National Library of Energy BETA

Sample records for vdc nominal cell

  1. Fellows' Nominations and Selections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nominations and Selections Fellows' Nominations and Selections The Fellow appointment is an honor bestowed by the Director in recognition of unusual achievement by research and development (R&D) scientists and engineers. Fellows' nomination and selection process Definition The Fellow appointment is an honor bestowed by the Director in recognition of unusual achievement by research and development (R&D) scientists and engineers. It can be awarded to full-time R&D scientists, R&D

  2. Fellows' Prize Nominations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nominations Fellows' Prize Nominations Prize details and nomination procedures. Fellows' Prize for Outstanding Research in Science or Engineering Purpose To commend individuals for outstanding research performed at the Laboratory that was published within the last 10 years and that has had a significant impact on its discipline or program. To recognize and stimulate high-quality investigations in science or engineering by Laboratory staff members and to encourage publication in appropriate

  3. SSRLUO EC Ballot Nominations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28th Annual Stanford Synchrotron Radiation Laboratory Users' Meeting Menlo Park, California USA October 18-19, 2001 SSRLUO Executive Committee Ballot -- Nominations Due September 18 The SSRL Users' Organization Executive Committee (SSRLUO EC) is a voluntary organization which serves as an advisory panel to communicate user needs or concerns to SSRL management and to the SLAC Scientific Policy Committee. More broadly, the SSRLUO EC helps advocate the role synchrotrons play in the scientific

  4. LANSCE | Users | Rosen Scholar | Call for Nominations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scholar - Call for Nominations Nomination and Selection Process Nominations for Rosen Scholar candidates are to be sponsored by at least one of LANSCE's Facilities: IPF (Isotope Production Facility), UCN (Ultra-Cold Neutron), pRad (Proton Radiography), Lujan Center, and WNR (Nuclear Science). The nomination package should include a two page research statement, a one page support letter from one of the sponsoring facilities and a recent CV. Call for Nominations 2016 Nominations are due by January

  5. Federal Energy and Water Management Awards: Nomination Quick...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nomination Quick Reference Federal Energy and Water Management Awards: Nomination Quick Reference Document offers a checklist of items needed to complete a nomination for the 2016 ...

  6. Microsoft Word - fellows_nomination_reworked.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the National Nuclear Security Administration of the U.S. Department of Energy To be completed for each individual nomination Candidate Last Name: First Name: Middle Initial: Z Number: Organization: Phone: Mail Stop: Email Address: Nominator Last Name: First Name: Middle Initial: Z Number: Organization: Phone: Mail Stop: Email Address: Package Includes (please check all that apply): 1) Table of Contents ____ 2) Letter of Nomination ____ 3) Letters of Endorsement ____ 4) CV/Resume ____ 5)

  7. 2016 DOE Sustainability Awards Nominations Deadline!

    Broader source: Energy.gov [DOE]

    All nominations must be submitted through the DOE Sustainability Awards Database by January 22nd.  For more information, click here.

  8. Nominations Open for 2013 NERSC HPC Achievement Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nominations Open for 2013 NERSC HPC Achievement Awards January 1, 2013 by Richard Gerber Nominations are open for the 2013 NERSC Award for Innovative Use of High Performance...

  9. Nominate Your Mentor for the Presidential Award in Science, Math...

    Energy Savers [EERE]

    Nominate Your Mentor for the Presidential Award in Science, Math, and Engineering Mentoring Nominate Your Mentor for the Presidential Award in Science, Math, and Engineering ...

  10. Nomination & Selection Guidelines | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ... For either case, please establish an account, and follow the guidance provided on the nomination system web pages (http:www.orau.govfermi External link ). Nomination Deadline ...

  11. Call for Nominations for 2016 NERSC Scientific Achievement Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for Nominations (2016) Call for Nominations for 2016 NERSC Scientific Achievement Awards Nominations are open for the 2016 NERSC Award for Innovative Use of High Performance Computing and the 2016 NERSC Award for High Impact Scientific Achievement. NERSC Principal Investigators, Project Managers, PI Proxies, and DOE Program Managers may nominate any NERSC user or collaboratory group. The deadline for nominations is Friday, March 4, 2016. Winners will be announced at the NERSC Users Group

  12. Federal Agency Energy Coordinators for Award Nominations | Department of

    Office of Environmental Management (EM)

    Energy Awards » Federal Agency Energy Coordinators for Award Nominations Federal Agency Energy Coordinators for Award Nominations Contact your agency coordinator in advance to discuss your Federal Energy and Water Management Award nomination. Agency coordinators are responsible for vetting nomination information and submitting approved nominations to the Federal Energy Management Program on behalf of the agencies. Each agency listed below is limited to 15 Federal Energy and Water Management

  13. Alaska Rural Manager Panelists Call for Nominations

    Broader source: Energy.gov [DOE]

    The Alaska Rural Managers are seeking nominations for city, tribal, and utility managers to participate in several Anchorage focus group/workshops this April. Selected panelists will represent their profession and will help develop guidelines for the training and education of Alaska's Rural Managers.

  14. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect (OSTI)

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  15. Aviation Management Professional Award Nomination for:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aviation Professional Nomination for Managerial/Official Award: Joseph M. Ginanni Aviation Manager US Department of Energy/National Nuclear Security Administration, Nevada Site Office Bio Joseph M. Ginanni Aviation Manager National Nuclear Security Administration Nevada Site Office Mr. Ginanni has worked for the Nevada Site Office (NSO) since 1991. For the past five years, he has served as the NSO Aviation Manager, managing and overseeing the Management and Operating contractor's aviation

  16. LANSCE | Users | Rosen Prize | Call for Nominations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosen Prize | Call for Nominations | CLOSED Rosen Prize: Call for Submissions is now closed. The Los Alamos Neutron Science Center (LANSCE) is pleased to announce the call for submissions for the 24th Louis Rosen Prize. The Prize, consisting of $1000 and a plaque, is awarded for the most outstanding Ph.D. thesis based on experimental or theoretical research performed at LANSCE. Theses based on work in any area of science or technology at the Lujan Neutron Scattering Center, Weapons Neutron

  17. Deadline for DOE Indian Country Working Group Nominations Extended...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deadline for DOE Indian Country Working Group Nominations Extended to Aug. 24 Deadline for DOE Indian Country Working Group Nominations Extended to Aug. 24 August 18, 2015 - 1:12pm...

  18. DOE Encourages Utility Sector Nominations to the Federal Communication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commission's Communications, Security, Reliability, and Interoperability Council DOE Encourages Utility Sector Nominations to the Federal Communications Commission's...

  19. Nominations Open for 2013 NERSC HPC Achievement Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nominations Open for 2013 NERSC HPC Achievement Awards Nominations Open for 2013 NERSC HPC Achievement Awards January 1, 2013 by Richard Gerber Nominations are open for the 2013 NERSC Award for Innovative Use of High Performance Computing and the 2013 NERSC Award for High Impact Scientific Achievement. These are the first of what are planned to be annual awards. Current NERSC Principal Investigators, Project Managers, and PI Proxies may nominate any NERSC user or collaboratory group. The

  20. Federal Energy and Water Management Awards: Nomination Quick Reference |

    Office of Environmental Management (EM)

    Department of Energy Nomination Quick Reference Federal Energy and Water Management Awards: Nomination Quick Reference Document offers a checklist of items needed to complete a nomination for the 2016 Federal Energy and Water Management Awards. PDF icon Download the 2016 Nomination Quick Reference fact sheet. More Documents & Publications Federal Energy and Water Management Awards: Frequently Asked Questions Criteria and Guidelines for the Federal Energy and Water Management Awards The

  1. Aviation Management Professional Award Nomination for: | Department of

    Energy Savers [EERE]

    Energy Aviation Management Professional Award Nomination for: Aviation Management Professional Award Nomination for: PDF icon Aviation Management Professional Award Nomination for: More Documents & Publications FAQS Reference Guide - Aviation Manager FAQS Reference Guide - Aviation Safety Officer Type B Accident Investigation Board Report of the April 23, 1997, Helicopter Accident at Raton Pass, Raton Pass, Colorado

  2. Assets in Action Community Award nominations open until December 17

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assets in Action Community Award Nominations Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Assets in Action Community Award nominations open until December 17 If you know people who support building a strong community for youth in Los Alamos, nominate them for an Assets in Action Community Award. January 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community

  3. DOE General Counsel Nomination Announcement | Department of Energy

    Office of Environmental Management (EM)

    General Counsel Nomination Announcement DOE General Counsel Nomination Announcement March 18, 2009 - 12:00am Addthis WASHINGTON, DC - Today, President Barack Obama announced his intent to nominate the following individuals to key administration posts: Susan Burk, Special Representative of the President, with the rank of Ambassador, State Department; Raphael Bostic, Assistant Secretary for Policy Development and Research, Department of Housing and Urban Development; Michelle J. DePass, Assistant

  4. DOE Encourages Utility Sector Nominations to Commerce Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commerce Department's Spectrum Advisory Committee DOE Encourages Utility Sector Nominations to Commerce Department's Spectrum Advisory Committee December 14, 2010 - 5:40pm Addthis...

  5. Last Call for 2016 DOE Sustainability Awards Nominations

    Broader source: Energy.gov [DOE]

    The nominations period for the 2016 DOE Sustainability Awards is coming to a close on January 22. 2016 DOE Sustainability Award Nominations may include DOE co-workers, teams, and sites that have demonstrated outstanding achievements in advancing the Departments sustainability mission, including excellence in energy, water, and vehicle fleet management.

  6. A Review Of Water Contents Of Nominally Anhydrous Natural Minerals...

    Open Energy Info (EERE)

    Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  7. Nominations open for $250,000 Multimedia Clean Energy prizes...

    Open Energy Info (EERE)

    Nominations open for 250,000 Multimedia Clean Energy prizes Home > Groups > Utility Rate Graham7781's picture Submitted by Graham7781(2017) Super contributor 2 October, 2012 -...

  8. Carlsbad Field Office Nominated for Employer Support Freedom Award

    Broader source: Energy.gov [DOE]

    EM’s Carlsbad Field Office (CBFO) was honored at a recognition event in Santa Fe this month for being nominated for the 2014 Secretary of Defense Employer Support Freedom Award.

  9. EERE Efficiency Expert Nominated for American Service Award | Department of

    Office of Environmental Management (EM)

    Energy Efficiency Expert Nominated for American Service Award EERE Efficiency Expert Nominated for American Service Award October 9, 2014 - 2:29pm Addthis EERE has codified minimum energy conservation standards for more than 60 categories of appliances and equipment. EERE has codified minimum energy conservation standards for more than 60 categories of appliances and equipment. John Cymbalsky, leader of EERE's Appliance Standards Program since 2010 and Sammies Award Nominee. | Photo credit

  10. 4-28-09_Final_Testimony_(Triay)_(Nomination).pdf

    Office of Environmental Management (EM)

    8, 2009 Good morning, Mr. Chairman, Senator McCain, members of the Committee. It is a great honor to appear before you today as President Obama's nominee to be the Assistant Secretary for Environmental Management at the United States Department of Energy. I thank Secretary Chu and President Obama for their support and confidence in recommending and nominating me. I also thank the Committee for considering my nomination. I would like to introduce my husband of 24 years, Dr. John Hall, and his

  11. Call for nominations for NERSC HPC Achievement Awards Due December 16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nominations for NERSC HPC Achievement Awards Call for nominations for NERSC HPC Achievement Awards Due December 16 November 18, 2013 by Francesca Verdier Nominations are open for the 2014 NERSC Award for Innovative Use of High Performance Computing and the 2014 NERSC Award for High Impact Scientific Achievement. NERSC Principal Investigators, Project Managers, PI Proxies, and DOE Program Managers may nominate any NERSC user or collaboration. The deadline for nominations is Mon. Dec. 16, 2013.

  12. PROCESS STUDY OF NOMINAL 2 K REFRIGERATION RECOVERY

    SciTech Connect (OSTI)

    Knudsen, Peter; Ganni, Venkatarao

    2008-03-01

    There is an increased interest in the nominal 2-K helium refrigeration systems (below lambda) for various test stands and applications at the present time. This paper presents the process parameter choices and their influence on the system performance of various noncold compressor configurations. This study is intended to facilitate the adoption of this process in conjunction with commercially-available small 4.5-K helium liquefaction systems. By way of an introduction, the efficiency of some commonly employed (but inefficient) 2-K process configurations are analyzed. Then the analyses of three nominal 2-K refrigeration-recovery process configurations are presented. The effect of the process parameters, such as flow imbalance, heat-exchanger size, supply pressure and 4.5-K plant interaction location(s) are investigated so that the optimum conditions yielding the required performance can be determined.

  13. Process Options for Nominal 2-K Helium Refrigeration System Designs

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni

    2012-07-01

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  14. Nomination & Selection Guidelines | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nomination & Selection Guidelines The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us Nomination & Selection Guidelines Print Text Size: A A A FeedbackShare Page Jump to: Nomination Guidelines | Lawrence

  15. ISSUANCE 2015-06-08: Solicitation of Nominations for Membership on the Appliance Standards and Rulemaking Federal Advisory Committee

    Broader source: Energy.gov [DOE]

    Solicitation of Nominations for Membership on the Appliance Standards and Rulemaking Federal Advisory Committee

  16. E. O. Lawrence Award Nominations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    E. O. Lawrence Award Nominations News News Home Featured Articles Science Headlines 2015 2014 2013 2016 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.04.12 E. O. Lawrence Award Nominations The Office of Science is now accepting nominations for the 2013 E. O. Lawrence Award.

  17. Nominations Now Open: Mid-Career Women in Clean Energy Awards | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Nominations Now Open: Mid-Career Women in Clean Energy Awards Nominations Now Open: Mid-Career Women in Clean Energy Awards April 15, 2014 - 3:51pm Addthis Nominations Now Open: Mid-Career Women in Clean Energy Awards Caroline McGregor Policy Analyst, Office of International Affairs Nominations are now being accepted to honor mid-career women for outstanding work in clean energy. These annual awards are run by the MIT Energy Initiative (MITEI) as part of an overarching

  18. Open Nominations Call- Energy Department Employees, Join the Women @ Energy Series

    Broader source: Energy.gov [DOE]

    We are re-opening the call for nominations of outstanding women at the Department to share their story of their STEM career and offer advice and inspiration for others to explore a future in STEM. Send in your nomination of a Department of Energy employee to annemarie.horowitz@hq.doe.gov by Friday, June 5, 2014.

  19. Statement from Energy Secretary Samuel W. Bodman on the Nomination of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas P. D'Agostino as Under Secretary for Nuclear Security and Administrator of NNSA | Department of Energy Nomination of Thomas P. D'Agostino as Under Secretary for Nuclear Security and Administrator of NNSA Statement from Energy Secretary Samuel W. Bodman on the Nomination of Thomas P. D'Agostino as Under Secretary for Nuclear Security and Administrator of NNSA May 17, 2007 - 12:55pm Addthis "Today the President announced his intention to nominate Thomas P. D'Agostino as Under

  20. President-Elect Obama Nominates Dr. Steven Chu as Energy Secretary |

    Energy Savers [EERE]

    Department of Energy President-Elect Obama Nominates Dr. Steven Chu as Energy Secretary President-Elect Obama Nominates Dr. Steven Chu as Energy Secretary December 17, 2008 - 2:30pm Addthis Photo of Steven Chu. President-elect Barack Obama has nominated Dr. Steven Chu, the current director of DOE's Lawrence Berkeley National Laboratory (LBNL), to be the next Secretary of Energy. Dr. Chu won the Nobel Prize for physics in 1997 and has run LBNL since 2004. Prior to that time, he was a

  1. 2015 GreenGov Presidential Awards Nomination - LANL, U.S. DOE, NNSA for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Champion Award | Department of Energy 5 GreenGov Presidential Awards Nomination - LANL, U.S. DOE, NNSA for Climate Champion Award 2015 GreenGov Presidential Awards Nomination - LANL, U.S. DOE, NNSA for Climate Champion Award 2015 GreenGov Presidential Awards nomination for Climate Champions Award. LLNL/DOE/NNSA Long-term Strategy for Environmental Stewardship and Sustainability (LTSESS). LTSESS case study lays out the climate realities at LANL and serves as an example of how DOE and

  2. Conduction below 100 °C in nominal Li6ZnNb4O14

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Yunchao; Paranthaman, Mariappan Parans; Gill, Lance W.; Edward W. Hagaman; Wang, Yangyang; Sokolov, Alexei P.; Dai, Sheng; Ma, Cheng; Chi, Miaofang; Veith, Gabriel M.; et al

    2015-09-15

    The increasing demand for a safe rechargeable battery with a high energy density per cell is driving a search for a novel solid electrolyte with a high Li+ or Na+ conductivity that is chemically stable in a working Li-ion or Na-ion battery. Li6ZnNb4O14 has been reported to exhibit a σ Li > 10-2 S cm-1 at 250 °C, but to disproportionate into multiple phases on cooling from 850 °C to room temperature. An investigation of the room-temperature Li-ion conductivity in a porous pellet of a multiphase product of a nominal Li6ZnNb4O14 composition is shown to have bulk σ Li 3.3more » x 10-5 S cm-1 at room temperature that increases to 1.4 x 10-4 S cm-1 by 50 °C. 7Li MAS NMR spectra were fitted to two Lorentzian lines, one of which showed a dramatic increase with increasing temperature. As a result, a test for water stability indicates that Li+ may move to the particle and grain surfaces to react with adsorbed water as occurs in the garnet Li+ conductors.« less

  3. Nominate An Inspirational STEM Teacher for the Nation’s Highest Honors

    Broader source: Energy.gov [DOE]

    Nominations are now open for the nation’s highest honors for K-12 mathematics and science teachers. The Presidential Awards for Excellence in Mathematics and Science Teaching, or PAEMST, have been...

  4. Title 43 CFR 3203.12 What Fees Must I Pay to Nominate Lands?...

    Open Energy Info (EERE)

    .12 What Fees Must I Pay to Nominate Lands? Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR...

  5. Nominate Your Mentor for the Presidential Award in Science, Math, and

    Energy Savers [EERE]

    Engineering Mentoring | Department of Energy Nominate Your Mentor for the Presidential Award in Science, Math, and Engineering Mentoring Nominate Your Mentor for the Presidential Award in Science, Math, and Engineering Mentoring May 24, 2012 - 4:59pm Addthis Bill Valdez Bill Valdez Director of Workforce Management Editor's Note: This blog was originally posted by the White House Office of Science and Technology Policy. Do you know someone who has been an excellent example, role model, and

  6. Price of Cameron, LA Natural Gas LNG Imports (Nominal Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Nominal Dollars per Thousand Cubic Feet) Price of Cameron, LA Natural Gas LNG Imports (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 4.78 2010's 5.78 8.13 10.54 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas

  7. Price of Cameron, LA Natural Gas LNG Imports from Qatar (Nominal Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) from Qatar (Nominal Dollars per Thousand Cubic Feet) Price of Cameron, LA Natural Gas LNG Imports from Qatar (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 4.51 2010's 5.97 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S.

  8. Price of Cove Point, MD Natural Gas LNG Imports from Egypt (Nominal Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Cove Point, MD Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 11.66 7.83 7.22 7.46 4.20 2010's 5.49 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. Price of Elba Island, GA Natural Gas LNG Imports from Nigeria (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Nigeria (Nominal Dollars per Thousand Cubic Feet) Price of Elba Island, GA Natural Gas LNG Imports from Nigeria (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 11.69 -- -- 9.93 -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  10. Price of Everett, MA Natural Gas LNG Imports from Egypt (Nominal Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Everett, MA Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 5.58 2010's 7.29 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price

  11. Price of Gulf of Mexico Natural Gas LNG Imports (Nominal Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 8.87 7.31 8.36 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied

  12. Price of Gulf of Mexico Natural Gas LNG Imports from Malaysia (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Malaysia (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports from Malaysia (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 6.67 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of

  13. Price of Gulf of Mexico Natural Gas LNG Imports from Nigeria (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Nigeria (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports from Nigeria (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 11.11 -- 8.29 -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  14. Price of Lake Charles, LA Natural Gas LNG Imports from Egypt (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 9.73 6.60 6.64 7.14 3.29 2010's 3.93 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. Price of Northeast Gateway Natural Gas LNG Imports from Egypt (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 6.71 2010's 5.11 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  16. Price of Savine Pass, LA Natural Gas LNG Imports from Egypt (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Savine Pass, LA Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Savine Pass, LA Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 4.10 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  17. Deadline for DOE Indian Country Working Group Nominations Extended to Aug. 24

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is looking for nominations for elected tribal government officials (or designated tribal government employees with authority to act on behalf of the elected officials) to serve as members of the Indian Country Energy and Infrastructure Working Group (ICEIWG).

  18. Hanford Advisory Board (HAB or Board) Membership Nomination and Appointment Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 1, 2012 Hanford Advisory Board (HAB or Board) Membership Nomination and Appointment Process Background In 1993 1 the Tri-Party Agreement (TPA) agencies - the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the Washington State Department of Ecology - engaged in a collaborative and transparent public process to form an advisory board to address Hanford cleanup issues. An outcome of that process was the identification of an advisory board membership that

  19. NREL’s Grid Integration Lab Nominated for Prestigious Project Management Award

    Broader source: Energy.gov [DOE]

    The new Energy Systems Integration Facility (ESIF) at the Energy Department’s National Renewable Energy Laboratory (NREL) received a nomination as one of three international finalists for the Project Management Institute (PMI) Project of the Year Award. Although the ESIF project team didn’t take home the top honor this year, we are proud of the accomplishments they made in bringing one of the most innovative new laboratories in the country from the drawing board to fruition.

  20. Satellite power system (SPS). Rectenna siting: availability and distribution of nominally eligible sites

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Siting of 60 ground receiving stations (rectennas) for the SPS may pose a problem due to the large area per rectenna (15,000 hectares, 38,000 acres) and numerous siting constraints. This study analyzes areas potentially eligible for rectenna sites by mapping, at a national scale, those conditions which would preclude rectenna construction. These exclusion variables which reflect restricted lands, topography, safety, national policy and electromagnetic (microwave) effects, have been computer encoded and tabulated. Subsequent analysis of the nine electric power planning regions that make up the contiguous states indicate an apparently adequate number of nominally eligible sites in all regions in comparison to projected electrical generation. Eligibility in this context means only that areas were not excluded in this national level analysis; more detailed investigation may reveal purely local constraints or smaller scale exclusions. A second major qualification relates to small isolated eligible areas. Eliminating individual eligible clusters with less than nine times the area of one rectenna eliminates much of the Eastern US; a four-to-one adjacent eligible area test poses no such problem. An independant study of the placement of 60 nominal sites in relation to projected load centers reveals that, even with modest transmission distances, the supply of eligible areas is not a key constraint, except perhaps in the Mid-Atlantic (Electric Reliability) Council Region. Even when several less critical (potential) exclusions are considered, more than 19% of the US is eligible; every region except Mid-Atlantic has at least 50 times an many eligible sites as are required.

  1. U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Oil Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 52.2 51.3 54.2 51.8 50.6 56.6 62.2 66.6 79.1 86.5 1970's 86.7 78.4 93.5 103.8 110.2 138.6 151.1 170.0 208.0 243.1 1980's 272.1 336.3 347.4 283.8 262.1 270.4 284.9 246.0 279.4 282.3 1990's 321.8 346.9 362.3 356.6 409.5 415.8 341.0 445.6 566.0 783.0 2000's 593.4 729.1 882.8 1,037.3 1,441.8 1,920.4

  2. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Dollars per Well) Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 54.9 54.5 58.6 55.0 55.8 60.6 68.4 72.9 81.5 88.6 1970's 94.9 94.7 106.4 117.2 138.7 177.8 191.6 227.2 280.0 331.4 1980's 367.7 453.7 514.4 371.7 326.5 349.4 364.6 279.6 354.7 362.2 1990's 383.6 421.5 382.6 426.8 483.2

  3. U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 44.0 45.2 50.8 48.2 48.5 53.1 56.9 61.5 66.2 70.2 1970's 80.9 86.8 94.9 105.8 141.7 177.2 190.3 230.2 281.7 339.6 1980's 376.5 464.0 515.4 366.5 329.2 372.3 389.2 259.1 366.4 355.4 1990's 367.5 441.2 357.6 387.7 491.5 481.2 541.0 655.6 973.2 1,115.5 2000's 1,075.4 1,620.4 1,673.4 2,065.1 1,977.3 2,392.9

  4. U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update (EIA)

    Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.22 13.11 13.41 13.20 13.12 13.94 15.04 16.61 18.63 19.28 1970's 19.29 18.41 20.77 22.54 27.82 34.17 37.35 41.16 49.72 58.29 1980's 66.36 80.40 86.34 72.65 66.32 66.78 68.35 58.35 62.28 64.92 1990's 69.17 73.75 69.50 67.52 70.57 78.09 70.60 90.48 108.88 156.45 2000's 125.96 153.72 194.55 221.13 298.45

  5. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Foot) Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.01 12.85 13.31 12.69 12.86 13.44 14.95 15.97 16.83 17.56 1970's 18.84 19.03 20.76 22.50 28.93 36.99 40.46 46.81 56.63 67.70 1980's 77.02 94.30 108.73 83.34 71.90 75.35 76.88 58.71 70.23 73.55 1990's 76.07 82.64 70.27 75.30 79.49 87.22

  6. U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update (EIA)

    Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10.56 10.56 11.20 10.58 10.64 11.21 12.34 12.87 12.88 13.23 1970's 15.21 16.02 17.28 19.22 26.76 33.86 36.94 43.49 52.55 64.60 1980's 73.70 90.03 104.09 79.10 67.18 73.69 76.53 51.05 66.96 67.61 1990's 67.49 83.05 67.82 72.56 86.60 84.60 95.74 115.09 157.79 182.99 2000's 181.83 271.63 284.17 345.94 327.91

  7. U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot)

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18.57 17.65 18.10 17.19 18.57 18.35 21.75 23.05 24.05 25.58 1970's 26.75 27.70 27.78 27.46 34.11 46.23 49.78 57.57 68.37 80.66 1980's 95.16 122.17 146.20 108.37 88.80 93.09 93.02 69.55 84.65 86.86 1990's 90.73 93.10 72.83 83.15 81.90 95.97 98.67 117.55 127.94 138.42 2000's 138.39 172.05 175.78

  8. U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 102.7 94.7 97.1 92.4 104.8 101.9 133.8 141.0 148.5 154.3 1970's 160.7 166.6 157.8 155.3 189.2 262.0 270.4 313.5 374.2 443.1 1980's 536.4 698.6 864.3 608.1 489.8 508.7 522.9 380.4 460.3 457.8 1990's 471.3 506.6 426.1 521.2 535.1 629.7 616.0 728.6 815.6 798.4 2000's 756.9 896.5 991.9

  9. A Multiattribute Utility Analysis of Sites Nominated For Characterization For the First Radioactive Waste Repository- A Decision Aiding Methodology

    Broader source: Energy.gov [DOE]

    In December 1984, the Department of Energy (DOE) published draft environmental assessments (EAs) to support the proposed nomination of five sites and the recommendation of three sites for characterization for the first radioactive-waste repository. A chapter common to all the draft EAs (Chapter 7) presented rankings of the five sites against the postclosure and the preclosure technical siting guidelines. To determine which three sites appeared most favorable for recommendation for characterization, three simple quantitative methods were used to aggregate the rankings assigned to each site for the various technical guidelines. In response to numerous comments on the methods, the DOE has undertaken a formal application of one of them (hereafter referred to as the decision-aiding methodology) for the purpose of obtaining a more rigorous evaluation of the nominated sites.

  10. Layered electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  11. Pete_Lyons_Nomination_Testimony

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    remain strong and vigilant components of the Nation's integrated defenses against terrorism. I was a consistent voice for improving partnerships with international regulatory...

  12. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  13. FinalTestimonyLaneNominationStatement.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STATEMENT OF JEFF LANE, NOMINEE TO BE AN ASSISTANT SECRETARY OF ENERGY, CONGRESSIONAL AND INTERGOVERNMENTAL AFFAIRS, DEPARTMENT OF ENERGY MARCH 17, 2010 Chairman Bingaman, Ranking...

  14. Property:Nominal Voltage | Open Energy Information

    Open Energy Info (EERE)

    Farms + 480 + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + 480 + Distributed Generation StudySUNY Buffalo + 480 + Distributed Generation...

  15. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  16. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  17. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I. (6851 Carpenter St., Downers Grove, IL 60516); Vissers, Donald R. (611 Clover Ct., Naperville, IL 60540); Prakash, Jai (2205 Arbor Cir. 8, Downers Grove, IL 60515)

    1996-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  18. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-02-01

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.

  19. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

  20. Load cell

    DOE Patents [OSTI]

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  1. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I.; Myles, Kevin M.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated .beta." alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated .beta." alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof.

  2. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  3. Electrochemical cell

    DOE Patents [OSTI]

    Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

    1992-08-25

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

  4. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  5. Electrochemical cell

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1984-01-01

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5-1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1-10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  6. Photovoltaic cell

    DOE Patents [OSTI]

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  7. Photoelectrodialytic cell

    DOE Patents [OSTI]

    Murphy, G.W.

    1983-09-13

    A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment. 3 figs.

  8. Photoelectrodialytic cell

    DOE Patents [OSTI]

    Murphy, George W. (2328 Ashwood, Norman, OK 73069)

    1983-01-01

    A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment.

  9. Electrochemical cell

    SciTech Connect (OSTI)

    Walsh, F.M.

    1986-12-23

    This patent describes an electrochemical cell having a metal anode wherein the metal is selected from zinc and cadmium; a bromine cathode; and an aqueous electrolyte containing a metal bromide, the metal bromide having the same metal as the metal of the anode. The improvement described here comprises: a bromine complexing agent in the aqueous metal bromide electrolyte, the complexing agent consisting solely of a quaternary ammonium salt of an N-organo substituted alpha amino acid, ester, or betaine.

  10. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  11. The Cell Processor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005 IBM Corporation The Cell Processor Architecture & Issues 2 2005 IBM Corporation Agenda Cell Processor Overview Programming the Cell Processor Concluding Remarks 3 ...

  12. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  13. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  14. Fuel Cell Buses

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar Fuel Cell Buses Development held September 12, 2013.

  15. Photoelectrochemical cell

    DOE Patents [OSTI]

    Rauh, R. David (Newton, MA); Boudreau, Robert A. (Norton, MA)

    1983-06-14

    A photoelectrochemical cell comprising a sealed container having a light-transmitting window for admitting light into the container across a light-admitting plane, an electrolyte in the container, a photoelectrode in the container having a light-absorbing surface arranged to receive light from the window and in contact with the electrolyte, the surface having a plurality of spaced portions oblique to the plane, each portion having dimensions at least an order of magnitude larger than the maximum wavelength of incident sunlight, the total surface area of the surface being larger than the area of the plane bounded by the container, and a counter electrode in the container in contact with the electrolyte.

  16. Fuel cell arrangement

    DOE Patents [OSTI]

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  17. Fuel cell arrangement

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA)

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  18. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  19. DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's Fuel Cell Technologies Office...

  20. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 5 Fuel Cell States: Why Local Policies Mean Green Growth Jun 21 st , 2011 2 * Ohio Fuel Cell Initiative * Ohio Fuel Cell Coalition * Accomplishments * Ohio Successes Discussion Areas 3 Ohio's Fuel Cell Initiative * Announced on 5/9/02 * Part of Ohio Third Frontier Initiative * $85 million investment to date * Core focus areas: 1) Expand the state's research capabilities; 2) Participate in demonstration projects; and 3) Expand the fuel cell industry in Ohio 4 OHIO'S FUEL CELL INITIATIVE

  1. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, David; Gemmen, Randall

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controllers main objective is to track and maintain hybrid operational constraints in the fuel cells cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  2. Molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  3. Molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL); Smith, James L. (Lemont, IL)

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  4. Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. PDF icon Fuel Cell...

  5. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. PDF icon Fuel Cells Fact Sheet More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  6. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    SciTech Connect (OSTI)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests.

  7. Cross-sectional electrostatic force microscopy of thin-film solar cells

    SciTech Connect (OSTI)

    Ballif, C.; Moutinho, H. R.; Al-Jassim, M. M.

    2001-01-15

    In a recent work, we showed that atomic force microscopy (AFM) is a powerful technique to image cross sections of polycrystalline thin films. In this work, we apply a modification of AFM, namely, electrostatic force microscopy (EFM), to investigate the electronic properties of cleaved II--VI and multijunction thin-film solar cells. We cleave the devices in such a way that they are still working with their nominal photovoltaic efficiencies and can be polarized for the measurements. This allows us to differentiate between surface effects (work function and surface band bending) and bulk device properties. In the case of polycrystalline CdTe/CdS/SnO{sub 2}/glass solar cells, we find a drop of the EFM signal in the area of the CdTe/CdS interface ({+-}50 nm). This drop varies in amplitude and sign according to the applied external bias and is compatible with an n-CdS/p-CdTe heterojunction model, thereby invalidating the possibility of a deeply buried n-p CdTe homojunction. In the case of a triple-junction GaInP/GaAs/Ge device, we observe a variation of the EFM signal linked to both the material work-function differences and to the voltage bias applied to the cell. We attempt a qualitative explanation of the results and discuss the implications and difficulties of the EFM technique for the study of such thin-film devices.

  8. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  9. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  10. Diagnostic Studies on Lithium Battery Cells and Cell Components |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es032_abraham_2012_o.pdf More Documents & Publications Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Diagnostic studies on Li-battery cells and cell components Cell Fabrication Facility Team Production

  11. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel...

  12. Fuel Cell Technical Publications

    Broader source: Energy.gov [DOE]

    Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and websites is provided here.

  13. Biomarkers of cell senescence

    DOE Patents [OSTI]

    Dimri, G.P.; Campisi, J.; Peacocke, M.

    1998-08-18

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo. 1 fig.

  14. Biomarkers of cell senescence

    DOE Patents [OSTI]

    Dimri, Goberdhan P. (Simli U.P., IN); Campisi, Judith (Berkeley, CA); Peacocke, Monica (Newton, MA)

    1998-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo.

  15. Biomarkers of cell senescence

    DOE Patents [OSTI]

    Dirmi, Goberdhan P. (Simli U.P., IN); Campisi, Judith (Berkeley, CA); Peacocke, Monica (Newton, MA)

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  16. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1983-01-01

    This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

  17. Biomarkers of cell senescence

    DOE Patents [OSTI]

    Dirmi, G.P.; Campisi, J.; Peacocke, M.

    1996-02-13

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo. 1 fig.

  18. Appendix K Disposal Cell Groundwater Monitoring Plan

    Office of Legacy Management (LM)

    Disposal Cell Groundwater Monitoring Plan

  19. Large-area Silicon-Film{trademark} panels and solar cells. Phase 2 technical report, January 1996--December 1996

    SciTech Connect (OSTI)

    Rand, J.A.; Barnett, A.M.; Checchi, J.C.; Culik, J.S.; Collins, S.R.; Ford, D.H.; Hall, R.B.; Jackson, E.L.; Kendall, C.L.

    1997-03-01

    The Silicon-Film{trademark} process is on an accelerated path to large-scale manufacturing. A key element in that development is optimizing the specific geometry of both the Silicon-Film{trademark} sheet and the resulting solar cell. That decision has been influenced by cost factors, engineering concerns, and marketing issues. The geometry investigation has focused first on sheet nominally 15 cm wide. This sheet generated solar cells with areas of 240 cm{sup 2} and 675 cm{sup 2}. Most recently, a new sheet fabrication machine was constructed that produces Silicon-Film{trademark} with a width in excess of 30 cm. Test results have indicated that there is no limit to the width of sheet generated by this process. The new wide material has led to prototype solar cells with areas of 300, 400, and 1,800 cm{sup 2}. Significant advances in solar-cell processing have been developed in support of fabricating large-area devices, including uniform emitter diffusion and anti-reflection coatings.

  20. Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop | Department of Energy Overview: 2012 Flow Cells for Energy Storage Workshop Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage Workshop Presentation by Sunita Satyapal and Dimitrios Papageorgopoulos, U.S. Department of Energy Fuel Cell Technologies Program, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. PDF icon Fuel Cell Technologies Overview More Documents & Publications DOE Fuel Cell Technologies Office: 2013 Fuel Cell

  1. Solid Oxide Fuel Cells FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    further information, see: - Fuel Cell Handbook (Seventh Edition) SOLID OXIDE FUEL CELLS - ENVIRONMENT Q: How are fuel cells used? A: Fuel cells may be used to power anything that...

  2. Careers in Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Fact sheet produced by the Fuel Cell Technologies Office describing job growth potential in existing and emerging fuel cell applications.

  3. 2016 Federal Energy and Water Management Awards - Nomination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at an installation or facility; "Program" for overall management approaches that effectively instituted new strategies or policies; or "Contracting" for efforts to award energy ...

  4. National toxicology program chemical nomination and selection process

    SciTech Connect (OSTI)

    Selkirk, J.K.

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  5. 4-23-09_Final_Nomination_Testimony_(Triay).pdf

    Office of Environmental Management (EM)

  6. Statement from Energy Secretary Samuel W. Bodman on the Nomination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security and Administrator of the National Nuclear Security Administration (NNSA). Tom served as NNSA's Acting Administrator for three months and as Deputy Administrator for...

  7. NREL's Grid Integration Lab Nominated for Prestigious Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies interact on the grid at megawatt utility scale. Housing 15 experimental laboratories and several outdoor test beds, the 182,500-square-foot facility features a ...

  8. Student Employee of the Year nominations sought | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application deadline is February 5, 2016. For further information contact Erin Schwartz at 294-0102 eschwart@iastate.edu or Julie Arnold at 294-0103 jaarnol@iastate.edu....

  9. 12-8-11FinalMajumdarNominationTestimony.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an honor and privilege that I will cherish for the rest of my life. In ARPA-E's short existence, we have stood up an organization with a philosophy of excellence in everything we...

  10. NREL's Grid Integration Lab Nominated for Prestigious Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility (ESIF) at the Energy Departments National Renewable Energy Laboratory (NREL) is the nation's premier lab for testing how clean energy technologies interact on the...

  11. 4-28-09_Final_Testimony_(Triay)_(Nomination).pdf

    Office of Environmental Management (EM)

    Alamos National Laboratory in New Mexico and mentored by giants in the field of nuclear science; was asked to direct the beginning of the operational phase of the Waste Isolation...

  12. DOE Under Secretary Nomination Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... displays (HUD); pattern recognition systems for cancer prescreening, object tracking and document processing; HDTV and 3D projection displays; and 3D holographic memories. ...

  13. Open Nominations Call - Energy Department Employees, Join the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Economic Impact and Diversity started Women @ Energy, an online feature of women who work in science, technology, engineering, and mathematics (STEM) at the Energy Department. ...

  14. Call for nominations for NERSC HPC Achievement Awards Due December...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This award will recognize work that has, or is expected to have, an exceptional impact on scientific understanding, engineering design for scientific facilities, andor a...

  15. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7/21/2015 eere.energy.gov Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 Outline * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities 2 | Fuel Cell Technologies Program Source: US DOE 7/21/2015

  16. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  17. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  18. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE

  19. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells can provide clean power for applications ranging from less than a watt to multiple megawatts. Our transportation-including personal vehicles, trucks, buses, marine vessels, and other specialty vehicles such as lift trucks and ground support equipment, as well as auxiliary power units for traditional

  20. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  1. Fuel Cell Financing Options

    Broader source: Energy.gov [DOE]

    Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011.

  2. Financing Fuel Cells

    Broader source: Energy.gov [DOE]

    Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011.

  3. Micro fuel cell

    SciTech Connect (OSTI)

    Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  4. Fuel Cell Technologies Budget

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  5. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  6. Opportunities with Fuel Cells

    Reports and Publications (EIA)

    1994-01-01

    The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

  7. Microcomposite Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  8. Electrochemical cell method

    DOE Patents [OSTI]

    Kaun, T.D.; Eshman, P.F.

    1980-05-09

    A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.

  9. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  10. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  11. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 11/1/2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov DOE Program Overview Budget Progress Next Steps Agenda 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov DOE Program Structure The Program is an integrated effort, structured to address all the key challenges and obstacles facing widespread commercialization. The

  12. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  13. Fuel Cells in the States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Fuel Cells in the States States State and Regional State and Regional Initiatives Working Group Initiatives Working Group July 12, 2006 July 12, 2006 Jennifer Gangi Jennifer Gangi Program Director Program Director Fuel Cells 2000 Fuel Cells 2000 Fuel Cells 2000 / BTI Fuel Cells 2000 / BTI U.S. nonprofit organization U.S. nonprofit organization Established in 1993 Established in 1993 Promotes fuel cells from public Promotes fuel cells from public interest perspective. interest perspective.

  14. Fuel cells and fuel cell catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  15. Electrochemical cell stack assembly

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  16. Metal halogen electrochemical cell

    DOE Patents [OSTI]

    Bellows, Richard J. (Hampton, NJ); Kantner, Edward (E. Brunswick, NJ)

    1988-08-23

    It has now been discovered that reduction in the coulombic efficiency of metal halogen cells can be minimized if the microporous separator employed in such cells is selected from one which is preferably wet by the aqueous electrolyte and is not wet substantially by the cathodic halogen.

  17. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  18. Programmed cell death

    SciTech Connect (OSTI)

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  19. Tilted fuel cell apparatus

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  20. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  1. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  2. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  3. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems ... U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011. PDF icon ...

  4. NREL: Hydrogen and Fuel Cells Research - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Photo of scientific equipment in a laboratory setting. NREL scientist applies catalyst layer to a fuel cell through a spray process that delivers a more even distribution of material, improving performance. Photo by Dennis Schroeder, NREL What is a fuel cell? A single fuel cell consists of an electrolyte sandwiched between two electrodes. Bipolar plates on either side of the cell help distribute gases and serve as current collectors. Depending on the application, a fuel cell stack may

  5. NREL: Hydrogen and Fuel Cells Research - Early Fuel Cell Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrations Early Fuel Cell Market Demonstrations Photo of fuel cell backup power system in outdoor setting. Photo of fuel cell forklifts in warehouse setting. Fuel cell backup power systems offer longer continuous runtimes and greater durability than traditional batteries in harsh outdoor environments. For specialty vehicles such as forklifts, fuel cells can be a cost-competitive alternative to traditional lead-acid batteries. Learn More Subscribe to the biannual Fuel Cell and Hydrogen

  6. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Technology Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective and credible information about new fuel cell technologies with a focus on performance, durability, and price. As demand for fuel cells grows, U.S. manufacturers are developing these technologies for a

  7. Bipolar fuel cell

    DOE Patents [OSTI]

    McElroy, James F. (Suffield, CT)

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  8. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  9. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    and the environment PT Loma WWTP, Biogas to Fuel Cell Power BioFuels Energy Biogas to BioMethane to 4.5 MW Fuel Cell Power 3 FCE Fuel Cells 2 via directed...

  10. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/2/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar,

  11. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  12. Thin film photovoltaic cells

    DOE Patents [OSTI]

    Rothwarf, Allen (Philadelphia, PA)

    1981-01-01

    A solar cell has as its transparent electrical contact a grid made from a non-noble metal by providing a layer of copper oxide between the transparent electrical contact and the absorber-generator.

  13. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  14. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  15. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  16. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  17. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  18. Reversible Fuel Cells Workshop

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory hosted a workshop addressing the current state-of-the-art of reversible fuel cells that use hydrogen/air or hydrogen/oxygen on April 19, 2011, at the...

  19. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, Keith R. (Lake Jackson, TX); Rehg, Timothy J. (Lake Jackson, TX); Davis, Larry W. (West Columbia, TX); Carl, William P. (Marble Falls, TX); Cisar, Alan J. (Cypress, TX); Eastland, Charles S. (West Columbia, TX)

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  20. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  1. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  2. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  3. Compliant fuel cell system

    DOE Patents [OSTI]

    Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY)

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  4. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Goodnow, Warren H. (Palo Alto, CA); Payne, John R. (Pleasanton, CA)

    1982-01-01

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB.sub.2, for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints.

  5. Fuel Cells at NASCAR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells at NASCAR Ned Stetson U.S. Department of Energy Fuel Cell Technologies Office Catherine Kummer - NASCAR Green Norm Bessette - Acumentrics Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 Selected Milestone Accomplishments * 5 years of NASCAR Green with now most impactful sustainability platform in history of U.S. based on numbers; most impactful in sports * 75% of avid NASCAR fans are now aware of NASCAR green and believe the

  6. Fuel Cells in Telecommunications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Simply Powerful Fuel Cells in Telecommunications J. Blanchard December 2011 - ~ ReliOn Overview Markets Backup, grid supplement, and off grid power systems for critical communications infrastructure spanning telecom, transportation, government, utility, and OEM customers throughout the world. Products Purpose designed product portfolio of 175W to 2.5kW building blocks providing solutions up to 30kW for target markets. Broad range of hydrogen storage solutions supported by major

  7. Financing Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    organized by: ◦ US Department of Energy Fuel Cell Technologies Program ◦ Clean Energy States Alliance ◦ Technology Transition Corporation  Also briefing papers and materials for state policymakers and others on the Hydrogen and Fuel Cells Project page at www.cleanenergystates.org 2  A nonprofit coalition of state and sub-national clean energy funds and programs working together to develop and promote clean energy technologies and markets. www.cleanenergystates.org 3  For more

  8. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  9. Fuel Cell Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office EERE Fuel Cell Technologies Office Share this resource Publications Advanced Search Browse by Topic Mail Requests Help Feature featured product...

  10. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National Bank of Omaha...

  11. Fuel Cell Handbook (Seventh Edition)

    Office of Scientific and Technical Information (OSTI)

    ... In addition, because combustion is avoided, fuel cells produce power with minimal ... The only liquid in this fuel cell is water; thus, corrosion problems are minimal. ...

  12. Solar Cells Hellas SA | Open Energy Information

    Open Energy Info (EERE)

    Cells Hellas SA Jump to: navigation, search Name: Solar Cells Hellas SA Place: Athens, Greece Product: Greek manufacturer of PV wafers, cells and modules. References: Solar Cells...

  13. Fuel Cells Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen fuel cell technology. Fuel Cells More Documents & Publications Hydrogen and Fuel Cell...

  14. Fuel Cells Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Cells Fact Sheet Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing fuel cell technologies. PDF icon Fuel Cells Fact Sheet More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

  15. Fuel cell system

    DOE Patents [OSTI]

    Early, Jack (Perth Amboy, NJ); Kaufman, Arthur (West Orange, NJ); Stawsky, Alfred (Teaneck, NJ)

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  16. Microbial Cell Imaging

    SciTech Connect (OSTI)

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on the maximum scan size (roughly 100 x 100 {mu}m) and the restricted movement of the cantilever in the Z (or height) direction. In most commercial AFMs, the Z range is restricted to roughly 10 {mu}m such that the height of cells to be imaged must be seriously considered. Nevertheless, AFM can provide structural-functional information at nanometer resolution and do so in physiologically relevant environments. Further, instrumentation for scanning probe microscopy continues to advance. Systems for high-speed imaging are becoming available, and techniques for looking inside the cells are being demonstrated. The ability to combine AFM with other imaging modalities is likely to have an even greater impact on microbiological studies. AFM studies of intact microbial cells started to appear in the literature in the 1990s. For example, AFM studies of Saccharomyces cerevisiae examined buddings cars after cell division and detailed changes related to cell growth processes. Also, the first AFM studies of bacterial biofilms appeared. In the late 1990s, AFM studies of intact fungal spores described clear changes in spore surfaces upon germination, and studies of individual bacterial cells were also described. These early bacterial imaging studies examined changes in bacterial morphology due to antimicrobial peptides exposure and bacterial adhesion properties. The majority of these early studies were carried out on dried samples and took advantage of the resolving power of AFM. The lack of cell mounting procedures presented an impediment for cell imaging studies. Subsequently, several approaches to mounting microbial cells have been developed, and these techniques are described later. Also highlighted are general considerations for microbial imaging and a description of some of the various applications of AFM to microbiology.

  17. Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) clathrates prepared by combining arc melting and spark plasma sintering methods

    SciTech Connect (OSTI)

    Anno, Hiroaki; JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 ; Yamada, Hiroki; Nakabayashi, Takahiro; Hokazono, Masahiro; Shirataki, Ritsuko; JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075

    2012-09-15

    The gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) compounds with the type-I clathrate structure is presented. Samples were prepared by combining arc melting and spark plasma sintering methods. Powder x-ray diffraction, Rietveld analysis, scanning electron microscopy, and energy-dispersive x-ray spectroscopy show that the solubility limit of gallium in the type-I clathrate phase is close to x=15, which is slightly higher than that for a single crystal. The carrier concentration at room temperature decreases from 2 Multiplication-Sign 10{sup 21} cm{sup -3} to 4 Multiplication-Sign 10{sup 20} cm{sup -3} as the Ga content x increases. The Seebeck coefficient, the electrical conductivity, and the thermal conductivity vary systematically with the carrier concentration when the Ga content x varies. The effective mass (2.0m{sub 0}), the carrier mobility (10 cm{sup 2} V{sup -1} s{sup -1}), and the lattice thermal conductivity (1.1 W m{sup -1} K{sup -1}) are determined for the Ga content x=14.51. The dimensionless thermoelectric figure of merit ZT is about 0.55 at 900 K for the Ga content x=14.51. The calculation of ZT using the experimentally determined material parameters predicts ZT=0.8 (900 K) at the optimum carrier concentration of about 2 Multiplication-Sign 10{sup 20} cm{sup -3}. - Graphical abstract: The gallium composition dependence of crystallographic and thermoelectric properties is presented on polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} with the type-I clathrate structure prepared by combining arc melting and spark plasma sintering methods. The thermoelectric figure of merit ZT reaches 0.55 at 900 K due to the increase in the Ga content (close to x=15), and a calculation predicts further improvement of ZT at the optimized carrier concentration. Highlights: Black-Right-Pointing-Pointer Crystallographic properties of Ba{sub 8}Ga{sub x}Si{sub 46-x} clathrates are characterized. Black-Right-Pointing-Pointer Arc melting and spark plasma sintering process enables increase of Ga content. Black-Right-Pointing-Pointer We elucidate the Ga composition dependence of thermoelectric properties. Black-Right-Pointing-Pointer Thermoelectric figure of merit ZT is improved due to the increased Ga content. Black-Right-Pointing-Pointer Calculation predicts a potential ZT=0.8 at 900 K at optimized carrier concentration.

  18. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  19. Fuel Cell Animation - Fuel Cell Components (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Components (Text Version) Fuel Cell Animation - Fuel Cell Components (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with its inputs and outputs. Hydrogen input on top, oxygen input in front, water and heat outputs out the back, with an electrical circuit going around the top. Polymer Electrolyte Membrane (PEM) in center, cathode/catalyst to the right

  20. TJ Solar Cell

    SciTech Connect (OSTI)

    Friedman, Daniel

    2009-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  1. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  2. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  3. Electrochemical cell operation and system

    DOE Patents [OSTI]

    Maru, Hansraj C. (Brookfield Center, CT)

    1980-03-11

    Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.

  4. Device for monitoring cell voltage

    DOE Patents [OSTI]

    Doepke, Matthias (Garbsen, DE); Eisermann, Henning (Edermissen, DE)

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  5. Cell Phone Detection Techniques

    SciTech Connect (OSTI)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phones electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  6. Interband Cascade Photovoltaic Cells

    SciTech Connect (OSTI)

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 ?m, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  7. Dense pattern optical multipass cell

    DOE Patents [OSTI]

    Silver, Joel A [Santa Fe, NM

    2009-01-13

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  8. Dense pattern multiple pass cells

    DOE Patents [OSTI]

    Silver, Joel A. (Santa Fe, NM); Bomse, David S. (Santa Fe, NM)

    2010-09-21

    An optical cell and a method of operating an optical cell comprising employing a first mirror comprising a first hole therein at approximately a center of the first mirror and through which laser light enters the cell, employing a second mirror comprising a second hole therein at approximately a center of the second mirror and through which laser light exits the cell, and forming a Lissajous pattern of spots on the mirrors by repeated reflection of laser light entering the cell.

  9. Electrode for electrochemical cell

    DOE Patents [OSTI]

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  10. Fuel cell stack arrangements

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Boro, PA); Somers, Edward V. (Murrysville, PA)

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  11. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Payne, John R. (Pleasanton, CA)

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.

  12. Fuel Cells Go Live

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    green h y d r o g e n f u e l i n g POWer Fuel Cells Go live A closer look at the requirements to create a hydrogen-based warehouse M anagers of distribution centers are always on the lookout for new ways to gain competitive advantage through increased operational efficiency, productivity and worker safety. Around North America, some are finding success by integrating commercially available hydrogen fuel cell systems into their lift truck fleets. For operations with large fleets of electric lift

  13. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  14. Separators for electrochemical cells

    DOE Patents [OSTI]

    Carlson, Steven Allen; Anakor, Ifenna Kingsley

    2014-11-11

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

  15. Solar Cell Simulation

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students model the flow of energy from the sun as it enters a photovoltaic cell, moves along a wire and powers a load. The game-like atmosphere involves the younger students and helps them understand the continuous nature of the flow of energy. For a related lesson, please see the activity “Solar Powered System” (PDF 430 KB).

  16. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  17. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kathy Loftus Global Leader, Sustainable Engineering, Maintenance & Energy Management Whole Foods Market, Inc. Fuel Cell Case Study 2 Holistic Approach from Development to Operation WFM Energy Management Negotiation Awareness Load Shaping Engineering Refrigeration HVAC Electrical Maintenance Performance Based Retailers Operational Practices Store Design & Construction Consultants Specifications Procurement Equipment Selection Life Cycle Costing Energy & Maintenance team can feedback

  18. Amorphous semiconductor solar cell

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  19. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells » Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic components are found in many fuel cell systems: Fuel cell stack Fuel processor Power conditioners Air compressors Humidifiers Fuel Cell Stack The fuel cell stack is the heart of a fuel cell power system. It generates electricity in the form of direct current (DC) from electro-chemical reactions that take place in

  20. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  1. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    SciTech Connect (OSTI)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan)] [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan)] [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan)] [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)] [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  2. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with

  3. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DOE Non-Metallic Materials Meeting Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/17/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has

  4. DOE Fuel Cell Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable Energy U.S. Department of Energy October 22, 2013 2 | Fuel Cell Technologies Office eere.energy.gov This award is being accepted on behalf of the U.S. Department of Energy fuel cell and hydrogen programs Acknowledgements 3 | Fuel Cell Technologies Office eere.energy.gov 2000 * DOE Hydrogen R&D Program 2002 * DOE

  5. Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel Cells A fuel cell uses the chemical energy of hydrogen or another fuel to cleanly and efficiently produce electricity. If hydrogen is the fuel, electricity, water, and heat are the only products. Fuel cells are unique in terms of the variety of their potential applications; they can provide power for systems as large as a utility power station and as small as a laptop computer. Why Study Fuel Cells Fuel cells can be used in a wide range of applications, including transportation,

  6. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Manufacturing Photo of scientific equipment in laboratory setting. NREL's in-line diagnostics help industry identify defects in fuel cell components. This small-scale manufacturing line at NREL's Energy Systems Integration Facility can convey fuel cell component materials at speeds of 100 feet per minute. NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high-volume manufacturing processes to enable higher production volumes, increased reliability,

  7. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

  8. Fuel Cell Handbook, Fourth Edition

    SciTech Connect (OSTI)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  9. Inhibition of cell-cell binding by lipid assemblies

    DOE Patents [OSTI]

    Nagy, Jon O. (Rodeo, CA); Bargatze, Robert F. (Bozeman, MT)

    2001-05-22

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  10. Compact fuel cell

    DOE Patents [OSTI]

    Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  11. Electrochemical cell design

    DOE Patents [OSTI]

    Arntzen, John D.

    1978-01-01

    An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.

  12. Electrocapturing flow cell

    DOE Patents [OSTI]

    Morozov, Victor (Manassas, VA)

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  13. Fuel cell CO sensor

    DOE Patents [OSTI]

    Grot, Stephen Andreas (Rochester, NY); Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Neutzler, Jay Kevin (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY); Weisbrod, Kirk (Los Alamos, NM)

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  14. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Payne, J.R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  15. Broad spectrum solar cell

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  16. Alkaline Membrane Fuel Cell Workshop

    Broader source: Energy.gov [DOE]

    A workshop on alkaline membrane fuel cells (AMFC) was held May 8-9, 2011, before the 2011 Hydrogen and Fuel Cells Annual Merit Review, at Crystal Gateway Marriott in Arlington, Virginia.

  17. Solar Cells | Open Energy Information

    Open Energy Info (EERE)

    Solar Cells Place: Split, Croatia Zip: 21000 Product: manufacturers of PV modules References: Solar Cells1 This article is a stub. You can help OpenEI by expanding it. Solar...

  18. Fuel Cell Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  19. 2009 Fuel Cell Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  20. Air Liquide- Biogas & Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  1. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  2. Energy 101: Fuel Cell Technology | Department of Energy

    Office of Environmental Management (EM)

    Fuel Cell Technology Energy 101: Fuel Cell Technology

  3. Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations

    SciTech Connect (OSTI)

    SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

    2000-06-08

    Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

  4. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  5. Fuel cell system configurations

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA); Cyphers, Joseph A. (Pittsburgh, PA)

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  6. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, R.W.

    1982-09-20

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  7. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  8. Cell culture compositions

    DOE Patents [OSTI]

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  9. Electrocatalysts for Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalysts for Fuel Cells June 2012 BROOKHAVEN NATIONAL LABORATORY Technology Description * Core-shell nanoparticles with a palladium or palladium alloy core coated by a monolayer of platinum * All platinum atoms on surface and participate in catalysis * Lattice contraction improves catalytic activity of platinum * Reduction of platinum reduces overall precious metal cost 2 BROOKHAVEN NATIONAL LABORATORY Technology Opportunity * One version of the platinum monolayer core-shell

  10. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Corporation n SNL researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte mem- brane, which could be a key factor in realizing a hydrogen car. The close partnership between Sandia and AFCC has resulted in a very unique and promising technology for future automotive applications. Dr. Rajeev Vohra Manager R&D AFCC Hydrocarbon Membrane Fuels the Suc- cess of Future Generation Vehicles While every car manufacturer, such as GM and Ford, has developed their

  11. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, Mohammad (Huntington, CT); Yuh, Chao-Yi (New Milford, CT)

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  12. Fuel cell current collector

    DOE Patents [OSTI]

    Katz, Murray (Newington, CT); Bonk, Stanley P. (West Willington, CT); Maricle, Donald L. (Glastonbury, CT); Abrams, Martin (Glastonbury, CT)

    1991-01-01

    A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.

  13. Cell Prototyping Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Prototyping Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1985-01-01

    A rapidly refuelable dual cell of an electrochemical type wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  15. Fuel Cell Financing Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTC Power Corporation 195 Governor's Highway South Windsor, CT Fuel Cell Financing Options (CESA/DOE Webinar - August 30, 2011) Paul J. Rescsanski, Manager, Business Finance Paul J. Rescsanski, Manager, Business Finance The UTC Power Advantage Strained Utility Grid, unreliable power * Significant Energy savings through: - 80 - 90% system efficiency - Combined heat and power * Payback in 3-5 years Sustainability and carbon reduction Rising energy costs * Assured power generated on-site: -

  16. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, Howard R. (Ames, IA); Bevolo, Albert J. (Ames, IA); Danielson, Gordon C. (Ames, IA); Weber, Michael F. (Wichita, KS)

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  17. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  18. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  19. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  20. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  1. ARIA Cell Solenoid Design Considerations

    SciTech Connect (OSTI)

    Schulze, Martin E.

    2015-05-20

    Detailed schematics of the structure of the preliminary ARIA solenoid cell design including overhead and cross section views and dimensions.

  2. Fuel Cell Seminar & Energy Exposition

    Broader source: Energy.gov [DOE]

    The Fuell Cell Seminar & Energy Exposition will be held in Los Angeles, California, November 16–19, 2015.

  3. International Stationary Fuel Cell Demonstration

    Broader source: Energy.gov [DOE]

    This presentation by John Vogel of Plug Power was given at the New Fuel Cell Projects Meeting in February 2007.

  4. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  5. Method for fabricating silicon cells

    DOE Patents [OSTI]

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  6. Method for fabricating silicon cells

    DOE Patents [OSTI]

    Ruby, Douglas S. (Albuquerque, NM); Basore, Paul A. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  7. Fuel Cell Handbook, Fifth Edition

    SciTech Connect (OSTI)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  8. Fuel Cell Animation - Fuel Cell Stack (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stack (Text Version) Fuel Cell Animation - Fuel Cell Stack (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell stack with electrical circuit. Fuel cell: The amount of power produced by a fuel cell depends on several factors, including fuel cell type, cell size, temperature at which it operates, and pressure at which the gases are supplied to the cell. A single fuel cell

  9. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  10. Market Transformation: Fuel Cell Early Adoption (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformation: Fuel Cell Early Adoption (Presentation) Market Transformation: Fuel Cell Early Adoption (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop held ...

  11. Computational Challenges for Nanostructure Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges for Nanostructure Solar Cells Computational Challenges for Nanostructure Solar Cells ZZ2.jpg Key Challenges: Current nanostructure solar cells often have energy...

  12. Hydrogen and Fuel Cells Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    71 Hydrogen and Fuel Cells Success Stories en Doosan Fuel Cell Takes Closed Plant to Full Production http:energy.goveeresuccess-storiesarticlesdoosan-fuel-cell-takes-closed-p...

  13. Canadian Fuel Cell Commercialization Roadmap Update: Progress...

    Open Energy Info (EERE)

    Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

  14. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  15. Gore Fuel Cell Technologies | Open Energy Information

    Open Energy Info (EERE)

    Gore Fuel Cell Technologies Jump to: navigation, search Name: Gore Fuel Cell Technologies Place: Elkton, Maryland Zip: 21922-1488 Product: Gore Fuel Cell Technologies supplies the...

  16. Hydra Fuel Cell Corporation | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Corporation Jump to: navigation, search Name: Hydra Fuel Cell Corporation Place: Beaverton, Oregon Product: Holding company for American Security Resources' fuel cell...

  17. Cornell Fuel Cell Institute | Open Energy Information

    Open Energy Info (EERE)

    Cornell Fuel Cell Institute Jump to: navigation, search Name: Cornell Fuel Cell Institute Place: Ithaca, New York Zip: 14850 Product: The Cornell Fuel Cell Institute (CFCI)...

  18. Fuel Cell Power | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  19. US Fuel Cell Council | Open Energy Information

    Open Energy Info (EERE)

    US Fuel Cell Council Place: Washington DC, Washington, DC Zip: Washington Product: US Fuel Cell Council is a membership association of fuel cell industry dedicated to fostering the...

  20. Cabot Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    Cabot Fuel Cells Jump to: navigation, search Name: Cabot Fuel Cells Place: Albuquerque, New Mexico Zip: 87113 Product: Cabot develops and manufactures advanced fuel cell...

  1. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  2. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); Zymboly, Gregory E. (Murrysville, PA)

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  3. Quantifying Cell-to-Cell Variations in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Santhanagopalan, S.; White, R. E.

    2012-01-01

    Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a limited impact on the cells performance.

  4. Hot cell examination table

    DOE Patents [OSTI]

    Gaal, Peter S. (Monroeville, PA); Ebejer, Lino P. (Weston, MA); Kareis, James H. (Slickville, PA); Schlegel, Gary L. (McKeesport, PA)

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  5. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  6. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  7. Metal halogen electrochemical cell

    SciTech Connect (OSTI)

    Walsh, F.M.

    1986-06-03

    An electrochemical cell is described having a metal anode selected from the group consisting of zinc and cadmium; a bromine cathode; and, an aqueous electrolyte containing a metal bromide, the metal having the same metal as the metal of the anode, the improvement comprising: a bromine complexing agent in the aqueous metal bromide electrolyte consisting solely of a tetraorgano substituted ammonium salt, which salt is soluble of water and forms and substantially water immiscible liquid bromine complex at temperatures in the range of about 10/sup 0/C. to about 60/sup 0/C. and wherein the tetraorgano substituted ammonium salt is selected from asymmetric quaternary ammonium compounds.

  8. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  9. Fuel cell having electrolyte

    DOE Patents [OSTI]

    Wright, Maynard K. (Bethel Park, PA)

    1989-01-01

    A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

  10. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  11. Fuel Cells at NASCAR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at NASCAR Fuel Cells at NASCAR Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cells at NASCAR" held on April 17, 2014. PDF icon Fuel Cells at ...

  12. PV Nano Cell | Open Energy Information

    Open Energy Info (EERE)

    Cell Jump to: navigation, search Name: PV Nano Cell Place: Israel Product: Israel-based firm focused on PV nano cell technology. References: PV Nano Cell1 This article is a stub....

  13. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  14. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, Robert R. (Aiken, SC)

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  15. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  16. Leakage pathway layer for solar cell

    SciTech Connect (OSTI)

    Luan, Andy; Smith, David; Cousins, Peter; Sun, Sheng

    2015-12-01

    Leakage pathway layers for solar cells and methods of forming leakage pathway layers for solar cells are described.

  17. Advanced Electrocatalysts for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, held February 12, 2013.

  18. Types of Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification determines the kind of electro-chemical reactions that take place in the cell, the kind of catalysts required, the temperature range in which the cell operates, the fuel required, and other factors. These characteristics, in turn, affect the applications for which these cells are most suitable. There are several types of fuel cells currently under

  19. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  20. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team,

  1. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Stationary Fuel Cell Systems Analysis NREL's technology validation team analyzes the performance of stationary fuel cell systems operating in real-world conditions and reports on the technology's performance, progress, and challenges. This analysis includes multiple fuel cell types-proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate-with system sizes ranging from 5 kW to 2.8 MW. Overview Composite Data Products Publications Learn More Contacts Photo of

  2. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  3. California: TetraCell Silicon Solar Cell Improves Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TetraSun, in partnership with the National Renewable Energy Laboratory, developed a novel crystalline silicon photovoltaic (PV) cell architecture and manufacturing process that ...

  4. Flexible method for monitoring fuel cell voltage

    DOE Patents [OSTI]

    Mowery, Kenneth D. (Noblesville, IN); Ripley, Eugene V. (Russiaville, IN)

    2002-01-01

    A method for equalizing the measured voltage of each cluster in a fuel cell stack wherein at least one of the clusters has a different number of cells than the identical number of cells in the remaining clusters by creating a pseudo voltage for the different cell numbered cluster. The average cell voltage of the all of the cells in the fuel cell stack is calculated and multiplied by a constant equal to the difference in the number of cells in the identical cell clusters and the number of cells in the different numbered cell cluster. The resultant product is added to the actual voltage measured across the different numbered cell cluster to create a pseudo voltage which is equivalent in cell number to the number of cells in the other identical numbered cell clusters.

  5. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  6. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  7. World's Most Efficient Solar Cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World's Most Efficient Solar Cell National Renewable Energy Laboratory, Spectrolab Set Record For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Golden, Colo., Nov. 1, 1999 - A solar cell that can convert sunlight to electricity at a record-setting 32 percent efficiency has been developed by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Spectrolab. The high efficiency makes the cells attractive for use in solar concentrator

  8. Fuel cell design and assembly

    DOE Patents [OSTI]

    Myerhoff, Alfred

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  9. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  10. Solar cell module lamination process

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

    2002-01-01

    A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

  11. Fuel cell membrane humidification

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  12. Microbial fuel cells

    DOE Patents [OSTI]

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  13. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  14. Molten carbonate fuel cell separator

    DOE Patents [OSTI]

    Nickols, Richard C. (East Hartford, CT)

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  15. Molten carbonate fuel cell separator

    DOE Patents [OSTI]

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  16. Lux expression in eukaryotic cells

    DOE Patents [OSTI]

    Gupta, Rakesh K.; Patterson, Stacy S.; Sayler, Gary S.; Ripp, Steven A.

    2007-11-27

    The luxA, B, C, D, and E genes from Photorhabdus luminescens have been introduced into Saccharomyces cerevisiae bioluminescent yeast cells.

  17. Multi-cell storage battery

    DOE Patents [OSTI]

    Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

    2000-01-01

    A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

  18. Fuel Cell Technologies Office: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Browse by Topic Mail Requests Help Feature featured product thumbnail 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Details...

  19. Hot compression process for making edge seals for fuel cells

    DOE Patents [OSTI]

    Dunyak, Thomas J. (Blacksburg, VA); Granata, Jr., Samuel J. (South Greensburg, PA)

    1994-01-01

    A hot compression process for forming integral edge seals in anode and cade assemblies wherein the assemblies are made to a nominal size larger than a finished size, beads of AFLAS are applied to a band adjacent the peripheral margins on both sides of the assemblies, the assemblies are placed in a hot press and compressed for about five minutes with a force sufficient to permeate the peripheral margins with the AFLAS, cooled and cut to finished size.

  20. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    SciTech Connect (OSTI)

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  1. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposition | Department of Energy Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel Cell Seminar and Exposition on October 19, 2010. PDF icon Hydrogen and Fuel Cell Technologies Update More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop 2010 Fuel Cell Project Kick-off Welcome DOE Hydrogen and Fuel Cell

  2. DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop | Department of Energy Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop Presentation by Sunita Satyapal, DOE Fuel Cell Technologies Program, at the Waste-to-Energy Using Fuel Cells Workshop help January 13, 2011. PDF icon DOE Hydrogen and Fuel Cell Overview More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview DOE Fuel Cell

  3. Ceramic Fuel Cells (SOFC) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Fuel Cells (SOFC) Ceramic Fuel Cells (SOFC) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Ceramic Fuel Cells (SOFC) More Documents & Publications 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Manufacturing Fuel Cell Manhattan Project DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 3: HIGH TEMP (SOFC) SYSTEM AND BOP

  4. Photovoltaic Cell Basics | Department of Energy

    Energy Savers [EERE]

    Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that convert sunlight to electricity. Commonly known as solar cells, individual PV cells are electricity-producing devices made of semiconductor materials. PV cells come in many sizes and shapes, from smaller than a postage stamp to several inches

  5. Fuel Cell Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen fuel cell vehicles emit approximately the same amount of water per mile as conventional vehicles powered by internal combustion engines. Learn more about water emissions from fuel cell vehicles. View text version of animation. FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen

  6. Fuel Cells Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Fuel Cells Related Links Fuel Cells Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded fuel cell activities, research plans and roadmaps, partnerships, and additional related links. DOE-Funded Fuel Cell Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the

  7. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  8. Photovoltaic cells employing zinc phosphide

    DOE Patents [OSTI]

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  9. Energy 101: Fuel Cell Technology

    ScienceCinema (OSTI)

    None

    2014-06-06

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  10. Bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  11. Plastic Schottky barrier solar cells

    DOE Patents [OSTI]

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  12. Bronx Zoo Fuel Cell Project

    SciTech Connect (OSTI)

    Hoang Pham

    2007-09-30

    A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

  13. Energy 101: Fuel Cell Technology

    SciTech Connect (OSTI)

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  14. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  15. Heated transportable fuel cell cartridges

    DOE Patents [OSTI]

    Lance, Joseph R. (N. Huntingdon, PA); Spurrier, Francis R. (Whitehall, PA)

    1985-01-01

    A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

  16. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  17. Electrode for a lithium cell

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Dees, Dennis W. (Downers Grove, IL)

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  18. Rechargeable lithium-ion cell

    DOE Patents [OSTI]

    Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

    1999-01-01

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  19. Ambient pressure fuel cell system

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  20. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect (OSTI)

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  1. Fuel Cell Research

    SciTech Connect (OSTI)

    Weber, Peter M.

    2014-03-30

    Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: ➢ They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. ➢ They should be scientifically exciting and sound. ➢ They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. ➢ They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. ➢ They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. ➢ They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

  2. Calling All Fuel Cells | Department of Energy

    Energy Savers [EERE]

    Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Director, Fuel Cell Technologies Office What is a fuel cell? A fuel cell is a

  3. Fuel Cell Bus Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Fuel Cell Bus Workshop Presentation at DOE and DOT Joint Fuel Cell Bus Workshop, June 7, 2010 PDF icon buswksp10_papageorgopoulos.pdf More Documents & Publications Joint Fuel Cell Bus Workshop Summary Report Fuel Cell Buses Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status

  4. The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANSER Center | Argonne-Northwestern National Laboratory The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell Home > Research > ANSER Research Highlights > The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell

  5. Organic fuel cells and fuel cell conducting sheets

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  6. NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Screening Data System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results of fuel cell system contaminants studies, which were performed in collaboration with General Motors, the University of South Carolina, and the Colorado School of Mines. Select from the drop-down lists of materials to see the screening data collected from multiple methods. You can also view the data

  7. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Learning Demonstration Fuel Cell Electric Vehicle Learning Demonstration Delve deeper into real-world performance data with our Interactive Composite Data Product demo Graphical thumbnail of the Interactive Composite Data Product demo map. Learn More Subscribe to the biannual Fuel Cell and Hydrogen Technology Validation newsletter, which highlights recent technology validation activities at NREL. Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and

  8. Reference electrode for electrolytic cell

    DOE Patents [OSTI]

    Kessie, R.W.

    1988-07-28

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  9. High temperature sealed electrochemical cell

    DOE Patents [OSTI]

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  10. Photovoltaic cell and production thereof

    DOE Patents [OSTI]

    Narayanan, Srinivasamohan (Gaithersburg, MD); Kumar, Bikash (Bangalore, IN)

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  11. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  12. Mixed ternary heterojunction solar cell

    DOE Patents [OSTI]

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  13. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks

    Broader source: Energy.gov [DOE]

    This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

  14. U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Cell Council: The Voice of the Fuel Cell Industry U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry Presentation to the Fall 2009 High Temperature Membrane Working Group PDF icon about_usfcc.pdf More Documents & Publications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call Micro and Man-Portable Fuel Cells

  15. Diagnostic Studies on Li-Battery Cells and Cell Components | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Li-Battery Cells and Cell Components Diagnostic Studies on Li-Battery Cells and Cell Components 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es032_abraham_2011_p.pdf More Documents & Publications Diagnostic studies on Li-battery cells and cell components Diagnostic Studies Electrochemistry Cell Model

  16. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). | Department of Energy Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). Fact sheet describes the study being conducted on fuel cell

  17. CMR Fuel Cells Ltd | Open Energy Information

    Open Energy Info (EERE)

    CMR Fuel Cells Ltd Jump to: navigation, search Name: CMR Fuel Cells Ltd Place: Cambridge, England, United Kingdom Zip: CB2 5GG Product: Cambridge-based firm developing fuel cell...

  18. Air Breathing Direct Methanol Fuel Cell

    DOE Patents [OSTI]

    Ren; Xiaoming (Los Alamos, NM)

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  19. Fuel Cell Markets Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cell Markets Ltd Place: Buckinghamshire, United Kingdom Zip: SL0 9AQ Sector: Hydro, Hydrogen Product: Fuel Cell Markets was set up to assist companies in the fuel cell and...

  20. fuel cell | OpenEI Community

    Open Energy Info (EERE)

    fuel cell Home Dc's picture Submitted by Dc(266) Contributor 19 February, 2015 - 15:08 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review 2016 car fuel cell hybrid...

  1. Fuel Cell Europe | Open Energy Information

    Open Energy Info (EERE)

    Name: Fuel Cell Europe Place: FrankfurtM, Germany Zip: D-60313 Product: Fuel Cell Europe was set up to promote the commercial application of fuel cell across Europe. Coordinates:...

  2. EPG Fuel Cell LLc | Open Energy Information

    Open Energy Info (EERE)

    EPG Fuel Cell LLc Jump to: navigation, search Name: EPG Fuel Cell LLc Place: Maryland Product: 50-50 JV between Catamount Energy and Elemental Power. References: EPG Fuel Cell...

  3. Dupont Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    Dupont Fuel Cells Jump to: navigation, search Name: Dupont Fuel Cells Place: Wilmington, Delaware Zip: DE 19880-0 Product: A subsidiary of Dupont which specializes in fuel cell...

  4. Cascade solar cell having conductive interconnects

    DOE Patents [OSTI]

    Borden, Peter G. (Menlo Park, CA); Saxena, Ram R. (Saratoga, CA)

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  5. Hydrogen and Fuel Cells Program Plenary Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Hydrogen & Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting Dr. Sunita Satyapal Director Fuel Cell Technologies Office U.S. Department of Energy June 2014 2 | Fuel Cell Technologies Office eere.energy.gov Fuel Cell Market Market Growth Fuel cell markets continue to grow * >25% increase in global MWs shipped since 2012 * 35% increase in revenues from fuel cell systems shipped over last year * Consistent ~30% annual growth in global systems

  6. Ohio Fuel Cell Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio Fuel Cell Initiative Ohio Fuel Cell Initiative Presented at the Technology Transition Corporation and U.S. Department of Energy Webinar: The Top 5 Fuel Cell States: Why Local Policies Mean Green Growth, June 21, 2011. PDF icon infocalljun21_valente.pdf More Documents & Publications Raising H2 and Fuel Cell Awareness in Ohio Fuel Cells & Renewable Portfolio Standards State of the States: Fuel Cells in America 2014

  7. 1986 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  8. National Fuel Cell Technology Evaluation Center (NFCTEC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell Technology Evaluation Center (NFCTEC) Jim Alkire U.S. Department of Energy Fuel Cell Technologies Office Jennifer Kurtz & Sam Sprik National Renewable Energy Laboratory 2 Outline * About NFCTEC * Benefits to the Hydrogen & Fuel Cell Community * New Fuel Cell Cost/Price Aggregation Project About NFCTEC 4 National Fuel Cell Technology Evaluation Center a national resource for hydrogen and fuel cell stakeholders supported through Energy Efficiency and Renewable Energy's

  9. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells & Renewable Portfolio Standards Webinar - Jun 9 th , 2011 Ohio Fuel Cell Coalition Ohio Fuel Cell Coalition * Mission - The Ohio Fuel Cell Coalition is a united group of industry, academic, and government leaders working collectively to strengthen Ohio's fuel cell industry and to accelerate the transformation of industry to global leadership in fuel cell technology and applications * Activities - Networking and Collaboration - Education - Marketing and Communications - Advocacy

  10. Fuel Cells at Supermarkets: NYSERDA's Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Supermarkets: NYSERDA's Perspective Scott Larsen, Project Manager On-Site Power Team 2 NYSERDA Programs to Install Fuel Cells * Distributed Generation as Combined Heat and Power - 14 Fuel Cell as CHP Systems Installed Since 2002 * Renewable Portfolio Standard (RPS) Customer Sited Tier (CST)Fuel Cell Program - $21.6 Million through 2015 - 1 Large Fuel Cell System and 23 Small Fuel Cell Systems Since 2007 3 Benefits of Fuel Cells * Efficient Means of Electric Generation (~40-50%) * High Quality

  11. Fuel Cells for Critical Communications Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Greg Moreland SENTECH, Inc. Supporting the U.S. Department of Energy August 6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell produces about 1 volt * Hundreds of individual cells can comprise a fuel cell stack * Fuel cells can be used to power a variety of applications -Bibliographic Database * Laptop computers (50-100 W) *

  12. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | Fuel Cell Technologies Program eere.energy.gov * Overview - Goals & Objectives - Technology Status & Key Challenges * Progress - Research & Development - Deployments - Recovery Act Projects * Budget * Key Publications Agenda: DOE Fuel Cell Technologies Program 3 | Fuel Cell Technologies

  13. Microsoft Word - S08254_CellConditions

    Office of Legacy Management (LM)

    Shiprock, New Mexico, Disposal Cell Internal Water Balance and Cell Conditions February 2012 LMS/SHP/S08254 This page intentionally left blank LMS/SHP/S08254 Shiprock, New Mexico, Disposal Cell Internal Water Balance and Cell Conditions February 2012 This page intentionally left blank U.S. Department of Energy Shiprock Disposal Cell Internal Water Balance and Cell Conditions February 2012 Doc. No.S08254 Page i Contents Abbreviations

  14. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  15. PEM/SPE fuel cell

    DOE Patents [OSTI]

    Grot, S.A.

    1998-01-13

    A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.

  16. PEM/SPE fuel cell

    DOE Patents [OSTI]

    Grot, Stephen Andreas (Henrietta, NY)

    1998-01-01

    A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

  17. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  18. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  19. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  20. Cell Data Sheet Specification (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2012-03-01

    The presentation shows a brief status report on the development of a specification being considered by IEC TC82 WG7 for a concentrator cell data sheet and solicits suggestions from the community.

  1. Joint Fuel Cell Bus Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel...

  2. Multiple Exciton Generation Solar Cells

    SciTech Connect (OSTI)

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  3. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  4. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  5. Silicon Cells | Open Energy Information

    Open Energy Info (EERE)

    a low cost method of processing silicon to produce a new generation of high energy density batteries. References: Silicon Cells1 This article is a stub. You can help OpenEI...

  6. Sex Cells Elijah Wolfson Newsweek

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sex Cells Elijah Wolfson Newsweek August 12, 2015 4:00 p.m. The media, of course, likes a big headline - the First something in history, the Biggest something of all time, the Only...

  7. NETL: Solid Oxide Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water concerns associated with fossil fuel based electric power generation. The NETL Fuel Cell Program maintains a portfolio of RD&D projects that address the technical issues...

  8. Biogas and Fuel Cells Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11–13, 2012, in Golden, Colorado, to discuss biogas and waste-to...

  9. Interfacing nanostructures to biological cells

    DOE Patents [OSTI]

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  10. Fuel Cell Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation by Sara Dillich, DOE Fuel Cell Technologies Office, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  11. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY); Grot, Stephen Andreas (West Henrietta, NY)

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  12. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen J. (Bloomfield, MI); Doll, Gary L. (Orion Township, Oakland County, MI)

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  13. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  14. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  15. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen Joel (Bloomfield, MI); Doll, Gary Lynn (Orion Township, Oakland County, MI)

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  16. Fuel Cell Power (FCPower) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (FCPower) Model (National Renewable Energy Laboratory) Objectives Serve as a financial tool for analyzing high-temperature, fuel cell-based tri- generation systems. 1 Key Attributes & Strengths Evaluates integration of building electricity and heat energy flows with hydrogen production. Performs hourly energy analysis and detailed grid time of use cost evaluations, which then feed into a discounted cash flow evaluation. Ability to analyze several fuel cell technologies: molten

  17. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA)

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  18. Air breathing lithium power cells

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  19. Stationary Fuel Cell Evaluation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-05-01

    This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

  20. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Overview Richard Farmer Acting Program Manager 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010)  Double Renewable Energy Capacity by 2012  Invest $150 billion over ten years in energy R&D to transition to a clean energy economy  Reduce GHG emissions 83% by 2050 The Administration's Clean Energy Goals 2 3 Fuel Cells Address Our Key Energy Challenges Increasing Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use

  1. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Information More information on the Fuel Cell Technologies Offce is available at http://www.hydrogenandfuelcells.energy.gov. Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW - 100 kW 60% direct H 2 ; i 40% reformed fuel ii * Backup power * Portable power * Distributed generation * Transportation * Specialty vehicles * Solid

  2. High average power pockels cell

    DOE Patents [OSTI]

    Daly, Thomas P. (Pleasanton, CA)

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  3. 2015 Solid Oxide Fuel Cells Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Solid Oxide Fuel Cells Project Portfolio Solid Oxide Fuel Cells are energy conversion devices that produce electric power through an electrochemical reaction rather than by...

  4. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread...

  5. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more...

  6. Fuel Cell Animation- Chemical Process (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  7. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell...

  8. Research highlights potential for improved solar cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential for improved solar cells Research highlights potential for improved solar cells Research has shown that carrier multiplication is a real phenomenon in tiny semiconductor...

  9. Adiabatic Fuel Cell Stack - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adiabatic Fuel Cell Stack Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryAdiabatic fuel cell stacks are simple, low-cost and...

  10. Fuel Cells in Telecommunications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells in Telecommunications Presentation by Joe Blanchard, ReliOn, at the Technology Transition Corporation and U.S. Department of Energy Webinar: Fuel Cells and Telecom: ...

  11. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and ... U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY ...

  12. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report The Department of Energy's Hydrogen, Fuel Cells and ...

  13. Fuel Cells at Supermarkets: NYSERDA's Perspective | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells at Supermarkets: NYSERDA's Perspective Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011. ...

  14. Fuel Cells News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Photos by Sarah Gerrity, Energy Department EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle Fuel cell electric vehicles (FCEVs) are now commercially...

  15. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption....

  16. Fuel Cell Store Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: Fuel Cell Store, Inc Place: San Diego, California Zip: 92154 Sector: Hydro, Hydrogen Product: San Diego-based firm selling fuel cell stacks, components, and hydrogen...

  17. Advanced Fuel Cell Systems | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Systems Jump to: navigation, search Name: Advanced Fuel Cell Systems Place: Amherst, New York Zip: 14228 Product: Collaboration of three companies (ATSI Engineering,...

  18. GenCell Corporation | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Zip: 6488 Product: US-based manufacturer of fuel cells and integrated fuel cell power generators. Coordinates: 41.48295, -73.213059 Show Map Loading map......

  19. Durable Fuel Cell Membrane Electrode Assembly (MEA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durable Fuel Cell Membrane Electrode Assembly (MEA) Durable Fuel Cell Membrane Electrode Assembly (MEA) A revolutionary method of building a membrane electrode assembly (MEA) for...

  20. Q Cells SE | Open Energy Information

    Open Energy Info (EERE)

    Name: Q-Cells SE Place: Thalheim, Brandenburg, Germany Zip: 6766 Product: German PV cell manufacturer; also makes strategic venture capital and corporate investments....

  1. Nuvera Fuel Cells Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Billerica, Massachusetts Zip: 1821 Product: US-based developer of bipolar fuel cell stack plates to develop Proton Exchange Membrane (PEM) fuel cells. Coordinates:...

  2. Hoku Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    Hoku Fuel Cells Jump to: navigation, search Name: Hoku Fuel Cells Place: Honolulu, Hawaii Zip: 96814 Product: Hawaii-based, subsidiary of Hoku Scientific Inc, developer,...

  3. Fuel Cells America LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Fuel Cells America LLC Place: Mount Horeb, Wisconsin Zip: 53572 Product: Consulting service and commissioned fuel cell sales division....

  4. Fuel Cells 2000 | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells 2000 Place: Washington DC, Washington, DC Zip: 20005 Product: A non-profit project providing educational informaiton on fuel cells to the general public and private...

  5. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Fuel Cell Partnership: Alternative Fuels Research California Fuel Cell Partnership: Alternative Fuels Research This presentation by Chris White of the California Fuel ...

  6. National Fuel Cell Technology Evaluation Center (NFCTEC)

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "National Fuel Cell Technology Evaluation Center (NFCTEC)" held on March 11, 2014.

  7. Pacific Fuel Cell Corporation | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Corporation Jump to: navigation, search Name: Pacific Fuel Cell Corporation Address: 26985 Lakeland Blvd. Place: Euclid, Ohio Zip: 44132 Sector: Buildings, Efficiency,...

  8. Automotive Fuel Cell Research and Development Needs

    Broader source: Energy.gov [DOE]

    Presentation by USCAR FreedomCARFuel Cell Tech Team Industry for DOE Fuel Cell Pre-Solicitation Workshop - March 16, 2010 Golden, CO

  9. Fuel Cell Technologies Office Information Resources | Department...

    Energy Savers [EERE]

    Information Resources Fuel Cell Technologies Office Information Resources Learn about hydrogen and fuel cells, find publications and technical information, view and download...

  10. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop

  11. Ames Lab 101: Improving Solar Cell Efficiency

    ScienceCinema (OSTI)

    Biswas, Rana

    2012-08-29

    Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

  12. Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Fuel Cell Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Text Version Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. How Fuel Cells Work Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two

  13. Comparison of Fuel Cell Technologies: Fact Sheet | Department...

    Broader source: Energy.gov (indexed) [DOE]

    An overview comparison of fuel cell technologies by the Fuel Cell Technologies Office. Comparison of Fuel Cell Technologies More Documents & Publications Hydrogen and Fuel Cell...

  14. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    SciTech Connect (OSTI)

    Alonso-lvarez, D.; Thomas, T.; Fhrer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-08-25

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6 misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1??s, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  15. Fuel cell with internal flow control

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  16. Module level solutions to solar cell polarization

    DOE Patents [OSTI]

    Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

    2012-05-29

    A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

  17. Corrugated Membrane Fuel Cell Structures

    SciTech Connect (OSTI)

    Grot, Stephen President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  18. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) | Department of Energy Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fact sheet describes the initiation of NREL's evaluation of a fuel cell hybrid electric bus

  19. DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack

    Office of Environmental Management (EM)

    Durability | Department of Energy Program Record, Record # 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack Durability Dated May 3, 2012, this program record from the U.S. Department of Energy focuses on fuel cell stack durability. PDF icon 11003_fuel_cell_stack_durability.pdf More Documents & Publications US DRIVE Fuel Cell Technical Team Roadmap Advanced Cathode Catalysts and Supports for PEM Fuel Cells Overview of DOE

  20. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost -

    Office of Environmental Management (EM)

    2014 | Department of Energy 4014: Fuel Cell System Cost - 2014 DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014. PDF icon DOE Hydrogen and Fuel Cells Program Record # 14014 More Documents & Publications Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013

  1. Capillary reference half-cell

    DOE Patents [OSTI]

    Hall, Stephen H. (Kennewick, WA)

    1996-01-01

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods.

  2. Capillary reference half-cell

    DOE Patents [OSTI]

    Hall, S.H.

    1996-02-13

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

  3. Solar cell with back side contacts

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  4. Ultrahigh-Efficiency Aluminum Production Cells

    Broader source: Energy.gov [DOE]

    Fact Sheet About Saving Energy and Reducing Carbon Emissions with Cell Redesign and Novel Electrolytes

  5. Spectral sensitization of nanocrystalline solar cells

    DOE Patents [OSTI]

    Spitler, Mark T. (Concord, MA); Ehret, Anne (Malden, MA); Stuhl, Louis S. (Bedford, MA)

    2002-01-01

    This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

  6. HIV transcription is induced in dying cells

    SciTech Connect (OSTI)

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  7. Development of alkaline fuel cells.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  8. Fuel cell system and method

    DOE Patents [OSTI]

    Maru, Hansraj C. (Brookfield Center, CT); Farooque, Mohammad (Huntington, CT)

    1984-01-01

    A fuel cell system comprising a fuel cell including first and second electrolyte-communicative passage means, a third electrolyte-isolated passage means in thermal communication with a heat generating surface of the cell, independent first, second and third input manifolds for the first, second and third passage means, the first input manifold being adapted to be connected to a first supply for a first process gas and one of the second and third input manifold means being adapted to be connected to a second supply for a second process gas, and means for conveying a portion of the gas passing out of the passage means fed by the one input manifold means to the other of the second and third input manifold means.

  9. Bulk Modulus Capacitor Load Cells

    SciTech Connect (OSTI)

    Dickey, C.E.

    1990-04-01

    Measurement of forces present at various locations within the SSC Model Dipole collared coil assembly is of great practical interest to development engineers. Of particular interest are the forces between coils at the parting plane and forces that exist between coils and pole pieces. It is also desired to observe these forces under the various conditions that a magnet will experience such as: during the collaring process, post-collaring, under the influence of cryogens, and during field excitation. A twenty eight thousandths of an inch thick capacitor load cell which utilizes the hydrostatic condition of a stressed plastic dielectric has been designed. These cells are currently being installed on SSC Model Dipoles. The theory, development, and application of these cells will be discussed.

  10. Fuel cell manifold sealing system

    DOE Patents [OSTI]

    Grevstad, Paul E. (West Hartford, CT); Johnson, Carl K. (Manchester, CT); Mientek, Anthony P. (Glastonbury, CT)

    1980-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  11. Fuel Cell Case Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study Fuel Cell Case Study Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011. PDF icon infocallapr11_loftus.pdf More Documents & Publications The Business Case for Fuel Cells 2011: Energizing America's Top Companies The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith, Hickory Drive, South Glastonbury, CT

  12. 1990 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  13. Photovoltaic Cell Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Basics Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of the PV cell. Researchers make measurements of conversion efficiency and quantum efficiency to characterize the performance of PV cells. Based on these results, researchers may redesign aspects of the cell-e.g.,

  14. Current and lattice matched tandem solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  15. Fuel Cells and Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Renewable Portfolio Standards Webinar hosted by the Clean Energy States Alliance, the US Department of Energy, and the Technology Transition Corporation Frank Wolak, Vice President, FuelCell Energy, Inc. June 9, 2011 * FuelCell Energy (FCE) * The Benefits of Fuel Cells * Considerations for a Comprehensive Clean Energy Portfolio * Q&A Agenda FuelCell Energy Worlds Leading Manufacturer and Operator of Fuel Cell Systems Founded 1969, Public Offering 1992 Global Client Base, Strong Global

  16. Fuel Cell Technologies Multimedia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Fuel Cell Technologies Multimedia Fuel Cell Technologies Multimedia View and download multimedia-including infographics, videos, and animations-related to hydrogen and fuel cell technologies, research, projects, and program activities. Infographics View the fuel cell electric vehicle infographic to learn about how fuel cell electric vehicles (FCEVs) work and some of the benefits of FCEVs, such as how they reduce greenhouse gas emissions, emit only water, and operate

  17. Hydrogen & Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  18. Effects of cell area on the performance of dye sensitized solar cell

    SciTech Connect (OSTI)

    Khatani, Mehboob E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Mohamed, Norani Muti E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Hamid, Nor Hisham E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Sahmer, Ahmad Zahrin E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Samsudin, Adel E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com

    2014-10-24

    Dye sensitized solar cells (DSCs) have significant advantage over the current silicon cells by having low manufacturing cost and potentially high conversion efficiency. Therefore, DSCs are expected to be used as the next generation solar cell device that covers wide range of new applications. In order to achieve highly efficient DSCs for practical application, study on the effect of increasing the cells area on the performance of dye sensitized solar need to be carried out. Three different DSC cell areas namely, 1, 12.96 and 93.5 cm{sup 2} respectively were fabricated and analyzed through solar simulator and electrochemical impedance spectroscopy (EIS). From the analysis of electrochemical impedance spectroscopy (EIS), it was observed that the cells electron lifetime was influenced significantly by the cells area. Although the collection efficiency of all cells recorded to be approximately 100% but higher recombination rate with increased cell area reduced the performance of the cell.

  19. Three-junction solar cell

    DOE Patents [OSTI]

    Ludowise, Michael J. (Cupertino, CA)

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  20. Nanosecond monolithic CMOS readout cell

    DOE Patents [OSTI]

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  1. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  2. Superlattice photoelectrodes for photoelectrochemical cells

    DOE Patents [OSTI]

    Nozik, A.J.

    1985-07-03

    The application of superlattice semiconductors as photoelectrodes in photoelectrochemical energy conversion processes is described. The invention is comprised of a multiple quantum well, or superlattice, semiconductor positioned on a plate and encapsulated in an insulation material, except the top surface, which is left exposed. An opening in insulation exposes a portion of the plate. When the photoelectrochemical cell is immersed in a liquid electrolyte and exposed to solar radiation, a redox reaction occurs, producing gases such as hydrogen and oxygen from a water electrolyte, which bubble off the cathode and anode portions of the cell. (LEW)

  3. Un-Nanostructuring Solar Cells | ANSER Center | Argonne-Northwestern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Un-Nanostructuring Solar Cells Home > Research > ANSER Research Highlights > Un-Nanostructuring Solar Cells...

  4. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. (North Chili, NY); Cunningham, Kevin M. (Romeo, MI)

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  5. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, Wendy R. (1166 Laurel Loop NE., Albuquerque, NM 87122); Storz, Leonard J. (2215 Ambassador NE., Albuquerque, NM 87112)

    1991-01-01

    An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  6. Compensated amorphous silicon solar cell

    DOE Patents [OSTI]

    Carlson, David E. (Yardley, PA)

    1980-01-01

    An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

  7. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, W.R.; Storz, L.J.

    1991-03-26

    An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  8. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A. (East Patchogue, NY)

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  9. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. NY); Cunningham, Kevin M. (Romeo, MI)

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  10. Improved photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  11. Annular feed air breathing fuel cell stack

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  12. Apparatus and method for transforming living cells

    DOE Patents [OSTI]

    Okandan, Murat; Galambos, Paul C.

    2003-11-11

    An apparatus and method are disclosed for in vitro transformation of living cells. The apparatus, which is formed as a microelectromechanical device by surface micromachining, can be used to temporarily disrupt the cell walls or membrane of host cells one at a time so that a particular substance (e.g. a molecular tag, nucleic acid, bacteria, virus etc.) can be introduced into the cell. Disruption of the integrity of the host cells (i.e. poration) can be performed mechanically or electrically, or by both while the host cells are contained within a flow channel. Mechanical poration is possible using a moveable member which has a pointed or serrated edge and which is driven by an electrostatic actuator to abrade, impact or penetrate the host cell. Electroporation is produced by generating a relatively high electric field across the host cell when the host cell is located in the flow channel between a pair of electrodes having a voltage applied therebetween.

  13. Gas concentration cells for utilizing energy

    DOE Patents [OSTI]

    Salomon, Robert E. (Philadelphia, PA)

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  14. Gas concentration cells for utilizing energy

    DOE Patents [OSTI]

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  15. 2009 Fuel Cell Market Report, November 2010

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  16. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program ...

  17. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Broader source: Energy.gov (indexed) [DOE]

    Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014. DOE Hydrogen and Fuel Cells...

  18. Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel

  19. Pattern recognition monitoring of PEM fuel cell

    DOE Patents [OSTI]

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  20. Fuel cell stack monitoring and system control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  1. Fuel Cell Seminar, 1992: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  2. Thermovoltaic in-situ mirror cell

    SciTech Connect (OSTI)

    Campbell, B.C.

    1995-12-31

    A photovoltaic cell used in a direct energy conversion generator for converting heat to electricity includes a reflective layer disposed within the cell between the active layers of the cell and the cell substrate. The reflective layer reflects photons of low energy back to a photon producing emitter for reabsorption by the emitter, or reflects photons with energy greater than the cell bandgap back to the cell active layers for conversion into electricity. The reflective layer can comprise a reflective metal such as gold while the substrate can comprise a heavily doped silicon or a metal.

  3. Method of fabricating a solar cell array

    DOE Patents [OSTI]

    Lazzery, Angelo G. (Oaklyn, NJ); Crouthamel, Marvin S. (Pennsauken, NJ); Coyle, Peter J. (Oaklyn, NJ)

    1982-01-01

    A first set of pre-tabbed solar cells are assembled in a predetermined array with at least part of each tab facing upward, each tab being fixed to a bonding pad on one cell and abutting a bonding pad on an adjacent cell. The cells are held in place with a first vacuum support. The array is then inverted onto a second vacuum support which holds the tabs firmly against the cell pads they abut. The cells are exposed to radiation to melt and reflow the solder pads for bonding the tab portions not already fixed to bonding pads to these pads.

  4. Pattern recognition monitoring of PEM fuel cell

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  5. Overview of Hydrogen & Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source: US DOE 2/25/2011 eere.energy.gov Overview of Hydrogen & Fuel Cell Activities FUEL CELL TECHNOLOGIES PROGRAM IPHE - Stationary Fuel Cell Workshop Rick Farmer U.S. Department of Energy Fuel Cell Technologies Program Deputy Program Manager March 1, 2011 2 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov * Overview * R&D Progress * Market Transformation * Budget * Policies * Collaborations Agenda 3 | Fuel Cell Technologies Program Source: US DOE 2/25/2011

  6. Overview of Hydrogen Fuel Cell Budget

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cells: For Diverse Applications 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov INTRODUCTION: FY 2012 Budget in Brief Continues New Sub-programs for: * Fuel Cell Systems R&D - Consolidates four

  7. Thermophotovoltaic in-situ mirror cell

    DOE Patents [OSTI]

    Campbell, Brian C.

    1997-01-01

    A photovoltaic cell used in a direct energy conversion generator for converting heat to electricity includes a reflective layer disposed within the cell between the active layers of the cell and the cell substrate. The reflective layer reflects photons of low energy back to a photon producing emitter for reabsorption by the emitter, or reflects photons with energy greater than the cell bandgap back to the cell active layers for conversion into electricity. The reflective layer can comprise a reflective metal such as gold while the substrate can comprise heavily doped silicon or a metal.

  8. Hydrogen Fuel Cell Basics | Department of Energy

    Energy Savers [EERE]

    Education » Increase Your H2IQ » Hydrogen Fuel Cell Basics Hydrogen Fuel Cell Basics Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel cell-an energy conversion device that can efficiently capture and use the power of hydrogen-is the key to making it happen. Learn about fuel cell applications, benefits, how they work, and challenges and research directions. Fuel Cell Applications Stationary Power Stations Stationary fuel cells can be

  9. Solid Oxide Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cells Solid Oxide Fuel Cells FE researchers at NETL have developed a unique test platform, called the multi-cell array, to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. FE researchers at NETL have developed a unique test platform, called the multi-cell array, to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the

  10. Small Talk: Cell-to-Cell Communication in Bacteria

    ScienceCinema (OSTI)

    Bassler, Bonnie [Princeton University, Princeton, New Jersey, United States

    2010-01-08

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  11. DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition

    Broader source: Energy.gov [DOE]

    Overview of DOE's Fuel Cell Technologies Office presented by Sunita Satyapal at the 2013 Fuel Cell Seminar and Energy Exposition in Columbus, Ohio.

  12. Cell-free metabolic engineering: Biomanufacturing beyond the cell

    SciTech Connect (OSTI)

    Dudley, QM; Karim, AS; Jewett, MC

    2014-10-15

    Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L-1 h(-1), reaction scales of >100 L, and new directions in protein purification, spatial organization, and enzyme stability. In the coming years, CFME will offer exciting opportunities to: (i) debug and optimize biosynthetic pathways; (ii) carry out design-build-test iterations without re-engineering organisms; and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility.

  13. Discharge cell for ozone generator

    DOE Patents [OSTI]

    Nakatsuka, Suguru (Amagasaki, JP)

    2000-01-01

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  14. Compensated amorphous silicon solar cell

    DOE Patents [OSTI]

    Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  15. Fuel cell end plate structure

    DOE Patents [OSTI]

    Guthrie, Robin J. (East Hartford, CT); Katz, Murray (Newington, CT); Schroll, Craig R. (Glastonbury, CT)

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  16. Biogas Impurities and Cleanup for Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Biogas Impurities and Cleanup for Fuel Cells Dennis Papadias and Shabbir Ahmed Argonne National Laboratory Presented at the Biogas and Fuel Cells Workshop Golden, CO June 11-13,...

  17. Interconnection of bundled solid oxide fuel cells

    DOE Patents [OSTI]

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  18. Fuel Cell Handbook - Seventh Edition (DOE FE)

    Fuel Cell Technologies Publication and Product Library (EERE)

    This handbook is a technical explanation of the science of the fuel cell. Descriptions and explanations of the many different types of fuel cells are also included. Explanations of the chemistry, phys

  19. Fuel-cell engine stream conditioning system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  20. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce...