Powered by Deep Web Technologies
Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Review of Variable Generation Integration Charges  

DOE Green Energy (OSTI)

The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

2013-03-01T23:59:59.000Z

2

Mass Market Demand Response and Variable Generation Integration Issues: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response and Variable Generation Integration Issues: A Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Title Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Cappers, Peter, Andrew D. Mills, Charles A. Goldman, Ryan H. Wiser, and Joseph H. Eto Pagination 76 Date Published 10/2011 Publisher LBNL City Berkeley Keywords demand response, electricity markets and policy group, energy analysis and environmental impacts department, renewable generation integration, smart grid Abstract The penetration of renewable generation technology (e.g., wind, solar) is expected to dramatically increase in the United States during the coming years as many states are implementing policies to expand this sector through regulation and/or legislation. It is widely understood, though, that large scale deployment of certain renewable energy sources, namely wind and solar, poses system integration challenges because of its variable and often times unpredictable production characteristics (NERC, 2009). Strategies that rely on existing thermal generation resources and improved wind and solar energy production forecasts to manage this variability are currently employed by bulk power system operators, although a host of additional options are envisioned for the near future. Demand response (DR), when properly designed, could be a viable resource for managing many of the system balancing issues associated with integrating large-scale variable generation (VG) resources (NERC, 2009). However, demand-side options would need to compete against strategies already in use or contemplated for the future to integrate larger volumes of wind and solar generation resources. Proponents of smart grid (of which Advanced Metering Infrastructure or AMI is an integral component) assert that the technologies associated with this new investment can facilitate synergies and linkages between demand-side management and bulk power system needs. For example, smart grid proponents assert that system-wide implementation of advanced metering to mass market customers (i.e., residential and small commercial customers) as part of a smart grid deployment enables a significant increase in demand response capability.1 Specifically, the implementation of AMI allows electricity consumption information to be captured, stored and utilized at a highly granular level (e.g., 15-60 minute intervals in most cases) and provides an opportunity for utilities and public policymakers to more fully engage electricity customers in better managing their own usage through time-based rates and near-real time feedback to customers on their usage patterns while also potentially improving the management of the bulk power system. At present, development of time-based rates and demand response programs and the installation of variable generation resources are moving forward largely independent of each other in state and regional regulatory and policy forums and without much regard to the complementary nature of their operational characteristics.2 By 2020, the electric power sector is expected to add ~65 million advanced meters3 (which would reach ~47% of U.S. households) as part of smart grid and AMI4 deployments (IEE, 2010) and add ~40-80 GW of wind and solar capacity (EIA, 2010). Thus, in this scoping study, we focus on a key question posed by policymakers: what role can the smart grid (and its associated enabling technology) play over the next 5-10 years in helping to integrate greater penetration of variable generation resources by providing mass market customers with greater access to demand response opportunities? There is a well-established body of research that examines variable generation integration issues as well as demand response potential, but the nexus between the two has been somewhat neglected by the industry. The studies that have been conducted are informative concerning what could be accomplished with strong broad-based support for the expansion of demand response opportunities, but typically do not discuss the many barriers that stand in the way of reaching this potential. This study examines how demand side resources could be used to integrate wind and solar resources in the bulk power system, identifies barriers that currently limit the use of demand side strategies, and suggests several factors that should be considered in assessing alternative strategies that can be employed to integrate wind and solar resources in the bulk power system. It is difficult to properly gauge the role that DR could play in managing VG integration issues in the near future without acknowledging and understanding the entities and institutions that govern the interactions between variable generation and mass market customers (see Figure ES-1). Retail entities, like load-serving entities (LSE) and aggregators of retail customers (ARC), harness the demand response opportunities of mass market customers through tariffs (and DR programs) that are approved by state regulatory agencies or local governing entities (in the case of public power). The changes in electricity consumption induced by DR as well as the changes in electricity production due to the variable nature of wind and solar generation technologies is jointly managed by bulk power system operators. Bulk power system operators function under tariffs approved by the Federal Energy Regulatory Commission (FERC) and must operate their systems in accordance with rules set by regional reliability councils. These reliability rules are derived from enforceable standards that are set by the North American Electric Reliability Corporation (NERC) and approved by federal regulators. Thus, the role that DR can play in managing VG integration issues is contingent on what opportunities state and local regulators are willing to approve and how customers' response to the DR opportunities can be integrated into the bulk power system both electrically (due to reliability rules) and financially (due to market rules).

3

Balancing Options for the Integration of Variable Generation  

Science Conference Proceedings (OSTI)

Significant Challenges There are significant operating challenges to integrate VG on a large scale due to VG ramping, uncertainty and production counter to demand Variability and uncertainty not new scale is increased with VG May need approx. 50 GW of Balancing Resources by 2030 potential resources may include (but not limited to): Demand Side Resources New gas turbines and Conventional Generation Energy Storage (non pumped hydro) Plug In Electric Vehicles Pumped Hydro Markets, VGPM and other enabling ...

2011-12-30T23:59:59.000Z

4

Integration of Variable Generation and Cost-Causation (Fact Sheet)  

DOE Green Energy (OSTI)

Variable renewable energy generation sources, such as wind and solar energy, provide benefits such as reduced environmental impact, zero fuel consumption, and low and stable costs. Advances in both technologies can reduce capital costs and provide significant control capabilities. However, their variability and uncertainty - which change with weather conditions, time of day, and season - can cause an increase in power system operating costs compared to a fully controllable power plant. Although a number of studies have assessed integration costs, calculating them correctly is challenging because it is difficult to accurately develop a baseline scenario without variable generation that properly accounts for the energy value. It is also difficult to appropriately allocate costs given the complex, nonlinear interactions between resources and loads.

Not Available

2012-09-01T23:59:59.000Z

5

Planning for Variable Generation Integration through Balancing Authorities Consolidation  

Science Conference Proceedings (OSTI)

As more and more variable generation is integrated into power grids, many challenges and concerns arise for an individual balancing authority (BA) to balance the system with limited resources. Consolidating balancing authorities provides a promising method to mitigate these problems by enabling the sharing of resources through operating different BAs as a single BA. The diversity in load and renewable generation over a wide area can be effectively leveraged, which makes it possible to achieve significant savings in balancing requirements. This paper develops a detailed procedure to compute savings in load following and regulation service requirements due to BAs consolidation. It proposes several evaluation metrics for demonstrating the benefits of BA consolidation. Several study scenarios are designed for a set of BAs in the western United States to test the proposed procedure. Results have shown significant savings in the capacity, ramp rate, and energy of balancing service requirements. Important factors affecting the savings, such as forecast accuracy and cross correlation between forecast errors, are also discussed.

Diao, Ruisheng; Samaan, Nader A.; Makarov, Yuri V.; Hafen, Ryan P.; Ma, Jian

2012-11-10T23:59:59.000Z

6

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response and Mass Market Demand Response and Mass Market Demand Response and Mass Market Demand Response and Variable Generation Integration Issues: Variable Generation Integration Issues: Variable Generation Integration Issues: Variable Generation Integration Issues: A Scoping Study A Scoping Study Peter Cappers, Andrew Mills, Charles Goldman, Ryan Wiser, Joseph H. Eto Report Summary October 2011 Energy Analysis Department  Electricity Markets and Policy Group 1 1 Presentation Overview Presentation Overview  Objectives and Approach  Variable Generation Resources and the Bulk Power System  Demand Response Opportunities  Demand Response as a Strategy to Integrate p gy g Variable Generation Resources  Comparison of Various Strategies to Integrate Variable Generation  Conclusions Energy Analysis Department  Electricity Markets and Policy Group

7

Advanced Planning Method for Integrating Large-Scale Variable Generation  

Science Conference Proceedings (OSTI)

As the penetration and size of renewable generation resources increase, the industry must expand transmission infrastructure to accommodate increasing renewable resource output. Conventional transmission expansion planning requires sufficient transmission capacities to transfer the full name plate capacity of all power plants to load centers at the same time. However, renewable resources, such as wind and solar, have highly variable output and are spatially diversified. Thus, transmission expansion plann...

2009-12-22T23:59:59.000Z

8

Demand Response and Variable Generation Integration Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Market and Policy Barriers for Demand Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Electricity Markets Peter Cappers, Jason MacDonald, Charles Goldman April 2013 Report Summary 1 Energy Analysis Department  Electricity Markets and Policy Group Presentation Overview  Objectives and Approach  Wholesale and Retail Market Environments  Market and Policy Barrier Typology  Prototypical Regional Barrier Assessment 2 Energy Analysis Department  Electricity Markets and Policy Group A Role for Demand Response to Provide Ancillary Services  Increasing penetration of renewable energy generation in U.S. electricity markets means that bulk power system operators will need to manage the variable and uncertain nature of many renewable resources

9

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

Integration of Variable Renewable Generation The report isISO (CAISO). 2007. Integration of Renewable Resources.recommendations for integrating renewable resources on the

Eto, Joseph H.

2011-01-01T23:59:59.000Z

10

Cost-Causation and Integration Cost Analysis for Variable Generation  

Science Conference Proceedings (OSTI)

This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.

Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.

2011-06-01T23:59:59.000Z

11

Cost-Causation and Integration Cost Analysis for Variable Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

DeCesaro, Kevin Lynn United States Department of Energy Introduction Wind and solar power generation are prized for their environmental benefits, their low and stable...

12

NREL Sheds Light on Integration Costs of Variable Generation and  

E-Print Network (OSTI)

, such as wind and solar energy, provide benefits such as reduced environmental impact, lack of fuel consumption, and low and stable costs. However, their variability and uncertainty--which can change with weather and not unique to wind and solar. Key Result Operational changes--such as wind and solar forecasting, larger

13

Demand Response and Variable Generation Integration Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of City-level Permitting The Impact of City-level Permitting Processes on Residential PV Installation Prices and Development Times An Empirical Analysis of Solar Systems in California Cities Ryan Wiser and CG Dong Lawrence Berkeley National Laboratory April 2013 This analysis was funded by the Solar Energy Technologies Office, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 Energy Analysis Department  Electricity Markets and Policy Group Presentation Overview * Questions and Objective * Literature Review * Data Sources and Processing * Variable Description and Summary * Regression Analysis Results * Interpretation and Predictions * Conclusions * Possible Future Extensions 2 Energy Analysis Department  Electricity Markets and Policy Group

14

Integration of Variable Generation Forecasting into System Operations: Current Practices and Future Requirements  

Science Conference Proceedings (OSTI)

This project update provides the first output of the EPRI Bulk Renewable Integration Program Project P173-010, Integration of Variable Generation Forecasts into System Operations. This project, begun in 2013, aims to improve existing methods utilities/independent system operators (ISOs) use to integrate forecasts into system operations and develop new methods. This years goal was to identify current practices and future requirements. This was done by interacting with a wide ...

2013-12-11T23:59:59.000Z

15

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

Science Conference Proceedings (OSTI)

This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the silver bullet for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

2011-09-10T23:59:59.000Z

16

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

Goldman, G. (2009) Retail demand response in Southwest PowerCoordination of retail demand response with Midwest ISO2010. 110 pages. Demand Response and Variable Generation

Cappers, Peter

2012-01-01T23:59:59.000Z

17

Market Characteristics for Efficient Integration of Variable Generation in the Western Interconnection  

DOE Green Energy (OSTI)

The overriding purpose of this report is to establish the physical requirements of a power system that can accommodate high levels of variable generation.

Milligan, M.; Kirby, B.

2010-08-01T23:59:59.000Z

18

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

63E 63E Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Peter Cappers, Andrew Mills, Charles Goldman, Ryan Wiser, Joseph H. Eto Environmental Energy Technologies Division October 2011 The work described in this report was funded by the Permitting, Siting and Analysis Division of the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability under Lawrence Berkeley National Laboratory Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

19

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

nations mix of generation sources changes. The potentiallarge conventional generation sources can be used as a toolVariable Renewable Generation Source: Undrill (2010) Figure

Eto, Joseph H.

2011-01-01T23:59:59.000Z

20

Abstract--The integration of variable renewable generation sources continues to be a significant area of focus for power  

E-Print Network (OSTI)

of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required imbalance and variability in power generation caused by renewable generation sources. In this paper, V2G requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Georeactor Variability and Integrity  

E-Print Network (OSTI)

As a deep-Earth energy source, the planetocentric nuclear-fission georeactor concept is on a more secure scientific footing than the previous idea related to the assumed growth of the inner core. Unlike previously considered deep-Earth energy sources, which are essentially constant on a human time-scale, variability in nuclear fission reactors can arise from changes in composition and/or position of fuel, moderators, and neutron absorbers. Tantalizing circumstantial evidence invites inquiry into the possibility of short-term planetocentric nuclear fission reactor variability. This brief communication emphasizes the importance of scientific integrity and highlights the possibility of variable georeactor power output so that these might be borne in mind in future investigations, especially those related to the Earth's heat flux.

J. Marvin Herndon

2005-10-04T23:59:59.000Z

22

Georeactor Variability and Integrity  

E-Print Network (OSTI)

As a deep-Earth energy source, the planetocentric nuclear-fission georeactor concept is on a more secure scientific footing than the previous idea related to the assumed growth of the inner core. Unlike previously considered deep-Earth energy sources, which are essentially constant on a human time-scale, variability in nuclear fission reactors can arise from changes in composition and/or position of fuel, moderators, and neutron absorbers. Tantalizing circumstantial evidence invites inquiry into the possibility of short-term planetocentric nuclear fission reactor variability. This brief communication emphasizes the importance of scientific integrity and highlights the possibility of variable georeactor power output so that these might be borne in mind in future investigations, especially those related to the Earth's heat flux.

Herndon, J M

2005-01-01T23:59:59.000Z

23

VARIABLE TIME-INTERVAL GENERATOR  

DOE Patents (OSTI)

This patent relates to a pulse generator and more particularly to a time interval generator wherein the time interval between pulses is precisely determined. The variable time generator comprises two oscillators with one having a variable frequency output and the other a fixed frequency output. A frequency divider is connected to the variable oscillator for dividing its frequency by a selected factor and a counter is used for counting the periods of the fixed oscillator occurring during a cycle of the divided frequency of the variable oscillator. This defines the period of the variable oscillator in terms of that of the fixed oscillator. A circuit is provided for selecting as a time interval a predetermined number of periods of the variable oscillator. The output of the generator consists of a first pulse produced by a trigger circuit at the start of the time interval and a second pulse marking the end of the time interval produced by the same trigger circuit.

Gross, J.E.

1959-10-31T23:59:59.000Z

24

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

Report - 2006 Minnesota Wind Integration Study Volume I.NREL). 2010. Eastern Wind Integration and TransmissionAvista Corporation Wind Integration Study. March. http://

Eto, Joseph H.

2011-01-01T23:59:59.000Z

25

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

SciTech Connect

An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.

Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O' Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi

2010-12-20T23:59:59.000Z

26

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

Performance of Wind Power Generation Working Group. IEC1971. Control of Generation and Power Flow on Interconnectedvariable renewable generation on power system reliability,

Eto, Joseph H.

2011-01-01T23:59:59.000Z

27

Integrating Variable Renewable Energy: Challenges and Solutions  

SciTech Connect

In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

Bird, L.; Milligan, M.; Lew, D.

2013-09-01T23:59:59.000Z

28

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

Regulatory Commission (FERC). 2010a. Integration of Variablemeet/2010/012110/E-9.pdf FERC. 2010b. Order Setting Deadlinemeet/2010/031810/E-3.pdf FERC. 2008. Wholesale Competition

Eto, Joseph H.

2011-01-01T23:59:59.000Z

29

Operating Reserves and Variable Generation  

DOE Green Energy (OSTI)

This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

Ela, E.; Milligan, M.; Kirby, B.

2011-08-01T23:59:59.000Z

30

Generation Flexibility and Variable Generation Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

pools WECC Dues, Boulder Canyon line lease 10 Davis 0506 69kv and 230kv Substation Upgrade Example 69kv upgrade to Breaker and a half and 230kv Double Breaker...

31

NERC Presentation: Accommodating High Levels of Variable Generation,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NERC Presentation: Accommodating High Levels of Variable NERC Presentation: Accommodating High Levels of Variable Generation, October 29, 2010 NERC Presentation: Accommodating High Levels of Variable Generation, October 29, 2010 North American Electric Reliability Corporation (NERC) presentation to the Electricity Advisory Committee, October 29, 2010, on accommodating high levels of variable electricity eneration. Variable resources are types of electric power generation that rely on an uncontrolled, "variable" fuel (e.g. wind, sunlight, waves, tidal forces, and some types of rivers) to generate electricity. Most renewablesfall into this category. Reliably integrating these resources into the bulk power system will require significant changes to traditional methods used for system planning and operation. Ongoing efforts brought together by NERC and its stakeholders

32

NREL: Transmission Grid Integration - Variability of Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

as variable generation sources because their electricity production varies based on the availability of wind and sun. However, they are not the only source of variation in a...

33

Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. This integrity assessment is normally performed during a reactor refueling outage. Nuclear power plant licensees who follow this document's guidelines will have satisfied their requirements for condition monitoring and operational assessment as defined in the Nuclear Energy Institute (NEI) initiative, Steam Generator Program Guidelines, NEI 97-06.

2006-07-25T23:59:59.000Z

34

Integrating Variable Renewable Energy: Challenges and Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.govpublications. Contract No. DE-AC36-08GO28308 Integrating Variable...

35

NERC Presentation: Accommodating High Levels of Variable Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

high levels of variable electricity eneration. Variable resources are types of electric power generation that rely on an uncontrolled, "variable" fuel (e.g. wind, sunlight,...

36

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages:...

37

Role of Smarter Grids in Variable Renewable Resource Integration (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses the role of smarter grids in variable renewable resource integration and references material from a forthcoming ISGAN issue paper: Smart Grid Contributions to Variable Renewable Resource Integration, co-written by the presenter and currently in review.

Miller, M.

2012-07-01T23:59:59.000Z

38

Free piston variable-stroke linear-alternator generator ...  

A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The ...

39

NREL: Transmission Grid Integration - Generator Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Generator Modeling Generator Modeling NREL works with the solar and wind industries to provide utilities and grid operators with generator models to help them analyze the impact of variable generation on power system performance and reliability. As the amount of variable generation increases, the need for such models increases. Ensuring the models are as generic as possible allows for ease of use, model validation, data exchange, and analysis. To address this need, NREL researchers are developing generic dynamic models of wind and solar power plants. NREL's dynamic modeling efforts include: Collecting wind plant output data with corresponding wind resource data (speed, direction, and air density) from meteorological towers and performing multivariate analysis of the data to develop an equivalent wind

40

Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. The integrity assessments are normally performed during a reactor refueling outage. Nuclear power plant licensees who follow the guidance in this report will have satisfied the requirements for degradation assessments, condition monitoring, and operational assessment as defined in the Nuclear Energy Institute (NEI) Steam Generator Program Guidelin...

2009-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimal Solar PV Arrays Integration for Distributed Generation  

SciTech Connect

Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

42

Variable Renewable Generation Can Provide Balancing Control to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Renewable Generation Can Provide Balancing Control to the Electric Power System e Active Power Control Helps Maintain System Frequency As wind and solar plants become more...

43

Changes in the Economic Value of Variable Generation at High...  

NLE Websites -- All DOE Office Websites (Extended Search)

Levels: A Pilot Case Study of California Title Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California Publication Type...

44

Emissions & Generation Resource Integrated Database (eGRID) ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Integrated Database, eGRID, clean energy, power generation, electricity generation, production, environment, electricity, utilities, utility, power plant, power...

45

Emissions & Generation Resource Integrated Database (eGRID),...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Integrated Database, eGRID, clean energy, power generation, electricity generation, production, environment, electricity, utilities, utility, power plant, power...

46

Renewable electricity generation in California includes variable ...  

U.S. Energy Information Administration (EIA)

Power produced by geothermal, biomass, biogas, and small hydro generators can be easily dispatched, meaning it can be either increased, decreased, ...

47

Advanced Variable Speed Air-Source Integrated Heat Pump  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

48

Advanced Variable Speed Air-Source Integrated Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

49

Strategies and Decision Support Systems for Integrating Variable Energy  

Open Energy Info (EERE)

Strategies and Decision Support Systems for Integrating Variable Energy Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations: Global Best Practices, Examples of Excellence and Lessons Learned Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations: Global Best Practices, Examples of Excellence and Lessons Learned Agency/Company /Organization: United States Department of Energy Sector: Climate, Energy Focus Area: Renewable Energy, Grid Assessment and Integration, Wind Topics: Best Practices Resource Type: Lessons learned/best practices, Publications, Technical report Website: www1.eere.energy.gov/wind/pdfs/doe_wind_integration_report.pdf

50

Generation of Picosecond Electron-bunch Trains with Variable...  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERATION OF PICOSECOND ELECTRON-BUNCH TRAINS WITH VARIABLE SPACING USING A MULTI-PULSE PHOTOCATHODE LASER M. Conde 1 , W. Gai 1 , C. Jing 1,2 , R. Konecny 1 , W. Liu 1 , D....

51

A variable voltage MPPT control method for photovoltaic generation system  

Science Conference Proceedings (OSTI)

To increase the output efficiency of a photovoltaic (PV) generation system it is important to have an efficient maximum power point tracking (MPPT) technique. This paper describes the analysis, design and implementation of an efficient tracking method ... Keywords: maximum power point tracking (MPPT), photovoltaic generation system, pulse-width-modulation (PWM), solar energy, variable voltage

Liu Liqun; Wang Zhixin

2009-04-01T23:59:59.000Z

52

INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM  

Science Conference Proceedings (OSTI)

Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as â??â?¦a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilitiesâ?¦â?. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

None

2010-02-28T23:59:59.000Z

53

Modeling and Model Validation for Variable Generation Technologies: Focus on Wind Generation  

Science Conference Proceedings (OSTI)

The influx of variable-generation technologies, particularly wind generation, into the bulk transmission grid has been tremendous over the past decade. This trend will likely continue, in light of national and state renewable portfolio standards. Thus, there is a need for generic, standard, and publicly available models for variable-generation technologies for power system planning studies. The Electric Power Research Institute (EPRI), in collaboration with the Western Electricity Coordinating Council (...

2010-12-14T23:59:59.000Z

54

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

Muljadi, E.

1998-08-25T23:59:59.000Z

55

Variable Speed Wind Turbine Generator with Zero-sequence Filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-08-25T23:59:59.000Z

56

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-01-01T23:59:59.000Z

57

Free piston variable-stroke linear-alternator generator  

DOE Patents (OSTI)

A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

Haaland, Carsten M. (Dadeville, AL)

1998-01-01T23:59:59.000Z

58

Building Integration of Micro-Generation Technologies ...  

Science Conference Proceedings (OSTI)

... Micro-generation can be defined as residential or small-commercial applications of the on-site generation of power with heating and/or cooling ...

2013-05-03T23:59:59.000Z

59

Emissions & Generation Resource Integrated Database (eGRID) ...  

NLE Websites -- All DOE Office Websites (Extended Search)

2004, a user friendly web application, eGRIDweb, is available to select, view, print, and export specified data. Tags Emissions & Generation Resource Integrated Database, eGRID,...

60

Eastern Renewable Generation Integration Study: Initial Results (Poster)  

DOE Green Energy (OSTI)

This poster presents an overview of the Eastern Renewable Generation Integration Study, which aims to answer critical questions about the future of the Eastern Interconnection under high levels of solar and wind generation penetration.

Bloom, A.; Townsend, A.; Hummon, M.; Weekley, A.; Clark, K.; King, J.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant  

DOE Patents (OSTI)

System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

2013-09-17T23:59:59.000Z

62

NREL: Transmission Grid Integration - Eastern Renewable Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

transmission? How does geographic diversity of wind reduce wind integration costs? How do offshore and onshore wind power compare? What transmission is needed to facilitate higher...

63

Program on Technology Innovation: Integrated Generation Technology Options  

Science Conference Proceedings (OSTI)

The EPRI Integrated Generation Technology Options is intended to provide a snapshot of current cost and performance and technology trends for central electricity generation stations (>50 MW). This document is designed to help with information on the current options in power generation infrastructure capital investments. This 2008 Integrated Generation Technology Options draws from the results of the 2007 TAG studies with relevant current updates. However, while the TAG addresses about 20 different Power ...

2008-11-30T23:59:59.000Z

64

Potential Reductions in Variability with Alternative Approaches to Balancing Area Cooperation with High Penetrations of Variable Generation  

SciTech Connect

The work described in this report was performed by the National Renewable Energy Laboratory (NREL) and funded by the Office of the Energy Efficiency and Renewable Energy, U.S. Department of Energy (EERE DOE). This project is a joint project with the Pacific Northwest National Laboratory. This report evaluates the physical characteristics that improve the ability of the power system to absorb variable generation. It then uses evidence from electricity markets in the Eastern Interconnection of the United States to show how large, fast energy markets can help with integration. The concept of Virtual Balancing Area is introduced, a concept that covers a broad range of cooperative measures that can be undertaken by balancing areas to help manage variability.

Milligan, M.; Kirby, B.; Beuning, S.

2010-08-01T23:59:59.000Z

65

Pitch-Controlled Variable-Speed Wind Turbine Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Pitch-Controlled Variable-Speed Pitch-Controlled Variable-Speed Wind Turbine Generation February 2000 * NREL/CP-500-27143 E. Muljadi and C.P. Butterfield Presented at the 1999 IEEE Industry Applications Society Annual Meeting Phoenix, Arizona October 3-7, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

66

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This report provides Annexes 1 through 7, which are country reports from

67

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This task of the International Energy Agency's (IEA's) Demand-Side

68

Power System Operational and Planning Impacts of Generator Cycling Due to Increased Penetration of Variable Generation  

Science Conference Proceedings (OSTI)

This technical update describes work done in the second and final year of the EPRI Bulk Renewable Integration Program project, Operational and Planning Impacts of Generator Cycling. This project takes a system perspective in examining the issue of generator cycling behavior, which is likely to increase with increased renewable penetration. To better understand system impacts, researchers developed new modeling algorithms and used them in two case studies to investigate issues related ...

2013-12-22T23:59:59.000Z

69

Role of Large Balancing Areas In Integrating Solar Generation: Solar Integration Series. 3 of 3 (Brochure)  

DOE Green Energy (OSTI)

The third out of a series of three fact sheets describing the role of large balancing areas in integrating solar generation.

Not Available

2011-05-01T23:59:59.000Z

70

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems  

SciTech Connect

The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated toolkit consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

Timothy J. Leahy

2010-06-01T23:59:59.000Z

71

Survey of Variable Generation Forecasting in the West: August 2011 - June 2012  

DOE Green Energy (OSTI)

This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

Porter, K.; Rogers, J.

2012-04-01T23:59:59.000Z

72

Integrated Distributed Generation and Energy Storage Concepts  

Science Conference Proceedings (OSTI)

Distributed generation (DG) can provide users with versatile and cost effective solutions for many of their energy requirements. However, as these devices have begun to proliferate, there have been a number of load and power system compatibility concerns that have been identified. To better understand and address DG product improvement opportunities, this report details the capabilities and limitations of existing DG applications from the perspective of critical load starting and power quality support. I...

2003-01-20T23:59:59.000Z

73

Roadmap Integration Team Presentation Generation IV Roadmap Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Presentation Generation IV Roadmap Overview NERAC Meeting: Washington, D.C. April 15, 2002 Roadmap Integration Team Presentation Definition - Generation IV Generation IV is: "...the next generation of nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide a competitively priced and reliable supply of energy to the country where such systems are deployed, while addressing nuclear safety, waste, proliferation and public perception concerns." Roadmap Integration Team Presentation Objective - Gen IV Technology Roadmap The Technology Roadmap: * Describes systems deployable by 2030 or earlier * Determines which systems offer significant advances towards:

74

Steam Generator Tube Integrity Program [Corrosion and Mechanics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam Generator Tube Steam Generator Tube Integrity Program Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

75

Controlled operation of variable speed driven permanent magnet synchronous generator for wind energy conversion systems  

Science Conference Proceedings (OSTI)

The introduction of distributed generation through renewable sources of energy has opened a challenging area for power engineers. As these sources are intermittent in nature, variable speed electric generators are employed for harnessing electrical energy ... Keywords: permanent magnet synchronous generator, power conditioners, power quality, variable speed generators, wind energy

Rajveer Mittal; K. S. Sandhu; D. K. Jain

2009-02-01T23:59:59.000Z

76

New Report: Integrating Variable Wind Energy into the Grid | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Integrating Variable Wind Energy into the Grid Report: Integrating Variable Wind Energy into the Grid New Report: Integrating Variable Wind Energy into the Grid December 19, 2011 - 2:00pm Addthis The Energy Department and Alstom Grid announce the availability of a new report on integrating wind energy into the electrical grid. | Image source: The Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations Report. The Energy Department and Alstom Grid announce the availability of a new report on integrating wind energy into the electrical grid. | Image source: The Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations Report. Charlton I. Clark Integration Team Lead, Wind and Water Power Program

77

Technoeconomic Analysis of Pumped Hydroelectric Storage as a Means to Mitigate the Variability of Renewable Generation.  

E-Print Network (OSTI)

??Because its fuel is free, it makes economic sense to utilize renewable energy whenever it is available. But due to its inherent variability, efficiently integrating (more)

Richards, Scott

2012-01-01T23:59:59.000Z

78

Demand Response and Variable Generation Integration Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Bill Savings from Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions Naïm Darghouth, Galen Barbose, Ryan Wiser Lawrence Berkeley National Laboratory January 2013 This analysis was funded by the Office of Energy Efficiency and Renewable Energy and the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 1 Energy Analysis Department  Electricity Markets and Policy Group Presentation Outline * LBNL's Related Previous Work * Motivations and Overview * Approach and Limitations * Wholesale Market Scenarios * Analysis Methods * Results and Implications 2 Energy Analysis Department  Electricity Markets and Policy Group

79

Demand Response and Variable Generation Integration Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Studies Utility Studies LBNL-6248E Peter Cappers, Annika Todd, Charles Goldman June 2013 1 Presentation Overview * Objectives and Approach * Details of CBS Projects * Summary and Conclusions 2 LBNL - Smart Grid Investment Grant Consumer Behavior Study Analysis Background on Smart Grid Investment Grant's Consumer Behavior Studies * The U.S. DOE's Smart Grid Investment Grant (SGIG) program includes projects studying the response of mass market consumers (i.e., residential and small commercial customers) to time-based rate programs * DOE is seeking to apply a consistent study design and analysis framework for these Consumer Behavior Studies (CBS) * The goal is to conduct comparative analysis of the impacts of AMI, time-based rate programs and enabling technologies that

80

The importance of combined cycle generating plants in integrating large levels of wind power generation  

Science Conference Proceedings (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Impacts of Variability and Uncertainty in Solar Photovoltaic Generation at Multiple Timescales  

SciTech Connect

The characteristics of variability and uncertainty of PV solar power have been studied extensively. These characteristics can create challenges for system operators who must ensure a balance between generation and demand while obeying power system constraints at the lowest possible cost. A number of studies have looked at the impact of wind power plants, and some recent studies have also included solar PV. The simulations that are used in these studies, however, are typically fixed to one time resolution. This makes it difficult to analyze the variability across several timescales. In this study, we use a simulation tool that has the ability to evaluate both the economic and reliability impacts of PV variability and uncertainty at multiple timescales. This information should help system operators better prepare for increases of PV on their systems and develop improved mitigation strategies to better integrate PV with enhanced reliability. Another goal of this study is to understand how different mitigation strategies and methods can improve the integration of solar power more reliably and efficiently.

Ela, E.; Diakov, V.; Ibanez, E.; Heaney, M.

2013-05-01T23:59:59.000Z

82

Engineering Guide for Integration of Distributed Storage and Generation  

Science Conference Proceedings (OSTI)

This engineering guide for distributed storage and generation (DSG) is an update of a previous guide published by EPRI in 2004. It is intended for utility engineers facing integration of distributed generation and storage. The new guide considers higher penetration levels of DSG, particularly with the expansion of distribution connected photovoltaic power and the continued interest in distributed storage for grid support. Also, a distribution planning chapter for DSG has been added. Additional ...

2012-12-31T23:59:59.000Z

83

Economical operation of thermal generating units integrated with smart houses  

Science Conference Proceedings (OSTI)

This paper presents an economic optimal operation strategy for thermal power generation units integrated with smart houses. With the increased competition in retail and power sector reasoned by the deregulation and liberalization of power market make ... Keywords: particle swarm optimization, renewable energy sources, smart grid, smart house, thermal unit commitment

Shantanu Chakraborty; Takayuki Ito; Tomonobu Senjyu

2012-09-01T23:59:59.000Z

84

Energy Storage Management for VG Integration (Presentation)  

SciTech Connect

This presentation describes how you economically manage integration costs of storage and variable generation.

Kirby, B.

2011-10-01T23:59:59.000Z

85

Probabilistic Approach to Quantifying the Contribution of Variable Generation and Transmission to System Reliability: Preprint  

DOE Green Energy (OSTI)

The increasing electrical load served by variable generation (VG), such as wind and solar energy, in the United States and many other countries has stimulated an interesting line of research to better quantify the capacity value of these resources. Methods applied traditionally to thermal units based on their average outage rates do not apply to VG because of their uncertain and non-dispatchable nature. The North American Electric Reliability Corporation's Integration of Variable Generation Task Force recently released a report that highlighted the need to develop and benchmark underlying loss-of-load expectation and related metrics that reasonably and fairly calculate the contribution to planning reserves, or capacity value, of solar and wind power. As the fraction of generation coming from VG becomes more significant, their estimated capacity value will have a larger impact on system planning. In this paper, we provide a method to include VG in traditional probabilistic-based adequacy methods. This method has been implemented in the Renewable Energy Probabilistic Resource Assessment tool developed at the National Renewable Energy Laboratory. Through an example based on the U.S. Western Interconnection, this method is applied to assess the effect that transmission can have on resource adequacy. We also analyze the interactions between available transmission and capacity value for VG.

Ibanez, E.; Milligan, M.

2012-09-01T23:59:59.000Z

86

Probabilistic Approach to Quantifying the Contribution of Variable Generation and Transmission to System Reliability: Preprint  

SciTech Connect

The increasing electrical load served by variable generation (VG), such as wind and solar energy, in the United States and many other countries has stimulated an interesting line of research to better quantify the capacity value of these resources. Methods applied traditionally to thermal units based on their average outage rates do not apply to VG because of their uncertain and non-dispatchable nature. The North American Electric Reliability Corporation's Integration of Variable Generation Task Force recently released a report that highlighted the need to develop and benchmark underlying loss-of-load expectation and related metrics that reasonably and fairly calculate the contribution to planning reserves, or capacity value, of solar and wind power. As the fraction of generation coming from VG becomes more significant, their estimated capacity value will have a larger impact on system planning. In this paper, we provide a method to include VG in traditional probabilistic-based adequacy methods. This method has been implemented in the Renewable Energy Probabilistic Resource Assessment tool developed at the National Renewable Energy Laboratory. Through an example based on the U.S. Western Interconnection, this method is applied to assess the effect that transmission can have on resource adequacy. We also analyze the interactions between available transmission and capacity value for VG.

Ibanez, E.; Milligan, M.

2012-09-01T23:59:59.000Z

87

Variable Renewable Generation Impact on Operating Reserves (Presentation)  

DOE Green Energy (OSTI)

This presentation describes some of NREL's latest research on grid integration of renewables, and also describes some of the tools used for these analyses.

Milligan, M.

2011-05-01T23:59:59.000Z

88

Steam generator tube integrity program: Phase II, Final report  

SciTech Connect

The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted.

Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

1988-08-01T23:59:59.000Z

89

Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation  

SciTech Connect

With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics such as capacity, ramp rate, ramp duration, energy and cycling requirements to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

2010-02-01T23:59:59.000Z

90

Generation and transmission expansion planning for renewable energy integration  

SciTech Connect

In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

2010-11-30T23:59:59.000Z

91

Strategies and Decision Support Systems for Integrating Variable...  

Open Energy Info (EERE)

understanding of the operational impacts of wind integration and how wind power forecast is being used today. The identified practices from a broad group of utilities can be...

92

Changes in the Economic Value of Variable Generation at High...  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation with Increasing Penetration Levels: A Pilot Study of California Andrew Mills and Ryan Wiser Lawrence Berkeley National Laboratory June 2012 The work described in...

93

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

94

Policies and Programs to Integrate High Penetrations of Variable...  

NLE Websites -- All DOE Office Websites (Extended Search)

VTT Finland, World Economic Forum Photo by Dennis Schroeder, NRELPIX 19887 5 Country % Renewable Generation (2010) Australia 8% China 19% Denmark 34% Germany 18% India 15%...

95

Testing requirements for variable-speed generating technology for wind turbine applications. Final report  

Science Conference Proceedings (OSTI)

Guidelines for evaluating the impacts of integrating variable-speed, constant-frequency (VSCF) wind turbines into electric utility systems have been proposed based upon prior test experiences with the NASA VSCF system and the expected performance of the Westinghouse and OMNION VSCF systems. The NASA and Westinghouse VSCF generating systems use a wound rotor induction generator and a cycloconverter, while the OMNION system uses a wound rotor induction generator and a dc-current link converter. The design of VSCF/utility system interface requirements and test plans is based on utility system electrical issues such as utility system control and operation, protection, voltage/reactive power management, power quality, and reliability. A framework for testing VSCF concepts is proposed which includes a three stage process: modeling of the system to analyze design alternatives and simulate disturbances that could be harmful to the actual system; laboratory testing which involves the use of the system under controlled conditions; and field testing to collect data under actual conditions to validate models and analyze the wind turbine behavior.

Herrera, J.I.

1986-05-01T23:59:59.000Z

96

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

Optimal investments in power generation under centralizedwith significant wind power generation. IEEE Transactions onmodeling of a regional power generation system - integrating

Mills, Andrew

2013-01-01T23:59:59.000Z

97

Understanding Variability and Uncertainty of Photovoltaics for Integration with the  

E-Print Network (OSTI)

Efficiency and Renewable Energy and by the Office of Electricity Delivery and Energy Reliability of the U of Electricity Delivery and Energy Reliability (Permitting, Siting, and Analysis Division) of the U.S. Department and analysis are needed to understand the variability of photovoltaic (PV) plants to avoid unnecessary barriers

98

PROCESS MONITORING FOR SAFEGUARDS VIA EVENT GENERATION, INTEGRATION, AND INTERPRETATION  

Science Conference Proceedings (OSTI)

There is a recognized safeguards benefit from using process monitoring (PM) on nuclear facilities to complement nuclear materials accountancy. We introduce a model-based approach for PM in which the assessment regarding the state of the monitored system is conducted at a system-centric level. The proposed architecture integrates both time-driven and event-driven data integration and analysis for decision-making. While the time-driven layers of the proposed architecture encompass more traditional PM methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data integration and analysis. By integrating process- and operation-related information and methodologies within an unified modeling and monitoring framework that includes not only current but also past plant behaviors, the task of anomaly detection is greatly improved because this decision-making approach can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. Building from the proposed system-centric PM architecture, we briefly introduce methods that can be used to implement its different components. The application of the proposed approach is then demonstrated via simulation experiments.

Humberto E. Garcia; Wen-Chiao Lin; Tae-Sic Yoo

2010-07-01T23:59:59.000Z

99

Joint probability generating function for a vector of arbitrary indicator variables  

Science Conference Proceedings (OSTI)

We obtain formulas for the probability generating function of general multivariate Bernoulli distributions, and for the moment generating function of the aggregate claim amount for individual risk models with dependencies. Several examples are given. Keywords: exchangeability, indicator variables, individual risk models, probability generating function, random sums

Nikolai Kolev; Ekaterina T. Kolkovska; Jos Alfredo Lpez-Mimbela

2006-02-01T23:59:59.000Z

100

Stationary Wave Accumulation and the Generation of Low-Frequency Variability on Zonally Varying Flows  

Science Conference Proceedings (OSTI)

A potent mechanism for the generation of low-frequency atmospheric variability on vortex basic states consisting of a single potential vorticity jump, or contour, separating two regions of uniform equivalent barotropic potential vorticity is ...

K. L. Swanson

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Role of Electricity Markets and Market Design in Integrating Solar Generation: Solar Integration Series. 2 of 3 (Brochure)  

DOE Green Energy (OSTI)

The second out of a series of three fact sheets describing the role of electricity markets and market design in integrating solar generation.

Not Available

2001-05-01T23:59:59.000Z

102

SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Generation CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage to someone by E-mail Share SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Facebook Tweet about SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Twitter Bookmark SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Google Bookmark SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Delicious Rank SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Digg Find More places to share SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on

103

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

DOE Green Energy (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

104

Natural convection flow over an inclined flat plate with internal heat generation and variable viscosity  

Science Conference Proceedings (OSTI)

The present investigation deals with study of laminar natural convection flow of a viscous fluid over a semi-infinite flat plate inclined at a small angle to the horizontal with internal heat generation and variable viscosity. The dimensionless boundary ... Keywords: Heat generation, Inclined flat surface, Natural convection, Temperature dependent viscosity

S. Siddiqa; S. Asghar; M. A. Hossain

2010-11-01T23:59:59.000Z

105

A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system  

Science Conference Proceedings (OSTI)

The power from wind varies depending on the environmental factors. Many methods have been proposed to locate and track the maximum power point (MPPT) of the wind, such as the fuzzy logic (FL), artificial neural network (ANN) and neuro-fuzzy. In this ... Keywords: ANFIS, MPPT, Power generation, Variable speed wind generator, Wind energy

A. Meharrar; M. Tioursi; M. Hatti; A. Boudghne Stambouli

2011-06-01T23:59:59.000Z

106

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network (OSTI)

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

107

Identifying discriminating variables between teachers who fully integrate computers and teachers with limited integration  

Science Conference Proceedings (OSTI)

Given the prevalence of computers in education today, it is critical to understand teachers' perspectives regarding computer integration in their classrooms. The current study surveyed a random sample of a heterogeneous group of 185 elementary and 204 ... Keywords: Computer integration, Computer technology, Computers, Computers in classrooms, Elementary and secondary teachers, Teacher Characteristics, Teachers

Julie Mueller; Eileen Wood; Teena Willoughby; Craig Ross; Jacqueline Specht

2008-12-01T23:59:59.000Z

108

Joint probability generating function for a vector of arbitrary indicator variables  

Science Conference Proceedings (OSTI)

We obtain formulas for the probability generating function of general multivariate Bernoulli distributions, and for the moment generating function of the aggregate claim amount for individual risk models with dependencies. Several examples are given. ... Keywords: 60E05, 60E10, 60G09, 62A25, Exchangeability, Indicator variables, Individual risk models, Probability generating function, Random sums, primary 62E15, secondary 62E20

Nikolai Kolev; Ekaterina T. Kolkovska; Jos Alfredo Lpez-Mimbela

2006-02-01T23:59:59.000Z

109

Next Generation Integrated Environment for Collaborative Work Across Internets  

Science Conference Proceedings (OSTI)

We are now well-advanced in our development, prototyping and deployment of a high performance next generation Integrated Environment for Collaborative Work. The system, aimed at using the capability of ESnet and Internet2 for rapid data exchange, is based on the Virtual Room Videoconferencing System (VRVS) developed by Caltech. The VRVS system has been chosen by the Internet2 Digital Video (I2-DV) Initiative as a preferred foundation for the development of advanced video, audio and multimedia collaborative applications by the Internet2 community. Today, the system supports high-end, broadcast-quality interactivity, while enabling a wide variety of clients (Mbone, H.323) to participate in the same conference by running different standard protocols in different contexts with different bandwidth connection limitations, has a fully Web-integrated user interface, developers and administrative APIs, a widely scalable video network topology based on both multicast domains and unicast tunnels, and demonstrated multiplatform support. This has led to its rapidly expanding production use for national and international scientific collaborations in more than 60 countries. We are also in the process of creating a 'testbed video network' and developing the necessary middleware to support a set of new and essential requirements for rapid data exchange, and a high level of interactivity in large-scale scientific collaborations. These include a set of tunable, scalable differentiated network services adapted to each of the data streams associated with a large number of collaborative sessions, policy-based and network state-based resource scheduling, authentication, and optional encryption to maintain confidentiality of inter-personal communications. High performance testbed video networks will be established in ESnet and Internet2 to test and tune the implementation, using a few target application-sets.

Harvey B. Newman

2009-02-24T23:59:59.000Z

110

Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.  

Science Conference Proceedings (OSTI)

In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

Robinett, Rush D., III; Wilson, David Gerald

2010-05-01T23:59:59.000Z

111

Improvement of efficiency in generating random $U(1)$ variables with Boltzmann distribution  

E-Print Network (OSTI)

A method for generating random $U(1)$ variables with Boltzmann distribution is presented. It is based on the rejection method with transformation of variables. High efficiency is achieved for all range of temparatures or coupling parameters, which makes the present method especially suitable for parallel and pipeline vector processing machines. Results of computer runs are presented to illustrate the efficiency. An idea to find such algorithms is also presented, which may be applicable to other distributions of interest in Monte Carlo simulations.

Tetsuya Hattori; Hideo Nakajima

1992-10-10T23:59:59.000Z

112

Improving Performance of Power Systems with Large-scale Variable Generation Additions  

Science Conference Proceedings (OSTI)

A power system with large-scale renewable resources, like wind and solar generation, creates significant challenges to system control performance and reliability characteristics because of intermittency and uncertainties associated with variable generation. It is important to quantify these uncertainties, and then incorporate this information into decision-making processes and power system operations. This paper presents three approaches to evaluate the flexibility needed from conventional generators and other resources in the presence of variable generation as well as provide this flexibility from a non-traditional resource wide area energy storage system. These approaches provide operators with much-needed information on the likelihood and magnitude of ramping and capacity problems, and the ability to dispatch available resources in response to such problems.

Makarov, Yuri V.; Etingov, Pavel V.; Samaan, Nader A.; Lu, Ning; Ma, Jian; Subbarao, Krishnappa; Du, Pengwei; Kannberg, Landis D.

2012-07-22T23:59:59.000Z

113

Integration of induction generator dynamics in multimachine system transient analysis  

Science Conference Proceedings (OSTI)

The impact of electrical transients of asynchronous wind generators on the synchronous generators is often ignored to keep the analysis of multimachine systems simple. A steady drift of slip from the nominal value, while of no consequence from power ... Keywords: dynamic modeling of wind systems, induction generator, power system, wind generation

A. H. M. A. Rahim; E. P. Nowicki

2010-07-01T23:59:59.000Z

114

MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions  

E-Print Network (OSTI)

In this note I illustrate the program MINT, a FORTRAN program for Monte Carlo adaptive integration and generation of unweighted distributions.

Nason, P

2007-01-01T23:59:59.000Z

115

MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions  

E-Print Network (OSTI)

In this note I illustrate the program MINT, a FORTRAN program for Monte Carlo adaptive integration and generation of unweighted distributions.

P. Nason

2007-09-13T23:59:59.000Z

116

The role of smarter grids in variable renewable resource integration (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

role of smarter grids in role of smarter grids in variable renewable resource integration Mackay Miller, Research Analyst National Renewable Energy Laboratory World Renewable Energy Forum May 13-17, 2012 Denver, Colorado Mackay.Miller@nrel.gov NREL/PR-6A20-55090 2 This presentation contains material and findings from a forthcoming International Smart Grid Acton Network (ISGAN) white paper: Smart Grid Contributions to Variable Renewable Resource Integration, co-written by Mackay Miller (NREL) and David Beauvais (Natural Resources Canada), and currently in review. Smart Grids and VRR Integration Disclaimer The ISGAN white papers are meant as inputs into the broader ISGAN dialogue. The findings, analysis, and opinions expressed therein are those of the listed authors only.

117

Plenary lecture VIII: a survey of some automotive integrated-starter-generators and their control  

Science Conference Proceedings (OSTI)

Integrated starter generator (ISG) uses one machine to replace conventional starter and alternator onboard vehicles and provides greater electrical generation capacity and improves the fuel economy and emissions. The main requirements of the ISG control ...

Dorin Dumitru Lucache

2008-06-01T23:59:59.000Z

118

Integrating a differential evolution feature weighting scheme into prototype generation  

Science Conference Proceedings (OSTI)

Prototype generation techniques have arisen as very competitive methods for enhancing the nearest neighbor classifier through data reduction. Within the prototype generation methodology, the methods of adjusting the prototypes' positioning have shown ... Keywords: Classification, Differential evolution, Feature weighting, Nearest neighbor, Prototype generation, Prototype selection

Isaac Triguero; JoaquN Derrac; Salvador GarcA; Francisco Herrera

2012-11-01T23:59:59.000Z

119

Automated Integration of Substation IED Data to Generate Event Reports for Protection Engineers  

E-Print Network (OSTI)

by EPRI through project titled "Multiple Uses of Substation Data", Paul Myrda - project manager. #12;TABLEAutomated Integration of Substation IED Data to Generate Event Reports for Protection Engineers for automated integration of substation Intelligent Electronic Device (IED) data to generate a customized event

Kezunovic, Mladen

120

Variable speed operation of generators with rotor-speed feedback in wind power applications  

SciTech Connect

The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

Muljadi, E.; Butterfield, C.P.; Migliore, P.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

122

Integrative Power Supply Solution for Future Generation Vehicles.  

E-Print Network (OSTI)

?? Abstract: How to secure the power supply for future generation vehicles is an open question. This thesis uses Web-HIPRE as a tool of Decision (more)

Zhou, Qinsheng

2012-01-01T23:59:59.000Z

123

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Imagine a grid where utilities and consumers work together to alleviate congestion and meet growing energy demands. RDSI is working to facilitate this reality by focusing on the integration of on...

124

Variable fuel tax models. [Revenue generated via 4 models for Alabama  

SciTech Connect

Four variable fuel tax models are investigated with respect to Alabama Highway Department operations. The Fixed Percentage Fuel Tax Model establishes the state gasoline tax as a constant percentage of the wholesale price of gasoline. The Price Index Economic Model pegs state fuel taxes to a ratio of price indexes. The Fuel Efficiency Tax Model relates the gasoline tax to the variables of Consumer Price Index and vehicle efficiency. The Sales Tax Model establishes a sales tax on the purchase of gasoline and motor fuel sold in the state. Estimates of the amount of revenue expected to be generated by each model are made. Advantages and disadvantages of each model are presented.

Vecellio, R.L.; Moore, R.K.

1977-07-01T23:59:59.000Z

125

An integrated passive islanding detection method for distributed generators  

Science Conference Proceedings (OSTI)

This study proposes a new islanding detection method for use of grid-interconnected distributed generators (DG). The method is based on two indices: the rate of change of frequency (ROCOF) and the rate of change of voltage (ROCOV). When a DG is grid-interconnected, ... Keywords: distributed generator, islanding detection, rate of change of frequency, rate of change of voltage

Wen-Yeau Chang; Hong-Tzer Yang

2009-11-01T23:59:59.000Z

126

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

127

Performance Criteria and Test Plans for Grid Integration of Renewable Generation  

Science Conference Proceedings (OSTI)

Distribution utilities are expected to face challenges in the grid integration of renewable generation as relative numbers and penetration levels increase. This report describes the ongoing development of performance criteria, test protocols and facilities to support the smooth integration of distributed generation (DG). It is specifically aimed at requirements for relatively high penetration of distributed generation, with emphasis on inverters as the primary interfacing device. Brief discussions of exi...

2010-12-31T23:59:59.000Z

128

Integration of decentralized generators with the electric power grid  

E-Print Network (OSTI)

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

129

Incorporating Variable Generation and Controllable Loads into Risk-Based Transmission Planning  

Science Conference Proceedings (OSTI)

As the penetration and size of renewable generation resources increase, transmission infrastructure must be expanded to accommodate increasing renewable resource output. Conventional transmission expansion planning requires sufficient transmission capacities to transfer the full name-plate capacity of all power plants at the same time to load centers. However, renewable resources, such as wind and solar, have highly variable output and are spatially diversified. Thus, transmission expansion planning with...

2010-12-31T23:59:59.000Z

130

Evaluating Potential Effects of Environmental Regulations and Other Variables on Future Non-Emitting Generation Profitability  

Science Conference Proceedings (OSTI)

This report evaluates potential effects of environmental regulations and other variables on future non-emitting generation (NEG) profitability. NEG technologies include wind, solar, biomass, hydro, geothermal, and nuclear power (which already produces about 20% of the electricity consumed in the United States). For the analysis described in this report, EPRI developed a new analytic model that uses methods consistent with modern analysis of financial investments. Using actual and projected data on genera...

2003-12-08T23:59:59.000Z

131

Program on Technology Innovation: Integrated Generation Technology Options  

Science Conference Proceedings (OSTI)

This report provides a condensed, public-domain reference for current cost, performance, and technology status data for eight central-station power generation technologies. In this report, central station is defined as >100 MW with the exception of some renewable-resource-based technologies. In addition to fossil- and nuclear-based technologies, four renewable-resource-based technologies are included. This report addresses the principal technology options for utility-scale power generation.

2011-06-30T23:59:59.000Z

132

Model of variable speed constant frequency double fed wind power generation system and analysis of its operating performance  

Science Conference Proceedings (OSTI)

Structure of variable speed constant frequency double fed wind power generation system (WPGS) was analyzed, and its model was established. Maximum power point tracking (MPPT) control, constant power control and vector control for WPGS were discussed. ... Keywords: operating performance, variable speed constant frequency, vector control, wind power generation system

Pan Tinglong; Ji Zhicheng

2009-06-01T23:59:59.000Z

133

Effects of turbulence on power generation for variable-speed wind turbines  

DOE Green Energy (OSTI)

One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

1996-11-01T23:59:59.000Z

134

Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)  

DOE Green Energy (OSTI)

As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

Not Available

2013-09-01T23:59:59.000Z

135

Data Integration for the Generation of High Resolution Reservoir Models  

SciTech Connect

The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

2009-01-07T23:59:59.000Z

136

Rail gun powered by an integral explosive generator  

SciTech Connect

We propose the use of a rail gun powered by an explosive magnetic flux compression generator built into the rail gun itself in which the rails of the gun are driven together behind the projectile by explosives. The magnetic field established between the rails by an initial current supplied by an external source at the breech of the gun is trapped and compressed by the collapsing rails to accelerate the projectile down the bore of the gun.

Peterson, D.R.; Fowler, C.M.

1979-01-01T23:59:59.000Z

137

Program on Technology Innovation: Integrated Generation Technology Options 2012  

Science Conference Proceedings (OSTI)

This report provides a condensed, public-domain reference for 2012 cost, performance, and technology status data for 10 central-station power-generation technologies, including fossil-, nuclear-, and renewable resourcebased technologies. In this report, central station is defined as > 100 MW with the exception of some renewable resourcebased technologies. This report addresses the principal technology options for utility-scale power ...

2013-02-19T23:59:59.000Z

138

Hydrogen generation utilizing integrated CO2 removal with steam reforming  

DOE Patents (OSTI)

A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

Duraiswamy, Kandaswamy; Chellappa, Anand S

2013-07-23T23:59:59.000Z

139

Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint  

DOE Green Energy (OSTI)

Increasing penetrations of wind a solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic (PV) power and compares it to the wind-based methodology. The solar reserve methodology is applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included.

Ibanez, E.; Brinkman, G.; Hummon, M.; Lew, D.

2012-08-01T23:59:59.000Z

140

SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage General Atomics logo Graphic of a diagram of squares and circles connected by arrows. Sulfur-based TES can compensate for diurnal and seasonal insolation fluctuations. General Atomics, under the Baseload CSP FOA, is demonstrating the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power generation. Approach There are three main project objectives under this award: Study the sulfur generating disproportionation reaction and develop it into a practical engineering process step. Carry out preliminary process components design and experimental validation. The engineering data will be used for process integration between the CSP plant, the sulfur processing and storage plant, and the electricity generation unit.

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Message Passing for Integrating and Assessing Renewable Generation in a Redundant Power Grid  

E-Print Network (OSTI)

A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of "firm" generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch settings where no generator is overloaded.

Zdeborov, Lenka; Chertkov, Michael

2009-01-01T23:59:59.000Z

142

Message passing for integrating and assessing renewable generation in a redundant power grid  

SciTech Connect

A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

143

The integrated design of a permanent-magnet generator for small wind energy conversion system  

Science Conference Proceedings (OSTI)

This paper presents the integrated design, analysis and performance test of a 1.4 kW, radial-flux, permanent-magnet generator applied to small wind energy conversion system (WECS). In a small WECS, the three major components, i.e., turbine, generator ...

Min-Fu Hsieh; Yu-Han Yeh

2012-12-01T23:59:59.000Z

144

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

145

Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost  

SciTech Connect

Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

2013-04-01T23:59:59.000Z

146

Integration of Ion Transport Membrane Technology with Integrated Gasification Combined Cycle Power Generation Systems  

Science Conference Proceedings (OSTI)

EPRI, in conjunction with Air Products and Chemicals, Inc. (AP), has reviewed the integrated gasification combined cycle (IGCC) process, whereby coal (or some other hydrocarbon such as petroleum coke or heavy oil) is broken down into its constituent volatile and nonvolatile components through the process of oxidative-pyrolysis. Combustible synthetic gas created in the process can be used in a traditional combined cycle. IGCC is particularly appealing for its potentially higher efficiencies compared ...

2013-10-30T23:59:59.000Z

147

Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System  

E-Print Network (OSTI)

et al. , 2007. Utility Wind Integration and Operating ImpactThe Western Wind and Solar Integration Study . Golden, CO:Association, the Utility Wind Integration Group, and the

Mills, Andrew

2010-01-01T23:59:59.000Z

148

Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators  

E-Print Network (OSTI)

This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for mini...

Tang, Choon Yik; Jiang, John N

2010-01-01T23:59:59.000Z

149

Integration of Advanced Emissions Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit (withdrawn prior to award)  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Colorado Springs Utilities Colorado Springs, CO aDDItIonaL tEaM MEMBERs Foster Wheeler Power Group, Inc. Clinton, NJ IntegratIon of advanced emIssIons controls to Produce next-generatIon cIrculatIng fluId Bed coal generatIng unIt (wIthdrawn PrIor to award) Project Description Colorado Springs Utilities (Springs Utilities) and Foster Wheeler are planning a joint demonstration of an advanced coal-fired electric power plant using advanced, low-cost emission control systems to produce exceedingly low emissions. Multi- layered emission controls will be

150

Energy Simulation of Integrated Multiple-Zone Variable Refrigerant Flow System  

Science Conference Proceedings (OSTI)

We developed a detailed steady-state system model, to simulate the performance of an integrated five-zone variable refrigerant flow (VRF)heat pump system. The system is multi-functional, capable of space cooling, space heating, combined space cooling and water heating, and dedicated water heating. Methods were developed to map the VRF performance in each mode, based on the abundant data produced by the equipment system model. The performance maps were used in TRNSYS annual energy simulations. Using TRNSYS, we have successfully setup and run cases for a multiple-split, VRF heat pump and dehumidifier combination in 5-zone houses in 5 climates that control indoor dry-bulb temperature and relative humidity. We compared the calculated energy consumptions for the VRF heat pump against that of a baseline central air source heat pump, coupled with electric water heating and the standalone dehumidifiers. In addition, we investigated multiple control scenarios for the VRF heat pump, i.e. on/off control, variable indoor air flow rate, and using different zone temperature setting schedules, etc. The energy savings for the multiple scenarios were assessed.

Shen, Bo [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

2013-01-01T23:59:59.000Z

151

Jupiter Oxy-combustion and Integrated Pollutant Removal for the Existing Coal Fired Power Generation Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

Jupiter Oxy-combustion and Integrated Jupiter Oxy-combustion and Integrated Pollutant Removal for the Existing Coal Fired Power Generation Fleet Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of

152

Increased network efficiency for variable rate video streams in an Integrated Services Packet Network environment  

E-Print Network (OSTI)

Due to the needs of real-time, bandwidth intensive applications like videoconferencing, several resource reservation infrastructures like the Integrated Services Packet Network (ISPN) are currently being developed. These schemes provide applications with a way to reserve a fixed quantity of network resources for their exclusive use. Most video encoders, however, are variable rate. This research describes a mechanism by which variable bit-rate, real-time video streams can be sent over a fixed rate resource reservation with a high level of reservation utilization. A Predictive/Adaptive Rate Control (PARC) mechanism is developed which dynamically adjusts the quality of the video encoding using a prediction mechanism to obtain a nearly constant output rate. This rate can then make use of a high percentage of the reserved rate. The controlled coder output is buffered so that any errors in the predictive video quality adjustment can be smoothed. Network delay feedback is used to control the buffer delay so that none of the data packets exceed an allowable real-time delay maximum for useful video-conferencing. Finally, the reservation rate is adapted over time to match the needs of each particular video sequence. This research is implemented and tested using a multi-layered version of the popular CU-SeeMe video encoder built into a basic video-conferencing tool. While the resulting image quality remains high, increases in link utilization as high as 108.8% over current techniques used for sending variable bit-rate over resource reservations are shown.

Schroeder, Charles Grant

1996-01-01T23:59:59.000Z

153

Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration  

E-Print Network (OSTI)

Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

He, Miao; Zhang, Junshan

2010-01-01T23:59:59.000Z

154

Systematic method of generating new integrable systems via inverse Miura maps  

Science Conference Proceedings (OSTI)

We provide a new natural interpretation of the Lax representation for an integrable system; that is, the spectral problem is the linearized form of a Miura transformation between the original system and a modified version of it. On the basis of this interpretation, we formulate a systematic method of identifying modified integrable systems that can be mapped to a given integrable system by Miura transformations. Thus, this method can be used to generate new integrable systems from known systems through inverse Miura maps; it can be applied to both continuous and discrete systems in 1 + 1 dimensions as well as in 2 + 1 dimensions. The effectiveness of the method is illustrated using examples such as the nonlinear Schroedinger (NLS) system, the Zakharov-Ito system (two-component KdV), the three-wave interaction system, the Yajima-Oikawa system, the Ablowitz-Ladik lattice (integrable space-discrete NLS), and two (2 + 1)-dimensional NLS systems.

Tsuchida, Takayuki [Okayama Institute for Quantum Physics, Kyoyama 1-9-1, Okayama 700-0015 (Japan)

2011-05-15T23:59:59.000Z

155

Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper  

SciTech Connect

This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

A.M. Gandrik

2012-04-01T23:59:59.000Z

156

A Case Study to Evaluate the Reliability Impact of Large-Scale Wind Generation: Incorporating Variable Generation and Loads into Rel iability-based Transmission Planning  

Science Conference Proceedings (OSTI)

This report describes a case study using a probabilistic framework to capture variations in output of variable generation connected to the transmission system along with system loads. The research in 2010, 2011, and some part of 2012 focused on developing the probabilistic model framework. The focus of the 2012 work was to use this model on a real-world (as opposed to a test system) transmission planning case along with data for all the variable generation and system loads modeled in the case to ...

2013-08-29T23:59:59.000Z

157

NV Energy Solar Integration Study: Cycling and Movements of Conventional Generators for Balancing Services  

DOE Green Energy (OSTI)

With an increasing penetration level of solar power in the southern Nevada system, the impact of solar on system operations needs to be carefully studied from various perspectives. Qualitatively, it is expected that the balancing requirements to compensate for solar power variability will be larger in magnitude; meanwhile, generators providing load following and regulation services will be moved up or down more frequently. One of the most important tasks is to quantitatively evaluate the cycling and movements of conventional generators with solar power at different penetration levels. This study is focused on developing effective methodologies for this goal and providing a basis for evaluating the wear and tear of the conventional generators

Diao, Ruisheng; Lu, Shuai; Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Guo, Xinxin

2011-07-01T23:59:59.000Z

158

Final Report: Climate Variability, Stochasticity and Learning in Integrated Assessment Models, September 15, 1996 - September 14, 1999  

SciTech Connect

The focus of the work has been on climate variability and learning within computational climate-economy models (integrated assessment models--IAM's). The primary objective of the research is to improve the representation of learning in IAM's. This include's both endogenous and exogenous learning. A particular focus is on Bayesian learning about climate damage. A secondary objective is to improve the representation of climate variability within IAM's.

Kolstad, Charles D.

1999-09-14T23:59:59.000Z

159

An integrated method for material properties characterization based on pulsed laser generated surface acoustic waves  

Science Conference Proceedings (OSTI)

A novel integrated method enabling the study of nano-structured materials is presented, which is based on the imaging and monitoring of the spatiotemporal evolution of short-pulse-laser-generated Surface Acoustic Waves (SAWs). The method combines a 3D ... Keywords: Dynamic laser interferometry, Finite Elements, Nano-acoustics, Nanostructures

Yannis Orphanos, Vasilis Dimitriou, Evaggelos Kaselouris, Efthimios Bakarezos, Nikolaos Vainos, Michael Tatarakis, Nektarios A. Papadogiannis

2013-12-01T23:59:59.000Z

160

Simulation-based automatic generation of signomial and posynomial performance models for analog integrated circuit sizing  

Science Conference Proceedings (OSTI)

This paper presents a method to automatically generate posynomial response surface models for the performance parameters of analog integrated circuits. The posynomial models enable the use of efficient geometric programming techniques for circuit sizing ... Keywords: analog circuit modeling, design of experiments, geometric programming, posynomial and signomial response surface modeling

Walter Daems; Georges Gielen; Willy Sansen

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

162

Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications  

SciTech Connect

Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.

Herrera, J.I.; Reddoch, T.W.

1988-02-01T23:59:59.000Z

163

Orographic Influences on the Distribution and Generation of Atmospheric Variability in a GCM  

Science Conference Proceedings (OSTI)

The effect of large-scale mountains on atmospheric variability is studied in a series of GCM experiments in which a single mountain is varied in height from 0 to 4 km. High-frequency (? 30 days) variability are ...

Jin-Yi Yu; Dennis L. Hartmann

1995-07-01T23:59:59.000Z

164

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network (OSTI)

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

165

Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback  

E-Print Network (OSTI)

Small scale power generating technologies, such as gas turbines, small hydro turbines, photovoltaics, wind turbines and fuel cells, are gradually replacing conventional generating technologies, for various applications, in the electric power system. The industry restructuring process in the United States is exposing the power sector to market forces, which is creating competitive structures for generation and alternative regulatory structures for the transmission and distribution systems. The potentially conflicting economic and technical demands of the new, independent generators introduce a set of significant uncertainties. What balance between market forces and centralized control will be found to coordinate distribution system operations? How will the siting of numerous small scale generators in distribution feeders impact the technical operations and control of the distribution system? Who will provide ancillary services (such as voltage support and spinning reserves) in the new competitive environment? This project investigates both the engineering and market integration of distributed generators into the distribution system. On the technical side, this project investigates the frequency performance of a distribution system that has multiple small scale generators. Using IEEE sample distribution systems and new dynamic generator models, this project develops general methods for

Judith Cardell; Marija Ili?; Richard D. Tabors

1997-01-01T23:59:59.000Z

166

Fixed and variable speed induction generators for real power loss minimization  

Science Conference Proceedings (OSTI)

The application of induction generators in the wind power industry is standard practice. An induction generator draws reactive power from the network depending on its real power output, such that the greater the real power exported to the network, the ... Keywords: doubly- fed induction generator, induction generator, line loss, reactive power

S. Durairaj; D. Flynn; B. Fox

2008-02-01T23:59:59.000Z

167

Optimal Design of Integration of Intelligent, Adaptive Solar (PV) Power Generator with Grid for Domestic Energy Management System  

Science Conference Proceedings (OSTI)

This paper introduces a novel system based on integration of solar power generator with grid for optimal utilization of energy by minimizing the power drawn from grid. A prototype grid integrated PV system comprising of PV module (2*75Wp), battery bank ... Keywords: Solar power Generator (SPG), Domestic Energy Management, Bi-directional Inverter, Photovoltaic(PV), Total Harmonic Distortion (THD)

S. N. Singh; Pooja Singh; Swati Kumari; Swati

2010-03-01T23:59:59.000Z

168

Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet  

E-Print Network (OSTI)

In this report a detailed description of the procedure to calculate NOx reductions from energy savings due to the 2000 IECC code implementation in single family residences using the United States Environmental Protect Agency's (USEPA's) Emissions and Generation Resource Integrated Database (E-GRID) is presented. This procedure is proposed for calculating county-wide NOx reductions in pounds per MWh for Energy Efficiency and Renewable Energy projects (EE/RE) implemented in each Power Control Area (PCA) in the ERCOT region.

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

2003-01-01T23:59:59.000Z

169

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

Toolkit Energy Imbalance Market (EIM): Implementing Tariff.under tariffs approved by the Federal Energy Regulatoryunder tariffs approved by the Federal Energy Regulatory

Cappers, Peter

2012-01-01T23:59:59.000Z

170

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

technologies (e.g. , microgrids, plug-in electric vehicles,technologies (e.g. , microgrids, plug- in electric vehicles,

Cappers, Peter

2012-01-01T23:59:59.000Z

171

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

prices and quantified how system balancing costs change with high wind energywind energy when mass market customers responded on a 15-minute basis to DR price

Cappers, Peter

2012-01-01T23:59:59.000Z

172

Optimal generation expansion planning with integration of variable renewables and bulk energy storage systems.  

E-Print Network (OSTI)

??Wind and solar energy are clean, free of fuel cost and likely to have great potential in the future. However, besides the technical difficulties associated (more)

Hu, Zhouxing

2013-01-01T23:59:59.000Z

173

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

Analysis. Presentation given to PJM Interconnection Markete.g. , ISO-NE, NYISO, PJM, MISO, ERCOT, and CAISO). Co-also elect to participate in PJMs day-ahead and/or real-

Cappers, Peter

2012-01-01T23:59:59.000Z

174

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

of the Empirical Evidence. FERC (2006) Assessment of DemandRevised 2008. 240 pages. FERC. (2008) Final Rule - Docket19-000 and AD07-7-000. FERC (2009a) A National Assessment of

Cappers, Peter

2012-01-01T23:59:59.000Z

175

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

faced with high energy market prices if they do not procureIf low or negative prices in energy markets are insufficientenergy or reserves in determining schedules and market prices.

Cappers, Peter

2012-01-01T23:59:59.000Z

176

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

transmission system to trade electricity. In regions withoutand loads to trade electricity. In organized wholesale

Cappers, Peter

2012-01-01T23:59:59.000Z

177

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network (OSTI)

system operational costs of wind energy, the low capacitybalancing costs change with high wind energy penetration.

Cappers, Peter

2012-01-01T23:59:59.000Z

178

On Gaussian Random Measures Generated by Empirical Distributions of Independent Random Variables  

E-Print Network (OSTI)

Normalized fluctuations of empirical measures converge to a law of a random measure if and only if the underlying random variable is purely discrete with square-root-summable probabilities. 1

unknown authors

1994-01-01T23:59:59.000Z

179

Online walking gait generation with predefined variable height of the center of mass  

Science Conference Proceedings (OSTI)

For biped robots one main issue is the generation of stable trajectories for the center of mass (CoM). Several different approaches based on the zero moment point (ZMP) scheme have been presented in the past. Due to the complex dynamic structure of bipedal ... Keywords: biped walking, online gait generation

Johannes Mayr; Hubert Gattringer; Hartmut Bremer

2011-12-01T23:59:59.000Z

180

Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System  

E-Print Network (OSTI)

area of photovoltaic and other clean energy technologies.Energy recently hosted a day-long public workshop on the variability of photovoltaic (photovoltaic power plants into the utility system. Nicholas Miller is Director, Energy

Mills, Andrew

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Generation of Picosecond Electron-Bunch Trains with Variable Spacing Using a Multi-Pulse Photocathode Laser  

SciTech Connect

We demonstrate the generation of a train of electron bunches with variable spacing at the Argonne Wakefield Accelerator. The photocathode ultraviolet laser pulse consists of a train of four pulses produced via polarization splitting using two alpha-BBO crystals. The photoemitted electron bunches are then manipulated in a horizontally-bending dogleg with variable longitudinal dispersion. A downstream vertically-deflecting cavity is then used to diagnose the temporal profile of the electron beam. The generation of a train composed of four bunches with tunable spacing is demonstrated. Such a train of bunch could have application to, e.g., the resonant excitation of wakefield in dielectric-lined structures. We have presented preliminary measurements on a simple technique to generate a train of electron bunches with variable separation. In the initial experiment appreciable density modulation down to wavelengths of {approx}1.8 mm (corresponding to a temporal separation of {approx}6 ps) were achieved for a total charge of 0.5 nC. Finding ways to reach smaller separations is being explored with the help of numerical simulations and will be presented elsewhere.

Conde, M.; Gai, W.; /Argonne; Jing, C.; /Euclid TechLabs /Argonne; Konecny, R.; Liu, W.; /Argonne; Mihalcea, D.; /Northern Illinois U.; Piot, P.; /Northern Illinois U. /Fermilab; Power, J.G.; /Argonne; Rihaoui, M.; /Northern Illinois U.; Yusof, Z.; /Argonne

2012-07-08T23:59:59.000Z

182

Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

November 13, 2012 | Wong November 13, 2012 | Wong * Conduct laboratory studies on reaction thermodynamics and kinetics of the sulfur generating disproportionation reaction. Effect of various potential catalysts and means to separate the reaction products will be investigated. A kinetic equation for process design will be defined. * Improve the solar reactor design and catalyst performance to increase SO 3 to SO 2 conversion fraction * Preliminary process component design and experimental validation for the three process steps. Carry out process integration design between the CSP plant, the sulfur processing and storage plant and the electricity generation unit. * Design and flowsheet studies to assess the system economics, its environmental impact and pathways to ascertain safe operations of

183

Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2013 | Wong May 15, 2013 | Wong * Conduct laboratory studies on reaction thermodynamics and kinetics of the sulfur generating disproportionation reaction. Effect of various potential catalysts and means to separate the reaction products will be investigated. A kinetic equation for process design will be defined. * Improve the solar reactor design and catalyst performance to increase SO 3 to SO 2 conversion fraction * Preliminary process component design and experimental validation for the three process steps. Carry out process integration design between the CSP plant, the sulfur processing and storage plant and the electricity generation unit. * Design and flowsheet studies to assess the system economics, its environmental impact and pathways to ascertain safe operations of

184

Steam generator tube integrity program: Annual report, August 1995--September 1996. Volume 2  

Science Conference Proceedings (OSTI)

This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of the program in August 1995 through September 1996. The program is divided into five tasks: (1) assessment of inspection reliability, (2) research on ISI (inservice-inspection) technology, (3) research on degradation modes and integrity, (4) tube removals from steam generators, and (5) program management. Under Task 1, progress is reported on the preparation of facilities and evaluation of nondestructive evaluation techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate failure pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Results are reported in Task 2 on closed-form solutions and finite-element electromagnetic modeling of EC probe responses for various probe designs and flaw characteristics. In Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe-accident conditions. Crack behavior and stability are also being modeled to provide guidance for test facility design, develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the acquisition of tubes and tube sections from retired steam generators for use in the other research tasks. Progress on the acquisition of tubes from the Salem and McGuire 1 nuclear plants is reported.

Diercks, D.R.; Bakhtiari, S.; Kasza, K.E.; Kupperman, D.S.; Majumdar, S.; Park, J.Y.; Shack, W.J. [Argonne National Lab., IL (United States)

1998-02-01T23:59:59.000Z

185

Precise asymptotics for the linear processes generated by associated random variables in Hilbert spaces  

Science Conference Proceedings (OSTI)

Let {@e"k,k@?Z} be a strictly stationary associated sequence of random variables taking values in a real separable Hilbert space, and {a"k;k@?Z} be a sequence of bounded linear operators. For a linear process X"k=@?"i"="-"~^~a"i(@e"k"-"i), the precise ... Keywords: Association, Bounded operator, Convergence rates, Hilbert space, Linear processes

Ke-Ang Fu; Jie Li; Ya-Juan Dong; Hui Zhou

2012-09-01T23:59:59.000Z

186

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS  

E-Print Network (OSTI)

Wind energy is considered as the most viable renewable energy options. In a renewable energy system more energy from the wind. One of the options is to use the variable speed wind turbine-speed wind turbine system for transient studies are discussed in this paper. The performance of wind energy

187

The Global Zonally Integrated Ocean Circulation, 19922006: Seasonal and Decadal Variability  

Science Conference Proceedings (OSTI)

The zonally integrated meridional and vertical velocities as well as the enthalpy transports and fluxes in a least squares adjusted general circulation model are used to estimate the top-to-bottom oceanic meridional overturning circulation (MOC) ...

Carl Wunsch; Patrick Heimbach

2009-02-01T23:59:59.000Z

188

Analysis of segregated boundary-domain integral equations for mixed variable-coefficient  

E-Print Network (OSTI)

, Tbilisi, Georgia; chkadua@rmi.acnet.ge 2 Brunel University, West London, UK; sergey.mikhailov@brunel.ac.uk 3 Georgian Technical University, Tbilisi, Georgia; natrosh@hotmail.com In: Integral Methods

Mikhailov, Sergey

189

Transient Upwelling Generated by Two-Dimensional Atmospheric Forcing and Variability in the Coastline  

Science Conference Proceedings (OSTI)

The present paper deals with two-dimensional transient upwelling in a two-layer ocean of constant depth. Motions generated by several two-dimensional atmospheric forcings are investigated. Using asymptotic expansions in time, it is shown that the ...

Michel Crpon; Claude Richez

1982-12-01T23:59:59.000Z

190

Status and integration of the gas generation studies performed for the Hydrogen Safety Program  

DOE Green Energy (OSTI)

Waste in Tank 241-SY-101 on the Hanford Site generates and periodically releases hydrogen, nitrous oxide, and nitrogen gases. Studies have been conducted at several laboratories to determine the chemical mechanisms for the gas generation and release. Results from these studies are presented and integrated in an attempt to describe current understanding of the physical properties of the waste and the mechanisms of gas generation and retention. Existing tank data are consistent with the interpretation that gases are uniformly generated in the tank, released continuously from the convecting layer, and stored in the nonconvecting layer. Tank temperature measurements suggest that the waste consists of gobs'' of material that reach neutral buoyancy at different times. The activation energy of the rate limiting step of the gas generating process was calculated to be about 7 kJ/mol but measured in the laboratory at 80 to 100 kJ/mol. Based on observed temperature changes in the tank the activation energy is probably not higher than about 20 kJ/mol. Several simulated waste compositions have been devised for use in laboratory studies in the place of actual waste from Tank 241-SY-101. Data from these studies can be used to predict how the actual waste might behave when heated or diluted. Density evaluations do not confirm that heating waste at the bottom of the tank would induce circulation within the waste; however, heating may release gas bubbles by dissolving the solids to which the bubbles adhere. Gas generation studies on simulated wastes indicated that nitrous oxide and hydrogen yields are not particularly coupled. Solubility studies of nitrous oxide, the most soluble of the principal gaseous products, indicate it is unlikely that dissolved gases contribute substantially to the quantity of gas released during periodic events.

Pederson, L.R.; Strachan, D.M.

1993-02-01T23:59:59.000Z

191

Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power  

E-Print Network (OSTI)

Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

Brasington, Robert David, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

192

Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States  

E-Print Network (OSTI)

understanding that wind integration costs are manageable,higher levels of wind integration is also critical if windanalysis of wind powers integration costs and capacity

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

193

NREL: Transmission Grid Integration - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL has an extensive collection of publications related to transmission integration research. Explore the resources below to learn more. Selected Project Publications Read selected publications related to these transmission integration projects: Western Wind and Solar Integration Study Eastern Renewable Generation Integration Study Oahu Wind Integration and Transmission Study Flexible Energy Scheduling Tool for Integration of Variable generation (FESTIV) Active power controls Forecasting Grid Simulation. NREL Publications Database NREL's publications database offers a variety of documents related to transmission integration that were written by NREL staff and

194

Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials  

Science Conference Proceedings (OSTI)

We investigate the generation of squeezing and entanglement for the motional degrees of freedom of ions in linear traps, confined by time-varying and oscillating potentials, comprised of a DC and an AC component. We show that high degrees of squeezing ... Keywords: 03.67.Bg, 05.45.Xt, 37.10.Vz, 42.50.Dv, Control, Entanglement, Ion traps

Alessio Serafini; Alex Retzker; Martin B. Plenio

2009-12-01T23:59:59.000Z

195

Integrated analysis of customer value of generation system reliability in India  

SciTech Connect

An analytical framework that integrates generation resource outage characteristics and customer value of electricity supply is developed to represent and evaluate reliability of the power system in north India. The composite outage cost function is estimated to be of log-linear form based on the regression analysis of data obtained through extensive customer field surveys in the region. The research illustrates that potentially higher direct outage costs have been displaced by relatively lower adaptive response investments to counteract the impact of interruptions. The implicit reliability of the country`s generation capacity plan through 2000, used along with the outage cost estimates, gives an interrupted energy value, a customer-value-based reliability index, of 2.30 Rupees per kilowatt-hour not served in 1990 ($US 1990 = Rupees 17.50). The outage cost-based reliability planning criterion provides an optimal level of reliability equivalent of 9.1% loss of load probability (LOLP). A comparison reveals that the generation capacity program is unreliable in the beginning but becomes overly reliable toward the later years of the plan.

Sarkar, A. [Univ. of Wisconsin, Madison, WI (United States). Inst. for Environmental Studies; Shrestha, R.M. [Asian Inst. of Tech., Bangkok (Thailand). School of Environment, Resources and Development

1996-07-01T23:59:59.000Z

196

Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves  

E-Print Network (OSTI)

Considered here are Boussinesq systems of equations of surface water wave theory over a variable bottom. A simplified such Boussinesq system is derived and solved numerically by the standard Galerkin-finite element method. We study by numerical means the generation of tsunami waves due to bottom deformation and we compare the results with analytical solutions of the linearized Euler equations. Moreover, we study tsunami wave propagation in the case of the Java 2006 event, comparing the results of the Boussinesq model with those produced by the finite difference code MOST, that solves the shallow water wave equations.

Mitsotakis, Dimitrios

2009-01-01T23:59:59.000Z

197

Model predictive control system and method for integrated gasification combined cycle power generation  

DOE Patents (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

198

Integrating 3D and 2D computer generated imagery for the comics medium  

E-Print Network (OSTI)

Advances in 3D computer technology have led to aesthetic experimentation within the comics medium. Comic creators have produced comic books done entirely with 3D models that are then assembled digitally for the printed page. However, in using these 3D objects in a comic format, the creators have developed art styles that do not adhere to the paradigms established by this traditionally 2D medium. More successful results can be achieved by integrating 3D computer generated imagery with traditional 2D imagery, rather than replacing it. This thesis develops a method of combining rendered 3D models with 2D vector graphics to create a comic book art style that is consistent with the traditional medium, while still taking advantage of the new technology.

DeLuna, Ruben

2004-12-01T23:59:59.000Z

199

Steam generator tube integrity program. Semiannual report, August 1995--March 1996  

SciTech Connect

This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of that program in August 1995 through March 1996. The program is divided into five tasks, namely (1) Assessment of Inspection Reliability, (2) Research on ISI (in-service-inspection) Technology, (3) Research on Degradation Modes and Integrity, (4) Development of Methodology and Technical Requirements for Current and Emerging Regulatory Issues, and (5) Program Management. Under Task 1, progress is reported on the preparation of and evaluation of nondestructive evaluation (NDE) techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate burst pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Under Task 2, results are reported on closed-form solutions and finite element electromagnetic modeling of EC probe response for various probe designs and flaw characteristics. Under Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe accident conditions. In addition, crack behavior and stability are being modeled to provide guidance on test facility design, to develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and to predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the cracking and failure of tubes that have been repaired by sleeving, and with a review of literature on this subject.

Diercks, D.R.; Bakhtiari, S.; Chopra, O.K. [and others

1997-04-01T23:59:59.000Z

200

The integral formalism and the generating function of grand confluent hypergeometric function  

E-Print Network (OSTI)

Biconfluent Heun function, a confluent form of Heun function [1,2], is the special case of Grand Confluent Hypergeometric (GCH) function [4] replacing $\\mu$ and $\\varepsilon \\omega $ by 1 and -q: this has a regular singularity at x=0, and an irregular singularity at infinity of rank 2 (see (50) in Ref.[21]). In this paper I will apply three term recurrence formula [3] to the integral formalism of GCH function including all higher terms of A_n's and the generating function of GCH polynomial in which makes B_n term terminated. I show how to transform power series expansion in closed forms of GCH function to integral formalism analytically. This paper is 10th out of 10 in series "Special functions and three term recurrence formula (3TRF)". See section 6 for all the papers in the series. The previous paper in the series describes the power series expansion in closed forms of GCH function and its asymtotic behaviours [26].

Yoon Seok Choun

2013-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.  

SciTech Connect

This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

Petti, Jason P.

2007-01-01T23:59:59.000Z

202

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

203

Second law analysis of advanced power generation systems using variable temperature heat sources  

SciTech Connect

Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.

Bliem, C.J.; Mines, G.L.

1990-01-01T23:59:59.000Z

204

Variable cooling circuit for thermoelectric generator and engine and method of control  

DOE Patents (OSTI)

An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

Prior, Gregory P

2012-10-30T23:59:59.000Z

205

Energy Storage on the Grid and the Short-term Variability of Wind.  

E-Print Network (OSTI)

??Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated (more)

Hittinger, Eric Stephen

2012-01-01T23:59:59.000Z

206

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

report, Utility Wind Integration Group, Reston, VA, Oct.B. Parsons. Utility wind integration and operating impactoperations: A review of wind integration studies to date.

Mills, Andrew

2013-01-01T23:59:59.000Z

207

Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio  

DOE Green Energy (OSTI)

This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

2013-08-01T23:59:59.000Z

208

Integrated assessment of the spatial variability of ozone impacts from emissions of nitrogen oxides  

Science Conference Proceedings (OSTI)

This paper examines the ozone (O{sub 3}) damages caused by nitrogen oxides (NOx) emissions in different locations around the Atlanta metropolitan area during a summer month. Ozone impacts are calculated using a new integrated assessment model that links pollution emissions to their chemical transformation, transport, population exposures, and effects on human health. It was found that increased NOx emissions in rural areas around Atlanta increase human exposure to ambient O{sub 3} twice as much as suburban emissions. However, increased NOx emissions in central city Atlanta actually reduce O{sub 3} exposures. For downtown emissions, the reduction in human exposures to O{sub 3} from titration by NO in the central city outweighs the effects from increased downwind O{sub 3}. The results indicate that the marginal damage from NOx emissions varies greatly across a metropolitan area. The results raise concerns if cap and trade regulations cause emissions to migrate toward higher marginal damage locations. 22 refs., 4 figs., 2 tabs.

Daniel Q. Tong; Nicholas Z. Muller; Denise L. Mauzerall; Robert O. Mendelsohn [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs

2006-03-01T23:59:59.000Z

209

Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system  

Science Conference Proceedings (OSTI)

A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

2009-10-22T23:59:59.000Z

210

Technology R&D Needs for Integrating High Penetrations of Variable Utility-Scale Renewable Power Sources into the Electric Power Inf rastructure  

Science Conference Proceedings (OSTI)

While the North American electric energy resource portfolio continues to evolve, integrating large-scale renewable resources into the electric power infrastructure presents significant challenges. This is particularly true of variable renewable resources, such as wind and solar, which represent two of the most rapidly growing renewable resources being deployed. The root of this challenge lies in the inherent variability of wind and solar resources, which differentiates these from other renewable resource...

2008-05-15T23:59:59.000Z

211

Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation  

Science Conference Proceedings (OSTI)

GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframesincentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

None

2012-02-11T23:59:59.000Z

212

PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.  

Science Conference Proceedings (OSTI)

This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

2010-06-01T23:59:59.000Z

213

Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation  

SciTech Connect

GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

2012-03-16T23:59:59.000Z

214

Optimal power capturing of multi-MW wind generation system  

Science Conference Proceedings (OSTI)

Recently, an increasing number of multi-MW (1MW and up) wind generation systems are being developed and variable speed-variable pitch (VS-VP) control technology is usually adopted to improve the fast response speed and obtain the optimal energy, which ... Keywords: adaptive fuzzy proportional integral derivative, doubly-fed induction generator, hydraulic variable pitch mechanism, optimal, variable speed-variable pitch, wind turbine

Kong Yigang; Wang Zhixin

2008-03-01T23:59:59.000Z

215

Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States  

E-Print Network (OSTI)

Risk: The Treatment of Renewable Energy in Western UtilityEmerging Driver of New Renewable Generation in the WesternEnergy Efficiency and Renewable Energy (Office of Planning,

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

216

Integration of Combined Heat and Power Generators into Small Buildings - A Transient Analysis Approach.  

E-Print Network (OSTI)

??Small combined heat and power generators have the potential to reduce energy consumption and greenhouse gas emissions of residential buildings. Recently, much attention has been (more)

DeBruyn, Adrian Bryan

2007-01-01T23:59:59.000Z

217

OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION,  

E-Print Network (OSTI)

al. (1993) considered integration of IGCC systems with solar PV, while Forsberg (2008, 2009) studied significant attention (e.g., wind and solar in Celik, 2002 and Habib et al., 1999; wind and hydro in Jaramillo

Stanford University

218

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

flat block of power, generation from natural gas fired CCGTsnatural gas plants. Even at high penetration adding power from a flat block does not displace any generation

Mills, Andrew

2013-01-01T23:59:59.000Z

219

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

natural gas firing in the steam generator of a CSP plant norCycle Steam Nuclear Hydro None Table 14: Incumbent generator

Mills, Andrew

2013-01-01T23:59:59.000Z

220

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

transmission were ignored. on the characteristics, constraints, and operating costs of generators, the availability

Mills, Andrew

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Comparison on control strategies of the grid-side converter of variable speed constant frequency doubly-fed wind power generation system  

Science Conference Proceedings (OSTI)

Direct power control, vector control based on d-q synchronous rotating reference frame and ?-? static reference frame for the grid-side converter of variable speed constant frequency doubly-fed wind turbines are analyzed. System simulation ... Keywords: ?-? static reference frame, d-q rotating reference frame, direct power control, doubly-fed wind power generation system, grid-side converter

Xian-Ming Zhou; Ting-Long Pan; Zhi-Cheng Ji

2009-06-01T23:59:59.000Z

222

Hybrid simulation and optimization-based capacity planner for integrated photovoltaic generation with storage units  

Science Conference Proceedings (OSTI)

Unlike fossil-fueled generation, solar energy resources are geographically distributed and highly intermittent, which makes their direct control difficult and requires storage units. The goal of this research is to develop a flexible capacity planning ...

Esfandyar M. Mazhari; Jiayun Zhao; Nurcin Celik; Seungho Lee; Young-Jun Son; Larry Head

2009-12-01T23:59:59.000Z

223

Engineering Guide for Integration of Distributed Generation and Storage into Power Distribution Systems  

Science Conference Proceedings (OSTI)

Distributed resources (DR) hold great promise for improving the efficiency and reliability of electric power systems. The work described in this report focuses on distributed generation and storage, a subset of the larger family of DR technologies.

2000-12-11T23:59:59.000Z

224

A simulation solution of the integration of wind power into an electricity generating network  

Science Conference Proceedings (OSTI)

To effectively harness the power of wind electricity generation, significant infrastructure challenges exist. First, the individual wind turbines must be sited and constructed as part of a wind farm. Second, the wind farm must be connected to the electricity ...

Thomas F. Brady

2009-12-01T23:59:59.000Z

225

Integrated high speed intelligent utility tie unit for disbursed/renewable generation facilities  

Science Conference Proceedings (OSTI)

After experiencing the price hikes and rotating blackouts in California, the disbursed or distributed generation (DG) is considered as one of the most attractive alternatives for future utility industry. In addition to the conventional DG that uses fossil-fuel ...

Worakarn Wongsaichua / Wei-Jen Lee; Soontorn Oraintara

2005-01-01T23:59:59.000Z

226

Steam Generator Tube Integrity Risk Assessment: Volume 2: Application to Diablo Canyon Power Plant  

Science Conference Proceedings (OSTI)

Damage to steam generator tubing can impair its ability to adequately perform the required safety functions in terms of structural stability and leakage. This report describes the Diablo Canyon Power Plant application of a method for calculating risk for severe accidents involving steam generator tube failure. The method helps utilities determine risks associated with application of alternate repair criteria and/or operation with degraded tubing.

2000-08-08T23:59:59.000Z

227

Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2  

SciTech Connect

The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

2005-12-01T23:59:59.000Z

228

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

system - integrating wind power. Renewable Energy, 34(4):Malley. Capacity value of wind power, calculation, and dataof large amounts of wind power on design and operation of

Mills, Andrew

2013-01-01T23:59:59.000Z

229

Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system breaking points, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-09-01T23:59:59.000Z

230

Assessment of Rooftop and Building-Integrated PV Systems for Distributed Generation  

Science Conference Proceedings (OSTI)

Photovoltaics (PV) is the technology of solar cells -- solid-state devices that directly, silently, and cleanly convert solar energy into electricity. Although commercially available for many years, PV technology has only recently become sufficiently affordable and efficient to be a practical alternative or supplement to conventional grid power. PV devices are commonly mounted on a structure's rooftop, but are increasingly integrated into building components such as siding, glass, or roof tiles. This rep...

2003-03-04T23:59:59.000Z

231

Research Note on a Parabolic Heat-Balance Integral Method with Unspecified Exponent: An Entropy Generation Approach in Optimal Profile Determination  

E-Print Network (OSTI)

The heat-balance integral method of Goodman is studied with two simple 1-D heat conduction problems with prescribed temperature and flux boundary conditions. These classical problems with well known exact solutions enable to demonstrate the heat-balance integral method performance by a parabolic profile and the entropy generation minimization concept in definition of the appropriate profile exponent. The basic assumption generating the additional constraints needed to perform the solution is based on the requirement to minimize the difference in the local thermal entropy generation rates calculated by the approximate and the exact profile, respectively. This concept is easily applicable since the general concept has simple implementation of the condition requiring the thermal entropy generations calculated through both profiles to be the same at the boundary. The entropy minimization generation approach automatically generates the additional requirement which is deficient in the set of conditions defined by the heat-balance integral method concept.

Jordan Hristov

2010-12-12T23:59:59.000Z

232

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

difference between the real-time price and the actual real-2008) used historic real-time prices and simulated long-runin the real-time (RT) market at the RT price. Variable

Mills, Andrew

2013-01-01T23:59:59.000Z

233

Beyond long memory in heart rate variability: An approach based on fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity  

Science Conference Proceedings (OSTI)

Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet

2013-01-01T23:59:59.000Z

234

iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans  

SciTech Connect

Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a liver patient treated with SBRT. Plans generated with beam angle optimization did better meet the clinical goals than equiangular or manually selected configurations. For the maxillary sinus and liver cases, significant improvements for noncoplanar setups were seen. The cervix case showed that also in IMRT with coplanar setups, beam angle optimization with iCycle may improve plan quality. Computation times for coplanar plans were around 1-2 h and for noncoplanar plans 4-7 h, depending on the number of beams and the complexity of the site. Conclusions: Integrated beam angle and profile optimization with iCycle may result in significant improvements in treatment plan quality. Due to automation, the plan generation workload is minimal. Clinical application has started.

Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.; Heijmen, Ben J. M. [Department of Radiation Oncology, Erasmus MC Rotterdam, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

2012-02-15T23:59:59.000Z

235

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

2009. Impact of Increased DFIG Wind Penetration on Powerreports/2009report/vittal_dfig_pserc_final_report_s-

Eto, Joseph H.

2011-01-01T23:59:59.000Z

236

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

new technologies such as demand response and energy storagea specialized form of demand response to control frequencyfrequency-responsive demand response, can readily off-set

Eto, Joseph H.

2011-01-01T23:59:59.000Z

237

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

electricity (e.g. , steam turbines, combustion turbines,all be used to run a steam turbine). See Undrill (2010) forcycle plants whose steam turbines are operated with their

Eto, Joseph H.

2011-01-01T23:59:59.000Z

238

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

potentially including smart grid applications), startingpotentially including smart grid applications), startingpotentially including smart grid applications), starting

Eto, Joseph H.

2011-01-01T23:59:59.000Z

239

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

contained within a single wind farm due to falling winda large number of wind farms, which are all interconnectedand specific to individual wind farms as specified by the

Eto, Joseph H.

2011-01-01T23:59:59.000Z

240

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

operating flexibility of baseload units, faster start-up ofoperating flexibility of baseload units, faster start-up ofsystem load. At these times, baseload units are kept on line

Eto, Joseph H.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

control because the industry assumed that power system operationsPower system operations planners conduct extensive studies to assess whether primary frequency controlcontrol is a fundamental requirement for reliable operation of any power system.

Eto, Joseph H.

2011-01-01T23:59:59.000Z

242

Integration of MHD load models with circuit representations the Z generator.  

SciTech Connect

MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.

2013-03-01T23:59:59.000Z

243

Integration of Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

Science Conference Proceedings (OSTI)

In this paper, a new approach to evaluate the uncertainty ranges for the required generation performance envelope, including the balancing capacity, ramping capability and ramp duration is presented. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (CAISO) real life data have shown the effectiveness and efficiency of the proposed approach.

Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Chakrabarti, Bhujanga B.; Subbarao, Krishnappa; Loutan, Clyde; Guttromson, Ross T.

2010-04-20T23:59:59.000Z

244

Circuit Functionality and Requirements for Future Grid Integration of Distributed Renewable Generation  

Science Conference Proceedings (OSTI)

Distributed Energy Resources (DER) is an emerging technology that offers the potential to improve power system reliability, increase generation diversity, and provide greater flexibility to help match the growing energy needs. Small, modular DER plants have shorter implementation and commissioning timelines and can be brought on-line faster. However, utilities are concerned with the adverse impact of DER on the operation and management of distribution systems. The concern with potential impacts of DER on...

2010-12-31T23:59:59.000Z

245

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

errors, and monthly hydro power generation budget arepower, coal power, large hydro power, natural outside ofand maintence Pumped hydro storage Power purchase agreement

Mills, Andrew

2013-01-01T23:59:59.000Z

246

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

DOE). 20% Wind Energy by 2030: Increasing Wind Energysbased on California in 2030. Increasing amounts of wind,hourly load profile in 2030. Thermal generation parameters

Mills, Andrew

2013-01-01T23:59:59.000Z

247

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

TES Avg. DA Wholesale Price PV Penetration (% Annual Load) (Generation Sold at Low Prices PV Penetration (% AnnualTES Avg. DA Wholesale Price PV Penetration (% Annual Load) (

Mills, Andrew

2013-01-01T23:59:59.000Z

248

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

decisions leads to more baseload capacity being replaced bymanner than strictly baseload (Brown, 1996; Grande et al. ,amount of inflexible baseload generation would increase and

Mills, Andrew

2013-01-01T23:59:59.000Z

249

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

are applied for wind and solar (PV and CSP 0 ); a reasonablethe limits of solar photovoltaics (PV) in traditionalincreasing solar generation: additional PV and CSP 0 are

Mills, Andrew

2013-01-01T23:59:59.000Z

250

Integral transform solution of a two-dimensional model for contaminant dispersion in rivers and channels with spatially variable coefficients  

Science Conference Proceedings (OSTI)

The Generalized Integral Transform Technique (GITT) is employed to obtain numerical-analytical solutions for mathematical models that predict the dispersion of dissolved pollutants in rivers, streams and channels with either symmetric or asymmetric flow. ... Keywords: Contaminants dispersion, Environmental impact, Hybrid methods, Integral transforms, Symbolic computation

F. P. J. de Barros; W. B. Mills; R. M. Cotta

2006-05-01T23:59:59.000Z

251

Status and integration of the gas generation studies performed for the Hydrogen Safety Program. FY-1992 Annual report  

DOE Green Energy (OSTI)

Waste in Tank 241-SY-101 on the Hanford Site generates and periodically releases hydrogen, nitrous oxide, and nitrogen gases. Studies have been conducted at several laboratories to determine the chemical mechanisms for the gas generation and release. Results from these studies are presented and integrated in an attempt to describe current understanding of the physical properties of the waste and the mechanisms of gas generation and retention. Existing tank data are consistent with the interpretation that gases are uniformly generated in the tank, released continuously from the convecting layer, and stored in the nonconvecting layer. Tank temperature measurements suggest that the waste consists of ``gobs`` of material that reach neutral buoyancy at different times. The activation energy of the rate limiting step of the gas generating process was calculated to be about 7 kJ/mol but measured in the laboratory at 80 to 100 kJ/mol. Based on observed temperature changes in the tank the activation energy is probably not higher than about 20 kJ/mol. Several simulated waste compositions have been devised for use in laboratory studies in the place of actual waste from Tank 241-SY-101. Data from these studies can be used to predict how the actual waste might behave when heated or diluted. Density evaluations do not confirm that heating waste at the bottom of the tank would induce circulation within the waste; however, heating may release gas bubbles by dissolving the solids to which the bubbles adhere. Gas generation studies on simulated wastes indicated that nitrous oxide and hydrogen yields are not particularly coupled. Solubility studies of nitrous oxide, the most soluble of the principal gaseous products, indicate it is unlikely that dissolved gases contribute substantially to the quantity of gas released during periodic events.

Pederson, L.R.; Strachan, D.M.

1993-02-01T23:59:59.000Z

252

Stressing of turbine-generator-exciter shafts by variable-frequency currents superimposed on DC currents in asynchronous HVDC links and following disturbances at converter stations  

SciTech Connect

Ripple currents on the DC side of both HVDC synchronous and asynchronous. Links together with cleared HVDC and AC system disturbances can excite in some circumstances onerous torsional vibrations in large steam generator shafts. The problem has assumed importance in recent months on account of the HVDC Link between Scotland and Northern Ireland going ahead, on account of the proposed Eire/Wales Link, and because AC/DC/AC couplers are to be installed extensively to interconnect the East and West European Grid Systems. This paper discusses and analyses excitation of shaft torsional vibrations in steam turbine-generator-exciter shafts in close proximity to HVDC converter stations by (1) variable-frequency ripple currents superimposed on the DC currents in asynchronous Links, and (2) disturbances at bi-polar converter stations. The time response and tables show that for the systems studied variable-frequency ripple currents superimposed on the DC current in asynchronous Links can excite shaft torsional vibrations, the very small noncharacteristic currents could result in onerous shaft torques which might damage the machine, and that DC line faults at converter stations in close proximity of steam turbine-generator units can excite onerous turbine-generator shaft torsional response. Detailed simulation of the HVDC converter and generator is necessary for precise assessments of shaft torsional response following HVDC converter station faults. 500MW, 660MW, 1000MW and 1300MW machines are considered in the analyses that are made.

Hammons, T.J.; Bremner, J.J. (Univ. of Glasgow (United Kingdom))

1994-09-01T23:59:59.000Z

253

Challenges to Integration of Safety and Reliability with Proliferation Resistance and Physical Protection for Generation IV Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals - sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics - as well as careful evaluation of trade-offs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work.

H. Khalil; P. F. Peterson; R. Bari; G. -L. Fiorini; T. Leahy; R. Versluis

2012-07-01T23:59:59.000Z

254

Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials  

Science Conference Proceedings (OSTI)

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

2008-08-01T23:59:59.000Z

255

Computational performance optimisation for statistical analysis of the effect of nano-CMOS variability on integrated circuits  

Science Conference Proceedings (OSTI)

The intrinsic variability of nanoscale VLSI technology must be taken into account when analyzing circuit designs to predict likely yield. Monte-Carlo- (MC-) and quasi-MC- (QMC-) based statistical techniques do this by analysing many randomised or quasirandomised ...

Zheng Xie, Doug Edwards

2013-01-01T23:59:59.000Z

256

Cost of New Integrated Gasification Combined Cycle (IGCC) Coal Electricity Generation...................... 17  

E-Print Network (OSTI)

Abstract: Future demand for electricity can be met with a range of technologies, with fuels including coal, nuclear, natural gas, biomass and other renewables, as well as with energy efficiency and demand management approaches. Choices among options will depend on factors including capital cost, fuel cost, market and regulatory uncertainty, greenhouse gas emissions, and other environmental impacts. This paper estimates the costs of new electricity generation. The approach taken here is to provide a transparent and verifiable analysis based mainly on recent data provided

Seth Borin; Todd Levin; Valerie M. Thomas; Seth Borin; Todd Levin; Valerie M. Thomas

2010-01-01T23:59:59.000Z

257

Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.  

DOE Green Energy (OSTI)

We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

2009-10-09T23:59:59.000Z

258

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

3.1.2 Storage and Hydro Resource Dispatch . . . 3.1.323 Monthly hydro generation budget and min-flow . . . . .4.3 Hydropower and Pumped Hydro Storage . . 4.4 Thermal

Mills, Andrew

2013-01-01T23:59:59.000Z

259

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

case of wind electricity in spain. Energy Policy, 36:3345wind power in a carbon constrained world. Energy Policy, 34:wind power generation capacity in liberalized electricity markets. Energy Policy,

Mills, Andrew

2013-01-01T23:59:59.000Z

260

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

hour t ? T e t : energy in pumped hydro storage reservoirNuclear Exist_Hydro Exist_Storage Note: Energy for existingcurtail non-hydro generation. Energy Prospects West, June

Mills, Andrew

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Power links with Ireland -- Excitation of turbine-generator shaft torsional vibrations by variable frequency currents superimposed on DC currents in asynchronous HVDC links  

Science Conference Proceedings (OSTI)

The paper describes an in-depth analysis of excitation of shaft torsional vibrations in steam-turbine-generator-exciter shafts in close proximity to HVDC converter stations by variable-frequency ripple currents superimposed on the DC currents in asynchronous Links. It extends earlier work to include an in depth analysis of system scaling factors for harmonic currents impressed on generators in Northern Ireland by an inverter and to investigate the phenomena for possible torsional vibrations in the generators by the Link. Frequencies at which shaft torsional vibrations would be excited by modulation product harmonics in 50Hz/50Hz asynchronous Links as a function of deviation in system frequency is reviewed. Relative noncharacteristic current levels for 50Hz/50Hz connectors are illustrated assuming ripple currents at the inverter which gives realistic harmonic voltages in a twelve-pulse bridge. The paper then shows that torques in machines in multi-machine networks may be estimated by proportioning HVDC link harmonic disturbance current appropriately to each machine at risk. It is concluded that variable-frequency ripple currents superimposed on the DC current in asynchronous links can excite sympathetic torsional vibrations in turbine-generator-exciter shafts.

Hammons, T.J.; Tay, B.W.; Kok, K.L. [Glasgow Univ. (United Kingdom)

1995-08-01T23:59:59.000Z

262

Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation  

SciTech Connect

Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.

Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A.

2008-07-22T23:59:59.000Z

263

Utility Integrated Resource Planning: An Emerging Driver of NewRenewable Generation in the Western United States  

DOE Green Energy (OSTI)

In the United States, markets for renewable generation--especially wind power--have grown substantially in recent years. This growth is typically attributed to technology improvements and resulting cost reductions, the availability of federal tax incentives, and aggressive state policy efforts. But another less widely recognized driver of new renewable generation is poised to play a major role in the coming years: utility integrated resource planning (IRP). Common in the late-1980s to mid-1990s, but relegated to lesser importance as many states took steps to restructure their electricity markets in the late-1990s, IRP has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions such as the western United States, where retail competition has failed to take root. As practiced in the United States, IRP is a formal process by which utilities analyze the costs, benefits, and risks of all resources available to them--both supply- and demand-side--with the ultimate goal of identifying a portfolio of resources that meets their future needs at lowest cost and/or risk. Though the content of any specific utility IRP is unique, all are built on a common basic framework: (1) development of peak demand and load forecasts; (2) assessment of how these forecasts compare to existing and committed generation resources; (3) identification and characterization of various resource portfolios as candidates to fill a projected resource deficiency; (4) analysis of these different ''candidate'' resource portfolios under base-case and alternative future scenarios; and finally, (5) selection of a preferred portfolio, and creation of a near-term action plan to begin to move towards that portfolio. Renewable resources were once rarely considered seriously in utility IRP. In the western United States, however, the most recent resource plans call for a significant amount of new wind power capacity. These planned additions appear to be motivated by the improved economics of wind power, an emerging understanding that wind integration costs are manageable, and a growing acceptance of wind by electric utilities. Equally important, utility IRPs are increasingly recognizing the inherent risks in fossil-based generation portfolios--especially natural gas price risk and the financial risk of future carbon regulation--and the benefits of renewable energy in mitigating those risks. This article, which is based on a longer report from Berkeley Lab,i examines how twelve investor-owned utilities (IOUs) in the western United States--Avista, Idaho Power, NorthWestern Energy (NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E)--treat renewable energy in their most recent resource plans (as of July 2005). In aggregate, these twelve utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable generation in the United States, and (2) to suggest possible improvements to the methods used to evaluate renewable generation as a resource option. As such, we begin by summarizing the amount and types of new renewable generation planned as a result of these twelve IRPs. We then offer observations about the IRP process, and how it might be improved to more objectively evaluate renewable resources.

Bolinger, Mark; Wiser, Ryan

2005-09-25T23:59:59.000Z

264

Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource  

DOE Green Energy (OSTI)

A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

Goldsberry, F.L.

1982-03-01T23:59:59.000Z

265

Analysis of variable-frequency currents superimposed on DC currents in asynchronous HVDC Links in stressing turbine-generator-exciter shafts  

Science Conference Proceedings (OSTI)

Ripple currents on the DC side of both HVDC asynchronous and synchronous Links can excite in some circumstances onerous torsional vibrations in large steam generator shafts. The problem has assumed importance in recent months on account of the HVDC Link between Scotland and Northern Ireland going ahead, on account of the proposed Eire/Wales Link, because AC/DC/AC couplers are to be installed to interconnect the East and West European Grid Systems, and because resonances have been observed on machines in close proximity to AC/DCIAC couplers and HVDC Links. This paper discusses and analyses excitation of shaft torsional vibrations in steam turbine-generator-exciter shafts in close proximity to HVDC converter stations by variable-frequency ripple currents superimposed on DC currents in asynchronous Links. It presents technical knowledge not arranged for convenient reference heretofore in studying possible excitation of turbine-generator-v/ exciter shaft torsional vibrations by non-characteristic HVDC converter harmonic currents if a machine should be considered to be at risk. Shaft torques in multi-machine networks are evaluated by proportioning HVDC Link disturbance currents to each machine at risk using system network data, generator data and fault analysis data considering frequency dependence of the system parameters. This scaling factor is calculated for different scenarios of system operation and load. Equivalent circuits for the synchronous generator are employed appropriately to correlate HVDC Link disturbance current impressed on the generator stator with s state torque excitation from which magnitude of turbine-generator-exciter shaft torque is deduced.

Hammons, T.J.; Bremner, J.J. [Univ. of Glasgow (United Kingdom)

1995-03-01T23:59:59.000Z

266

Western Wind and Solar Integration Study: Phase 2 (Presentation)  

SciTech Connect

This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

2013-09-01T23:59:59.000Z

267

Western Wind and Solar Integration Study Phase 2 (Fact Sheet)  

DOE Green Energy (OSTI)

This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

Not Available

2013-09-01T23:59:59.000Z

268

NREL: Energy Analysis: Electric Sector Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Sector Integration Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher levels of variable renewable electricity. Impacts of renewable electricity generation on efficiency and emissions of conventional generators. Grid expansion and planning to allow large scale deployment of renewable generation. Graphic showing a high concept diagram of how a modern electricity system can be designed to include storage and incorporate large scale renewable generation. High Renewable Generation Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure

269

INTEGRAL spectral variability study of the atoll 4U 1820-30: first detection of hard X-ray emission  

E-Print Network (OSTI)

We study the 4-200 keV spectral and temporal behaviour of the low mass X-ray binary 4U 1820-30 with INTEGRAL during 2003-2005. This source as been observed in both the soft (banana) and hard (island) spectral states. A high energy tail, above 50 keV, in the hard state has been observed for the first time. This places the source in the category of X-ray bursters showing high-energy emission. The tail can be modeled as a soft power law component, with the photon index of ~2.4, on top of thermal Comptonization emission from a plasma with the electron temperature of kT_e~6 keV and optical depth of \\tau~4. Alternatively, but at a lower goodness of the fit, the hard-state broad band spectrum can be accounted for by emission from a hybrid, thermal-nonthermal, plasma. During this monitoring the source spent most of the time in the soft state, usual for this source, and the >~4 keV spectra are represented by thermal Comptonization with kT_e~3 keV and \\tau~6-7.

Antonella Tarana; Angela Bazzano; Pietro Ubertini; Andrzej A. Zdziarski

2006-08-28T23:59:59.000Z

270

Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)  

SciTech Connect

This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

2011-03-20T23:59:59.000Z

271

Modeling for System Integration Studies (Presentation)  

SciTech Connect

This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

Orwig, K. D.

2012-05-01T23:59:59.000Z

272

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers  

Science Conference Proceedings (OSTI)

Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

273

Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint  

DOE Green Energy (OSTI)

This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

Wang, X.; Yue, M.; Muljadi, E.

2012-09-01T23:59:59.000Z

274

On-line Structural Integrity Monitoring and Defect Diagnosis of Steam Generators Using Analysis of Guided Acoustic Waves.  

E-Print Network (OSTI)

??Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research using guided acoustic signals. The primary objective was to (more)

Lu, Baofu

2005-01-01T23:59:59.000Z

275

A first-generation integrated tammar wallaby map and its use in creating a tammar wallaby first-generation virtual genome map  

E-Print Network (OSTI)

powerful and accu- rate, and has been applied to livestock species not then sequenced [20]. For the tammar wallaby, there are cytogenetic and link- age-mapping resources that can be integrated to provide a framework for the genome assembly. A linkage map... 2006, Australia. 3Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia. 4Department of Veterinary Medicine, University of Cambridge, UK. 5School of Marine & Tropical Biology, James Cook University, Townsville...

Wang, Chenwei; Deakin, Janine E; Rens, Willem; Zenger, Kyall R; Belov, Katherine; Marshall Graves, Jennifer A; Nicholas, Frank W

2011-08-19T23:59:59.000Z

276

NREL: Electricity Integration Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's electricity integration research is conducted in state-of-the-art facilities. These facilities assist industry in the development of power systems and address the operational challenges of full system integration. The Energy Systems Integration Facility can be used to design, test, and analyze components and systems to enable economic, reliable integration of renewable electricity, fuel production, storage, and building efficiency technologies with the U.S. electricity delivery infrastructure. New grid integration capabilities at the National Wind Technology Center will allow testing of many grid integration aspects of multi-megawatt, utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize,

277

Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the flying brick technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-01-01T23:59:59.000Z

278

NREL: Transmission Grid Integration - FESTIV Model  

NLE Websites -- All DOE Office Websites (Extended Search)

FESTIV Model FESTIV Model The Flexible Energy Scheduling Tool for Integration of Variable Generation (FESTIV) is a model that simulates the behavior of the electric power system to help researchers understand the impacts of variability and uncertainty on operating reserves requirements. FESTIV includes security-constrained unit commitment, security-constrained economic dispatch, and automatic generation control sub-models. Electric power system operators use a variety of scheduling techniques to match electricity generation and demand. When the total supply of energy is different from the total demand, system operators must deploy operating reserves (including regulating, following, contingency, and ramping reserves) to correct the energy imbalance. The way they do this and,

279

U.S. Environmental Protection Agency State Climate and Energy Technical Forum The Emissions & Generation Resource Integrated Database (eGRID) Background Document  

E-Print Network (OSTI)

The United States relies on electricity to meet a significant portion of its energy demands- particularly for lighting, electric motors, heating, and air conditioning. Electricity generators consumed 37 percent of total U.S. energy from fossil fuels and emitted 42 percent of total carbon dioxide (CO2) from fossil fuel combustion in 2008 (EPA 2010a). 1 The U.S. Environmental Protection Agency (EPA) developed the Emissions & Generation Resource Integrated Database (eGRID) to display the environmental attributes of electric power generation in the United States and to highlight the linkages between electricity generation and air emissions. The eGRID Technical Support Document (EPA 2010b) provides background information on eGRID, the various types of emissions and emissions rates in the database, resource mixes used to generate electricity, eGRID-related tools and applications, and state and local government case studies on the application of eGRID factors. 1. eGRID Background eGRID is a comprehensive inventory of environmental attributes of electric power systems. The preeminent source of air emissions data for the electric power sector, eGRID is based on available plant-specific data for all U.S. electricity generating plants that provide power to the electric grid and report data to the U.S. government. Data are available that provide total emissions 2, emissions rates, and resource mix 3 estimates from each electric generating plant, and are then aggregated by electric generating company (EGC), parent company, state, U.S. total, and the following three types of power grid regions: ? National American Electric Reliability Council (NERC) region plus Alaska and

unknown authors

2011-01-01T23:59:59.000Z

280

NREL: Water Power Research - Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration Grid Integration High-voltage transmission lines and towers silouetted against a blue sky with the first glow of the rising sun on the horizon behind them. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources. For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power resources like water power is a critical part of the deployment planning and commercialization process. Variable and weather-dependent resources can create operational concerns for grid operators. These concerns include conventional generation ramping, load/generation balancing, and planning

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity  

E-Print Network (OSTI)

, and the results were quantified using a Live/DeadTM cell assay. This work is a preliminary study cell line (RTgill-W1)--towards water toxicity testing Tomasz Glawdel,a Caglar Elbuken,a Lucy E. J. Leeb that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill

Le Roy, Robert J.

282

Determining Generative Models of Objects Under Varying Illumination: Shape and Albedo from Multiple Images Using SVDand Integrability  

Science Conference Proceedings (OSTI)

We describe a method of learning generative models of objects from a set of images of the object under different, and unknown, illumination. Such a model allows us to approximate the objects appearance under a range of lighting conditions. ... Keywords: Singular Value Decomposition, illumination models, photometric stereo

A. L. Yuille; D. Snow; R. Epstein; P. N. Belhumeur

1999-12-01T23:59:59.000Z

283

Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope  

E-Print Network (OSTI)

The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antn, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

2012-01-01T23:59:59.000Z

284

DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION  

DOE Green Energy (OSTI)

The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make multi-component systems designed so as to maintain electronic communication between components held in a defined spatial arrangement. Systems effective for light driven H2 generation were examined by photophysical methods including transient absorption spectroscopy to observe charge-separated states and chart their dynamics. Quantum yields for hydrogen production were also measured. Additional studies examined the effectiveness of these systems for H2 generation and involved the development of new catalysts and systems based thereon. From these studies, a better understanding of initial steps in the light driven generation of hydrogen were obtained.

Professor Richard Eisenberg

2012-07-18T23:59:59.000Z

285

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.  

Science Conference Proceedings (OSTI)

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

2011-02-01T23:59:59.000Z

286

Protecting the Modern Distribution Grid: EPRI Survey on Distribution Protection with Emphasis on Distributed Generation Integration Practices  

Science Conference Proceedings (OSTI)

The increasing penetration of distributed generation (DG) has created the need for changing protection practices for electric utility distribution systems. An assessment of current practice and experiences is provided. This report is to make utility engineers aware of potential issues and present protection practices for systems with DG.BackgroundDistributed resources have had significant impacts on electric utility power delivery systems. Greater impacts are ...

2013-12-19T23:59:59.000Z

287

JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

2008-02-01T23:59:59.000Z

288

Novel sensorless generator control and grid fault ride-through strategies for variable-speed wind turbines and implementation on a new real-time simulation platform.  

E-Print Network (OSTI)

??The usage of MW-size variable-speed wind turbines as sources of energy has increased significantly during the last decade. Advantages over fixed-speed wind turbines include more (more)

Yang, Sheng

2010-01-01T23:59:59.000Z

289

Scalable analysis of variable software  

Science Conference Proceedings (OSTI)

The advent of variability management and generator technology enables users to derive individual variants from a variable code base based on a selection of desired configuration options. This approach gives rise to the generation of possibly billions ... Keywords: C Preprocessor, Liveness Analysis, Software Product Lines, Type Checking, Variability-aware Analysis

Jrg Liebig; Alexander von Rhein; Christian Kstner; Sven Apel; Jens Drre; Christian Lengauer

2013-08-01T23:59:59.000Z

290

Western Wind and Solar Integration Study Phase 2 (Presentation)  

DOE Green Energy (OSTI)

This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

2013-06-01T23:59:59.000Z

291

Buildings to Grid Integration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings to Grid Integration Buildings to Grid Integration Buildings to Grid Integration The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to address the integration and optimization of buildings with the nation's energy grid. Buildings and the Energy Grid As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and/or variable generation sources and loads, such as those of electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. For example, the U.S. government, many states, municipalities, and utility service areas are diversifying and distributing their generation mix, including a larger percentage of

292

Buildings to Grid Integration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings to Grid Integration Buildings to Grid Integration Buildings to Grid Integration The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to address the integration and optimization of buildings with the nation's energy grid. Buildings and the Energy Grid As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and/or variable generation sources and loads, such as those of electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. For example, the U.S. government, many states, municipalities, and utility service areas are diversifying and distributing their generation mix, including a larger percentage of

293

A Novel Integration of an Ultraviolet Nitrate Sensor On Board a Towed Vehicle for Mapping Open-Ocean Submesoscale Nitrate Variability  

Science Conference Proceedings (OSTI)

Initial results from a deployment of the SUV-6 ultraviolet spectrophotometer, integrated with the SeaSoar towed vehicle, are presented. The innovative, combined system measures nitrate concentration at high spatial resolution (4 m vertically, 5 ...

Rosalind Pidcock; Meric Srokosz; John Allen; Mark Hartman; Stuart Painter; Matt Mowlem; David Hydes; Adrian Martin

2010-08-01T23:59:59.000Z

294

Design and Test of DC Voltage Link Conversion System and Brushless Doubly-Fed Induction Generator for Variable-Speed Wind Energy Applications: August 1999--May 2003  

SciTech Connect

This report describes four low-cost alternative power converters for processing the power developed by a doubly fed wound-rotor induction generator for wind energy conversion systems.

Lipo, T.A.; Panda, D.; Zarko, D.

2005-11-01T23:59:59.000Z

295

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model  

SciTech Connect

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

2013-02-01T23:59:59.000Z

296

Assimilation of Screen-Level Variables in ECMWFs Integrated Forecast System: A Study on the Impact on the Forecast Quality and Analyzed Soil Moisture  

Science Conference Proceedings (OSTI)

In many operational numerical weather prediction applications, the soil moisture analysis is based on the modeled first-guess and screen-level variables; that is, 2-m temperature and 2-m relative humidity. A set of two global 61-day analysis/...

Matthias Drusch; Pedro Viterbo

2007-02-01T23:59:59.000Z

297

NREL: Energy Analysis: High Renewable Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

High Renewable Generation High Renewable Generation Feasibility of Higher Levels of Renewable Electricity Deployment As requirements for renewable electricity generation increase, with some states now requiring as much as 30% renewables in their renewable portfolio standards (RPS), the question arises: how much can renewables contribute to future electricity demand? NREL's grid integration studies use state-of-the-art modeling and analysis techniques to evaluate the operational and infrastructure impacts of higher wind and solar penetrations at regional and national scales. NREL's grid integration studies show that: The U.S. electric system is operable with 20%-50% variable generation from wind and solar power in the regional and national scenarios examined to date. Increased electric system flexibility, needed to enable electricity

298

Hydrogen Generation by Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

299

NREL: Transmission Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation Integration Study Oahu Wind Integration and Transmission SIND Toolkit Electricity Market Design Energy Imbalance Markets Flexible Energy Scheduling Tool for...

300

Modeling 18 Water Variability  

Science Conference Proceedings (OSTI)

Variability of 18 Water formation is investigated with an isopycnic-coordinate model of the North Atlantic. A 30-year spinup integration is used as a control experiment in which the upper water column in the Sargasso Sea is shown to be in ...

Robert Marsh; Adrian L. New

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Market-Based Indian Grid Integration Study Options: Preprint  

SciTech Connect

The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

Stoltenberg, B.; Clark, K.; Negi, S. K.

2012-03-01T23:59:59.000Z

302

Market-Based Indian Grid Integration Study Options: Preprint  

DOE Green Energy (OSTI)

The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

Stoltenberg, B.; Clark, K.; Negi, S. K.

2012-03-01T23:59:59.000Z

303

NREL: Wind Research - Utility Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Grid Integration Utility Grid Integration Photo of a wind farm in Lawton, Oklahoma where NREL researchers studied the impact of wind energy on farming system operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. The integration of wind energy into the electric generation industry's supply mix is one of the issues industry grapples with. The natural variability of the wind resource raises concerns about how wind can be integrated into routine grid operations, particularly with regard to the effects of wind on regulation, load following, scheduling, line voltage,

304

Large-Scale PV Integration Study  

DOE Green Energy (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energys electric grid system in southern Nevada. It analyzes the ability of NV Energys generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

305

Calculating Wind Integration Costs: Separating Wind Energy Value from Integration Cost Impacts  

DOE Green Energy (OSTI)

Accurately calculating integration costs is important so that wind generation can be fairly compared with alternative generation technologies.

Milligan, M.; Kirby, B.

2009-07-01T23:59:59.000Z

306

Role of Energy Storage with Renewable Electricity Generation  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

307

Energy Systems Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Integration Systems Integration Ben Kroposki, PhD, PE Director, Energy Systems Integration National Renewable Energy Laboratory 2 Reducing investment risk and optimizing systems in a rapidly changing energy world * Increasing penetration of variable RE in grid * Increasing ultra high energy efficiency buildings and controllable loads * New data, information, communications and controls * Electrification of transportation and alternative fuels * Integrating energy storage (stationary and mobile) and thermal storage * Interactions between electricity/thermal/fuels/data pathways * Increasing system flexibility and intelligence Current Energy Systems Future Energy Systems Why Energy Systems Integration? 3 Energy Systems Integration Continuum Scale Appliance (Plug)

308

Separations and safeguards model integration.  

Science Conference Proceedings (OSTI)

Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

Cipiti, Benjamin B.; Zinaman, Owen

2010-09-01T23:59:59.000Z

309

Renewable electricity generation in California includes variable ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

310

Variable Screw Compressor, Variable Screw Compressor Suppliers ...  

U.S. Energy Information Administration (EIA)

Variable Screw Compressor Suppliers & air compressor Manufacturers Directory. Source Top Quality Variable Screw Compressor Suppliers, air ...

311

Property:Component Integration | Open Energy Information  

Open Energy Info (EERE)

Component Integration Component Integration Jump to: navigation, search This is a property of type String. The allowed values for this property are: Customer Assembled Factory Integrated Pages using the property "Component Integration" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Customer Assembled + Distributed Generation Study/615 kW Waukesha Packaged System + Factory Integrated + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Customer Assembled + Distributed Generation Study/Arrow Linen + Customer Assembled + Distributed Generation Study/Dakota Station (Minnegasco) + Customer Assembled + Distributed Generation Study/Elgin Community College + Customer Assembled + Distributed Generation Study/Emerling Farm + Factory Integrated +

312

FCT Technology Validation: Integrated Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Projects to Integrated Projects to someone by E-mail Share FCT Technology Validation: Integrated Projects on Facebook Tweet about FCT Technology Validation: Integrated Projects on Twitter Bookmark FCT Technology Validation: Integrated Projects on Google Bookmark FCT Technology Validation: Integrated Projects on Delicious Rank FCT Technology Validation: Integrated Projects on Digg Find More places to share FCT Technology Validation: Integrated Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects Integrated Projects DOE Projects Non-DOE Projects Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Manufacturing Codes & Standards Education Systems Analysis Contacts Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize

313

Studies on selection of controlled variables  

E-Print Network (OSTI)

Studies on selection of controlled variables by Vidar Alstad A Thesis Submitted for the Degree. Thus, the selection of controlled variables integrates the optimization and the control layer. Selecting the right controlled variables can be of paramount importance. Many chem­ ical processes

Skogestad, Sigurd

314

Studies on selection of controlled variables  

E-Print Network (OSTI)

Studies on selection of controlled variables by Vidar Alstad A Thesis Submitted for the Degree. Thus, the selection of controlled variables integrates the optimization and the control layer. Selecting the right controlled variables can be of paramount importance. Many chem- ical processes

Skogestad, Sigurd

315

V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS  

Science Conference Proceedings (OSTI)

A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental program to test the full size strip (V5) and extraction (V10) centrifugal contactors and the associated strip and extraction effluent coalescers to determine the hydraulic and mass transfer characteristics with the NGS. The test program evaluated the amount of organic carryover and the droplet size of the carryover phases using several analytical methods. Provisions were also made to enable an evaluation of coalescer performance. Stage efficiency and mass distribution ratios were determined using Cs mass transfer measurements. Using 20 millimolar (mM) extractant (instead of 50 mM), the nominal D(Cs) measured was 16.0-17.5. The data indicate that equilibrium is achieved rapidly and maintained throughout sampling. The data showed good stage efficiency for extraction (Tests 1A-1D), ranging from 98.2% for Test 1A to 90.5% for Test 1D. No statistically-significant differences were noted for operations at 12 gpm aqueous flow when compared with either 4 gpm or 8 gpm of aqueous flow. The stage efficiencies equal or exceed those previously measured using the baseline CSSX solvent system. The nominal target for scrub Cs distribution values are {approx}1.0-2.5. The first scrub test yielded an average scrub value of 1.21 and the second scrub test produced an average value of 0.78. Both values are considered acceptable. Stage efficiency was not calculated for the scrub tests. For stripping behavior, six tests were completed in a manner to represent the first strip stage. For three tests at the baseline flow ratios (O:A of 3.75:1) but at different total flow rates, the D(Cs) values were all similar at {approx}0.052. Similar behavior was observed for two tests performed at an O:A ratio of 7:1 instead of 3.75:1. The data for the baseline strip tests exhibited acceptable stage efficiency, ranging from 82.0% for low flow to 89-90% for medium and high flow. The difference in efficiency may be attributable to the low volume in the contactor housing at lower flow rates. The concentrations of Isopar L{reg_sign} and Modifier were measured using semi-volatile organic analysis (SVOA

Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

2012-01-17T23:59:59.000Z

316

Performance Variability  

NLE Websites -- All DOE Office Websites (Extended Search)

Variability Variability of Highly Parallel Architectures William T.C. Kramer 1 and Clint Ryan 2 1 Department of Computing Sciences, University of California at Berkeley and the National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory 2 Department of Computing Sciences, University of California at Berkeley Abstract. The design and evaluation of high performance computers has concentrated on increasing computational speed for applications. This performance is often measured on a well configured dedicated sys- tem to show the best case. In the real environment, resources are not always dedicated to a single task, and systems run tasks that may influ- ence each other, so run times vary, sometimes to an unreasonably large extent. This paper explores the amount of variation seen across four large distributed memory systems in a systematic manner. It then

317

Power Generation from an Integrated Biomass Reformer and Solid Oxide Fuel Cell (SBIR Phase III) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Quentin Ming (Primary Contact), Patricia Irving InnovaTek, Inc. 3100 George Washington Way, Suite 108 Richland, WA 99354 Phone: (509) 375-1093 Email: ming@innovatek.com DOE Managers HQ: Charles Russomanno Phone: (202) 586-7543 Email: Charles.Russomanno@ee.doe.gov HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov Contract Number: DE-EE0004535 Project Start Date: October 1, 2010 Project End Date: September 30, 2013 Fiscal Year (FY) 2012 Objectives Establish the requirements and design for an integrated * fuel cell and fuel processor that will meet the technical and operational needs for distributed energy production. Develop and integrate key system components - *

318

NREL: Transmission Grid Integration - Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

that better characterize the potential benefits and impacts of variable generation on electric power system operations. Electric power system operators can reduce the...

319

Building Technologies Office: Advanced, Variable Speed Air-Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced, Variable Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project to someone by E-mail Share Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Facebook Tweet about Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Twitter Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Google Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Delicious Rank Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Digg Find More places to share Building Technologies Office: Advanced,

320

NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation  

SciTech Connect

The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the systems generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

2013-01-02T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wind turbine power generation emulation via doubly fed induction generator control .  

E-Print Network (OSTI)

??In this thesis, we emulate a Wind Turbine Generator by driving a Doubly Fed Induction Generator (DFIG) via a DC motor with variable input torque (more)

Edwards, Gregory W.

2009-01-01T23:59:59.000Z

322

Integration Costs: Are They Unique to Wind and Solar Energy? Preprint  

DOE Green Energy (OSTI)

Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

2012-05-01T23:59:59.000Z

323

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network (OSTI)

C. Marnay. 2003. Distributed Generation Capabilities of theImpact on the Deployment of Distributed Generation. PolicyIntegration of Distributed Generation and the Development of

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

324

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network (OSTI)

F. Wollenburg,PowerGenerationOperationandControl,Commitment with Wind Power Generation: IntegratingOptimalinvestmentsin powergenerationundercentralized

Birman, Kenneth

2012-01-01T23:59:59.000Z

325

Integrated Computational Materials Engineering: The Customer's ...  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2012 ... Scope, Realization of the full benefit of next generation design requires integration of...

326

Payload-envelope detection and label-detection integrated photonic circuit for asynchronous variable-length optical-packet switching with 40-Gb/s RZ payloads and 10-Gb/s NRZ labels  

E-Print Network (OSTI)

required in order to detect more electrical power at the PD.With the SOA on, the electrical power generated into thethe data, and the electrical power generated JOURNAL OF

Koch, B R; Hu, Z Y; Bowers, J E; Blumenthal, D J

2006-01-01T23:59:59.000Z

327

Tropical Cloud Feedbacks and Natural Variability of Climate  

Science Conference Proceedings (OSTI)

Simulations of natural variability by two GCMs are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms ...

R. L. Miller; A. D. Del Genio

1994-09-01T23:59:59.000Z

328

Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-03-01T23:59:59.000Z

329

Internal Variability of Indian Ocean SST  

Science Conference Proceedings (OSTI)

A 40-yr integration of an eddy-resolving numerical model of the tropical Indian Ocean is analyzed to quantify the interannual variability that is caused by the internal variability of ocean dynamics. It is found that along the equator in the ...

Markus Jochum; Raghu Murtugudde

2005-09-01T23:59:59.000Z

330

Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume IV. Final report, Appendix C: identification from utility visits of present and future approaches to integration of DSG into distribution networks  

DOE Green Energy (OSTI)

A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

Not Available

1980-10-01T23:59:59.000Z

331

Monitoring of Photovoltaic Plant Output and Variability  

Science Conference Proceedings (OSTI)

The performance of photovoltaic (PV) systems, including variability characteristics, is of increasing interest to utilities as they integrate more solar energy onto the electric grid. This study is part of a multi-year research series to investigate influencing factors that affect PV plant output, variability, and approaches to system management. It explores PV variability both from a grid perspective and through examination of project design aspects that can affect annual power production. ...

2012-12-12T23:59:59.000Z

332

Adaptive variable structure control law for a variable speed wind turbine  

Science Conference Proceedings (OSTI)

The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, an adaptive robust control for a doubly feed induction generator drive for variable speed wind power generation is described. ... Keywords: modeling and simulation, variable structure control, wind turbine control

Oscar Barambones; Jose Maria Gonzalez De Durana; Patxi Alkorta; Jose Antonio Ramos; Manuel De La Sen

2011-05-01T23:59:59.000Z

333

On Quantum Integrable Systems  

SciTech Connect

Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.

Danilov, Viatcheslav; /Oak Ridge; Nagaitsev, Sergei; /Fermilab

2011-11-01T23:59:59.000Z

334

Curtailing Intermittent Generation in Electrical Systems  

Science Conference Proceedings (OSTI)

Energy generation from intermittent renewable sources introduces additional variability into electrical systems, resulting in a higher cost of balancing against the increased variabilities. Ways to balance demand and supply for electricity include using ... Keywords: economic curtailment, energy storage operations, flexible generation, intermittent generation, operations management practice, wind power

Owen Q. Wu, Roman Kapuscinski

2013-10-01T23:59:59.000Z

335

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

336

Building Integration of Micro-Generation Technologies ...  

Science Conference Proceedings (OSTI)

... Applications Considerations for Combined Heat & Power in Multifamily Buildings Marc Zuluaga, Steven Winter Associates, Inc. ...

2013-06-28T23:59:59.000Z

337

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

are country reports from Task XVII participants, including Austria, Finland, Italy, Korea, the Netherlands, Spain and the United States. Annex 8 provides a list of software...

338

LIMERICK GENERATING STATION- NRC INTEGRATED INSPECTION  

E-Print Network (OSTI)

Units 1 and 2. The enclosed report documents the inspection findings which were discussed on October 4, 2002, with Mr. W. Levis and other members of your staff. This inspection examined activities conducted under your license as they relate to safety and compliance with the Commissions rules and regulations and with the conditions of your license. The inspectors reviewed procedures and records, observed activities, and interviewed personnel. Based on the results of this inspection, the inspectors identified four issues of very low safety significance (Green). Two of these issues were determined to involve violations of NRC requirements. However, because of their very low safety significance and because they have been entered into your corrective action program, the NRC is treating these issues as Non-Cited Violations, in accordance with Section VI.A.1 of the NRCs Enforcement Policy. If you deny these non-cited violations, you should provide a response with the basis for your denial, within 30 days of the date of this inspection report, to the Nuclear Regulatory Commission,

Exelon Nuclear

2002-01-01T23:59:59.000Z

339

CIM Application Integration  

Science Conference Proceedings (OSTI)

The EPRI Common Information Model (CIM) has been used as the basis or schema for implementing a real-time relational database in the CIM Application Integration Project. The CIM relational database is implemented in a normalized form so that it can support a complete range of utility transmission, generation, distribution, substation, and asset management applications. The objective of this document is to provide a final report on the CIM Application Integration Project.

2004-02-02T23:59:59.000Z

340

Modern generator protection systems  

SciTech Connect

The special problems of the protection of generating stations with large machines connected to large integrated networks are presented. The coordination between the protective relays and tripping functions and the reliability of the protection scheme are important considerations in modern plants. Primary and backup protective functions, the applications, and their divisions into fault detection and ''fault prevention'' categories are considered. Testing and maintenance of the generator protection system including automatic calibration testing equipment is also discussed. The concept of the generator protection as a completely coordinated system and its realization with solid state protective relays is also presented. 9 refs.

Pencinger, C.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multi-winding Homopolar Electric Machine Offers Variable ...  

The device can be used as either a motor or a generator. Advantages Variable voltage and speed design Internal mechanism allowing for low speed, high

342

Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies  

DOE Green Energy (OSTI)

Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

Bird, L.; Lew, D.

2012-09-01T23:59:59.000Z

343

Sliding mode control strategy for variable speed wind turbine  

Science Conference Proceedings (OSTI)

The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, a robust control for variable speed wind power generation that incorporates a doubly feed induction generator is described. ...

Oscar Barambones; Jose Maria Gonzalez De Durana

2009-09-01T23:59:59.000Z

344

Spatial Variability and Interpolation of Stochastic Weather Simulation Model Parameters  

Science Conference Proceedings (OSTI)

The spatial variability of 58 precipitation and temperature parameters from the generation of weather elements for multiple applications (GEM) weather generator has been investigated over a region of significant complexity in topography and ...

Gregory L. Johnson; Christopher Daly; George H. Taylor; Clayton L. Hanson

2000-06-01T23:59:59.000Z

345

Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation  

SciTech Connect

The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

Tuffner, Francis K.; Kintner-Meyer, Michael CW

2011-10-10T23:59:59.000Z

346

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

347

Grid Integration  

SciTech Connect

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

Not Available

2008-09-01T23:59:59.000Z

348

Modular Integrated Energy Systems  

E-Print Network (OSTI)

of Honeywell's data collection activity for the integrated energy system (or CHP -- Cooling, Heat and Power recovery steam generator, and a waste heat fired absorption chiller. The key goals of the project are having on-line optimization, · Develop a 1000 Ton exhaust-driven absorption chiller, · Install

Oak Ridge National Laboratory

349

Steam Generator Management Program: Assessment of Steam Generator Tube Plugs  

Science Conference Proceedings (OSTI)

EPRI Steam Generator Management Program guidelines require that utilities perform integrity assessments of all steam generator (SG) components, including tube plugs. SG inspection outages should specifically include monitoring of degradation in tube hardware such as plugs. This report provides guidance for utility engineers to use in determining tube plug inspection requirements, including scope, technique, and periodicity.BackgroundGenerally, utilities perform ...

2013-08-28T23:59:59.000Z

350

Roadmap Integration Team Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Presentation NP03-00 Slide 1 Generation IV Technology Roadmap NERAC Meeting: Washington, D.C. September 30, 2002 Roadmap Integration Team Presentation NP03-00 Slide 2 NERAC Meeting September 30, 2002 Generation IV Technology Roadmap * Identifies systems deployable by 2030 or earlier * Specifies six systems that offer significant advances towards: - Sustainability - Economics - Safety and reliability - Proliferation resistance and physical protection * Summarizes R&D activities and priorities for the systems * Lays the foundation for Generation IV R&D program plans Roadmap Integration Team Presentation NP03-00 Slide 3 NERAC Meeting September 30, 2002 The Technical Roadmap Report * Discusses the benefits, goals and challenges, and the importance of the fuel cycle * Describes evaluation and selection process

351

An Integrated Hydrogen Vision for California  

E-Print Network (OSTI)

An Integrated Hydrogen Vision for California White Paper/High Efficiency Generation Of Hydrogen Fuels Using NuclearU.S. Department of Energy Hydrogen Fuel Cells and Hydrogen

2004-01-01T23:59:59.000Z

352

The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy Efficiency of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The Western Wind and Solar Integration Study Phase 2 An examination of how wind and solar power affect operations, costs, and emissions from fossil-fueled generators The electric grid is a highly complex, interconnected machine. Changing one part of the grid can have consequences elsewhere. Adding variable renewable generation such as wind and solar power affects the operation of the other types of power plants, and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions, but do those increases in costs and emissions from cycling negate the overall benefits of integrating renewables?

353

Sliding mode control law for a variable speed wind turbine  

Science Conference Proceedings (OSTI)

Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed ... Keywords: modeling and simulation, variable structure control, wind turbine control

Oscar Barambones; Jose Maria Gonzalez De Durana; Patxi Alkorta; Jose Antonio Ramos; Manuel De La Sen

2011-02-01T23:59:59.000Z

354

Analysis of Cycling Costs in Western Wind and Solar Integration Study  

DOE Green Energy (OSTI)

The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveraging the results of WWSIS Phase 1 study.

Jordan, G.; Venkataraman, S.

2012-06-01T23:59:59.000Z

355

Insolation integrator  

DOE Patents (OSTI)

An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

1980-01-01T23:59:59.000Z

356

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie...

357

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

358

Impact of wind generators on the stability of power system network  

Science Conference Proceedings (OSTI)

This paper investigates the impacts of wind generators on the transient stability of a small power system. Two types of wind generators are considered, a fixed speed and variable speed induction generators. The behavior of synchronous generator's rotor ... Keywords: distributed generators, fixed and variable speed wind generators, transient stability

K. A. Folly; K. Tjiuma

2007-05-01T23:59:59.000Z

359

PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint  

DOE Green Energy (OSTI)

Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

Sengupta, M.; Keller, J.

2012-06-01T23:59:59.000Z

360

Model documentation report: Short-Term Hydroelectric Generation Model  

DOE Green Energy (OSTI)

The purpose of this report is to define the objectives of the Short- Term Hydroelectric Generation Model (STHGM), describe its basic approach, and to provide details on the model structure. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with the Energy Information Administration`s (AYE) legal obligation to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). The STHGM performs a short-term (18 to 27- month) forecast of hydroelectric generation in the United States using an autoregressive integrated moving average (UREMIA) time series model with precipitation as an explanatory variable. The model results are used as input for the short-term Energy Outlook.

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Integrate Real-Time Weather with Thermostat Electrical Usage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Xiufeng Pang Weather and its dynamics are big drivers of energy usage. Integration of key weather variables - solar, wind, and temperature - into home energy management and demand...

362

South Atlantic Multidecadal Variability in the Climate System Model  

Science Conference Proceedings (OSTI)

Strong multidecadal variability is detected in a 300-yr integration of the NCAR Climate System Model in the South Atlantic region, through the application of two signal recognition techniques: the multitaper method and singular spectrum analysis. ...

Ilana Wainer; Silvia A. Venegas

2002-06-01T23:59:59.000Z

363

Antarctic Bottom Water Variability in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

The natural variability of the Weddell Sea variety of Antarctic Bottom Water (AABW) is examined in a long-term integration of a coupled climate model. Examination of passive tracer concentrations suggests that the model AABW is predominantly ...

Agus Santoso; Matthew H. England

2008-09-01T23:59:59.000Z

364

Scientific Innovation Through Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

pnnl.gov pnnl.gov Cell Isolation and Systems Analysis Multi-photon fluorescence microscope: Seamlessly integrates nonlinear two-photon excitation, laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM) for minimally invasive and deep-penetrating 3D imaging of living tissues and cells as well as quantitative investigation of molecular interaction dynamics by fluorescence resonance energy transfer (FRET) in living cells. Transcriptional profiling using next-generation sequencing technology (RNA-Seq): Offers massively parallel next-generation sequencing platforms for unbiased and quantitative profiling of gene expression patterns in prokaryotic and eukaryotic cells, complete with facilities for sample preparation as well as data processing and analysis.

365

Forced Oscillations in Wind Energy Generation Systems  

Science Conference Proceedings (OSTI)

Use of the doubly fed induction generator (DFIG) in wind energy generation systems allows variable speed operation by using partially rated back-to-back quadruple active and reactive power PWM converters. The control of the system is very complex. Despite ... Keywords: Wind energy generation system, forced oscillation, stability

Zhen Li; Siu-Chung Wong; Chi K. Tse

2009-11-01T23:59:59.000Z

366

Steam Generator Management Program: Flaw Handbook Calculator  

Science Conference Proceedings (OSTI)

The EPRI Steam Generator Management Program: Steam Generator Degradation Specific Flaw Handbook v1.0 defines burst pressure equations for steam generator tubes with various degradation morphologies, and the EPRI Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines (1019038) describes a probabilistic evaluation process which can be used to account for key input parameter uncertainties. The Flaw Handbook Calculator software is an automated Microsoft Excelspreadsheet which cal...

2010-04-20T23:59:59.000Z

367

VARIABLE TIME DELAY MEANS  

DOE Patents (OSTI)

An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

Clemensen, R.E.

1959-11-01T23:59:59.000Z

368

Integration of Renewables: Preprint  

DOE Green Energy (OSTI)

This is an overview of renewable energy technologies, especially those that can be used for distributed generation of electricity or heat. It This paper reviews the types of technologies, their present usage in the United States, their advantages in terms of resources, availability, modularity, emissions, and integration in distributed energy systems. It reviews some of the history of their use and projects their growth and cost.

Bull, S.

2004-11-01T23:59:59.000Z

369

Smart Grid Integration Laboratory  

Science Conference Proceedings (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

370

NREL: Transmission Grid Integration - Transmission Planning and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission Planning and Analysis Transmission Planning and Analysis Thumbnail of map the United States that shows wind resources and transmission lines. Enlarge image This map shows the location of wind resources and transmission lines in the United States. See a larger image or state maps. NREL researchers are engaged in transmission planning and analysis to strengthen the electric power system through the integration of solar and wind power. As demand for electricity increases, electric power system operators must plan for and construct new generation and transmission lines. However, variable generation such as solar and wind power plants are often located far from the loads they serve. They depend on transmission lines to transport the electricity they produce to load centers. NREL is working with industry and utilities to address issues related to

371

Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power  

E-Print Network (OSTI)

due to wind and solar power. Environmental Science &Integration of Concentrating Solar Power and Utility-ScaleShort- Term Variability of Solar Power Andrew Mills and Ryan

Mills, Andrew

2010-01-01T23:59:59.000Z

372

Precision linear ramp function generator  

DOE Patents (OSTI)

A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

1984-08-01T23:59:59.000Z

373

Addressing System Integration Issues Required for the Developmente of Distributed Wind-Hydrogen Energy Systems: Final Report  

DOE Green Energy (OSTI)

Wind generated electricity is a variable resource. Hydrogen can be generated as an energy storage media, but is costly. Advancements in power electronics and system integration are needed to make a viable system. Therefore, the long-term goal of the efforts at the University of North Dakota is to merge wind energy, hydrogen production, and fuel cells to bring emission-free and reliable power to commercial viability. The primary goals include 1) expand system models as a tool to investigate integration and control issues, 2) examine long-term effects of wind-electrolysis performance from a systematic perspective, and 3) collaborate with NREL and industrial partners to design, integrate, and quantify system improvements by implementing a single power electronics package to interface wild AC to PEM stack DC requirements. This report summarizes the accomplishments made during this project.

Mann, M.D; Salehfar, H.; Harrison, K.W.; Dale, N.; Biaku, C.; Peters, A.J.; Hernandez-Pacheco: E.

2008-04-01T23:59:59.000Z

374

Symplectic Integrator Mercury: Bug Report  

E-Print Network (OSTI)

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

375

Microgrids: distributed on-site generation  

E-Print Network (OSTI)

Microgrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross for Climate Change Research Technical Report 22 #12;1 Microgrids: distributed on-site generation Tyndall production by small scale generators in close proximity to the energy users, integrated into microgrids

Watson, Andrew

376

Heat Pipe Integrated Microsystems  

SciTech Connect

The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to the satellite such as solar panels, radiators, antenna and.telescopes (for communications or sensors). Finally, the packages make thermal contact to the surface of the silicon heat pipe through soft thermal pads. Electronic components can be placed on both sides of the flexible circuit interconnect. Silicon heat pipes have a number of advantages over heat pipe constructed from other materials. Silicon heat pipes offer the ability to put the heat pipe structure beneath the active components of a processed silicon wafer. This would be one way of efficiently cooling the heat generated by wafer scale integrated systems. Using this technique, all the functions of a satellite could be reduced to a few silicon wafers. The integration of the heat pipe and the electronics would further reduce the size and weight of the satellite.

Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

1999-03-30T23:59:59.000Z

377

Grid Integration of Aggregated Demand Response, Part 1: Load Availability  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection Title Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection Publication Type Report LBNL Report Number LBNL-6417E Year of Publication 2013 Authors Olsen, Daniel, Nance Matson, Michael D. Sohn, Cody Rose, Junqiao Han Dudley, Sasank Goli, Sila Kiliccote, Marissa Hummon, David Palchak, Paul Denholm, Jennie Jorgenson, and Ookie Ma Date Published 09/2013 Abstract Demand response (DR) has the potential to improve electric grid reliability and reduce system operation costs. However, including DR in grid modeling can be difficult due to its variable and non-traditional response characteristics, compared to traditional generation. Therefore, efforts to value the participation of DR in procurement of grid services have been limited. In this report, we present methods and tools for predicting demand response availability profiles, representing their capability to participate in capacity, energy, and ancillary services. With the addition of response characteristics mimicking those of generation, the resulting profiles will help in the valuation of the participation of demand response through production cost modeling, which informs infrastructure and investment planning.

378

NREL: Energy Systems Integration - Integrated Deployment Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Workshop Integrated Deployment Workshop The Energy Systems Integration Facility workshop, Integrated Deployment, was held August 21 - 23, 2012 at the National Renewable Energy Laboratory in Golden, Colorado. Each day of the workshop, which included a tour of the Energy Systems Integration Facility, focused on a different topic: Day 1: Utility-Scale Renewable Integration Day 2: Distribution-Level Integration Day 3: Isolated and Islanded Grid Systems The agenda and presentations from the workshop are below. Agenda Energy Systems Integration Facility Overview ESIF Technology Partnerships Integrated Deployment Model Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings Printable Version Energy Systems Integration Home Research & Development

379

NREL: Energy Systems Integration - Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Integration Facility NREL's Energy Systems Integration Facility Garners LEED Platinum View the NREL Press Release. NREL's multistory Energy Systems Integration...

380

Changes in the Economic Value of Variable Generation at High...  

NLE Websites -- All DOE Office Websites (Extended Search)

forecasts in the Annual Energy Outlook. NEMS includes wind and solar energy in the mix of potential resources in their long-run assessment of future energy markets. The...

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Changes in the Economic Value of Variable Generation at High  

E-Print Network (OSTI)

transmission organization SMUD Sacramento Municipal Utility District SREC solar renewable energy certificate increased in mid-2011 to nearly $30/MWh. · Solar REC (SREC) markets are relatively young but are expected to grow rapidly in coming years as state solar requirements ramp up. Of the 10 jurisdictions that allow

382

Source codes as random number generators  

E-Print Network (OSTI)

AbstractA random number generator generates fair coin flips by processing deterministically an arbitrary source of nonideal randomness. An optimal random number generator generates asymptotically fair coin flips from a stationary ergodic source at a rate of bits per source symbol equal to the entropy rate of the source. Since optimal noiseless data compression codes produce incompressible outputs, it is natural to investigate their capabilities as optimal random number generators. In this paper we show under general conditions that optimal variable-length source codes asymptotically achieve optimal variable-length random bit generation in a rather strong sense. In particular, we show in what sense the LempelZiv algorithm can be considered an optimal universal random bit generator from arbitrary stationary ergodic random sources with unknown distributions. Index Terms Data compression, entropy, LempelZiv algorithm, random number generation, universal source coding.

Karthik Visweswariah; Student Member; Sanjeev R. Kulkarni; Senior Member; Sergio Verd

1998-01-01T23:59:59.000Z

383

A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty  

Science Conference Proceedings (OSTI)

This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.

Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.

2013-07-25T23:59:59.000Z

384

Distribution Screening for Distributed Generation  

Science Conference Proceedings (OSTI)

As the deployment of renewable distributed generation increases, the need for traditional energy providers to interact with these resources increases. Detailed modeling and simulation of the distribution and distributed resources is a critical element to better analyze, understand and predict these interactions. EPRI has developed a tool for such analysis called OpenDSS. In addition, as part of the renewable integration program an applet was created for screening distributed generation (DG). This report ...

2009-12-23T23:59:59.000Z

385

integr~1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 AUDIT REPORT THE U.S. DEPARTMENT OF ENERGY' S MANAGEMENT OF RESEARCH AND DEVELOPMENT INTEGRATION MARCH 1998 U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES DEPARTMENT OF ENERGY Washington, DC 20585 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Principal Deputy Inspector General SUBJECT: INFORMATION : Audit Report on "Audit of the Department of Energy's Management of Research and Development Integration" BACKGROUND The Congress, independent task forces, and advisory groups have pointed out the need for the Department to improve its integration of research and development (R&D) projects. In the past, R&D management was carried out by different program offices with the research being

386

October 11, 2011 Wind Generation  

E-Print Network (OSTI)

(CC) Power Plant #12;Wind Investors Face These Costs #12;Fixed Costs #12;Variable Costs #12;BottomESRP 285 October 11, 2011 Wind Generation · Videos · Power Point Lecture #12;Wind Videos Wind by the end of 2010 and at current rates of growth, it could double by 2014 to reach 400 GW 120 GW #12

Ford, Andrew

387

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

388

Residential Use of Building Integrated Photo Voltaics  

E-Print Network (OSTI)

Building Integrated Photo Voltaics (BIPVs) are devices which are manufactured to replace building components exposed to sufficient sunlight to generate energy. Photo Voltaic Roof tiles are Building Integrated components which can be used instead of traditional roofing materials. The following thesis is focused on comparing traditional, cheaper asphalt roof tiles with Photo Voltaic (PV) roofing tiles in terms of energy cost savings during their respective Net Present Values. The method used for achieving this is computer simulation made possible by software named "Solar Advisory Model" (SAM), developed by National Renewable Energy Laboratories (NREL), to simulate energy output and resultant energy costs saved. The simulations have been run on a prototype example of a model of a dwelling unit's roof area. The simulations have been repeated for 35 cities all over the U.S.A. for 5 different climatic zones on the same prototype example of the dwelling unit. Similarly, the roof area being laid with an array of PV roof tiles has been estimated for coverage by traditional asphalt roof shingles by using data from the RS Means construction costs data. The estimated costs associated with the asphalt roof area have been adjusted to a different set of 35 locations from the 5 climatic zones by using the location factor from RS Means. A statistical analysis was done to analyze the data, net present value of roofing materials being the dependent variable versus climatic zones and roofing material as the independent variables. The statistical model also included CDD (Cooling Degree Days) and HDD (Heating Degree Days) as co-variates. The results indicate that NPV (Net Present Value) of BIPV roof is significantly different from that of asphalt roof. Another statistical analysis was done to determine the effect of climatic zones on energy savings due to the use of BIPV roofing. Energy savings (in US$) was used as a dependent variable, and climatic zone as the independent variable. HDD AND CDD were also included in this model as co-variates. The results of this test indicate that both climatic zone and HDD have an effect on total energy savings.

Balabadhrapatruni, Aswini

2011-05-01T23:59:59.000Z

389

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

390

Estimated Global Hydrographic Variability  

Science Conference Proceedings (OSTI)

An estimate is made of the three-dimensional global oceanic temperature and salinity variability, omitting the seasonal cycle, both as a major descriptive element of the ocean circulation and for use in the error estimates of state estimation. ...

Gal Forget; Carl Wunsch

2007-08-01T23:59:59.000Z

391

Integrating Variable Renewable Energy in Electric Power Markers...  

NLE Websites -- All DOE Office Websites (Extended Search)

at http:www.osti.govbridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific...

392

Integrated System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Window System Our research activities in the field of high performance windows have led us to conclude that even by using high performance insulating glass units, low conductivity frames, and warm edge spacers, there are still untapped sources for improving energy efficiency in the design and use of residential windows. While such high performance windows are a dramatic improvement over conventional units, they do not reduce conductive losses through wall framing around the window, offer guarantees against excessive wall/window infiltration nor do they adapt to the daily and seasonal potentials for night insulation and summer shading. To meet this need, we have been working on the design, development, and prototyping of Integrated Window Systems (IWS) since 1993. Integrated Window Systems are a form of panelized construction where the wall panel includes an operable or fixed window sash, recessed night insulation, integral solar shading, and is built in a factory setting in order to minimize thermal short circuits and infiltration at joints. IWSs can be built in modular lengths to facilitate their installation with conventional wood frame stick construction or other forms of panelized construction.

393

Electric generator dispatch depends on system demand and the ...  

U.S. Energy Information Administration (EIA)

The type of generators with the lowest variable costs are nuclear, hydroelectric, and renewable power (wind and solar). For economic and technical reasons, ...

394

Magnetocumulative generator  

DOE Patents (OSTI)

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, J.S.; Wheeler, P.C.

1981-06-08T23:59:59.000Z

395

Cluster generator  

DOE Patents (OSTI)

Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

Donchev, Todor I. (Urbana, IL); Petrov, Ivan G. (Champaign, IL)

2011-05-31T23:59:59.000Z

396

Thermoelectric generator  

DOE Patents (OSTI)

A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

Pryslak, N.E.

1974-02-26T23:59:59.000Z

397

Photon generator  

DOE Patents (OSTI)

A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

Srinivasan-Rao, Triveni (Shoreham, NY)

2002-01-01T23:59:59.000Z

398

PLASMA GENERATOR  

DOE Patents (OSTI)

This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

Foster, J.S. Jr.

1958-03-11T23:59:59.000Z

399

Steam Generator Management Program: Steam Generator In Situ Pressure Test Guidelines, Revision 4  

Science Conference Proceedings (OSTI)

Information in this document provides guidance for the performance of in situ pressure testing of steam generator tubes. In situ pressure testing refers to hydrostatic pressure tests performed on installed tubing in the field. Such testing is considered a direct means of evaluating tube structural and leakage integrity. In situ pressure testing can be used to support condition monitoring of steam generator tube integrity.This is a required document for a steam generator program developed ...

2012-10-02T23:59:59.000Z

400

Simulation of Atmospheric Variability  

Science Conference Proceedings (OSTI)

A spectral atmospheric circulation model is time-integrated for approximately 18 years. The model has a global computational domain and realistic geography and topography. The model undergoes an annual cycle as daily values of seasonally varying ...

Syukuro Manabe; Douglas G. Hahn

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Market Design Simulations with Variable Energy Resources (VERs) (Presentation)  

Science Conference Proceedings (OSTI)

Presented at the FERC Technical Conference, 29 June 2011, Washington, D.C. This presentation describes NREL research regarding variable generation resources, operating reserves, unit commitment, economic dispatch, and introduces a new and novel modeling tool called 'FESTIV.'

Ela, E.

2011-06-01T23:59:59.000Z

402

Multidecadal Variability in North Atlantic Tropical Cyclone Activity  

Science Conference Proceedings (OSTI)

Recent increases in Atlantic basin tropical cyclone activity since 1995 and the associated destructive U.S. landfall events in 2004 and 2005 have generated considerable interest into why there has been such a sharp upturn. Natural variability, ...

Philip J. Klotzbach; William M. Gray

2008-08-01T23:59:59.000Z

403

Modeling Semidiurnal Internal Tide Variability in the Southern California Bight  

Science Conference Proceedings (OSTI)

The Regional Oceanic Modeling System (ROMS) is applied in a nested configuration with realistic forcing to the Southern California Bight (SCB) to analyze the variability in semidiurnal internal wave generation and propagation. The SCB has a ...

M. C. Buijsman; Y. Uchiyama; J. C. McWilliams; C. R. Hill-Lindsay

2012-01-01T23:59:59.000Z

404

Simulation of North Atlantic Low-Frequency SST Variability  

Science Conference Proceedings (OSTI)

The role of atmospheric circulation anomalies in generating midlatitude sea surface temperature (SST) variability is investigated by means of ocean general circulation model (OGCM) experiments, in which observed winds are prescribed during the ...

Ute Luksch

1996-09-01T23:59:59.000Z

405

Photovoltaic Power Generation  

E-Print Network (OSTI)

This report is an overview of photovoltaic power generation. The purpose of the report is to provide the reader with a general understanding of photovoltaic power generation and how PV technology can be practically applied. There is a brief discussion of early research and a description of how photovoltaic cells convert sunlight to electricity. The report covers concentrating collectors, flat-plate collectors, thin-film technology, and building-integrated systems. The discussion of photovoltaic cell types includes single-crystal, poly-crystalline, and thin-film materials. The report covers progress in improving cell efficiencies, reducing manufacturing cost, and finding economic applications of photovoltaic technology. Lists of major manufacturers and organizations are included, along with a discussion of market trends and projections. The conclusion is that photovoltaic power generation is still more costly than conventional systems in general. However, large variations in cost of conventional electrical power, and other factors, such as cost of distribution, create situations in which the use of PV power is economically sound. PV power is used in remote applications such as communications, homes and villages in developing countries, water pumping, camping, and boating. Gridconnected applications such as electric utility generating facilities and residential rooftop installations make up a smaller but more rapidly expanding segment of PV use. Furthermore, as technological advances narrow the cost gap, more applications are becoming economically feasible at an accelerating rate. iii TABLE OF CONTENTS LIST OF TABLES AND FIGURES ...................................................................................v

Tom Penick; Gale Greenleaf Instructor; Thomas Penick; Bill Louk; Bill Louk

1998-01-01T23:59:59.000Z

406

Turbine-generator set development for power generation  

DOE Green Energy (OSTI)

The goal of this effort was to design, develop, and demonstrate an integrated turbine genset suitable for the power generation requirements of a hybrid automotive propulsion system. The result of this effort would have been prototype generator hardware including controllers for testing and evaluation by Allison Engine Company. The generator would have been coupled to a suitably sized and configured gas turbine engine, which would operate on a laboratory load bank. This effort could lead to extensive knowledge and design capability in the most efficient generator design for hybrid electric vehicle power generation and potentially to commercialization of these advanced technologies. Through the use of the high-speed turbines as a power source for the hybrid-electric vehicles, a significant reduction in nitrous oxides emissions would be achieved when compared to those of conventional gas powered vehicles.

Adams, D.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Berenyi, S.G. [Allison Engine Co., Indianapolis, IN (United States)

1997-04-15T23:59:59.000Z

407

A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty  

SciTech Connect

This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.

Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.

2013-12-18T23:59:59.000Z

408

Variable Average Absolute Percent Differences  

U.S. Energy Information Administration (EIA) Indexed Site

Variable Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 1.0 42.6 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 35.2 18.6 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 34.7 19.7 Total Petroleum Consumption (Table 4) 6.2 66.5 Crude Oil Production (Table 5) 6.0 59.6 Petroleum Net Imports (Table 6) 13.3 67.0 Natural Gas Natural Gas Wellhead Prices (Constant $) (Table 7a) 30.7 26.1 Natural Gas Wellhead Prices (Nominal $) (Table 7b) 30.0 27.1 Total Natural Gas Consumption (Table 8) 7.8 70.2 Natural Gas Production (Table 9) 7.1 66.0 Natural Gas Net Imports (Table 10) 29.3 69.7 Coal Coal Prices to Electric Generating Plants (Constant $)** (Table 11a)

409

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

410

Generating "dependent" quasi-random numbers  

Science Conference Proceedings (OSTI)

Under certain conditions on the integrand, quasi-Monte Carlo methods for estimating integrals (expectations) converge faster asymptotically than Monte Carlo methods. Motivated by this result we consider the generation of quasi-random vectors with given ...

Shane G. Henderson; Belinda A. Chiera; Roger M. Cooke

2000-12-01T23:59:59.000Z

411

HEAT GENERATION  

DOE Patents (OSTI)

Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

Imhoff, D.H.; Harker, W.H.

1963-12-01T23:59:59.000Z

412

Variational estimates using a discrete variable representation  

SciTech Connect

The advantage of using a discrete variable representation (DVR) is that the Hamiltonian of two interacting particles can be constructed in a very simple form. However, the DVR Hamiltonian is approximate and, as a consequence, the results cannot be considered as variational ones. We will show that the variational character of the results can be restored by performing a reduced number of integrals. In practice, for a variational description of the lowest n bound states only n(n+1)/2 integrals are necessary whereas D(D+1)/2 integrals are enough for the scattering states (D is the dimension of the S matrix). Applications of the method to the study of dimers of He, Ne and Ar, for both bound and scattering states, are presented.

Lombardi, M.; Barletta, P.; Kievsky, A. [Istituto Nazionale di Fisica Nucleare, Via Buonarroti 2, 56100 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, 56100 Pisa (Italy)

2004-09-01T23:59:59.000Z

413

Online energy generation scheduling for microgrids with intermittent energy sources and co-generation  

Science Conference Proceedings (OSTI)

Microgrids represent an emerging paradigm of future electric power systems that can utilize both distributed and centralized generations. Two recent trends in microgrids are the integration of local renewable energy sources (such as wind farms) and the ... Keywords: combined heat and power generation, energy generation scheduling, microgrids, online algorithm

Lian Lu; Jinlong Tu; Chi-Kin Chau; Minghua Chen; Xiaojun Lin

2013-06-01T23:59:59.000Z

414

Magnetocumulative generator  

DOE Patents (OSTI)

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

1983-01-01T23:59:59.000Z

415

High-precision triangular-waveform generator  

DOE Patents (OSTI)

An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

Mueller, T.R.

1981-11-14T23:59:59.000Z

416

SunShot Initiative: Next Generation Photovoltaics II  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Systems Integration Balance of Systems Next Generation Photovoltaics II Twenty-three solar projects are investigating transformational photovoltaic (PV) technologies with the...

417

Combined desalination and power generation using solar energy.  

E-Print Network (OSTI)

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while (more)

Zhao, Y

2009-01-01T23:59:59.000Z

418

Integrated Facilities Disposition Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

419

How and Why Customers Respond to Electricity Price Variability  

E-Print Network (OSTI)

and/or reached a significant milestone in 2011. A few examples are included here to highlight of operation. To prevent electricity outages and enable reliable integration of renewable energy generation

420

Transdisciplinary Fluid Integration Research Center  

E-Print Network (OSTI)

Environment Reality-Coupled Computation Energy Dynamics Integrated Visual Informatics Super-Real-Time Medical of Fluid Science, Tohoku University, in April 2003. The next generation transdisciplinary research Research focus is to advance utilization of Computer Fluid Dynamics (CFD) for solving engineering problems

Obayashi, Shigeru

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Does integration increase life satisfaction?  

E-Print Network (OSTI)

generation immigrants, integration JEL classification: F22, J15, O15 1. Introduction Identity is generally interpreted as a self-definition, a narrative that people tell themselves and others, as the answer that they give to the question who am I...

Koczan, Zs.

2013-04-19T23:59:59.000Z

422

Analysis of hybrid power system incorporating squirrel cage induction generators  

Science Conference Proceedings (OSTI)

This paper presents generic model of hybrid power system consisting in a combined solution one wind turbine with asynchronous generator and on hydro generator with synchronous machine. This technology was developed by to reduce the cost of supplying ... Keywords: asynchronous generator, homer, optimal design, renewable energy, variable speed generation, voltage and frequency controller, water flow

Sorin Ioan Deaconu; Marcel Topor; Gabriel Nicolae Popa; Diana Bistrian

2009-07-01T23:59:59.000Z

423

Biogass Generator  

NLE Websites -- All DOE Office Websites (Extended Search)

Another internet tool by: Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle, produce large amounts of biogas. The biogas is produced not by the cow or elephant, but by billions of microor- ganisms living in its digestive system. Biogas also develops in bogs and at the bottom of lakes, where decaying organic matter builds up under wet and

424

Near Term Hydrogen and Electricity Infrastructure Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver, CO Denver, CO September 22, 2004 Abbas Akhil, DER and Energy Storage Sandia National Laboratories, Albuquerque, NM (505) 844-7308 aaakhil@sandia.gov Near-term Hydrogen and Electricity Infrastructure Integration Near-term Hydrogen and Electricity Infrastructure Integration Integration Scenarios and Issues Integration Scenarios and Issues ! How and where can electrolysis systems be integrated in the grid? " Siting/location " Operational issues " Investments " Benefits " Ownership ! Objectives are " Capture "grid" benefits " Seek to reduce emissions Siting and Location Siting and Location ! Electrolysis systems can be sited at " Existing generating stations " Transmission substations " Distribution substations ! Each locations has different

425

NREL: Energy Analysis: Impacts of Conventional Generators  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Conventional Generators Impacts on Conventional Generators Impacts of Renewable Electricity Generation on Efficiency and Emissions of Conventional Generators With increasing penetration of wind and solar generation, conventional fossil-fired power plants may be required to adjust their output level, start up, or shut down more frequently to accommodate the variability and uncertainty of these technologies. These operational changes can negatively impact plant efficiency and emissions. NREL's analyses are focused on understanding and quantifying the emissions and costs associated with these operational changes. NREL's impacts of renewable electricity generation on conventional generators analyses show that: While the emissions impacts of generator cycling and part-loading can be significant (e.g., combined cycle generators), these impacts are

426

Final Technical Report - Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling  

SciTech Connect

The three major components of this research were: 1. Application of minimally invasive, cost effective hydrogeophysical techniques (surface and borehole), to generate fine scale (~1m or less) 3D estimates of subsurface heterogeneity. Heterogeneity is defined as spatial variability in hydraulic conductivity and/or hydrolithologic zones. 2. Integration of the fine scale characterization of hydrogeologic parameters with the hydrogeologic facies to upscale the finer scale assessment of heterogeneity to field scale. 3. Determination of the relationship between dual-domain parameters and practical characterization data.

Shafer, John M

2012-11-05T23:59:59.000Z

427

Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint  

SciTech Connect

The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

Hendron, B.; Burch, J.; Barker, G.

2010-08-01T23:59:59.000Z

428

Nebraska Statewide Wind Integration Study: Executive Summary  

DOE Green Energy (OSTI)

Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

2010-03-01T23:59:59.000Z

429

Two-stage approach for the assessment of distributed generation capacity mixture in active distribution networks  

Science Conference Proceedings (OSTI)

Distribution networks are limited with spare capacities to integrate increased volumes of distributed generation (DG). Network constraints and congestion

D. Jayaweera; S. Islam; S. Neduvelil

2013-01-01T23:59:59.000Z

430

Bessel-Zernike Discrete Variable Representation Basis  

SciTech Connect

The connection between the Bessel discrete variable basis expansion and a specific form of an orthogonal set of Jacobi polynomials is demonstrated. These so-called Zernike polynomials provide alternative series expansions of suitable functions over the unit interval. Expressing a Bessel function in a Zernike expansion provides a straightforward method of generating series identities. Furthermore, the Zernike polynomials may also be used to efficiently evaluate the Hankel transform for rapidly decaying functions or functions with finite support.

Cerjan, C J

2005-10-24T23:59:59.000Z

431

EA-1939: Reese Technology Center Wind and Battery Integration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to...

432

Planar Sodium Metal Halide Battery for Renewable Integration and ...  

Science Conference Proceedings (OSTI)

In this work we will present a sodium ߔ-alumina cell designed for widespread renewable energy integration and electrical grid applications. The new generation...

433

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

locations for systems connecting electric vehicles with solar energy sources and microgrids. A microgrid that integrates renewable generation and vehicle energy storage offers...

434

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

1985-01-01T23:59:59.000Z

435

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

436

NREL: Energy Systems Integration - Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Integration Facility Newsroom The Energy Systems Integration Facility (ESIF) will be one of the only megawatt-scale test facilities in the United States that...

437

NREL: Transmission Grid Integration - Solar Integration National...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Western Wind and Solar Integration Study and Eastern Wind Integration and Transmission Study datasets greatly advanced the modeling of wind and solar power production...

438

NREL: Transmission Grid Integration - Wind Integration Datasets  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Integration Datasets The Wind Integration Datasets provide energy professionals with a consistent set of wind profiles for the eastern United States and the western United...

439

NREL: Transmission Grid Integration - Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL periodically offers webinars on transmission grid integration topics to provide insight into its research. Explore the resources below to learn more. Upcoming Webinars Please check back. Details on future meetings and workshops will be posted as they are available. Past Webinars Results from The Western Wind and Solar Integration Study Phase 2: An examination of how wind and solar power affect operations, costs, and emissions from fossil-fueled generators Wednesday, September 25, 2013 at 12:00 EDT (10:00 MDT) The Western Wind and Solar Integration Study Phase 2 (WWSIS-2), launched in 2011, examines the potential impacts of up to 33% wind and solar energy

440

Research Integrity | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

About ORNL About ORNL Fact Sheet Brochure Diversity Leadership Team Organization History Environmental Policy Corporate Giving Research Integrity Who we are, aren't About ORNL Home | ORNL | About ORNL | Research Integrity SHARE Research Integrity From the Director ORNL Research Code of Conduct Research Misconduct ORNL Policy on Research Integrity From the Director We enjoy an excellent scientific reputation at ORNL, thanks to a solid record of ethical conduct in every aspect of research. It is essential to our future that we maintain and nurture this reputation. We also have a responsibility to mentor the next generation of researchers to ensure that they too understand and adhere to the highest standards of ethical conduct. ORNL's Research Code of Conduct was developed by a committee of

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

IT Infrastructure to Enable Next Generation Enterprises  

Science Conference Proceedings (OSTI)

Next Generation Enterprises (NGEs) rely on automation, mobility, real-time business activity monitoring, agility, and self-service over widely distributed operations to conduct business. It is important to study and analyze such enterprises because they ... Keywords: IT infrastructure, NGE, Next Generation Internet, enterprise application integration, mobile services, real-time enterprises, self services

Amjad Umar

2005-07-01T23:59:59.000Z

442

Smooth distributions are finitely generated  

E-Print Network (OSTI)

A subbundle of variable dimension inside the tangent bundle of a smooth manifold is called a smooth distribution if it is the pointwise span of a family of smooth vector fields. We prove that all such distributions are finitely generated, meaning that the family may be taken to be a finite collection. Further, we show that the space of smooth sections of such distributions need not be finitely generated as a module over the smooth functions. Our results are valid in greater generality, where the tangent bundle may be replaced by an arbitrary vector bundle.

Drager, Lance D; Park, Efton; Richardson, Ken

2010-01-01T23:59:59.000Z

443

Ultra-short pulse generator  

DOE Patents (OSTI)

An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

McEwan, T.E.

1993-12-28T23:59:59.000Z

444

Process for applying control variables having fractal structures  

DOE Patents (OSTI)

A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.

Bullock, IV, Jonathan S. (Oak Ridge, TN); Lawson, Roger L. (Oliver Springs, TN)

1996-01-01T23:59:59.000Z

445

Energy Storage Integration Council (ESIC): 2013 Update  

Science Conference Proceedings (OSTI)

Recent electric energy storage deployments have encountered several challenges, including problems stemming from poor system integration, grid integration difficulties, insufficient factory testing and qualification, safety and reliability issues, and inadequate common test protocols. The utility industry needs clear requirements developed so vendors can manufacture cost-effective energy storage products to support the generation, transmission, and distribution system. To address these and related ...

2013-12-26T23:59:59.000Z

446

Variable laser attenuator  

DOE Patents (OSTI)

The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

Foltyn, S.R.

1987-05-29T23:59:59.000Z

447

Solar-type Variables  

E-Print Network (OSTI)

The rich acoustic oscillation spectrum in solar-type variables make these stars particularly interesting for studying fluid-dynamical aspects of the stellar interior. I present a summary of the properties of solar-like oscillations, how they are excited and damped and discuss some of the recent progress in using asteroseismic diagnostic techniques for analysing low-degree acoustic modes. Also the effects of stellar-cycle variations in low-mass main-sequence stars are addressed.

Houdek, Gunter

2009-01-01T23:59:59.000Z

448

Variable laser attenuator  

SciTech Connect

The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

Foltyn, Stephen R. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

449

Errors in all variables  

SciTech Connect

We present a thorough derivation of the posterior for the straight line fit employing the hyper-plane prior. For the example of the parabola we enlarge the scope to nonlinear problems, however simplify it to be solved resembling the straight line solution. Finally we come to the problem of determining the exponents of a scaling law, where in logarithmic form the scaling exponents are linear coefficients of logarithmic variables.

Preuss, R.; Dose, V. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

2005-11-23T23:59:59.000Z

450

Variable percentage sampler  

DOE Patents (OSTI)

A remotely operable sampler is provided for obtaining variable percentage samples of nuclear fuel particles and the like for analyses. The sampler has a rotating cup for a sample collection chamber designed so that the effective size of the sample inlet opening to the cup varies with rotational speed. Samples of a desired size are withdrawn from a flowing stream of particles without a deterrent to the flow of remaining particles.

Miller, Jr., William H. (Knoxville, TN)

1976-01-01T23:59:59.000Z

451

ESF Subsurface Standby Generator Analysis  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to outline and recommend two standby generator systems. These systems shall provide power during a utility outage to critical Alcove No.5's thermal test loads and to subsurface flow through ventilation loads. Critical loads that will be supported by these generator systems will be identified and evaluated. Additionally, other requirements from the Exploratory Studies Facilities Design Requirements (ESFDR) document will be evaluated. Finally, the standby generator systems will be integrated into the existing ESF subsurface distribution system. The objective of this analysis is to provide design inputs for an efficient and reliable standby generator systems which will provide power for critical loads during a power outage; specifically, Alcove No.5's thermal test loads and the subsurface flow through ventilation loads. Additionally, preliminary one-line diagrams will be developed using this analysis as a primary input.

L. Fernandez

1998-04-17T23:59:59.000Z

452

Apparatus for millimeter-wave signal generation  

DOE Patents (OSTI)

An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).

Vawter, G. Allen (Albuquerque, NM); Hietala, Vincent M. (Placitas, NM); Zolper, John C. (Albuquerque, NM); Mar, Alan (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

453

Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations  

SciTech Connect

Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

Jin Chen

2009-12-07T23:59:59.000Z

454

Jets with Variable R  

E-Print Network (OSTI)

We introduce a new class of jet algorithms designed to return conical jets with a variable Delta R radius. A specific example, in which Delta R scales as 1/pT, proves particularly useful in capturing the kinematic features of a wide variety of hard scattering processes. We implement this Delta R scaling in a sequential recombination algorithm and test it by reconstructing resonance masses and kinematic endpoints. These test cases show 10-20% improvements in signal efficiency compared to fixed Delta R algorithms. We also comment on cuts useful in reducing continuum jet backgrounds.

David Krohn; Jesse Thaler; Lian-Tao Wang

2009-03-02T23:59:59.000Z

455

Control of Doubly-Fed Induction Generator System Using PIDNNs  

Science Conference Proceedings (OSTI)

An intelligent control stand-alone doubly-fed induction generator (DFIG) system using proportional-integral-derivative neural network (PIDNN) is proposed in this study. This system can be applied as a stand-alone power supply system or as the emergency ... Keywords: Doubly-fed induction generator, field-oriented control, proportional-integral-derivative neural network

Faa-Jeng Lin; Jonq-Chin Hwang; Kuang-Hsiung Tan; Zong-Han Lu; Yung-Ruei Chang

2010-12-01T23:59:59.000Z

456

Automatic Code Generation From UML Class and Statechart Diagrams  

E-Print Network (OSTI)

by EPRI through project titled "Multiple Uses of Substation Data", Paul Myrda - project manager. #12;TABLEAutomated Integration of Substation IED Data to Generate Event Reports for Protection Engineers for automated integration of substation Intelligent Electronic Device (IED) data to generate a customized event

Tanaka, Jiro

457

Advancing Next-Generation Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

458

A real-time self-tuning fuzzy controller through scaling factor adjustment for the steam generator of NPP  

Science Conference Proceedings (OSTI)

Keywords: fuzzy controller, instantaneous system performance, real-time, scaling factor, self-tuning, steam generator, variable reference tuning index

Chul-Hwan Jung; Chang-Shik Ham; Kuhn-Il Lee

1995-08-01T23:59:59.000Z

459

GASIFICATION FOR DISTRIBUTED GENERATION  

DOE Green Energy (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

460

Solar Irradiance Variability  

E-Print Network (OSTI)

The Sun has long been considered a constant star, to the extent that its total irradiance was termed the solar constant. It required radiometers in space to detect the small variations in solar irradiance on timescales of the solar rotation and the solar cycle. A part of the difficulty is that there are no other constant natural daytime sources to which the Sun's brightness can be compared. The discovery of solar irradiance variability rekindled a long-running discussion on how strongly the Sun affects our climate. A non-negligible influence is suggested by correlation studies between solar variability and climate indicators. The mechanism for solar irradiance variations that fits the observations best is that magnetic features at the solar surface, i.e. sunspots, faculae and the magnetic network, are responsible for almost all variations (although on short timescales convection and p-mode oscillations also contribute). In spite of significant progress important questions are still open. Thus there is a debat...

Solanki, Sami K

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable generation integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues  

DOE Green Energy (OSTI)

A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel with the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)

Not Available

1980-09-01T23:59:59.000Z

462

Survey of Wind Power Integration Studies  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25% and reached almost 60,000 MW worldwide and 9150 MW in the United States during 2005, and the high growth rate is forecast to continue for several years. Wind generation is an intermittent resource and can't be dispatched. Therefore, large blocks of wind generation concentrated in a region can affect the operation of the electricity grid with regard to ancillary service requirements and cost. Because the numerous wind power integration stud...

2006-03-31T23:59:59.000Z

463

Climate Variability, Fish, and Fisheries  

Science Conference Proceedings (OSTI)

Fish population variability and fisheries activities are closely linked to weather and climate dynamics. While weather at sea directly affects fishing, environmental variability determines the distribution, migration, and abundance of fish. ...

P. Lehodey; J. Alheit; M. Barange; T. Baumgartner; G. Beaugrand; K. Drinkwater; J.-M. Fromentin; S. R. Hare; G. Ottersen; R. I. Perry; C. Roy; C. D. van der Lingen; F. Werner

2006-10-01T23:59:59.000Z

464

Colorado River Basin Hydroclimatic Variability  

Science Conference Proceedings (OSTI)

An analysis of annual hydroclimatic variability in the Upper Colorado River basin (UCRB) for the period of 19062006 was performed to understand the dominant modes of multidecadal variability. First, wavelet-based spectral analysis was employed ...

Kenneth Nowak; Martin Hoerling; Balaji Rajagopalan; Edith Zagona

2012-06-01T23:59:59.000Z

465

Modelling and simulation of an autonomous variable speed micro hydropower station  

Science Conference Proceedings (OSTI)

In this paper, the modelling of an autonomous variable speed micro hydropower station is presented. It is composed of a doubly fed induction generator linked mechanically and electrically to a permanent magnet synchronous machine which may recover or ... Keywords: Distributed generation, Doubly fed induction machine, Micro hydroelectricity, Variable speed autonomous hydrogenerator

A. Ansel; B. Robyns

2006-06-01T23:59:59.000Z

466

Second law analysis for a variable viscosity plane Poiseuille flow with asymmetric convective cooling  

Science Conference Proceedings (OSTI)

A second-law analysis of a pressure-driven variable viscosity fluid flow through a channel with asymmetric convective cooling at the walls is investigated. Flow is assumed to be steady, laminar and fully-developed. The effect of heat generation due to ... Keywords: Asymmetric convective cooling, Entropy generation analysis, Poiseuille flow, Variable viscosity

O. D. Makinde; A. Aziz

2010-12-01T23:59:59.000Z

467

Modelling and simulation of an autonomous variable speed micro hydropower station  

Science Conference Proceedings (OSTI)

In this paper, the modelling of an autonomous variable speed micro hydropower station is presented. It is composed of a doubly fed induction generator linked mechanically and electrically to a permanent magnet synchronous machine which may recover or ... Keywords: distributed generation, doubly fed induction machine, micro hydroelectricity, variable speed autonomous hydrogenerator

A. Ansel; B. Robyns

2006-06-01T23:59:59.000Z

468

Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines  

DOE Green Energy (OSTI)

Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

Pierce, K.; Migliore, P.

2000-08-01T23:59:59.000Z

469

Symmetrization Of Binary Random Variables  

E-Print Network (OSTI)

A random variable Y is called an independent symmetrizer of a given random variable X if (a) it is independent of X and (b) the distribution of X Y is symmetric about 0. In cases where the distribution of X is symmetric about its mean, it is easy to see that the constant random variable Y is a minimum-variance independent symmetrizer. Taking

Abram Kagan; Colin Mallows; Larry Shepp; Robert J. Vanderbei; Yehuda Vardi

1999-01-01T23:59:59.000Z

470

Variability within Modeling Language Definitions  

Science Conference Proceedings (OSTI)

We present a taxonomy of the variability mechanisms offered by modeling languages. The definition of a formal language encompasses a syntax and a semantic domain as well as the mapping that relates them, thus language variabilities are classified according ... Keywords: Modeling languages, UML, formal semantics, variability

Mara Victoria Cengarle; Hans Grnniger; Bernhard Rumpe

2009-10-01T23:59:59.000Z