The new cycle

  10. Electric vehicle test report, Cutler-Hammer Corvette

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

  11. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  12. HELIOPHYSICS II. ENERGY CONVERSION PROCESSES

    E-Print Network [OSTI]

    Hudson, Hugh

    with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other formsHELIOPHYSICS II. ENERGY CONVERSION PROCESSES edited by CAROLUS J. SCHRIJVER Lockheed Martin of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X

  13. Public Service Vehicles Tramcars and Trolley Vehicles: The Public Service Vehicles (Conditions of Fitness) Regulations, 1958 

    E-Print Network [OSTI]

    Watkinson, Harold

    1958-01-01

    These Regulations, which prescribe the conditions to be satisfied by a public service vehicle before a certificate of fitness (without the issue of which a vehicle may not be licensed to be used as a public service vehicle) ...

  14. High conversion hydrocracking process

    SciTech Connect (OSTI)

    Stine, L.O.; Reno, M.E.; Munro, W.H.; Hamper, S.J.

    1990-10-09

    This patent describes a process for hydrocracking a heavy hydrocarbon feed stream having a 10 percent boiling point above about 316{degrees} C. It comprises: passing the feedstream into a catalytic hydrocracking reaction zone in contact with hydrocracking catalyst comprising at least one metal selected from the group consisting of chromium, nickel, cobalt, platinum, palladium, tungsten and molybdenum, at a temperature above about 316{degrees} C. and a total pressure above 1480 kPa, the catalytic hydrocracking reaction zone operating at a feed stream conversion rate above 70 wt. percent with a hydrogen circulation rate in excess at 1777 m{sup 3}/m{sup 3}, to produce a reaction zone effluent stream, subjecting the reaction zone effluent stream to cooling and a vapor-liquid separation to yield a recycle hydrogen stream and a liquid phase stream, heating the liquid phase stream recovered from the vapor-liquid separation to vaporize at least 90 volume percent of the liquid phase stream, passing the heated and at least partially vaporized liquid phase stream to a fractionation zone wherein the stream is separated into at least a net bottoms stream, a heavy distillate stream, and at least one light distillate stream which is removed as the distillate product stream, removing all of the net bottoms stream from the process, and recycling substantially all of the heavy distillate stream to the catalytic hydrocracking zone.

  15. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  16. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  17. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  18. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  19. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  20. First interim report of the Federal Fleet Conversion Task Force

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

  1. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  2. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Effects of Vehicle Speed and Engine Load on Motor Vehicle Emissions

    E-Print Network [OSTI]

    Kean, Andrew J.; Harley, Robert A.; Kendall, Gary R.

    2003-01-01

    Engine Load on Motor Vehicle Emissions ANDREW J. KEAN, † R Oknowledge regarding vehicle emissions, but questions remainbetween on-road vehicle emissions and changes in vehicle

  4. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicle engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  5. Conversation View Outlook Web App User Guide

    E-Print Network [OSTI]

    Calgary, University of

    Conversation View Outlook Web App User Guide Email conversations that include multiple replies and sent messages can be viewed simultaneously using Conversation View. In Exchange 2010 Outlook Web App

  6. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20)...

  7. Hybrid vehicle control

    DOE Patents [OSTI]

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  8. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  9. Energy Conversion and Storage Program. 1990 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  10. Tidal Conversion by Supercritical Topography

    E-Print Network [OSTI]

    Balmforth, Neil J.

    Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

  11. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  12. Technical Market Analysis for Biochemical Conversion Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Market Analysis for Biochemical Conversion March 23, 2015 Biochemical Conversion Jim Collett and Mark Butcher PNNL This presentation does not contain any proprietary,...

  13. Unit Conversions and Formulas to Know

    E-Print Network [OSTI]

    rroames

    2007-12-06

    Math 139. Unit Conversions and Formulas to Memorize. Fall 2007. Unit Conversions to know: 1 foot = 12 inches. 1 centimeter = 10 millimeters. 1 yard = 3 feet.

  14. Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis

    E-Print Network [OSTI]

    Hausmann, Austin Joseph

    2012-08-31

    infrastructure (such as natural gas or fuel cell vehicles), the potential for localized brown-outs due to this large number of PHEVs being connected to the grid has been a primary concern of utility companies for many years. The energy grid in the United... a powerplant and driveline conversion efficiency that is typically twice that of the traditional internal combustion engine drivetrain. While this advantage is clear, there are numerous concerns with wide scale implementation of electric vehicles...

  15. Working towards a future on alternative fuels : the role of the automotive industry

    E-Print Network [OSTI]

    Chen, Cuicui

    2012-01-01

    Complementarity of vehicles and fuels has posed significant barrier for increasing the use of alternative fuels in place of traditional ones. An initial positive number of either alternative fuel vehicle (AFV) users or ...

  16. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  17. [Interstate Clean Transportation]. Final Report for FG02-99EE50591

    SciTech Connect (OSTI)

    Wendt, Lee

    2002-07-19

    The Interstate Clean Transportation (ICTC) purpose is to develop a public-private partnership dedicated to accelerating the market penetration of clean, alternative fuel vehicles (AFVs) in interstate goods movement. In order to foster project development, the ICTC activity sought to increase awareness of heavy-duty AFVs among truck fleet operators.

  18. Developments in U.S. Alternative Fuel Markets

    Reports and Publications (EIA)

    2001-01-01

    The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

  19. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  20. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  1. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  2. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    1994-01-01

    Preferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Ro Warf Pacific Electric Vehicles Research and Development

  3. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy

    1994-01-01

    Preferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"R. Warf Pacific Electric Vehicles Research and Development

  4. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles...

  5. Vehicle Technologies Office: Events | Department of Energy

    Office of Environmental Management (EM)

    Vehicle Technologies Office: Events Vehicle Technologies Office: Events The Vehicle Technologies Office holds a number of events to advance research, development and deployment of...

  6. Commercial Vehicle Safety Alliance | Department of Energy

    Office of Environmental Management (EM)

    Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

  7. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  8. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle...

  9. Vehicle Technologies Office Merit Review 2014: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: Transportation Energy Data Book, Vehicle...

  10. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    1994-01-01

    Ro Warf Pacific Electric Vehicles Research and DevelopmentPreferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"

  11. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy

    1994-01-01

    R. Warf Pacific Electric Vehicles Research and DevelopmentPreferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"

  12. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

  13. Incentive Policies for Neighborhood Electric Vehicles

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    2001-01-01

    Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

  14. Incentive Policies for Neighborhood Electric Vehicles

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

    1994-01-01

    Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

  15. Inhalation of Vehicle Emissions in Urban Environments

    E-Print Network [OSTI]

    Marshall, Julian David

    2005-01-01

    distances between vehicles, and emissions from neighboringgasoline on motor vehicle emissions. 2. 6 Volatile organicgasoline on motor vehicle emissions. 1. Mass emission rates.

  16. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  17. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  18. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  19. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  20. Social Vehicle Navigation: Integrating Shared Driving Experience into Vehicle Navigation

    E-Print Network [OSTI]

    Iftode, Liviu

    Vehicle Navigation system that integrates driver-provided information into a vehicle navigation system Systems Applications]: Miscellaneous; K.4.m [Computers and Society]: Miscellaneous General Terms Design, Human Factors Keywords Social networks, vehicular networks, navigation systems, human- computer

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  5. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  6. Specialty Vehicles The first fuel cell vehicles were specialty

    E-Print Network [OSTI]

    for space applications. Union Carbide delivered a fuel cell scooter to the U.S. Army in 1967. PEM fuel cellsSpecialty Vehicles History The first fuel cell vehicles were specialty vehicles. Allis Chalmers built and demonstrated a tractor in 1959 utilizing an alkaline fuel cell that produced 20 horsepower

  7. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Kaufman, A. N. [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Tracy, E. R. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2008-08-15

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  8. USF PHYSICAL PLANT VEHICLE MAINTENANCE

    E-Print Network [OSTI]

    Meyers, Steven D.

    USF PHYSICAL PLANT VEHICLE MAINTENANCE TELEPHONE NO. 974-2500 GAS PUMP AUTHORIZATION FORM PLEASE. _____ THE FOLLOWING PERSONNEL ARE AUTHORIZED BY THIS DOCUMENT TO PUMP GASOLINE/DIESEL FUEL FOR OUR USF OWNED VEHICLES

  9. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  10. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  11. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  12. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  14. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  15. Electric Vehicle Transportation Center

    E-Print Network [OSTI]

    ) power grid has been developed, which includes EV charging stations and integrated photovoltaic (PV vehicles (EVs) into power grids characterized by high penetration of intermittent renewable energy. HNEI and practices. To examine the effects of EVs on electric power systems and their operation, a Hawai

  16. Vehicle Technologies Market Report

    E-Print Network [OSTI]

    billion in 2010 · The average price of a new car is just under $25,000 · Sixteen percent of household.2% · Nearly 14% of cars sold in 2010 have continuously variable transmissions · Two-thirds of new lightVehicle Technologies Market Report February 2012 2011 #12;Quick Facts Energy and Economics

  17. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Broader source: Energy.gov (indexed) [DOE]

    QTR Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents More Documents & Publications...

  18. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  19. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  20. MUTUAL CONVERSION SOLAR AND SIDEREAL

    E-Print Network [OSTI]

    Roegel, Denis

    TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

  1. he prospect of millions of vehicles plugging into the nation's electric grid in the coming decades

    E-Print Network [OSTI]

    Firestone, Jeremy

    : Tesla Motors recently intro- duced an all-electric vehicle. See sidebar, p. 34.) Two startup firms plan-board battery pack. These conversions kits offer the potential to almost double an HEV's fuel efficiency rating to 100+ miles per gallon by increasing the size of the battery stor- age system and installing

  2. St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids William Eleazer, Supervising Engineer, Brown and Caldwell

  3. Modeling the vehicle cycle impacts of hybrid electric vehicles

    SciTech Connect (OSTI)

    Wang, M.Q.; Gaines, L.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1997-03-13

    Pure and hybrid electric vehicles, considered environmentally benign, are being developed to reduce urban air pollutant emissions. The obvious emissions benefit of pure electric vehicles is that they produce no tailpipe emissions. Hybrid electric vehicles have the potential of improving fuel economy and reducing emissions. However, both electric vehicles and hybrid electric vehicles (HEVs) do have their own environmental impacts. In order to quantify the potential benefits from introducing such vehicles, it is necessary to compare their impacts with those from the conventional vehicles they would replace. These impacts include energy use and emissions from the entire energy cycle, including fuel production, vehicle and battery production and recycling, and vehicle operation. Argonne`s previous work in collaboration with other national laboratories analyzed the total energy cycle of electric vehicles; this paper compares energy use and emissions for the total energy cycles of several HEV designs with those from modern conventional vehicles. The estimates presented indicate that use of HEVs can reduce energy use and emissions of greenhouse gases, volatile organic gases, carbon monoxide, and particulate matter smaller than 10 micrometers. HEVs may, in some cases, increase emissions of nitrogen oxides and sulfur oxides. Although some of the HEV designs illustrated in this paper could run a significant proportion of annual miles in all electric operation, no calculation of the emission reductions that result from using electricity from the utility grid is presented in this paper.

  4. Rationality and Conversation: A Thesis on Grice’s Theory of Conversation 

    E-Print Network [OSTI]

    Schoolfield, Matthew D

    2007-11-27

    H. P. Grice first presented his theory of conversational implicature in “Logic and Conversation.” This theory is comprised of conversational maxims that are based on the Cooperative Principle. Since then, it has become ...

  5. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  6. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  7. EPA Redesigns Conversion Certification Policies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis3

  8. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01

    ? New Building Construction & Core & Shell (SSc4.3) ? Up to 3 LEED points ? Existing Building (SSc4) ? 3-15 LEED points available Retail Benefits ? Green Differentiator ? Business associated with EV locator sites ? Vehicle GPS + websites... ? Encourage Sales Behavior ? Park/shop where EVSE is located ? Advertise on blink screen ? Discount or Free charge with minimum purchase (Host controls pricing) Recent Additions to the blink Network ? Nissan?s Smyrna Plant Solar EV Carport- Tennessee...

  9. Unmanned Aerospace Vehicle Workshop

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  10. Vehicle Technologies Office News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy VehicleTechnology

  11. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures | Department of

  12. Weather Ready Nation: A Vital Conversation on

    E-Print Network [OSTI]

    Weather Ready Nation: A Vital Conversation on Tornadoes and Severe Weather A Community Report March;WeatherReady Nation: A Vital Conversation on Tornadoes and Severe Weather Report from the December 2011

  13. Transparency in nonlinear frequency conversion

    E-Print Network [OSTI]

    Longhi, Stefano

    2015-01-01

    Suppression of wave scattering and the realization of transparency effects in engineered optical media and surfaces have attracted great attention in the past recent years. In this work the problem of transparency is considered for optical wave propagation in a nonlinear dielectric medium with second-order $\\chi^{(2)}$ susceptibility. Because of nonlinear interaction, a reference signal wave at carrier frequency $\\omega_1$ can exchange power, thus being amplified or attenuated,when phase matching conditions are satisfied and frequency conversion takes place. Therefore, rather generally the medium is not transparent to the signal wave because of 'scattering' in the frequency domain. Here we show that broadband transparency, corresponding to the full absence of frequency conversion in spite of phase matching, can be observed for the signal wave in the process of sum frequency generation whenever the effective susceptibility $\\chi^{(2)}$ along the nonlinear medium is tailored following a suitable spatial apodiza...

  14. Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models

    E-Print Network [OSTI]

    Younglove, T; Scora, G; Barth, M

    2005-01-01

    Uncertainty in Highway Vehicle Emission Factors,” EmissionPrograms for Effective Vehicle Emission Model DevelopmentU.S. EPA’s Mobile Vehicle Emission Simulator) are becoming

  15. Optomechanical conversion by mechanical turbines

    E-Print Network [OSTI]

    Kneževi?, Miloš; Warner, Mark

    2014-10-30

    has mov- ing parts gives it a disadvantage over conventional photo- voltaics, though rubber is highly durable and tough — for instance car tyres survive long use in harsh, abra- sive conditions. Another difficulty, that could perhaps be solved... ’effect du frottement dans l’equilibre,” Mem. Acad. Sci. , pp. 265 (1762). 7[14] L. R. G. Treloar, The Physics of Rubber Elasticity (Ox- ford University Press, Oxford, 2005). [15] M. Knez?evic´ and M. Warner, “Photoferroelectric solar to electrical conversion...

  16. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  17. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartmentof EnergyTheConversion

  18. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  19. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  20. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  1. Vehicle Technologies Office- AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  2. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  3. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  4. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  5. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  6. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    have greatly furthered plug-in electric vehicle-grid connectivity, interoperability, and wireless charging. Gi-Heon Kim (National Renewable Energy Laboratory): Mr. Kim's research...

  7. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  8. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  9. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle...

    Energy Savers [EERE]

    Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  10. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01

    Agency; Highway Vehicle Emission Estimates; Office offor Evolving Motor Vehicle Emission Modeling Approachesfor Evolving Motor Vehicle Emission Modeling Approaches

  11. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery

    E-Print Network [OSTI]

    Zahawi, RA; Dandois, JP; Holl, KD; Nadwodny, D; Reid, JL; Ellis, EC

    2015-01-01

    Lightweight unmanned aerial vehicles will revolutionizelightweight unmanned aerial vehicles to monitor tropicalfrom lightweight unmanned aerial vehicles (UAV) are a cost-

  12. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOE Patents [OSTI]

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  13. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  14. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  15. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Office of Environmental Management (EM)

    drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles, including plug-in electric vehicles....

  16. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel...

    Energy Savers [EERE]

    Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies...

  17. International Trade in Used Vehicles: The Environmental Consequences of NAFTA

    E-Print Network [OSTI]

    Davis, Lucas

    2009-01-01

    trade  leads  average  vehicle  emissions  to  decrease  in country.  How average  vehicle emissions change in both vehicles  and  vehicle  emissions.   Our  dataset  allows 

  18. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008

    Broader source: Energy.gov [DOE]

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

  19. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations 2011...

  20. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    Management for Urban EV Charging Systems”, 2013 IEEEfor Large Scale Public EV Charging Facilities”, 2013 IEEESmart Electric Vehicle (EV) Charging and Grid Integration

  1. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  2. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  3. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  4. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  5. Vehicles | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|Upcoming PurchasingPortal Vehicles and

  6. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates APIVandana GroupVeerVehicles Jump

  7. Vehicles Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department of Energy Past(Advanced81 Vehicles

  8. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  9. Sandia Energy - Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion Efficiency Home

  10. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -Technologies forBig SavingsConversion

  11. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  12. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Energy Conversion and Storage Systems By Andrew Mark DuffinEnergy Conversion and Storage Systems by Andrew Mark Duffin

  13. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Acquisition Goal North Carolina established a goal that at least 75% of new or replacement state government light-duty cars and trucks with a gross...

  15. COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT

    E-Print Network [OSTI]

    Sin, Peter

    COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

  16. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    Car problems Pollution from motor vehicles Crude oil,the pollution from any one new motor vehicle is slight,of hybrid vehicles will reduce oil use and pollution in the

  17. Digital autoland system for unmanned aerial vehicles 

    E-Print Network [OSTI]

    Wagner, Thomas William, Jr.

    2007-09-17

    Autoland controllers are prevalent for both large and small/micro unmanned aerial vehicles, but very few are available for medium sized unmanned aerial vehicles. These vehicles tend to have limited sensors and instrumentation, ...

  18. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01

    M. (2007). Battery Electric Vehicles: An Assessment of theExtended-Range Electric Vehicles: An Enabling Platform forReady Plug-in Hybrid Electric Vehicle. D.O.E. Challenge X,

  19. SOCIALLY OPTIMAL CHARGING STRATEGIES FOR ELECTRIC VEHICLES

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    SOCIALLY OPTIMAL CHARGING STRATEGIES FOR ELECTRIC VEHICLES ELENA YUDOVINA AND GEORGE MICHAILIDIS Abstract. Electric vehicles represent a promising technology for reducing emissions and dependence. This pa- per studies decentralized policies that assign electric vehicles to a network of charging

  20. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  1. Vehicle Technologies Office | Department of Energy

    Energy Savers [EERE]

    Station Read more Compare MPG and Emissions for New and Used Vehicles Compare MPG and Emissions for New and Used Vehicles Read more The U.S. Department of Energy's Vehicle...

  2. Evaluation of a Vehicle Visualization

    E-Print Network [OSTI]

    Kameda, Yoshinari

    , "Ergonomic Design and Evaluation of Augmented Reality Based Cautionary Warnings for Driving Assistance *1 *2 *2 *2 *1 *2 CG Evaluation of a Vehicle Visualization In this paper, we report an evaluation of the visualization method that displays a hidden vehicle

  3. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle caylor.pdf More Documents & Publications Nanostructured High-Temperature Bulk...

  4. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  5. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  6. Force Modulation System for Vehicle Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Vehicle Manufacturing Force Modulation System for Vehicle Manufacturing Novel Technology Enables Energy-Efficient Production of High-Strength Steel Automotive Parts...

  7. Gasoline Vehicle Exhuast Particle Sampling Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Exhuast Particle Sampling Study Gasoline Vehicle Exhuast Particle Sampling Study 2003 DEER Conference Presentation: University of Minnesota 2003deerkittelson.pdf More...

  8. Vehicle Modeling and Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling and Simulation Vehicle Modeling and Simulation Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda,...

  9. Security enhanced with increased vehicle inspections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's...

  10. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The...

  11. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  12. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  13. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest...

  14. Vehicle Technologies Office Merit Review 2014: Understanding...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2014: Understanding Protective Film Formation on Magnesium Alloys in Automotive Applications Vehicle Technologies Office Merit Review 2014:...

  15. Vehicle Technologies Office: Electrical Machines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in efficiency, cost, weight, and volume for competitive future electric vehicles. Tesla Motors, a U.S. electric vehicle manufacturer, uses induction motor technology....

  16. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01

    are vehicle cost, energy cost, fuel alternatives, and energyalternatives when their needs are not adequately met by the incumbent vehicle & energy

  17. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications HYDROGEN TO THE HIGHWAYS Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Safety Analysis of Type 4 Tanks in CNG Vehicles...

  18. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Injection Vehicle Particulate Matter Emissions Investigation of Direct Injection Vehicle Particulate Matter Emissions This study focuses primarily on particulate matter mass...

  19. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  20. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Agenda...

  1. Potential Thermoelectric Applications in Diesel Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Applications in Diesel Vehicles Potential Thermoelectric Applications in Diesel Vehicles 2003 DEER Conference Presentation: BSST, LLC 2003deercrane.pdf More...

  2. Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies- Advanced Conversion

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Dodge B2500 dedicated CNG van

    SciTech Connect (OSTI)

    Eudy, L.

    2000-04-19

    The US Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. The authors tested a 1999 B2500 dedicated CNG Ram Wagon with a 5.2L V8 engine. The vehicle was run through a series of tests explained briefly in this fact sheet.

  4. LED Street Lighting Conversion Workshop Presentations

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

  5. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrolyze the cellulose and hemicellulose in biomass to free the sugars for conversion. The program is working to identify the most productive, naturally occurring...

  6. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News &...

  7. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

  8. Limits in high efficiency quantum frequency conversion

    E-Print Network [OSTI]

    Nicolás Quesada; J. E. Sipe

    2015-08-13

    Frequency conversion is an enabling process in many quantum information protocols. In this letter we study fundamental limits to high efficiency frequency conversion imposed by time ordering corrections. Using the Magnus expansion, we argue that these corrections, which are usually considered detrimental, can be used to increase the efficiency of conversion under certain circumstances. The corrections induce a nonlinear behaviour in the probability of upconversion as a function of the pump intensity, significantly modifying the sinusoidal Rabi oscillations that are otherwise expected. Finally, by using a simple scaling argument, we explain why cascaded frequency conversion devices attenuate time ordering corrections, allowing the construction of near ideal quantum pulse gates.

  9. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  10. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  11. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  12. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  13. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  14. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  15. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  16. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  17. Conversion Technologies for Advanced Biofuels ? Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for host organism in the presentence of limited six carbon sugars Identify cellular transporters and regulators required for maximum sugar to hydrocarbon conversion ...

  18. Complex System Method to Assess Commercial Vehicle Fuel Consumption

    Broader source: Energy.gov [DOE]

    Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle with advanced, future options.

  19. Low-cost conformable storage to maximize vehicle range

    SciTech Connect (OSTI)

    Graham, R.P.

    1998-01-01

    Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are currently the leading fuel contenders for converting vehicles from gasoline and diesel to alternative fuels. Two factors that inhibit conversion are additional vehicle costs and reduced range compared to gasoline. In overcoming these barriers, a key element of the alternative fuel system becomes the storage tank for these pressurized fuels. Using cylindrical pressure vessels is the conventional approach, but they do not package well in the available vehicle volume. Thiokol Corporation has developed and is now producing a conformable (non-cylindrical) aluminum storage system for LPG vans. This system increases fuel storage in a given rectangular envelope. The goal of this project was to develop the technology for a lower cost conformable tank made of injection-molded plastic. Much of the cost of the aluminum conformable tank is in the fabrication because several weld seams are required. The injection-molding process has the potential to greatly reduce the fabrication costs. The requirements of a pressurized fuel tank on a vehicle necessitate the proper combination of material properties. Material selection and tank design must be optimized for maximum internal volume and minimum material use to be competitive with other technologies. The material and the design must also facilitate the injection-molding process. Prototype tanks must be fabricated to reveal molding problems, prove solutions, and measure results. In production, efficient fabrication will be key to making these tanks cost competitive. The work accomplished during this project has demonstrated that conformable LPG tanks can be molded with thermoplastics. However, to achieve a competitive tank, improvements are needed in the effective material strength. If these improvements can be made, molded plastics should produce a lower cost tank that can store more LPG on a vehicle than conventional cylinders.

  20. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S....

  1. Vehicle Technologies Office- AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The following set of reports describes performance data collected from hybrid-electric heavy-duty tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  2. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations. 47505.pdf More Documents & Publications Fuel Economy and Emmissions...

  3. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Energy Savers [EERE]

    Office Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  4. Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses

    E-Print Network [OSTI]

    Kane, Shaun K.

    Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

  5. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  6. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  7. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    Castrejon-Pita, A A

    2006-01-01

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  8. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    A. A. Castrejon-Pita; G. Huelsz

    2006-10-12

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  9. Unit Conversion Factors Quantity Equivalent Values

    E-Print Network [OSTI]

    Ashurst, W. Robert

    Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

  10. The high conversion LC-Fining process

    SciTech Connect (OSTI)

    VanDriesen, R.P.; Strangio, V.A.; Rhoe, A.; Kolstad, J.J.

    1986-01-01

    Residual oil hydrocracking has been practiced at moderate conversions for many years on a wide range of feedstocks. Processes utilizing expanded bed reactors have been proven to be effective in the hydrocracking of these heavy residual feedstocks. Conversions up to 60% vacuum bottoms to distillates were routinely obtained in several commercial units. More recently Amoco has been operating an LC-Fining unit in their Texas City refinery at conversions as high as 80%. Normal conversion in this plant however is 60-65%. LC-Fining is an expanded bed resid hydrocracking and hydrodesulfurization process developed by Cities Service and Lummus Crest. There are a number of factors which may limit the conversion in any given plant site. These include compatibility problems with the liquid product, settling out of heavy hydrocarbons in downstream equipment or fouling of the catalyst in the reactor which in the extreme results in coking of the catalyst bed. The operator of a residual hydrocracker maintains conversion at a sufficiently low level to avoid these problems. Recent advances in the LC-Fining technology have led to the development of the High Conversion LC-Fining Process which is capable of operation at conversions of 95% and higher without any of these problems.

  11. Data Conversion in Residue Number System

    E-Print Network [OSTI]

    Zilic, Zeljko

    ;2 Abstract This thesis tackles the problem of data conversion in the Residue Number System (RNS). The RNS has the use of RNS at the applications. In this thesis, we aim at developing efficient schemes for the conversion from the conventional representation to the RNS representation and vice versa. The conventional

  12. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  13. Optimality for underwater vehicles Dept. of Mathematics

    E-Print Network [OSTI]

    Leonard, Naomi

    grant BES-9502477. 2Supported in part by US Air Force Grant F49620-01-1-0063 Here, we restrict de- scribe the vehicle dynamics. The con guration space of the vehicle is SE(2). Denote by (x z. The angle de- scribes the vehicle's orientation in this plane so that vehicle con guration is given by q

  14. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01

    means a crossover to sustainable mobility, the stated goalsustainable personal vehicles for their various mobility

  15. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  16. VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE All drivers of vehicles must certify to the following: 1. I certify that I have a valid driver's license appropriate for the vehicle type and will abide belts. 2. I have read and understand the vehicle operating policies and procedures as defined

  17. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01

    Existence. Oxford Press Benyus, J. M. (1997). Biomimicry:Vehicle Design Janine Benyus, author of Biomimicry:

  18. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  19. Cooperative Localization for Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Bahr, Alexander

    This paper describes an algorithm for distributed acoustic navigation for Autonomous Underwater Vehicles

  20. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  1. Method and system for vehicle refueling

    DOE Patents [OSTI]

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  2. Adaptive control of hypersonic vehicles

    E-Print Network [OSTI]

    Gibson, Travis Eli

    2008-01-01

    The guidance, navigation and control of hypersonic vehicles are highly challenging tasks due to the fact that the dynamics of the airframe, propulsion system and structure are integrated and highly interactive. Such a ...

  3. All-terrain vehicle

    SciTech Connect (OSTI)

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  4. Prediction of vehicle impact forces 

    E-Print Network [OSTI]

    Kaderka, Darrell Laine

    1990-01-01

    PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

  5. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  6. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  7. Resource Limits and Conversion Efficiency with Implications for Climate Change

    E-Print Network [OSTI]

    Croft, Gregory Donald

    2009-01-01

    natural gas. Natural gas vehicles also do not have the toxicthe number of natural gas vehicles on its roads from 122,375Compressed natural gas can be used for vehicle fuel with

  8. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect (OSTI)

    Willson, B.

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

  9. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect (OSTI)

    Willson, B. )

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

  10. Fact #743: September 3, 2012 Used Vehicle Sales are Three Times Higher than New Vehicle Sales

    Broader source: Energy.gov [DOE]

    From 1990 to 2008, the number of used vehicles sold was between 2.5 and 3 times higher than new vehicle sales. During the recent recession, both new and used vehicle sales declined to sales volumes...

  11. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01

    of the Canadian Natural Gas Vehicles Survey,” SAE 892067,2000. Gushee, David E, “Natural Gas Vehicles Stall on Way toWelfare Costs of Natural Gas Vehicles,” Resources for the

  12. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight

    Broader source: Energy.gov [DOE]

    The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference...

  13. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  14. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect (OSTI)

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  15. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Broader source: Energy.gov [DOE]

    MSU has developed and demonstrated a 5-couple module which produced 5.4 watts at an average ?T estimated to be ~500 oC

  16. Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  17. AVTA: Testing Results on the USPS Long-life Vehicle Conversions to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance of9,Septemeber 19,All-Electric |

  18. Microsoft PowerPoint - Vehicle Changes for E85 Conversion 057.ppt

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case forbutton highlighted DoE/NREL/EPA

  19. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  20. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  1. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  2. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  3. Vehicle Technologies Office: AVTA- Evaluating Military Bases and Fleet Readiness for Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. Through the AVTA, Idaho National Laboratory also does fleet and other analysis to evaluate readiness for plug-in electric vehicles and other advanced technology vehicles. The following reports describe analysis studies Idaho National Laboratory conducted for the military to evaluate readiness for plug-in electric vehicles.

  4. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat...

  5. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  6. U32: Vehicle Stability and Dynamics: Longer Combination Vehicles

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Broshears, Eric; Chitwood, Caleb; Colbert, Jameson; Hathaway, Richard; Keil, Mitch; LaClair, Tim J; Pape, Doug; Patterson, Jim; Pittro, Collin

    2011-01-01

    This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a single semitrailer. The goal was to measure and model the behavior of LCVs in simple maneuvers. Example maneuvers tested and modeled were single and double lane changes, a gradual lane change, and a constant radius curve. In addition to test track data collection and a brief highway test, two computer models of LCVs were developed. One model is based on TruckSim , a lumped parameter model widely used for single semitrailer combinations. The other model was built in Adams software, which more explicitly models the geometry of the components of the vehicle, in terms of compliant structural members. Among other results, the models were able to duplicate the experimentally measured rearward amplification behavior that is characteristic of multi-unit combination vehicles.

  7. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  8. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  9. Apps for Vehicles: What are some examples of vehicle data applications...

    Open Energy Info (EERE)

    and weather changes * Helping consumers understand the cost and overall potential of electric drive vehicles * Enhanced security with real-time notification of a vehicle...

  10. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  11. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  12. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  13. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01

    2003) Incentives for Alternate Fuel Vehicles: A Large-ScaleThis wasn't some sort of alternate-fuel vehicle pointing the

  14. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  15. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  16. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  17. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  18. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  19. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  20. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  1. Obama Administration Takes Major Step toward Advanced Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot Obama Administration Takes Major Step toward Advanced Vehicles with...

  2. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-Ultracapacitors in Hybrid- electric Vehicle Applications.

  3. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    E-Print Network [OSTI]

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    Fuel CelL/Battery HybridSystemfor Electric Vehicle Applications",Fuel Cell Characterization for Electric Vehicle Applicationsthe fuel cell ~stemfor electric vehicle applications. Where

  4. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    for fuel cell systems for vehicle applications, Journal ofand Fuel Cell Electric Vehicle Symposium applications. Thesewhich limits its application in fuel cell vehicles. The

  5. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  6. Reducing Vehicle Emissions to Meet Environmental Goals | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Emissions to Meet Environmental Goals Reducing Vehicle Emissions to Meet Environmental Goals Now that both gasoline and diesel vehicles have been cleaned up, it's time to...

  7. A Vehicle to Roadside Communications Architecture for ITS Applications

    E-Print Network [OSTI]

    Lo, Tetiana; Varaiya, Pravin

    2000-01-01

    c_ data_?ow pollution_ incident vehicle_ pollution_ messageEmissions (dfd) vehicle_ pollution_ alert From_ Parking_reference ?ows: • pollution_state_vehicle_log_data •

  8. Clean Cities: Land of Sky Clean Vehicles coalition (Western North...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land of Sky Clean Vehicles Coalition (Western North Carolina) The Land of Sky Clean Vehicles coalition (Western North Carolina) works with vehicle fleets, fuel providers, community...

  9. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  10. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  11. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  12. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  13. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    E-Print Network [OSTI]

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    Characterization for Electric Vehicle Applications D.H. SwanHybridSystemfor Electric Vehicle Applications", SAEPaperFuel Cells for Electric Vehicles, Knowledge Gaps and

  14. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

  15. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    E-Print Network [OSTI]

    Gris, Arturo E.

    1991-01-01

    Air Batteries for Electric Vehicles” E.J.Rudd. SAE 891660.the Soleq Evcort Electric Vehicle”. DOE/ID--10232. Preparedfor Fiscal Year 88, Electric Vehicle Program, February

  16. Interested but unsure: Public attitudes toward electric vehicles in China

    E-Print Network [OSTI]

    Lo, Kevin

    2013-01-01

    Experiencing range in an electric vehicle: Understandingto pay for electric vehicles and their attributes. Resourceownership and use of electric vehicles–a review of

  17. Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects

    E-Print Network [OSTI]

    Scott, Allen J.

    1993-01-01

    the production of electric vehicle componentswill result an1992. "Hot Sales of Electric Vehicles." p. El. Sharpe, W. ,1992. "Battery and Electric Vehicle Update." September1992.

  18. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Sperling, D. , 1989. Electric vehicles: performance, life-in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. Random House, New York.

  19. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

  20. Demand for Electric Vehicles in Hybrid Households: An Exploratory Analysis

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Tom; Sperling, Daniel

    1994-01-01

    stated they wouldlikely add an electric and vehicle to theirhouseholdsand the demand electric vehicles", Transportation1983) "A Critical Reviewof Electric Vehicle MarketStudies",

  1. Household Markets for Neighborhood Electric Vehicles in California

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

    2001-01-01

    A Statewide ELECTRIC ELECTRIC and VEHICLES: Survey Sandrafor Neighborhood Electric Vehicles. Report prepared for theD. (1994). Future Drive: Electric Vehicles and Sustainable

  2. Household Markets for Neighborhood Electric Vehicles in California

    E-Print Network [OSTI]

    Kurani, Kenneth S; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

    1995-01-01

    for Neighborhood Electric Vehicles. Report prepared for theD. (1994). Future Drive: Electric Vehicles and Sustainablefor Neighborhood Electric Vehicles. Report prepared for the

  3. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.Nasar S. A. (1982) electric vehicle technology. John Wiley &batteries fornia. for electric vehicles. Argonne National

  4. Testing and Validation of Vehicle to Grid Communication Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Validation of Vehicle to Grid Communication Standards Testing and Validation of Vehicle to Grid Communication Standards 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  5. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  6. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    hybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & theof battery electric, hydrogen fuel cell and hybrid vehicles

  7. Energy Department Awards Will Promote Electric Vehicles in 24...

    Energy Savers [EERE]

    Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles...

  8. Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives Selection Table Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives...

  9. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric Vehicles:...

  10. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle Symposiumcycles. Vehicles with the fuel cell operating in the optimum

  11. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions...

  12. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  13. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  14. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  15. 2008 Annual Merit Review Results Summary - 14. Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation DOE Vehicle Technologies Annual Merit Review 2008meritreview14.pd...

  16. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2014: PEV Integration with Renewables Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration ANSI Electric Vehicle Standards Roadmap v2.0...

  17. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This

  18. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Regulations for Low-Emission Vehicles and Clean Fuels: FinalAmendments to the Zero-Emissions Vehicle Requirements, Marchauthority to regulate vehicle emissions. California is not

  19. Comparison of Particle Sizing Instrument Technologies for Vehicle Emissions Testing

    E-Print Network [OSTI]

    Chen, Vincent

    2014-01-01

    Technologies for Vehicle Emissions Testing A ThesisTechnologies for Vehicle Emissions Testing by Vincent Chen9 Figure 3-1. Schematic diagram of vehicle emissions

  20. Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This

  1. Exposure to motor vehicle emissions: An intake fraction approach

    E-Print Network [OSTI]

    Marshall, Julian D.

    2002-01-01

    on California Light-Duty Vehicle Emissions." EnvironmentalGasoline on Motor Vehicle Emissions. 2. Volatile OrganicGasoline on Motor Vehicle Emissions. I. Mass Emission

  2. Intake fraction of nonreactive vehicle emissions in US urban areas

    E-Print Network [OSTI]

    Marshall, Julian D.; Teoh, Soon-Kay; Nazaroff, William W.

    2006-01-01

    and trends in motor vehicle emissions to monthly urbanExposure to motor vehicle emissions: An intake fractionpollutants: Motor vehicle emissions in the South Coast Air

  3. Intake fraction of nonreactive vehicle emissions in US urban areas

    E-Print Network [OSTI]

    Marshall, J D; Teoh, S K; Nazaroff, William W

    2005-01-01

    fraction of nonreactive vehicle emissions JD Marshall et al.and trends in motor vehicle emissions to monthly urbanExposure to motor vehicle emissions: An intake fraction

  4. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Reactivity Scale for Low- Emission Vehicles and Clean Fuelsgas, and electricity. Vehicle emission estimates includedtype in controlling vehicle emissions. DedLicated methanol

  5. Vehicle Manufacturing Futures in Transportation Life-cycle Assessment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2011-01-01

    transportation vehicle manufacturing results are developedBERKELEY Vehicle Manufacturing Futures in TransportationAugust 2011 Vehicle Manufacturing Futures in Transportation

  6. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  7. GM-Ford-Chrysler: Issues Related to Vehicle Eligibility | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues Related to Vehicle Eligibility GM-Ford-Chrysler: Issues Related to Vehicle Eligibility GM-Ford-Chrysler: Issues Related to Vehicle Eligibility More Documents & Publications...

  8. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  9. Summer Series 2012 - Conversation with Omar Yaghi

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  10. Summer Series 2012 - Conversation with Kathy Yelick

    SciTech Connect (OSTI)

    Kathy Yelick

    2012-07-23

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  11. The Conversion of Waste to Energy 

    E-Print Network [OSTI]

    John, T.; Cheek, L.

    1980-01-01

    Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

  12. ME 533: Energy Conversion Emily M Ryan

    E-Print Network [OSTI]

    aspects of modern energy conversion systems, including traditional systems such as steam power plants, gas turbines and internal combustion engines and refrigeration systems, and renewable systems such as solar

  13. Assessment of ocean thermal energy conversion

    E-Print Network [OSTI]

    Muralidharan, Shylesh

    2012-01-01

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  14. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  15. Radio frequency dc-dc power conversion

    E-Print Network [OSTI]

    Rivas, Juan, 1976-

    2007-01-01

    THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

  16. Collaboration on Topic Change in Conversation

    E-Print Network [OSTI]

    Howe, Mary

    1991-01-01

    Conversations are cooperatively achieved speech events. Analysis of topic changes shows that topic endings are negotiated by participants over a series of turns, using the following specific types of indicators: summary assessments, acknowledgment...

  17. Electrical power conversion is essential for improving

    E-Print Network [OSTI]

    Langendoen, Koen

    Electrical power conversion is essential for improving energy efficiency and harvesting renewable energy. Diploma Master of Science Embedded Systems Credits 120 ECTS, 24 months Starts in September universities of technology in the Netherlands - Delft University of Technology, Eindhoven University

  18. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Environmental Management (EM)

    Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater...

  19. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  20. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  1. First-of-its-Kind Carbon Capture and Conversion Demonstration...

    Office of Environmental Management (EM)

    First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

  2. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    310, the Ocean the Ocean Energy Thermal Energy Conversionfor the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary

  3. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    making direct thermal energy storage methods, e.g. thosethermal shorting, that limits the energy conversion efficiency of direct thermoelectric energy conversion methods.

  4. Project Profile: Brayton Solar Power Conversion System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Conversion System Project Profile: Brayton Solar Power Conversion System Brayton Energy logo Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the...

  5. 2015 Peer Review Presentations-Thermochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2015 Peer Review Presentations-Thermochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at...

  6. 2015 Peer Review Presentations-Biochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2015 Peer Review Presentations-Biochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the...

  7. Novel Transparent Phosphor Conversion Matrix with High Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Novel Transparent Phosphor Conversion...

  8. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  9. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  10. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer Dynamics in Photocatalytic CO2 Conversion Electron Transfer Dynamics in Photocatalytic CO2 Conversion Coal is the workhorse of our power industry, responsible for...

  11. Composites for Multi-energy conversion & waste heat recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites for Multi-energy conversion & waste heat recovery Composites for Multi-energy conversion & waste heat recovery Discusses development of a composite that transfers energy...

  12. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons:...

  13. Novel Vertimass Catalyst for Conversion of Ethanol and Other...

    Office of Environmental Management (EM)

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Novel Vertimass Catalyst for Conversion of Ethanol...

  14. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  15. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  16. 2011 Biomass Program Platform Peer Review: Biochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

  17. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  18. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

  19. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  20. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  1. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  2. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  3. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  4. An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

    E-Print Network [OSTI]

    Yeh, Sonia

    2007-01-01

    579–594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.Exhaust emissions from natural gas vehicles: issues related

  5. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01

    service company EV – Electric vehicle (used to refer to aHenriette Schøn of the Electric Vehicle Information CenterJason France of Electric Vehicle Infrastructure, and Mark

  6. Vehicle barrier with access delay

    DOE Patents [OSTI]

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  7. Vehicle Technologies Program Funding Opportunities

    SciTech Connect (OSTI)

    2011-12-13

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) provides funding opportunities for advanced vehicle technology projects that are aimed at removing technical and cost barriers. Much of the funding available to the Vehicle Technologies Program is distributed to private firms, educational institutions, nonprofit organizations, state and local governments, Native American organizations, and individuals, through competitive solicitations. DOE is strongly committed to partnerships to help ensure the eventual market acceptance of the technologies being developed. New solicitations are announced regularly.

  8. Micro-unmanned aerodynamic vehicle

    DOE Patents [OSTI]

    Reuel, Nigel (Rio Rancho, NM); Lionberger, Troy A. (Ann Arbor, MI); Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Baker, Michael S. (Albuquerque, NM)

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  9. Low floor mass transit vehicle

    DOE Patents [OSTI]

    Emmons, J. Bruce (Beverly Hills, MI); Blessing, Leonard J. (Rochester, MI)

    2004-02-03

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  10. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  11. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  12. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01

    per year if I choose an eco friendly car? In this thesis, welarge car may not be an eco-friendly vehicle class. Pickupthat SUV may not be an eco-friendly vehicle class. Country

  13. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01

    264. DeLuchi M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re-or regulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA.Solar-Hydrogen Fuel-Cell Mark Ao DeLuchi Joan M. Ogden

  14. Path Planning Algorithms for Multiple Heterogeneous Vehicles 

    E-Print Network [OSTI]

    Oberlin, Paul V.

    2010-01-16

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular for surveillance in civil and military applications. Vehicles built for this purpose vary in their sensing capabilities, speed and maneuverability. It is therefore natural to assume...

  15. Platoon Identification System in Connected Vehicle Environment 

    E-Print Network [OSTI]

    Lin, Lu

    2015-08-10

    Connected vehicle technology has the potential of drastically improving the safety and mobility of transportation system. Recognizing and identifying the vehicle platoons in a traffic stream has the potential of changing the arterial signal control...

  16. Underwater vehicle localization using range measurements

    E-Print Network [OSTI]

    Papadopoulos, Ge?rgios

    2010-01-01

    This thesis investigates the problem of cooperative navigation of autonomous marine vehicles using range-only acoustic measurements. We consider the use of a single maneuvering autonomous surface vehicle (ASV) to aid the ...

  17. Fast pedestrian detection from a moving vehicle

    E-Print Network [OSTI]

    You, Shuang

    2006-01-01

    This paper presents a method of real-time multi-modal pedestrian detection from a moving vehicle. The system uses both intensity and thermal images captured from cameras mounted at the front of the vehicle to train cascades ...

  18. Performance targets for electric vehicle batteries

    E-Print Network [OSTI]

    Chang, Michael Tse-Gene

    2015-01-01

    Light-duty vehicle transportation accounted for 17.2% of US greenhouse gas emissions in 2012 [95]. An important strategy for reducing CO? emissions emitted by light-duty vehicles is to reduce per-mile CO? emissions. While ...

  19. Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles Fact 762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles The...

  20. Energy Efficient Signaling Strategies for Tracking Mobile Underwater Vehicles

    E-Print Network [OSTI]

    Kastner, Ryan

    Energy Efficient Signaling Strategies for Tracking Mobile Underwater Vehicles Diba Mirza§ Paul for tracking vehicles is a recurring cost, we propose to minimize the energy consumption by optimizing, neglecting vehicle motion between transmissions. Alternatively if vehicles have some knowledge about