Sample records for variable generation integration

  1. Utility Variable Generation Integration Group Fall Technical...

    Broader source: Energy.gov (indexed) [DOE]

    15, 2014 9:00AM CDT to October 17, 2014 3:00PM CDT The Utility Variable Generation Integration Group (UVIG) Fall Technical Workshop in San Antonio, Texas will provide attendees...

  2. Review of Variable Generation Integration Charges

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01T23:59:59.000Z

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  3. NREL Sheds Light on Integration Costs of Variable Generation and

    E-Print Network [OSTI]

    , such as wind and solar energy, provide benefits such as reduced environmental impact, lack of fuel consumptionNREL Sheds Light on Integration Costs of Variable Generation and Cost-Causation Integration costs are generally manageable, but calculating costs is challenging. Renewable energy generation sources

  4. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Smart Grid, and specifically AMI, can play in mitigating variable generation integrationSmart Grid could be the ďsilver bulletĒ for mitigating variable generation integrationSmart Grid could be the ďsilver bulletĒ for mitigating variable generation integration

  5. Integration of Variable Generation and Cost-Causation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Variable renewable energy generation sources, such as wind and solar energy, provide benefits such as reduced environmental impact, zero fuel consumption, and low and stable costs. Advances in both technologies can reduce capital costs and provide significant control capabilities. However, their variability and uncertainty - which change with weather conditions, time of day, and season - can cause an increase in power system operating costs compared to a fully controllable power plant. Although a number of studies have assessed integration costs, calculating them correctly is challenging because it is difficult to accurately develop a baseline scenario without variable generation that properly accounts for the energy value. It is also difficult to appropriately allocate costs given the complex, nonlinear interactions between resources and loads.

  6. Utility Variable Generation Integration Group Fall O&M User Group...

    Broader source: Energy.gov (indexed) [DOE]

    O&M User Group Meeting Utility Variable Generation Integration Group Fall O&M User Group Meeting October 1, 2014 7:00AM CDT to October 2, 2014 3:00PM CDT The Utility Variable...

  7. Cost-Causation and Integration Cost Analysis for Variable Generation

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.

    2011-06-01T23:59:59.000Z

    This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.

  8. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    SciTech Connect (OSTI)

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

    2011-09-10T23:59:59.000Z

    This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the ďsilver bulletĒ for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

  9. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    sharing the load and wind generation data. We thank Sushil2008. ďAnalysis of Wind Generation Impact on ERCOT Ancillaryof the Variability of Wind Generation in India: Implications

  10. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17T23:59:59.000Z

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  11. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Goldman, G. (2009) Retail demand response in Southwest PowerL. (2009) Renewable Demand Response (RDR): Financial &Northwest GridWiseô Demand Response and Variable Generation

  12. Market Characteristics for Efficient Integration of Variable Generation in the Western Interconnection

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2010-08-01T23:59:59.000Z

    The overriding purpose of this report is to establish the physical requirements of a power system that can accommodate high levels of variable generation.

  13. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of Variable Renewable Generation The report is accompaniedit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:with Increased Wind Generation. LBNL-XXXX. Berkeley:

  14. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Pricing on the Usage of Wind Generation. Power Systems, IEEE2008) Analysis of Wind Generation Impact on ERCOT Anclillaryto higher or lower wind generation than scheduled. To manage

  15. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    S. (2008). Coupling wind generators with deferrable loads.tariff. For example, a wind generator could partner with acharge for or prevent a wind generator from submitting hour-

  16. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    diverse set of flexible traditional generation resourcessufficient flexible demand or generation capacity exists tosufficient flexible demand or generation capacity exists to

  17. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    photovoltaics (PV) in traditional electric power systems.Photovoltaics for Integration with the Electric Power System.

  18. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Southwest Power Pool Time of Use Pricing Variable Generationresultant costs. Time of use pricing (TOU) rates provide8). For example, time of use (TOU) pricing sends a DR signal

  19. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    and V. Neimane. 2005. 4000 MW Wind Power in Sweden-Impact onand Michael Milligan. 2009. ďWind Energy and Power SystemOperations: A Review of Wind Integration Studies to Date. Ē

  20. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    system operational costs of wind energy, the low capacitybalancing costs change with high wind energy penetration.Wind and Solar Integration Study (GE Energy, 2010) illustrate boundary conditions were DR may be a cost-

  1. Abstract--The integration of variable renewable generation sources continues to be a significant area of focus for power

    E-Print Network [OSTI]

    by this variability, wind generation often requires additional balancing resources to compensate for the variability of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required area of focus for power system planning. Renewable portfolio standards and initiatives to reduce

  2. Integrating Variable Renewable Energy: Challenges and Solutions

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.; Lew, D.

    2013-09-01T23:59:59.000Z

    In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

  3. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    SciTech Connect (OSTI)

    Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O'Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi

    2010-12-20T23:59:59.000Z

    An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.

  4. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of the Impact of Wind Generation on System Frequency2008. Analysis of Wind Generation Impact on ERCOT Ancillarywith Increased Wind Generation. LBNL-XXXX. Berkeley:

  5. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    North America Dynamic Wind Generator Modeling Update, Basedperformed by the WECC Wind Generator Modeling Group and theand in particular, wind generators are the primary resources

  6. Operating Reserves and Variable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Kirby, B.

    2011-08-01T23:59:59.000Z

    This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

  7. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01T23:59:59.000Z

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  8. WECC Variable Generation Planning Reference Book

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

    2013-05-14T23:59:59.000Z

    This planning reference book is a document reflecting a Western Electricity Coordination Council (WECC) effort to put together multiple sources of information and provide a clear, systemic, comprehensive outline of the problems, both existing and anticipated; their impacts on the system; currently used and proposed solutions by the industry and research community; planning practices; new technologies, equipment, and standards; and expected future trends. This living (periodically updated) document could help WECC and other practicing engineers, especially the younger generation of engineers joining the workforce, to get familiar with a large variety of information related to the integration of variable resources into the WECC system, bypassing in part the need for time-consuming information gathering and learning processes from more experienced engineers or from the literature.

  9. Variable frequency microprocessor clock generator

    SciTech Connect (OSTI)

    Branson, C.N.

    1989-04-04T23:59:59.000Z

    A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between the clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.

  10. Operational Controls for Variable Generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation

  11. NERC Presentation: Accommodating High Levels of Variable Generation...

    Office of Environmental Management (EM)

    of variable electricity eneration. Variable resources are types of electric power generation that rely on an uncontrolled, "variable" fuel (e.g. wind, sunlight, waves, tidal...

  12. Eastern Renewable Generation Integration Study (Presentation)

    SciTech Connect (OSTI)

    Bloom, A.

    2014-05-01T23:59:59.000Z

    This presentation provides a high-level overview of the Eastern Renewable Generation Integration Study process, scenarios, tools, and goals.

  13. WECC Variable Generation Planning Reference Book: Appendices

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

    2013-05-13T23:59:59.000Z

    The document titled ďWECC Variable Generation Planning Reference BookĒ. This book is divided into two volumes; one is the main document (volume 1)and the other is appendices (volume 2). The main document is a collection of the best practices and the information regarding the application and impact of variables generation on power system planning. This volume (appendices) has additional information on the following topics: Probabilistic load flow problems. 2. Additional useful indices. 3. high-impact low-frequency (HILF) events. 4. Examples of wide-area nomograms. 5. Transmission line ratings, types of dynamic rating methods. 6. Relative costs per MW-km of different electric power transmission technologies. 7. Ultra-high voltage (UHV) transmission. 8.High voltage direct current (VSC-HVDC). 9. HVDC. 10. Rewiring of existing transmission lines. 11. High-temperature low sag (HTLS) conductors. 12. The direct method and energy functions for transient stability analysis in power systems. 13.Blackouts caused by voltage instability. 14. Algorithm for parameter continuation predictor-corrector methods. 15. Approximation techniques available for security regions. 16. Impacts of wind power on power system small signals stability. 17. FIDVR. 18. FACTS. 19. European planning standard and practices. 20. International experience in wind and solar energy sources. 21. Western Renewable Energy Zones (WREZ). 22. various energy storage technologies. 23. demand response. 24. BA consolidation and cooperation options. 25. generator power management requirements and 26. European planning guidelines.

  14. Towards Smart Integration of Wind Generation.

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Towards Smart Integration of Wind Generation. G. Giebela , P. Meiboma , P. Pinsonb , and G for the management of electricity grids with large-scale wind generation and to get a better handle on extreme events that integrate the full information on the expected wind generation. In order to demonstrate the value

  15. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    integration of energy efficiency, distributed generation, renewable energy resources and energy storage technologies, both locally and globally, to maximize the value of the...

  16. Eastern Renewable Generation Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    This one-page, two-sided fact sheet provides an overview of the Eastern Renewable Generation and Integration Study process.

  17. Role of Smarter Grids in Variable Renewable Resource Integration (Presentation)

    SciTech Connect (OSTI)

    Miller, M.

    2012-07-01T23:59:59.000Z

    This presentation discusses the role of smarter grids in variable renewable resource integration and references material from a forthcoming ISGAN issue paper: Smart Grid Contributions to Variable Renewable Resource Integration, co-written by the presenter and currently in review.

  18. Strategies and Decision Support Systems for Integrating Variable...

    Open Energy Info (EERE)

    Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations: Global Best Practices, Examples of Excellence and...

  19. Advanced Variable Speed Air-Source Integrated Heat Pump 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program...

  20. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  1. Turbo-generator control with variable valve actuation

    DOE Patents [OSTI]

    Vuk, Carl T. (Denver, IA)

    2011-02-22T23:59:59.000Z

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  2. Integrating Variable Renewable Energy: Challenges and Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterim DataCooling -INTEGRATING

  3. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, E.

    1998-08-25T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  4. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-01-01T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  5. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-08-25T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  6. Free piston variable-stroke linear-alternator generator

    DOE Patents [OSTI]

    Haaland, Carsten M. (Dadeville, AL)

    1998-01-01T23:59:59.000Z

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  7. Free piston variable-stroke linear-alternator generator

    DOE Patents [OSTI]

    Haaland, C.M.

    1998-12-15T23:59:59.000Z

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.

  8. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    SciTech Connect (OSTI)

    Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

    2001-11-14T23:59:59.000Z

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

  9. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    None

    2010-02-28T23:59:59.000Z

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as √ʬ?¬?√ʬ?¬¶a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities√ʬ?¬¶√ʬ?¬Ě. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  10. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30T23:59:59.000Z

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Departmentís stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: ē Installation of a 100 kW wind turbine. ē Installation of a 300 kW battery storage system. ē Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: ē 100 kW new technology waste heat generation unit. ē Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. ē 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  11. Pitch-controlled variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.

    2000-03-01T23:59:59.000Z

    Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

  12. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOE Patents [OSTI]

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17T23:59:59.000Z

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  13. Potential Reductions in Variability with Alternative Approaches to Balancing Area Cooperation with High Penetrations of Variable Generation

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Beuning, S.

    2010-08-01T23:59:59.000Z

    The work described in this report was performed by the National Renewable Energy Laboratory (NREL) and funded by the Office of the Energy Efficiency and Renewable Energy, U.S. Department of Energy (EERE DOE). This project is a joint project with the Pacific Northwest National Laboratory. This report evaluates the physical characteristics that improve the ability of the power system to absorb variable generation. It then uses evidence from electricity markets in the Eastern Interconnection of the United States to show how large, fast energy markets can help with integration. The concept of Virtual Balancing Area is introduced, a concept that covers a broad range of cooperative measures that can be undertaken by balancing areas to help manage variability.

  14. Analyzing of Balancing Authorities Cooperation Methods with High Variable Generation Penetration

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Zhou, Ning; Etingov, Pavel V.; Samaan, Nader A.; Ma, Jian; Diao, Ruisheng; Guttromson, Ross T.

    2010-11-02T23:59:59.000Z

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept is based on various forms of collaboration between individual BAs to manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as Area Control Error (ACE) diversity interchange (ADI), variable generation only BA, BA consolidation, dynamic scheduling, and regulation and load following sharing are discussed in this paper. The objective of such strategies is to allow individual BAs within a large power grid to help each other dealing with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics such as capacity, ramp rate, ramp duration, energy and cycling requirements to evaluate the performance of different virtual BA strategies.

  15. Eastern Renewable Generation Integration Study: Initial Results (Poster)

    SciTech Connect (OSTI)

    Bloom, A.; Townsend, A.; Hummon, M.; Weekley, A.; Clark, K.; King, J.

    2013-10-01T23:59:59.000Z

    This poster presents an overview of the Eastern Renewable Generation Integration Study, which aims to answer critical questions about the future of the Eastern Interconnection under high levels of solar and wind generation penetration.

  16. Quantum integrals of motion for variable quadratic Hamiltonians

    SciTech Connect (OSTI)

    Cordero-Soto, Ricardo, E-mail: ricardojavier81@gmail.co [Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804 (United States); Suazo, Erwin, E-mail: erwin.suazo@upr.ed [Department of Mathematical Sciences, University of Puerto Rico, Mayaquez, call box 9000, PR 00681-9000 (Puerto Rico); Suslov, Sergei K., E-mail: sks@asu.ed [School of Mathematical and Statistical Sciences and Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804 (United States)

    2010-09-15T23:59:59.000Z

    We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.

  17. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01T23:59:59.000Z

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  18. Managing the Integrity of Design Data Generated by Multiple Applications

    E-Print Network [OSTI]

    Parker, D. Stott

    sometimes used for aspects of semantic integrity include ``well≠formedness conditions'', ``correspondence1 Managing the Integrity of Design Data Generated by Multiple Applications: The Theory and Practice of this work is to develop automatic methods of semantic integrity maintenance, in support of concurrent

  19. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those resources. References Retrieved from "http:...

  20. NREL: Transmission Grid Integration - Eastern Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport Available forVoucherPossibleNewData

  1. NREL: Transmission Grid Integration - Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers

  2. Role of Large Balancing Areas In Integrating Solar Generation: Solar Integration Series. 3 of 3 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    The third out of a series of three fact sheets describing the role of large balancing areas in integrating solar generation.

  3. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect (OSTI)

    Palchak, D.; Denholm, P.

    2014-07-01T23:59:59.000Z

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  4. Self-excited induction generator for variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Gregory, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Broad, D. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering] [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering

    1996-10-01T23:59:59.000Z

    When an induction generator is connected to a utility bus, the voltage and frequency at the terminal of the generator are the same as the voltage and frequency of the utility. The reactive power needed by the induction generator is supplied by the utility and the real power is returned to the utility. The rotor speed varies within a very limited range, and the reactive power requirement must be transported through a long line feeder, thus creating additional transmission losses. The energy captured by a wind turbine can be increased if the rotor speed can be adjusted to follow wind speed variations. For small applications such as battery charging or water pumping, a stand alone operation can be implemented without the need to maintain the output frequency output of the generator. A self- excited induction generator is a good candidate for a stand alone operation where the wind turbine is operated at variable speed. Thus the performance of the wind turbine can be unproved. In this paper, we examine a self-excited induction generator operated in a stand alone mode. A potential application for battery charging is given. The output power of the generator will be controlled to improve the performance of the wind turbine.

  5. A Flexible Integrated Architecture For Generating Poetic Texts†

    E-Print Network [OSTI]

    Manurung, Hisar; Ritchie, Graeme; Thompson, Henry

    2000-01-01T23:59:59.000Z

    In this paper we describe a flexible approach to natural language generation that employs a stochastic hillclimbing search algorithm and an integrated architecture. We then discuss the benefits of this approach over existing, informative, goal...

  6. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01T23:59:59.000Z

    This presentation describes how you economically manage integration costs of storage and variable generation.

  7. Steam generator with integral downdraft dryer

    SciTech Connect (OSTI)

    Hochmuth, F.W.

    1992-02-01T23:59:59.000Z

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  8. Integrating Generations with Advanced Reference Counting Garbage Collectors

    E-Print Network [OSTI]

    Krintz, Chandra

    Integrating Generations with Advanced Reference Counting Garbage Collectors Hezi Azatchi 1 and Erez counting work on the old generation (where many objects survive). Matching the expected survival rate a couple of milliseconds. Keywords: Runtime systems, Memory management, Garbage collection, Genera- tional

  9. Impacts of Variability and Uncertainty in Solar Photovoltaic Generation at Multiple Timescales

    SciTech Connect (OSTI)

    Ela, E.; Diakov, V.; Ibanez, E.; Heaney, M.

    2013-05-01T23:59:59.000Z

    The characteristics of variability and uncertainty of PV solar power have been studied extensively. These characteristics can create challenges for system operators who must ensure a balance between generation and demand while obeying power system constraints at the lowest possible cost. A number of studies have looked at the impact of wind power plants, and some recent studies have also included solar PV. The simulations that are used in these studies, however, are typically fixed to one time resolution. This makes it difficult to analyze the variability across several timescales. In this study, we use a simulation tool that has the ability to evaluate both the economic and reliability impacts of PV variability and uncertainty at multiple timescales. This information should help system operators better prepare for increases of PV on their systems and develop improved mitigation strategies to better integrate PV with enhanced reliability. Another goal of this study is to understand how different mitigation strategies and methods can improve the integration of solar power more reliably and efficiently.

  10. Probabilistic Approach to Quantifying the Contribution of Variable Generation and Transmission to System Reliability: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2012-09-01T23:59:59.000Z

    The increasing electrical load served by variable generation (VG), such as wind and solar energy, in the United States and many other countries has stimulated an interesting line of research to better quantify the capacity value of these resources. Methods applied traditionally to thermal units based on their average outage rates do not apply to VG because of their uncertain and non-dispatchable nature. The North American Electric Reliability Corporation's Integration of Variable Generation Task Force recently released a report that highlighted the need to develop and benchmark underlying loss-of-load expectation and related metrics that reasonably and fairly calculate the contribution to planning reserves, or capacity value, of solar and wind power. As the fraction of generation coming from VG becomes more significant, their estimated capacity value will have a larger impact on system planning. In this paper, we provide a method to include VG in traditional probabilistic-based adequacy methods. This method has been implemented in the Renewable Energy Probabilistic Resource Assessment tool developed at the National Renewable Energy Laboratory. Through an example based on the U.S. Western Interconnection, this method is applied to assess the effect that transmission can have on resource adequacy. We also analyze the interactions between available transmission and capacity value for VG.

  11. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect (OSTI)

    Puga, J. Nicolas

    2010-08-15T23:59:59.000Z

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  12. Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

    2010-02-01T23:59:59.000Z

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics ó such as capacity, ramp rate, ramp duration, energy and cycling requirements ó to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

  13. Variable Renewable Generation Impact on Operating Reserves (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.

    2011-05-01T23:59:59.000Z

    This presentation describes some of NREL's latest research on grid integration of renewables, and also describes some of the tools used for these analyses.

  14. Eastern Renewable Generation Integration Study Solar Dataset (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory produced solar power production data for the Eastern Renewable Generation Integration Study (ERGIS) including "real time" 5-minute interval data, "four hour ahead forecast" 60-minute interval data, and "day-ahead forecast" 60-minute interval data for the year 2006. This presentation provides a brief overview of the three solar power datasets.

  15. Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator

    E-Print Network [OSTI]

    values. Keywords: permanent magnet synchronous generator, variable speed wind turbine, direct driven wind). A multipole synchronous generator connected to a power converter can operate at low speeds, so that a gear canControl strategy of a variable speed wind turbine with multipole permanent magnet synchronous

  16. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  17. Integrated microfluidic variable optical Lin Zhu, Yanyi Huang, and Amnon Yariv

    E-Print Network [OSTI]

    Huang, Yanyi

    Integrated microfluidic variable optical attenuator Lin Zhu, Yanyi Huang, and Amnon Yariv. Ruel, L. Stulz, and D. Bishop, "A fiber connectorized MEMS variable optical attenuator," IEEE Photonics Technol. Lett. 10, pp. 1262-1264 (1998). 2. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, "MEMS variable

  18. Generation and transmission expansion planning for renewable energy integration

    SciTech Connect (OSTI)

    Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

    2010-11-30T23:59:59.000Z

    In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

  19. Laboratory implementation of variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Zinger, D.S. [Northern Illinois University, DeKalb, IL (United States)] [Northern Illinois University, DeKalb, IL (United States); Miller, A.A. [Univ. of Idaho, Moscow, ID (United States)] [Univ. of Idaho, Moscow, ID (United States); Muljadi, E.; Butterfield, C.P.; Robinson, M.C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

    1996-07-01T23:59:59.000Z

    To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

  20. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2014-03-03T23:59:59.000Z

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  1. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    to a power system based on load, VG profile, and capacitiespower system operations and dispatch with variable generation, including hourly generation and load profiles,

  2. Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid

    E-Print Network [OSTI]

    Hansen, Renť Rydhof

    Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault to the grid connection of wind turbines. The second chapter elucidates recent thinking in the area of grid RisÝ National Laboratory Vestas Wind Systems A/S #12;#12;I Modelling and Analysis of Variable Speed

  3. A Charge Pump that Generates Negative High Voltage with Variable Voltage , Eugene Ivanova,

    E-Print Network [OSTI]

    Ayers, Joseph

    A Charge Pump that Generates Negative High Voltage with Variable Voltage Gain Jun Zhaob, , Eugene, Massachusetts 02115, U.S.A. Abstract A cross-coupled structure based charge pump that generates negative high. The proposed negative charge pump is designed to deliver 40 uA with a wide supply range from 2.5V to 5.5V using

  4. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    Many countries--reflecting very different geographies, markets, and power systems--are successfully managing high levels of variable renewable energy (RE) on the grid. Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Colorado and Texas), for example, have effectively integrated variable RE utilizing diverse approaches. Analysis of the results from these case studies reveals a wide range of mechanisms that can be used to accommodate high penetrations of variable RE (e.g., from new market designs to centralized planning). Nevertheless, the myriad approaches collectively suggest that governments can best enable variable RE grid integration by implementing best practices in five areas of intervention: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations.

  5. Role of Electricity Markets and Market Design in Integrating Solar Generation: Solar Integration Series. 2 of 3 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2001-05-01T23:59:59.000Z

    The second out of a series of three fact sheets describing the role of electricity markets and market design in integrating solar generation.

  6. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect (OSTI)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01T23:59:59.000Z

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  7. Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Wilson, David Gerald

    2010-05-01T23:59:59.000Z

    In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

  8. An Integrated Automatic Test Data Generation System A. Je erson O utt

    E-Print Network [OSTI]

    Offutt, Jeff

    An Integrated Automatic Test Data Generation System A. Je erson O utt Department of Computer Science Clemson University Clemson, SC 29634 January 21, 1996 Abstract The Godzilla automatic test data generator is an integrated collection of tools that implements a relatively new test data generation method

  9. A Set-Theoretic Framework to Assess the Impact of Variable Generation on the Power Flow

    E-Print Network [OSTI]

    Liberzon, Daniel

    penetration of renewable resources of electricity, such as wind and solar, into existing power systems. Since renewable resources vary in rated power output and point of grid interconnection, they affect power systems1 A Set-Theoretic Framework to Assess the Impact of Variable Generation on the Power Flow Xichen

  10. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1995-11-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  11. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.

    1996-10-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy analyzed uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  12. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States)

    1996-11-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  13. Generating nonlinear FM chirp radar signals by multiple integrations

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM)

    2011-02-01T23:59:59.000Z

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  14. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01T23:59:59.000Z

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  15. Unobtrusive Integration of Magnetic Generator Systems into Common Footwear

    E-Print Network [OSTI]

    or exceeded with the addition of a flywheel to each generator shaft, or a spring to store more energy from

  16. An Integrated Automatic Test Data Generation System A. Jefferson Offutt \\Lambda

    E-Print Network [OSTI]

    Offutt, Jeff

    An Integrated Automatic Test Data Generation System A. Jefferson Offutt \\Lambda Department of Computer Science Clemson University Clemson, SC 29634 January 21, 1996 Abstract The Godzilla automatic test data generator is an integrated collection of tools that implements a relatively new test data

  17. Effects of turbulence on power generation for variable-speed wind turbines

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

    1996-11-01T23:59:59.000Z

    One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

  18. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    transmission to deliver wind generation to load centers. Toof integrating variable wind generation into the electricityfrom wind. Annual wind energy generation was specified in

  20. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    SciTech Connect (OSTI)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01T23:59:59.000Z

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  1. Integration of decentralized generators with the electric power grid

    E-Print Network [OSTI]

    Finger, Susan

    1981-01-01T23:59:59.000Z

    This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

  2. Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost

    SciTech Connect (OSTI)

    Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

    2013-04-01T23:59:59.000Z

    Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

  3. Integrated circuit mask generation using a raster scanned laser trimming system

    E-Print Network [OSTI]

    Gourley, Kevin Dwayne

    1982-01-01T23:59:59.000Z

    INTEGRATED CIRCUIT MASK GENERATION USING A RASTER SCANNED LASER TRIMMING SYSTEM A Thesis by KEVIN DWAYNE GOURLEY Submitted to the Graduate College of Texas AA M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1982 Major Subject: Electrical Engineering INTEGRATED CIRCUIT MASK GENERATION USING A RASTER SCANNED LASER TRIMMING SYSTEM A Thesis by KEVIN DWAYNE GOURLEY Approved as to style and content by: hair ma ommittee Dr . Dou as M. Green 4...

  4. Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Brinkman, G.; Hummon, M.; Lew, D.

    2012-08-01T23:59:59.000Z

    Increasing penetrations of wind a solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic (PV) power and compares it to the wind-based methodology. The solar reserve methodology is applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included.

  5. Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable Generator

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    1 Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable-- Renewable energy resources, such as wind and solar power, are rapidly becoming generation technologies-temporal variations, the integration of renewable energy resources is usually very challenging. Some of the previously

  6. Data Integration for the Generation of High Resolution Reservoir Models

    SciTech Connect (OSTI)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

    2009-01-07T23:59:59.000Z

    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  7. Message passing for integrating and assessing renewable generation in a redundant power grid

    SciTech Connect (OSTI)

    Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

  8. Steam generator with integral downdraft dryer. Final project report

    SciTech Connect (OSTI)

    Hochmuth, F.W.

    1992-02-01T23:59:59.000Z

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  9. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect (OSTI)

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01T23:59:59.000Z

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  10. Heat generation from electronics increases with the advent of high-density integrated circuit technology. To

    E-Print Network [OSTI]

    Boyer, Edmond

    circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device1 Abstract Heat generation from electronics increases with the advent of high-density integrated

  11. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOE Patents [OSTI]

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23T23:59:59.000Z

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  12. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers

    SciTech Connect (OSTI)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01T23:59:59.000Z

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  13. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    E-Print Network [OSTI]

    Raphael Pooser; Jietai Jing

    2014-12-30T23:59:59.000Z

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexing in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.

  14. Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection

    E-Print Network [OSTI]

    Bing Qi; Pavel Lougovski; Raphael Pooser; Warren Grice; Miljko Bobrek

    2015-03-02T23:59:59.000Z

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and also limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme which enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25 km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad^2), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent (MDI) CV-QKD where independent light sources are employed by different users.

  15. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Callaway, Duncan S; Tabone, Michaelangelo D

    2015-01-01T23:59:59.000Z

    Operational im- pacts of wind generation on California poweralong with all solar and wind generation) is different thanincreases in wind and solar generationósee those cited

  16. Energy Simulation of Integrated Multiple-Zone Variable Refrigerant Flow System

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    We developed a detailed steady-state system model, to simulate the performance of an integrated five-zone variable refrigerant flow (VRF)heat pump system. The system is multi-functional, capable of space cooling, space heating, combined space cooling and water heating, and dedicated water heating. Methods were developed to map the VRF performance in each mode, based on the abundant data produced by the equipment system model. The performance maps were used in TRNSYS annual energy simulations. Using TRNSYS, we have successfully setup and run cases for a multiple-split, VRF heat pump and dehumidifier combination in 5-zone houses in 5 climates that control indoor dry-bulb temperature and relative humidity. We compared the calculated energy consumptions for the VRF heat pump against that of a baseline central air source heat pump, coupled with electric water heating and the standalone dehumidifiers. In addition, we investigated multiple control scenarios for the VRF heat pump, i.e. on/off control, variable indoor air flow rate, and using different zone temperature setting schedules, etc. The energy savings for the multiple scenarios were assessed.

  17. NV Energy Solar Integration Study: Cycling and Movements of Conventional Generators for Balancing Services

    SciTech Connect (OSTI)

    Diao, Ruisheng; Lu, Shuai; Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Guo, Xinxin

    2011-07-01T23:59:59.000Z

    With an increasing penetration level of solar power in the southern Nevada system, the impact of solar on system operations needs to be carefully studied from various perspectives. Qualitatively, it is expected that the balancing requirements to compensate for solar power variability will be larger in magnitude; meanwhile, generators providing load following and regulation services will be moved up or down more frequently. One of the most important tasks is to quantitatively evaluate the cycling and movements of conventional generators with solar power at different penetration levels. This study is focused on developing effective methodologies for this goal and providing a basis for evaluating the wear and tear of the conventional generators

  18. Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    E-Print Network [OSTI]

    He, Miao; Zhang, Junshan

    2010-01-01T23:59:59.000Z

    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

  19. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-04-01T23:59:59.000Z

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  20. Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet†

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    and Generation Resource Integrated Database (E-GRID) is presented. This procedure is proposed for calculating county-wide NOx reductions in pounds per MWh for Energy Efficiency and Renewable Energy projects (EE/RE) implemented in each Power Control Area (PCA...

  1. Photocurrent generation by photosystem 1 integrated in crosslinked redox Adrian Badura,a

    E-Print Network [OSTI]

    Roegner, Matthias

    Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels Adrian Badura on a gold electrode surface via an Os complex containing redox polymer hydrogel which simultaneously is used as immobilisation matrix and as electron donor for PS1. On addition of methyl viologen as sacrificial electron

  2. A Methodology to Assess the Value of Integrated Hydropower and Wind Generation

    E-Print Network [OSTI]

    the necessary balancing reserves for wind. Hydropower's flexibility and capacity are limited, however, by non-power resources that can adjust their output rapidly to keep power supply in balance with demand. HydropowerA Methodology to Assess the Value of Integrated Hydropower and Wind Generation by Mitch A. Clement

  3. OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION,

    E-Print Network [OSTI]

    Stanford University

    OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION, CO2 CAPTURE AND WIND A THESIS SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY of Master of Science in Energy Resources Engineering. (Louis J. Durlofsky) Principal Co-Adviser I certify

  4. Operation and Control of Distribution Systems with high level integration of Renewable Generation units

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    models Probabilistic methodologies are being applied to power system analysis since 70' [9] becauseOperation and Control of Distribution Systems with high level integration of Renewable Generation. Diagonal 649 Pavellů A, 08028 Barcelona, Spain Summary Traditional power systems have a hierarchical

  5. The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation

    E-Print Network [OSTI]

    Jaworsky, Christina A

    2013-01-01T23:59:59.000Z

    Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

  6. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Callaway, Duncan S; Tabone, Michaelangelo D

    2015-01-01T23:59:59.000Z

    AND UNCERTAINTY OF PHOTOVOLTAIC GENERATION [9] M. Milligan,for grid-connected photovoltaic system based on advancedand uncertainty in solar photovoltaic generation at multiple

  7. The probable source of certain spurious frequencies found in the output of a variable speed generating system using slip recovery

    SciTech Connect (OSTI)

    Carlin, P.W.

    1989-06-01T23:59:59.000Z

    As part of US Department of Energy-sponsored research on wind energy, a Mod-O wind turbine was used to drive a variable-speed, wound-rotor, induction generator. Energy resulting from the slip frequency voltage in the generator rotor was rectified to dc, inverted back to utility frequency ac, and injected into the power line. Spurious changing frequencies displayed in the generator output by a spectrum analyzer are caused by ripple on the dc link. No resonances of any of these moving frequencies were seen in spite of the presence of a bank of power factor correcting capacitors. 5 figs.

  8. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    increase access to flexible generation (Kirby and Milligan,study where flexible conventional generation is used during

  9. Efficient generation of single and entangled photons on a silicon photonic integrated chip

    E-Print Network [OSTI]

    Jacob Mower; Dirk Englund

    2011-10-18T23:59:59.000Z

    We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.

  10. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    SciTech Connect (OSTI)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-12T23:59:59.000Z

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  11. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    and Uncertainty of Photovoltaics for Integration with themodels and datasets. Photovoltaics fall under the broader

  12. An Integrated Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High-Frequency Drive

    E-Print Network [OSTI]

    Sanders, Seth

    An Integrated Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High-Frequency Drive Copyright 2003 by Perry I-Pei Tsao #12;1 Abstract An Integrated Flywheel Energy Storage System with a Homopolar

  13. Integrated circuit mask generation using a raster scanned laser trimming system†

    E-Print Network [OSTI]

    Gourley, Kevin Dwayne

    1982-01-01T23:59:59.000Z

    minutes using the Laser Reticle Generator, with each scan taking 0. 18 seconds. The LRG used a new approach for reticle material I 18]. In other laser machining work, the first opaque materials tested were metallic films. The laser beam melted... and developed . for the production of integrated circuit master reticles. The novelty of this approach is the use of a commercial Nd:YAG laser trimming system as a raster scanning laser reticle generator. A previous method employing an ESI Model 44 Laser...

  14. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Callaway, Duncan S; Tabone, Michaelangelo D

    2015-01-01T23:59:59.000Z

    Anal- ysis, National Renewable Energy Laboratory (NREL),Re- serves, National Renewable Energy Laboratory (NREL),reserve methodology for renewable energy integration studies

  15. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Program Final Report. Smart Meter Pilot Program Inc. ,Fear, loathing and smart meters. Baltimore, MD. Heffner,IEE (2010) Utility-scale Smart Meter Deployments, Plans &

  16. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    hydro facility or demand response aggregator to provide theOperator Demand Response Mass-Market Customers Aggregator ofDemand Response Resources Mass Market Customers Aggregator

  17. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    be large particularly for solar plants with tracking. Thesolar are estimated be 90% of the nameplate capacity in the Mohave Desert for single axis tracking

  18. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    in electric vehicles, battery storage) or standards (e.g. ,in electric vehicles, battery storage) or standards (e.g. ,

  19. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    D.C. E-Three (2011) WECC EDT Phase 2 EIM Benefits Analysis &2011. 23 pages. NREL/TP-5500-49218. WECC (2010) ProposedConcepts For the WECC Efficient Dispatch Toolkit Energy

  20. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    HVAC equipment, plug loads) and thus a more diverse set of mass marketHVAC equipment, plug loads) and thus a more diverse set of mass market

  1. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    System Operator and New York State Energy Research andPrepared for The New York State Energy Research andNational Grid New York, Duke Energy Carolina). Research

  2. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    prices and quantified how system balancing costs change with high wind energywind energy when mass market customers responded on a 15-minute basis to DR price

  3. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    demand. (energy conservation regulations). Public UtilitiesSupplemental Energy Whereas regulation reserves areDR Capacity Energy Ancillary Services Regulation Reserves

  4. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Reliability Corporation National Institute of Standards and Technology Open Access Transmission Tariff Open Automated Demand Response Protocol Public Utility Commission Photovoltaic

  5. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Analysis. Presentation given to PJM Interconnection Markete.g. , ISO-NE, NYISO, PJM, MISO, ERCOT, and CAISO). Co-also elect to participate in PJMís day-ahead and/or real-

  6. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    2012. ďReport on Green Energy Corridors: Transmission PlanThe Report on Green Energy Corridors documents the analysis

  7. Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions

    E-Print Network [OSTI]

    Wang, Jin

    Distributions Jin Wang Department of Mathematics and Computer Science Valdosta State University Valdosta, GA 31698-0040 January 28, 2000 Abstract The mixture of normal distributions provides a useful extension of the normal distribution for modeling of daily changes in market variables with fatter-than-normal tails

  8. Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator

    SciTech Connect (OSTI)

    Hissam, D. Andy; Stewart, Eric [National Aeronautics and Space Administration, Marshall Space Flight Center, ER34, Huntsville, AL 35812 (United States)

    2006-07-01T23:59:59.000Z

    A closed-loop Brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified, commercially available, Brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation sought to determine if they could be operated together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N{sub 2}, He/Ar, and He/Xe. Other technical issues, such as electrical breakdown in the generator and the operation of the Brayton foil bearings using various gas mixtures, were also investigated. (authors)

  9. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    aggregate of all wind and solar plants. Integration studiesramps in solar insolation and PV plant output The output ofwill allow solar energy from PV plants to reach significant

  10. New modeling and control solutions for integrated microgrid system with respect to thermodynamics properties of generation and demand

    E-Print Network [OSTI]

    Liu, Fang-Yu, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    This thesis investigates microgrid control stability with respect to thermodynamics behaviors of generation and demand. First, a new integrated microgrid model is introduced. This model consists of a combined cycle power ...

  11. Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power

    E-Print Network [OSTI]

    Brasington, Robert David, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

  12. Steam generator tube integrity program: Annual report, August 1995--September 1996. Volume 2

    SciTech Connect (OSTI)

    Diercks, D.R.; Bakhtiari, S.; Kasza, K.E.; Kupperman, D.S.; Majumdar, S.; Park, J.Y.; Shack, W.J. [Argonne National Lab., IL (United States)

    1998-02-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of the program in August 1995 through September 1996. The program is divided into five tasks: (1) assessment of inspection reliability, (2) research on ISI (inservice-inspection) technology, (3) research on degradation modes and integrity, (4) tube removals from steam generators, and (5) program management. Under Task 1, progress is reported on the preparation of facilities and evaluation of nondestructive evaluation techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate failure pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Results are reported in Task 2 on closed-form solutions and finite-element electromagnetic modeling of EC probe responses for various probe designs and flaw characteristics. In Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe-accident conditions. Crack behavior and stability are also being modeled to provide guidance for test facility design, develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the acquisition of tubes and tube sections from retired steam generators for use in the other research tasks. Progress on the acquisition of tubes from the Salem and McGuire 1 nuclear plants is reported.

  13. A Zonotope-Based Method for Capturing the Effect of Variable Generation on the Power Flow

    E-Print Network [OSTI]

    Liberzon, Daniel

    of a power system; this uncertainty arises from the increasing penetration of renewable resources that the uncertain generation can take by a zonotope and propagate it through a linearized power flow model take values within a symmetric polytope. This uncertainty is propagated through the power system model

  14. Increased network efficiency for variable rate video streams in an Integrated Services Packet Network environment

    E-Print Network [OSTI]

    Schroeder, Charles Grant

    1996-01-01T23:59:59.000Z

    Due to the needs of real-time, bandwidth intensive applications like videoconferencing, several resource reservation infrastructures like the Integrated Services Packet Network (ISPN) are currently being developed. These schemes provide applications...

  15. Integration

    E-Print Network [OSTI]

    Koschorke, Albrecht; Musanovic, Emina

    2013-01-01T23:59:59.000Z

    Integration By Albrecht Koschorkeby Emina Musanovic [Integration (from Lat. integrare, ďtoa social unity. Social integration is distinct from systemic

  16. Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy, and Economic Life-Cycle Analysis

    E-Print Network [OSTI]

    McCarl, Bruce A.

    virgatum) as a replacement for coal in power generation. To examine the effects of such a substitution1 Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy into modules. The greenhouse gas (GHG) mitigation during co-firing of switchgrass with coal is found

  17. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity

    E-Print Network [OSTI]

    Le Roy, Robert J.

    Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish on the web 15th September 2009 DOI: 10.1039/b911412m This study presents a microfluidic system components: (1) a toxicity testing chip containing a microfluidic gradient generator which creates a linear

  18. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    SciTech Connect (OSTI)

    Mills, Andrew; Ahlstrom, Mark; Brower, Michael; Ellis, Abraham; George, Ray; Hoff, Tom; Kroposki, Benjamin; Lenox, Carl; Miller, Nicholas; Stein, Joshua; Wan, Yih-huei

    2009-12-07T23:59:59.000Z

    Data and analysis are needed to understand the variability of photovoltaic (PV) plants to avoid unnecessary barriers to the interconnection of PV. Several datasets show clouds can cause rapid changes in solar insolation. Smoothing of rapid ramps, however, occurs within PV plants. The degree of smoothing depends on plant size. Smoothing occurs on even longer time-scales between separate plants.

  19. Integrating Variable Renewable Energy Into the Grid: Key Issues, Greening the Grid (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterim DataCooling -INTEGRATING VARIABLE

  20. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    SciTech Connect (OSTI)

    Beardwood, E.S.

    1999-07-01T23:59:59.000Z

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  1. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    SciTech Connect (OSTI)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27T23:59:59.000Z

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

  2. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.

    SciTech Connect (OSTI)

    Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

    2005-06-03T23:59:59.000Z

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? September 2004. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

  3. Variable cooling circuit for thermoelectric generator and engine and method of control

    DOE Patents [OSTI]

    Prior, Gregory P

    2012-10-30T23:59:59.000Z

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  4. Model predictive control system and method for integrated gasification combined cycle power generation

    DOE Patents [OSTI]

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09T23:59:59.000Z

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  5. A practical design for an integrated HVDC unit - connected hydro-electric generating station

    SciTech Connect (OSTI)

    Ingram, L. (Manitoba HVDC Research Centre, Winnipeg (CA))

    1988-10-01T23:59:59.000Z

    To date, several authors (see reference list) have proclaimed benefits which can be achieved by integrating HVDC converter stations directly with generating units. The cost of a significant amount of plant and facilities found in conventional schemes is thereby eliminated. So far as is known however, no detailed studies have been done to quantify these benefits. This paper outlines the results of a study made recently by the Manitoba HVDC Research Centre to determine the practicality of such a scheme. To give credence to the results an actual hydro station design was used incorporating a HVDC thyristor valve scheme in a hypothetical situation. Financial and other benefits were determined for this example together with conclusions and recommendations for future specific projects and further areas of study.

  6. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    E-Print Network [OSTI]

    Riaud, Antoine; Charron, Eric; BussonniŤre, Adrien; Matar, Olivier Bou

    2015-01-01T23:59:59.000Z

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  7. Steam generator tube integrity program. Semiannual report, August 1995--March 1996

    SciTech Connect (OSTI)

    Diercks, D.R.; Bakhtiari, S.; Chopra, O.K. [and others

    1997-04-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of that program in August 1995 through March 1996. The program is divided into five tasks, namely (1) Assessment of Inspection Reliability, (2) Research on ISI (in-service-inspection) Technology, (3) Research on Degradation Modes and Integrity, (4) Development of Methodology and Technical Requirements for Current and Emerging Regulatory Issues, and (5) Program Management. Under Task 1, progress is reported on the preparation of and evaluation of nondestructive evaluation (NDE) techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate burst pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Under Task 2, results are reported on closed-form solutions and finite element electromagnetic modeling of EC probe response for various probe designs and flaw characteristics. Under Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe accident conditions. In addition, crack behavior and stability are being modeled to provide guidance on test facility design, to develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and to predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the cracking and failure of tubes that have been repaired by sleeving, and with a review of literature on this subject.

  8. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    SciTech Connect (OSTI)

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01T23:59:59.000Z

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  9. Development of a hydrogen generator based on the partial oxidation of natural gas integrated with PEFC

    SciTech Connect (OSTI)

    Recupero, V.; Pino, L.; Di Leonardo, R.; Lagana, M. [Inst. CNR-TAE, Messina (Italy)

    1998-12-31T23:59:59.000Z

    As is well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by CNR Institute Transformation and Storage of Energy, Messina, Italy, on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with a PEFC (Polymer Electrolyte Fuel Cell). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic Catalytic Selective Partial Oxidation of Methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  10. Integrating Variable Renewable Energy in Electric Power Markers: Best Practices from International Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterim DataCooling -INTEGRATING

  11. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    fuel prices, and future investment costs of conventionalof avoided capital investment cost and avoided variable fuelsystem including capital investment cost, variable fuel, and

  12. Integrated High Speed Intelligent Utility Tie Unit for Disbursed/Renewable Generation Facilities Worakarn Wongsaichua, Wei-Jen Lee Soontorn Oraintara Chiman Kwan Frank Zhang

    E-Print Network [OSTI]

    Oraintara, Soontorn

    Integrated High Speed Intelligent Utility Tie Unit for Disbursed/Renewable Generation Facilities is to rejuvenate the idea of integrated resource planning and promote the distributed generation via traditional or renewable generation facilities for the deregulated utility systems. Fuel cell and photovoltaic are the most

  13. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    and M. OíMalley. Wind generation, power system operation,9510. GE Energy. Analysis of Wind Generation Impact on ERCOTcarrying capability of wind generation: Initial results with

  14. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    the small amount of incumbent coal generation, and increasedamount of incumbent coal generation is also displaced by VG.including incumbent coal and nuclear generation. Expanding

  15. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    demand, more flexible thermal generation, and lower costof VG technologies), more flexible thermal generation, pricedemand, more flexible thermal generation, and low-cost bulk-

  16. Structural Integrity Assessment of Steam Generator Tubes Using a New EPRI Statistical Approach

    SciTech Connect (OSTI)

    Jesus Miranda, Carlos Alexandre de; Mattar Neto, Miguel [IPEN-CNEN/SP, inst. pesquisas energeticas nucleares, 05499 Sao Paulo (Brazil)

    2002-07-01T23:59:59.000Z

    A fundamental step in tube plugging management of a Steam Generator (SG), in a Nuclear Power Plant (NPP), is the tube structural integrity evaluation. The degradation of SG tubes may be considered one of the most serious problems found in PWRs operation, mainly when the tube material is the Inconel 600. The first repair criterion was based on the degradation mode where a uniform tube wall thickness corrosion thinning occurred. Thus, a requirement of a maximum depth of 40% of the tube wall thickness was imposed for any type of tube damage. A new approach considers different defects arising from different degradation modes, which comes from the in-service inspections (NDE) and how to consider the involved uncertainties. It is based on experimental results, using statistics to consider the involved uncertainties, to assess structural limits of PWR SG tubes. In any case, the obtained results, critical defect dimensions, are within the regulatory limits. In this paper this new approach will be discussed and it will be applied to two cases (two defects) using typical data of SG tubes of one Westinghouse NPP. The obtained results are compared with 'historical' approaches and some comments are addressed from the results and their comparison. (authors)

  17. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2012-05-18T23:59:59.000Z

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal storage is found to drop considerably (by more than \\$70/MWh) as the penetration of solar increases toward 30\\percent on an energy basis. This is due primarily to a steep drop in capacity value followed by a decrease in energy value. In contrast, the value of CSP with thermal storage drops much less dramatically as penetration increases. As a result, at solar penetration levels above 10\\percent, CSP with thermal storage is found to be considerably more valuable relative to PV and CSP without thermal storage. The marginal economic value of wind is found to be largely driven by energy value, and is lower than solar at low penetration. The marginal economic value of wind drops at a relatively slower rate with penetration, however. As a result, at high penetration, the value of wind can exceed the value of PV and CSP without thermal storage. Though some of these findings may be somewhat unique to the specific case study presented here, the results: (1) highlight the importance of an analysis framework that addresses long-term investment decisions as well as short-term dispatch and operational constraints, (2) can help inform long-term decisions about renewable energy procurement and supporting infrastructure, and (3) point to areas where further research is warranted.

  18. Generating and Optimising Views from Both as View Data Integration Rules

    E-Print Network [OSTI]

    McBrien, Peter

    , Imperial College, {nnyt98,pjm}@doc.ic.ac.uk Abstract. This paper describes the generation and logical

  19. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01T23:59:59.000Z

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  20. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    4.3 Hydropower and Pumped Hydro Storage . . 4.4 Thermal24 Integration of Wind and Hydropower Systems; Volume 1:and Economics of Wind and Hydropower Integration. Technical

  1. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect (OSTI)

    None

    2012-03-16T23:59:59.000Z

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  2. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation

    SciTech Connect (OSTI)

    Daye, Tony [Green Power Labs

    2013-09-30T23:59:59.000Z

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  3. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    None

    2012-02-11T23:59:59.000Z

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframesóincentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales ómaking the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  4. Development of an Advanced Approach for Next Generation, High Resolution, Integrated Reservoir Characterization

    SciTech Connect (OSTI)

    Scott R. Reeves

    2003-08-01T23:59:59.000Z

    During this reporting period work on Task 4: Develop Integrated Engineering Model was completed, incorporating the results from Log Clustering. A series of Topical Reports were prepared on Seismic Data Processing, Rock Physics modeling, Log Clustering, and the Integrated Engineering Model. These Topical Reports have been submitted to the test site field operator for review before submission to NETL staff in Tulsa. Work continues on development of the Broadband Seismic Transform Function.

  5. Stressing of turbine-generator-exciter shafts by variable-frequency currents superimposed on DC currents in asynchronous HVDC links and following disturbances at converter stations

    SciTech Connect (OSTI)

    Hammons, T.J.; Bremner, J.J. (Univ. of Glasgow (United Kingdom))

    1994-09-01T23:59:59.000Z

    Ripple currents on the DC side of both HVDC synchronous and asynchronous. Links together with cleared HVDC and AC system disturbances can excite in some circumstances onerous torsional vibrations in large steam generator shafts. The problem has assumed importance in recent months on account of the HVDC Link between Scotland and Northern Ireland going ahead, on account of the proposed Eire/Wales Link, and because AC/DC/AC couplers are to be installed extensively to interconnect the East and West European Grid Systems. This paper discusses and analyses excitation of shaft torsional vibrations in steam turbine-generator-exciter shafts in close proximity to HVDC converter stations by (1) variable-frequency ripple currents superimposed on the DC currents in asynchronous Links, and (2) disturbances at bi-polar converter stations. The time response and tables show that for the systems studied variable-frequency ripple currents superimposed on the DC current in asynchronous Links can excite shaft torsional vibrations, the very small noncharacteristic currents could result in onerous shaft torques which might damage the machine, and that DC line faults at converter stations in close proximity of steam turbine-generator units can excite onerous turbine-generator shaft torsional response. Detailed simulation of the HVDC converter and generator is necessary for precise assessments of shaft torsional response following HVDC converter station faults. 500MW, 660MW, 1000MW and 1300MW machines are considered in the analyses that are made.

  6. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    The variable O&M cost of wind and solar is assumed to bethe relative levelized cost of wind and solar supply. OneJ. Swider and C. Weber. The costs of windís intermittency in

  7. MICROGRIDS Ė Large Scale Integration of Micro-Generation to Low Voltage Grids

    E-Print Network [OSTI]

    Nikos Hatziargyriou

    Key economic potential of the installation of Distributed Generation (DG) at customer premises lies in the opportunity to utilise locally the waste heat from conversion of primary fuel to electricity. Therefore there has been a significant

  8. Design, integration schemes, and optimization of conventional and pressurized oxy-coal power generation processes

    E-Print Network [OSTI]

    Zebian, Hussam

    2014-01-01T23:59:59.000Z

    Efficient and clean electricity generation is a major challenge for today's world. Multivariable optimization is shown to be essential in unveiling the true potential and the high efficiency of pressurized oxy-coal combustion ...

  9. Kevin E. Trenberth John Fasullo Lesley Smith Trends and variability in column-integrated atmospheric water vapor

    E-Print Network [OSTI]

    Fasullo, John

    Kevin E. Trenberth √? John Fasullo √? Lesley Smith Trends and variability in column. E. Trenberth (&) √? J. Fasullo √? L. Smith National C

  10. In-plane emission of indistinguishable photons generated by an integrated quantum emitter

    SciTech Connect (OSTI)

    Kalliakos, Sokratis, E-mail: sokratis.kalliakos@crl.toshiba.co.uk; Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Brody, Yarden; Schwagmann, Andre [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-06-02T23:59:59.000Z

    We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

  11. Integrating Gasifiers and Reciprocating Engine Generators to Utilize Biomass-Based Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergy Integrated EnergyIntegratedAdapting On-site

  12. Research Note on a Parabolic Heat-Balance Integral Method with Unspecified Exponent: An Entropy Generation Approach in Optimal Profile Determination

    E-Print Network [OSTI]

    Jordan Hristov

    2010-12-12T23:59:59.000Z

    The heat-balance integral method of Goodman is studied with two simple 1-D heat conduction problems with prescribed temperature and flux boundary conditions. These classical problems with well known exact solutions enable to demonstrate the heat-balance integral method performance by a parabolic profile and the entropy generation minimization concept in definition of the appropriate profile exponent. The basic assumption generating the additional constraints needed to perform the solution is based on the requirement to minimize the difference in the local thermal entropy generation rates calculated by the approximate and the exact profile, respectively. This concept is easily applicable since the general concept has simple implementation of the condition requiring the thermal entropy generations calculated through both profiles to be the same at the boundary. The entropy minimization generation approach automatically generates the additional requirement which is deficient in the set of conditions defined by the heat-balance integral method concept.

  13. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generatorsí forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system ďbreaking pointsĒ, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

  14. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2014-01-01T23:59:59.000Z

    and public economics of renewable electricity generation.CP-550-48247, National Renewable Energy Laboratory, Golden,decisions in the Western Renewable Energy Zone initiative.

  15. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect (OSTI)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01T23:59:59.000Z

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  16. Power links with Ireland -- Excitation of turbine-generator shaft torsional vibrations by variable frequency currents superimposed on DC currents in asynchronous HVDC links

    SciTech Connect (OSTI)

    Hammons, T.J.; Tay, B.W.; Kok, K.L. [Glasgow Univ. (United Kingdom)] [Glasgow Univ. (United Kingdom)

    1995-08-01T23:59:59.000Z

    The paper describes an in-depth analysis of excitation of shaft torsional vibrations in steam-turbine-generator-exciter shafts in close proximity to HVDC converter stations by variable-frequency ripple currents superimposed on the DC currents in asynchronous Links. It extends earlier work to include an in depth analysis of system scaling factors for harmonic currents impressed on generators in Northern Ireland by an inverter and to investigate the phenomena for possible torsional vibrations in the generators by the Link. Frequencies at which shaft torsional vibrations would be excited by modulation product harmonics in 50Hz/50Hz asynchronous Links as a function of deviation in system frequency is reviewed. Relative noncharacteristic current levels for 50Hz/50Hz connectors are illustrated assuming ripple currents at the inverter which gives realistic harmonic voltages in a twelve-pulse bridge. The paper then shows that torques in machines in multi-machine networks may be estimated by proportioning HVDC link harmonic disturbance current appropriately to each machine at risk. It is concluded that variable-frequency ripple currents superimposed on the DC current in asynchronous links can excite sympathetic torsional vibrations in turbine-generator-exciter shafts.

  17. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-12-01T23:59:59.000Z

    A variety of studies have recently evaluated the opportunities for the large-scale integration of wind energy into the US power system. These studies have included, but are not limited to, "20 Percent Wind Energy by 2030: Increasing Wind Energy's Contribution to US Electricity Supply", the "Western Wind and Solar Integration Study", and the "Eastern Wind Integration and Transmission Study." Each of these US based studies have evaluated a variety of activities that can be undertaken by utilities to help integrate wind energy.

  18. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of Governor Deadband & Droop Settings of a Single 600 MWIn both cases, the frequency droop setting is equal for allgenerating units. Droop is a measure of the change in power

  19. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    Responsive Reserve Report. WECC Frequency Responsive Reserve=&View={BB5A76DA-21C8-48FC-9468-F82B395DF8F9} WECC.2008. WECC Standard BAL-002-WECC-1 - Contingency Reserves.

  20. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    electricity (e.g. , steam turbines, combustion turbines,all be used to run a steam turbine). See Undrill (2010) forcycle plants whose steam turbines are operated with their

  1. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    plants to frequency response during disturbances. Use ofkey event during a disturbance when the frequency stabilizesrestore frequency to normal following a disturbance and is

  2. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    Resources in the Bonneville Power Administration Controlstaff at the Bonneville Power Administration, Californiacontrol error Bonneville Power Administration California

  3. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    demonstrations of energy storage technologies providingadvanced technologies, such as energy storage and electricadvanced technologies, such as energy storage and electric

  4. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    contained within a single wind farm due to falling winda large number of wind farms, which are all interconnectedand specific to individual wind farms as specified by the

  5. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    case of wind electricity in spain. Energy Policy, 36:3345Ėwind power in a carbon constrained world. Energy Policy, 34:wind power generation capacity in liberalized electricity markets. Energy Policy,

  6. Integration of MHD load models with circuit representations the Z generator.

    SciTech Connect (OSTI)

    Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.

    2013-03-01T23:59:59.000Z

    MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

  7. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01T23:59:59.000Z

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  8. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  9. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01T23:59:59.000Z

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

  10. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpact of Generator Flexibility on

  11. Analysis of variable-frequency currents superimposed on DC currents in asynchronous HVDC Links in stressing turbine-generator-exciter shafts

    SciTech Connect (OSTI)

    Hammons, T.J.; Bremner, J.J. [Univ. of Glasgow (United Kingdom)] [Univ. of Glasgow (United Kingdom)

    1995-03-01T23:59:59.000Z

    Ripple currents on the DC side of both HVDC asynchronous and synchronous Links can excite in some circumstances onerous torsional vibrations in large steam generator shafts. The problem has assumed importance in recent months on account of the HVDC Link between Scotland and Northern Ireland going ahead, on account of the proposed Eire/Wales Link, because AC/DC/AC couplers are to be installed to interconnect the East and West European Grid Systems, and because resonances have been observed on machines in close proximity to AC/DCIAC couplers and HVDC Links. This paper discusses and analyses excitation of shaft torsional vibrations in steam turbine-generator-exciter shafts in close proximity to HVDC converter stations by variable-frequency ripple currents superimposed on DC currents in asynchronous Links. It presents technical knowledge not arranged for convenient reference heretofore in studying possible excitation of turbine-generator-v/ exciter shaft torsional vibrations by non-characteristic HVDC converter harmonic currents if a machine should be considered to be at risk. Shaft torques in multi-machine networks are evaluated by proportioning HVDC Link disturbance currents to each machine at risk using system network data, generator data and fault analysis data considering frequency dependence of the system parameters. This scaling factor is calculated for different scenarios of system operation and load. Equivalent circuits for the synchronous generator are employed appropriately to correlate HVDC Link disturbance current impressed on the generator stator with s state torque excitation from which magnitude of turbine-generator-exciter shaft torque is deduced.

  12. Utility Integrated Resource Planning: An Emerging Driver of NewRenewable Generation in the Western United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-09-25T23:59:59.000Z

    In the United States, markets for renewable generation--especially wind power--have grown substantially in recent years. This growth is typically attributed to technology improvements and resulting cost reductions, the availability of federal tax incentives, and aggressive state policy efforts. But another less widely recognized driver of new renewable generation is poised to play a major role in the coming years: utility integrated resource planning (IRP). Common in the late-1980s to mid-1990s, but relegated to lesser importance as many states took steps to restructure their electricity markets in the late-1990s, IRP has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions such as the western United States, where retail competition has failed to take root. As practiced in the United States, IRP is a formal process by which utilities analyze the costs, benefits, and risks of all resources available to them--both supply- and demand-side--with the ultimate goal of identifying a portfolio of resources that meets their future needs at lowest cost and/or risk. Though the content of any specific utility IRP is unique, all are built on a common basic framework: (1) development of peak demand and load forecasts; (2) assessment of how these forecasts compare to existing and committed generation resources; (3) identification and characterization of various resource portfolios as candidates to fill a projected resource deficiency; (4) analysis of these different ''candidate'' resource portfolios under base-case and alternative future scenarios; and finally, (5) selection of a preferred portfolio, and creation of a near-term action plan to begin to move towards that portfolio. Renewable resources were once rarely considered seriously in utility IRP. In the western United States, however, the most recent resource plans call for a significant amount of new wind power capacity. These planned additions appear to be motivated by the improved economics of wind power, an emerging understanding that wind integration costs are manageable, and a growing acceptance of wind by electric utilities. Equally important, utility IRPs are increasingly recognizing the inherent risks in fossil-based generation portfolios--especially natural gas price risk and the financial risk of future carbon regulation--and the benefits of renewable energy in mitigating those risks. This article, which is based on a longer report from Berkeley Lab,i examines how twelve investor-owned utilities (IOUs) in the western United States--Avista, Idaho Power, NorthWestern Energy (NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E)--treat renewable energy in their most recent resource plans (as of July 2005). In aggregate, these twelve utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable generation in the United States, and (2) to suggest possible improvements to the methods used to evaluate renewable generation as a resource option. As such, we begin by summarizing the amount and types of new renewable generation planned as a result of these twelve IRPs. We then offer observations about the IRP process, and how it might be improved to more objectively evaluate renewable resources.

  13. Modeling for System Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Orwig, K. D.

    2012-05-01T23:59:59.000Z

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  14. On some expectation and derivative operators related to integral representations of random variables with respect to a PII process

    E-Print Network [OSTI]

    Goutte, Stťphane; Russo, Francesco

    2012-01-01T23:59:59.000Z

    Given a process with independent increments $X$ (not necessarily a martingale) and a large class of square integrable r.v. $H=f(X_T)$, $f$ being the Fourier transform of a finite measure $\\mu$, we provide explicit Kunita-Watanabe and F\\"ollmer-Schweizer decompositions. The representation is expressed by means of two significant maps: the expectation and derivative operators related to the characteristics of $X$. We also provide an explicit expression for the variance optimal error when hedging the claim $H$ with underlying process $X$. Those questions are motivated by finding the solution of the celebrated problem of global and local quadratic risk minimization in mathematical finance.

  15. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity of the U.S. Grid

  16. Fully Integrated Frequency and Phase Generation for a 6-18GHz Tunable Multi-Band Phased-Array Receiver in CMOS

    E-Print Network [OSTI]

    Hajimiri, Ali

    control, phase locked loops, phase noise, phased arrays, radio receivers I. INTRODUCTION Very large-scale phased-arrays covering a wide range of frequencies can provide exciting new opportunities for increasedFully Integrated Frequency and Phase Generation for a 6-18GHz Tunable Multi-Band Phased

  17. Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint

    SciTech Connect (OSTI)

    Wang, X.; Yue, M.; Muljadi, E.

    2012-09-01T23:59:59.000Z

    This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

  18. Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

    2011-03-20T23:59:59.000Z

    This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

  19. High resolution reanalysis of wind speeds over the British Isles for wind energy integration

    E-Print Network [OSTI]

    Hawkins, Samuel Lennon

    2012-11-29T23:59:59.000Z

    The UK has highly ambitious targets for wind development, particularly offshore, where over 30GW of capacity is proposed for development. Integrating such a large amount of variable generation presents enormous challenges. ...

  20. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  1. On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform

    E-Print Network [OSTI]

    Nobuyuki Matsuda; Peter Karkus; Hidetaka Nishi; Tai Tsuchizawa; William J. Munro; Hiroki Takesue; Koji Yamada

    2014-09-14T23:59:59.000Z

    We demonstrate the generation and demultiplexing of quantum correlated photons on a monolithic photonic chip composed of silicon and silica-based waveguides. Photon pairs generated in a nonlinear silicon waveguide are successfully separated into two optical channels of an arrayed-waveguide grating fabricated on a silica-based waveguide platform.

  2. ANEMOS: Development of a Next Generation Wind Power Forecasting System for the Large-Scale Integration of Onshore &

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -NTUA, Greece. * georges.kariniotakis@ensmp.fr, tel:+33-493957501, Ecole des Mines de Paris, Centre d'Energetique 6% to 12% by 2010. Under this target, the problem of integration of RES and namely of wind energy

  3. Western Wind and Solar Integration Study Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01T23:59:59.000Z

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  4. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generatorsí forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the ďflying brickĒ technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  5. Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Li, Perry Y.

    Energy Storage System Mohsen Saadat, Farzad A. Shirazi, Perry Y. Li Abstract-- A high-level supervisory controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine the effect of storage system sizing on the maximum revenue. I. INTRODUCTION Large-scale cost effective energy

  6. Iterative Modellerstellung mit Siemens IDATG Das Siemens IDATG (Integrating Design and Automated Testcase Generation) Tool erlaubt eine

    E-Print Network [OSTI]

    Iterative Modellerstellung mit Siemens IDATG Das Siemens IDATG (Integrating Design:http://www.ist.tugraz.at/staff/peischl Dipl.Ing. Armin Beer Support Center Test Siemens PSE Gudrunstrasse 11 1100 Wien Tel.: +43 51707 43 342 mailto: armin.beer@siemens.com web: http://www.siemens.com #12;

  7. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01T23:59:59.000Z

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  8. Continuous variable entanglement on a chip

    E-Print Network [OSTI]

    Genta Masada; Kazunori Miyata; Alberto Politi; Toshikazu Hashimoto; Jeremy L. O'Brien; Akira Furusawa

    2015-05-29T23:59:59.000Z

    Encoding quantum information in continuous variables (CV)---as the quadrature of electromagnetic fields---is a powerful approach to quantum information science and technology. CV entanglement---light beams in Einstein-Podolsky-Rosen (EPR) states---is a key resource for quantum information protocols; and enables hybridisation between CV and single photon discrete variable (DV) qubit systems. However, CV systems are currently limited by their implementation in free-space optical networks: increased complexity, low loss, high-precision alignment and stability, as well as hybridisation, demand an alternative approach. Here we show an integrated photonic implementation of the key capabilities for CV quantum technologies---generation and characterisation of EPR beams in a photonic chip. Combined with integrated squeezing and non-Gaussian operation, these results open the way to universal quantum information processing with light.

  9. Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope

    E-Print Network [OSTI]

    Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antůn, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

    2012-01-01T23:59:59.000Z

    The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

  10. Utilizing the C2Maps Platform for Characterizing Drug-Protein Relations, Generating Mobile Games, and Constructing Integrated Pathway Models

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Utilizing the C2Maps Platform for Characterizing Drug-Protein Relations, Generating Mobile Games of Science. The C2Maps platform is a collection of genome-wide data that display the connections between disease specific proteins. Manual curation is important for the C2Maps platform in order to validate

  11. DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION

    SciTech Connect (OSTI)

    Professor Richard Eisenberg

    2012-07-18T23:59:59.000Z

    The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make multi-component systems designed so as to maintain electronic communication between components held in a defined spatial arrangement. Systems effective for light driven H2 generation were examined by photophysical methods including transient absorption spectroscopy to observe charge-separated states and chart their dynamics. Quantum yields for hydrogen production were also measured. Additional studies examined the effectiveness of these systems for H2 generation and involved the development of new catalysts and systems based thereon. From these studies, a better understanding of initial steps in the light driven generation of hydrogen were obtained.

  12. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect (OSTI)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F.C.

    2014-03-31T23:59:59.000Z

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycalís pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawaiíi. Phycalís algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboostô process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  13. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect (OSTI)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01T23:59:59.000Z

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  14. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

  15. Smart grids are forcing the evolution of grid operational strategies. The variability inherent in large-scale renewable generation challenges existing regulation approaches.

    E-Print Network [OSTI]

    Hiskens, Ian A.

    stable, optimal operation. Wide Area Monitoring and Control (WAMC) Phasor measurement units (PMUs transformers (TCPSTs, phase angle differences), and unified power flow controllers (UPFCs, all of the aboveSmart grids are forcing the evolution of grid operational strategies. The variability inherent

  16. Design and Test of DC Voltage Link Conversion System and Brushless Doubly-Fed Induction Generator for Variable-Speed Wind Energy Applications: August 1999--May 2003

    SciTech Connect (OSTI)

    Lipo, T.A.; Panda, D.; Zarko, D.

    2005-11-01T23:59:59.000Z

    This report describes four low-cost alternative power converters for processing the power developed by a doubly fed wound-rotor induction generator for wind energy conversion systems.

  17. MaramaEML: An Integrated Multi-View Business Process Modelling Environment with Tree-Overlays, Zoomable Interfaces and Code Generation

    E-Print Network [OSTI]

    Grundy, John

    for integrating complex enterprise system models. (5) We have integrated a 3rd party LTSA engine to verify

  18. Integrated Kinetic Simulation of Laser-Plasma Interactions, Fast-Electron Generation and Transport in Fast Ignition

    SciTech Connect (OSTI)

    Kemp, A; Cohen, B; Divol, L

    2009-11-16T23:59:59.000Z

    We present new results on the physics of short-pulse laser-matter interaction of kilojoule-picosecond pulses at full spatial and temporal scale, using a new approach that combines a 3D collisional electromagnetic Particle-in-Cell code with an MHD-hybrid model of high-density plasma. In the latter, collisions damp out plasma waves, and an Ohm's law with electron inertia effects neglected determines the electric field. In addition to yielding orders of magnitude in speed-up while avoiding numerical instabilities, this allows us to model the whole problem in a single unified framework: the laser-plasma interaction at sub-critical densities, energy deposition at relativistic critical densities, and fast-electron transport in solid densities. Key questions such as the multi-picosecond temporal evolution of the laser energy conversion into hot electrons, the impact of return currents on the laser-plasma interaction, and the effect of self-generated electric and magnetic fields on electron transport will be addressed. We will report applications to current experiments.

  19. Integrity assessment of the ferritic / austenitic dissimilar weld joint between intermediate heat exchanger and steam generator in fast reactor

    SciTech Connect (OSTI)

    Jayakumar, T.; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, S.; Kumar, J. G.; Mathew, M. D. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102 (India)

    2012-07-01T23:59:59.000Z

    Integrity of the modified 9Cr-1Mo / alloy 800 dissimilar joint welded with Inconel 182 electrodes has been assessed under creep condition based on the detailed analysis of microstructure and stress distribution across the joint by finite element analysis. A hardness peak at the ferritic / austenitic weld interface and a hardness trough at the inter-critical heat affected zone (HAZ) in ferritic base metal developed. Un-tempered martensite was found at the ferritic / austenitic weld interface to impart high hardness in it; whereas annealing of martensitic structure of modified 9Cr-1Mo steel by inter-critical heating during welding thermal cycle resulted in hardness tough in the inter-critical HAZ. Creep tests were carried out on the joint and ferritic steel base metal at 823 K over a stress range of 160-320 MPa. The joint possessed lower creep rupture strength than its ferritic steel base metal. Failure of the joint at relatively lower stresses occurred at the ferritic / austenitic weld interface; whereas it occurred at inter-critical region of HAZ at moderate stresses. Cavity nucleation associated with the weld interface particles led to premature failure of the joint. Finite element analysis of stress distribution across the weld joint considering the micro-mechanical strength inhomogeneity across it revealed higher von-Mises and principal stresses at the weld interface. These stresses induced preferential creep cavitation at the weld interface. Role of precipitate in enhancing creep cavitation at the weld interface has been elucidated based on the FE analysis of stress distribution across it. (authors)

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    Scale† Integration† of† Wind† Generation†Including†Network†Scale† Integration† of† Wind† Generation†Including†Network†with†Large† Penetration†of†Wind†Generation:†Wind†energy†is†

  1. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  2. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  3. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005 765 VARIABILITY RESULTS FOR DUAL-THRESHOLD VOLTAGE ALLOCATION

    E-Print Network [OSTI]

    Dueck, Gerhard W.

    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005 765, and M. I. Elmasry, "Dynamic and leakage power reduction in MTCMOS circuits using an automated effi. 1997. [6] Q. Wang and S. B. K. Vrudhula, "Static power optimization of deep submicron CMOS circuits

  4. Renewable variable speed hybrid system†

    E-Print Network [OSTI]

    Stott, Paul Anthony

    2010-01-01T23:59:59.000Z

    generator island grids, these generators will be running at a fraction of maximum output for most of the time. A new variable speed diesel generator allows for a reduction in fuel consumption at part load compared to constant speed operation. Combining...

  5. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  6. Market-Based Indian Grid Integration Study Options: Preprint

    SciTech Connect (OSTI)

    Stoltenberg, B.; Clark, K.; Negi, S. K.

    2012-03-01T23:59:59.000Z

    The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

  7. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29T23:59:59.000Z

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energyís electric grid system in southern Nevada. It analyzes the ability of NV Energyís generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  8. Calculating Wind Integration Costs: Separating Wind Energy Value from Integration Cost Impacts

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2009-07-01T23:59:59.000Z

    Accurately calculating integration costs is important so that wind generation can be fairly compared with alternative generation technologies.

  9. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

    SciTech Connect (OSTI)

    Choi, Woo-Young; Lai, Jih-Sheng (Jason) [Future Energy Electronics Center, Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2010-04-15T23:59:59.000Z

    This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

  10. CONSULTANT REPORT DISTRIBUTED GENERATION

    E-Print Network [OSTI]

    an independent cost analysis to interconnect and integrate increased penetration levels of renewable distributed costs. The Energy Commission considers this study a first step toward the 2012 Integrated Energy Policy Generation Integration Cost Study: Analytical Framework. California Energy Commission. CEC2002013007. i

  11. Variable Frequency Pump Drives

    E-Print Network [OSTI]

    Karassik, I. J.; Petraccaro, L. L.; McGuire, J. T.

    . In a conventional pump and driver arrangement (for example, a centrifugal pump coupled to an AC induction motor'with no speed control provision), the motor runs at. a constant speed, which is determined by the incoming line frequency, and the pump... when it is needed. LONG RANGE DESIGN TRENDS The growing use of variable-frequency electric motor drives will permit the integration of 60 and 50 cycle pump lines. One important concern for future improvements is the growing possibility...

  12. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  13. Separations and safeguards model integration.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01T23:59:59.000Z

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  14. Microsoft Word - Connecting Variable Generating Resources to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Background The Bonneville Power Administration (BPA) has about 1,700 megawatts of wind power operating on its system today. Wind power in BPA's system is set to reach 3,000 MW by...

  15. Use of Slip Ring Induction Generator for Wind Power Generation

    E-Print Network [OSTI]

    K Y Patil; D S Chavan

    Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

  16. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations...

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    data† integration† for† Smart† GridĒ,† B 2010† 3rd† IEEE†simulation† integration,† the† next†generation†smart†grid†the†Smart†Grid†vision†requires†the†efficient†integration†of†

  18. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02T23:59:59.000Z

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the systemís generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  19. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

  20. Sandia National Laboratories: Small Generator Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission Revised Its Small Generator Interconnection Procedure and Small Generator Interconnection Agreement On March 4, 2014, in Distribution Grid Integration, Energy, Grid...

  1. Cataclysmic Variables

    E-Print Network [OSTI]

    Robert Connon Smith

    2007-01-23T23:59:59.000Z

    Cataclysmic variables are binary stars in which a relatively normal star is transferring mass to its compact companion. This interaction gives rise to a rich range of behaviour, of which the most noticeable are the outbursts that give the class its name. Novae belong to the class, as do the less well known dwarf novae and magnetic systems. Novae draw their energy from nuclear reactions, while dwarf novae rely on gravity to power their smaller eruptions. All the different classes of cataclysmic variable can be accommodated within a single framework and this article will describe the framework, review the properties of the main types of system and discuss models of the outbursts and of the long-term evolution.

  2. Remarks on elementary integral calculus for supersmooth functions on superspace ${\\mathfrak{R}}^{m|n}$

    E-Print Network [OSTI]

    Atsushi Inoue

    2014-08-18T23:59:59.000Z

    After introducing Berezin integral for polynomials of odd variables, we develop the elementary integral calculus based on supersmooth functions on the superspace ${\\mathfrak{R}}^{m|n}$. Here, ${\\mathfrak{R}}$ is the Fr\\'echet-Grassmann algebra with countably infinite Grassmann generators, which plays the role of real number field ${\\mathbb{R}}$. As is well-known that the formula of change of variables under integral sign is indispensable not only to treat PDE applying funtional analytic method but also to introduce analysis on supermanifolds. But, if we define naively the integral for supersmooth functions, there exists discrepancy which should be ameliorated. Here, we extend the contour integral modifying the parameter space introduced basically by de Witt, Rogers and Vladimirov and Volovich

  3. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01T23:59:59.000Z

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  4. Transition-fault test generation

    E-Print Network [OSTI]

    Cobb, Bradley Douglas

    2013-02-22T23:59:59.000Z

    . One way to detect these timing defects is to apply test patterns to the integrated circuit that are generated using the transition-fault model. Unfortunately, industry's current transition-fault test generation schemes produce test sets that are too...

  5. Sandia National Laboratories: Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Wind Generator Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security,...

  6. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  7. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    SciTech Connect (OSTI)

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17T23:59:59.000Z

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental program to test the full size strip (V5) and extraction (V10) centrifugal contactors and the associated strip and extraction effluent coalescers to determine the hydraulic and mass transfer characteristics with the NGS. The test program evaluated the amount of organic carryover and the droplet size of the carryover phases using several analytical methods. Provisions were also made to enable an evaluation of coalescer performance. Stage efficiency and mass distribution ratios were determined using Cs mass transfer measurements. Using 20 millimolar (mM) extractant (instead of 50 mM), the nominal D(Cs) measured was 16.0-17.5. The data indicate that equilibrium is achieved rapidly and maintained throughout sampling. The data showed good stage efficiency for extraction (Tests 1A-1D), ranging from 98.2% for Test 1A to 90.5% for Test 1D. No statistically-significant differences were noted for operations at 12 gpm aqueous flow when compared with either 4 gpm or 8 gpm of aqueous flow. The stage efficiencies equal or exceed those previously measured using the baseline CSSX solvent system. The nominal target for scrub Cs distribution values are {approx}1.0-2.5. The first scrub test yielded an average scrub value of 1.21 and the second scrub test produced an average value of 0.78. Both values are considered acceptable. Stage efficiency was not calculated for the scrub tests. For stripping behavior, six tests were completed in a manner to represent the first strip stage. For three tests at the baseline flow ratios (O:A of 3.75:1) but at different total flow rates, the D(Cs) values were all similar at {approx}0.052. Similar behavior was observed for two tests performed at an O:A ratio of 7:1 instead of 3.75:1. The data for the baseline strip tests exhibited acceptable stage efficiency, ranging from 82.0% for low flow to 89-90% for medium and high flow. The difference in efficiency may be attributable to the low volume in the contactor housing at lower flow rates. The concentrations of Isopar L{reg_sign} and Modifier were measured using semi-volatile organic analysis (SVOA

  8. Sandia National Laboratories: Distributed Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Grid Integration Federal Electric Regulatory Commission Revised Its Small Generator Interconnection Procedure and Small Generator Interconnection Agreement On March 4,...

  9. Integral Input-to-State Stability of the Drive-Train of a Wind Turbine Chen Wang and George Weiss

    E-Print Network [OSTI]

    Sontag, Eduardo

    Abstract-- This paper investigates the stability of a variable- speed wind turbine operating under low of the generator torque. We show that the turbine system is integral input-to-state stable. I. INTRODUCTIONIntegral Input-to-State Stability of the Drive-Train of a Wind Turbine Chen Wang and George Weiss

  10. Apply: Small Business Funding Opportunity for Lighting, Integrated...

    Energy Savers [EERE]

    Integrated Storage and Distributed Generation for Buildings DOE's BTO seeks to identify energy storage and distributed generation technologies not for emergency generation, but...

  11. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31T23:59:59.000Z

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  12. 18.112 Functions of a Complex Variable, Fall 2005

    E-Print Network [OSTI]

    Helgason, Sigurdur, 1927-

    The basic properties of functions of one complex variable. Cauchy's theorem, holomorphic and meromorphic functions, residues, contour integrals, conformal mapping. Infinite series and products, the gamma function, the ...

  13. 18.112 Functions of a Complex Variable, Fall 2006

    E-Print Network [OSTI]

    Helgason, Sigurdur, 1927-

    The basic properties of functions of one complex variable. Cauchy's theorem, holomorphic and meromorphic functions, residues, contour integrals, conformal mapping. Infinite series and products, the gamma function, the ...

  14. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanket A.LittleFY13 |SawteethDoug

  15. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  16. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10T23:59:59.000Z

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  17. Variable Valve Actuation

    SciTech Connect (OSTI)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31T23:59:59.000Z

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the mechanism it was determined that the single cam design did not have enough flexibility to satisfy three critical OEM requirements simultaneously, (maximum valve lift variation, intake valve opening timing and valve closing duration), and a new approach would be necessary. After numerous internal design reviews including several with the OEM a dual cam design was developed that had the flexibility to meet all motion requirements. The second cam added complexity to the mechanism however the cost was offset by the deletion of the electric motor required in the previous design. New patent applications including detailed drawings and potential valve motion profiles were generated and alternate two cam designs were proposed and evaluated for function, cost, reliability and durability. Hardware was designed and built and testing of sample hardware was successfully completed on an engine test stand. The mechanism developed during the course of this investigation can be applied by Original Equipment Manufacturers, (OEM), to their advanced diesel engines with the ultimate goal of reducing emissions and improving fuel economy. The objectives are: (1) Develop an optimal, cost effective, variable valve actuation (VVA) system for advanced low temperature diesel combustion processes. (2) Design and model alternative mechanical approaches and down-select for optimum design. (3) Build and demonstrate a mechanism capable of application on running engines.

  18. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2012-09-01T23:59:59.000Z

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  19. High precision triangular waveform generator

    DOE Patents [OSTI]

    Mueller, Theodore R. (Oak Ridge, TN)

    1983-01-01T23:59:59.000Z

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  20. AN INTEGRATED ARCHITECTURE FOR FUTURE CAR GENERATIONS

    E-Print Network [OSTI]

    -wire functionality in the automotive industry. Keywords: real-time systems, system architectures, automotive for the auto- motive domain, since there is a steady increase in electronics in automotive systems in order

  1. Integrated Design and Manufacturing of Thermoelectric Generator...

    Office of Environmental Management (EM)

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery High-Performance Thermoelectric Devices Based on Abundant Silicide...

  2. Integrated Short Contact Time Hydrogen Generator (SCPO)

    Broader source: Energy.gov [DOE]

    Presentation by Ke Liu, Gregg Deluga, Lanny Schmidt, and Ted Krause at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  3. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Jordan, G.; Venkataraman, S.

    2012-06-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveraging the results of WWSIS Phase 1 study.

  4. Measuring spatial variability in soil characteristics

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Svoboda, John M. (Idaho Falls, ID); Sawyer, J. Wayne (Hampton, VA); Hess, John R. (Ashton, ID); Hess, J. Richard (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  5. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01T23:59:59.000Z

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  6. The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research effort for sustainable hydroelectricity generation and water management. The NHAAP conducts research on new

    E-Print Network [OSTI]

    The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water conducts research on new development opportunities and provides a comprehensive hydropower database integrating information about existing hydropower plants. Research Summary and Resources Example: ∑ Existing

  7. Anticipatory control of turbine generators

    E-Print Network [OSTI]

    Messec, Freddie Laurel

    1971-01-01T23:59:59.000Z

    of Turbine Generators. (Nay 1971) Freddie Laurel Nessec, B. S. E. E, , Texas Tech University; Directed by: Professor J. S . Denison An investigation is made of the use of predicted loads in controlling turbine generators. A perturbation model of a turbine... 3. Relational diagram of a turbine generator. Speed governor system. Static speed-load characteristic of a speed governor system. Block diagram of model. Frequency response to step load change. Block diagram of model with integral control...

  8. Method of operating a thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05T23:59:59.000Z

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  9. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  10. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14T23:59:59.000Z

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  11. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  12. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1991-07-16T23:59:59.000Z

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  13. BPA Wind Integration Team Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA Wind Integration Team Update Customer Supplied Generation Imbalance (CSGI) Pilot Transmission Services Customer Forum 29 July 28, 2010 B O N N E V I L L E P O W E R A D M I N...

  14. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  15. Ashtekar's variables without spin

    E-Print Network [OSTI]

    Thomas Schucker

    2009-06-26T23:59:59.000Z

    Ashtekar's variables are shown to arise naturally from a 3+1 split of general relativity in the Einstein-Cartan formulation. Thereby spinors are exorcised.

  16. Addressing System Integration Issues Required for the Developmente of Distributed Wind-Hydrogen Energy Systems: Final Report

    SciTech Connect (OSTI)

    Mann, M.D; Salehfar, H.; Harrison, K.W.; Dale, N.; Biaku, C.; Peters, A.J.; Hernandez-Pacheco: E.

    2008-04-01T23:59:59.000Z

    Wind generated electricity is a variable resource. Hydrogen can be generated as an energy storage media, but is costly. Advancements in power electronics and system integration are needed to make a viable system. Therefore, the long-term goal of the efforts at the University of North Dakota is to merge wind energy, hydrogen production, and fuel cells to bring emission-free and reliable power to commercial viability. The primary goals include 1) expand system models as a tool to investigate integration and control issues, 2) examine long-term effects of wind-electrolysis performance from a systematic perspective, and 3) collaborate with NREL and industrial partners to design, integrate, and quantify system improvements by implementing a single power electronics package to interface wild AC to PEM stack DC requirements. This report summarizes the accomplishments made during this project.

  17. Evolution integrals

    E-Print Network [OSTI]

    Rocco Duvenhage

    2006-05-24T23:59:59.000Z

    A framework analogous to path integrals in quantum physics is set up for abstract dynamical systems in a W*-algebraic setting. We consider spaces of evolutions, defined in a specific way, of a W*-algebra A as an analogue of spaces of classical paths, and show how integrals over such spaces, which we call ``evolution integrals'', lead to dynamics in a Hilbert space on a ``higher level'' which is viewed as an analogue of quantum dynamics obtained from path integrals. The measures with respect to which these integrals are performed are projection valued.

  18. Thermoelectric Generators 1. Thermoelectric generator

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 effects are called the thermoelectric effects. The mechanisms of thermoelectricity were not understood. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large

  19. An engine air-brake integration study

    E-Print Network [OSTI]

    Mulchandani, Hiten

    2011-01-01T23:59:59.000Z

    The feasibility of operating an engine air-brake (EAB) integrated with a pylon duct bifurcation in a realistic aircraft engine environment has been analyzed. The EAB uses variable exit guide vanes downstream of a high ...

  20. Precision linear ramp function generator

    DOE Patents [OSTI]

    Jatko, W. Bruce (Knoxville, TN); McNeilly, David R. (Maryville, TN); Thacker, Louis H. (Knoxville, TN)

    1986-01-01T23:59:59.000Z

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  1. Precision linear ramp function generator

    DOE Patents [OSTI]

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01T23:59:59.000Z

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  2. Linear rank inequalities on five or more variables

    E-Print Network [OSTI]

    Dougherty, Randall; Zeger, Kenneth

    2009-01-01T23:59:59.000Z

    Ranks of subspaces of vector spaces satisfy all linear inequalities satisfied by entropies (including the standard Shannon inequalities) and an additional inequality due to Ingleton. It is known that the Shannon and Ingleton inequalities generate all such linear rank inequalities on up to four variables, but it has been an open question whether additional inequalities hold for the case of five or more variables. Here we give a list of 24 inequalities which, together with the Shannon and Ingleton inequalities, generate all linear rank inequalities on five variables. We also give a partial list of linear rank inequalities on six variables and general results which produce such inequalities on an arbitrary number of variables; we prove that there are essentially new inequalities at each number of variables beyond four (a result also proved recently by Kinser).

  3. Managing Variable Energy Resources to Increase Renewable Electricity's

    E-Print Network [OSTI]

    Managing Variable Energy Resources to Increase Renewable Electricity's Contribution to the Grid P o Contribution of Renewable Energy to Total Electricity Generation? 15 ManaGInG VaRIablE EnERGy REsouRCEs 16 What l i c y m a k e r G u i d e #12;Variable energy resources, such as wind power, now produce about 3

  4. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

    1980-01-01T23:59:59.000Z

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  5. RESEARCH ARTICLE Development and characterization of a variable turbulence

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    (7):1037≠1048, 2009), where variable blockage ratio slots are located upstream of a contoured nozzle. Vortical A Nozzle exit area E Power spectral density ReD Geometric Reynolds number Rel Turbulent Reynolds number SLRESEARCH ARTICLE Development and characterization of a variable turbulence generation system A

  6. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Eimerl, David (Pleasanton, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  7. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10T23:59:59.000Z

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  8. Integrated Energy Efficiency

    E-Print Network [OSTI]

    Heins, S.

    Integrated Energy Efficiency Steve Heins VP Communications and Government Affairs Orion Energy Systems, Inc. 2 MegaTrend Convergence We need companies to commercialize technologies that use less energy without compromise to operations. Energy... Environment US electricity consumption growing 43% by 2030 Power generation expected to account for 50% of CO 2 emission increases 3 How Electricity Is Used 24 Hour Operation Midnight 6 a.m. Noon 6 p.m. Midnight kW 4 Lighting is a Major Component...

  9. Nouvelle architecture lectromagntique rluctance variable excite pour

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    field inductor. Its topology is discoid for better integration to the flywheel. Motor-generator don't have to disturb magnetic bearing of the flywheel set. We led a detailed study of magnetic forces forces, Laplace forces, reluctance forces, finite-elements, flywheel energy storage. Revue Internationale

  10. Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

    2014-10-27T23:59:59.000Z

    In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing ďquasi-deterministicĒ components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

  11. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ‚?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU‚??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory‚??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  12. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  13. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  14. Wave variability and wave spectra for wind generated gravity waves†

    E-Print Network [OSTI]

    Bretschneider, Charles L.

    1959-01-01T23:59:59.000Z

    \\c7) cJ\\y \\ pj?7y T7jwJc ObD 6? U7)u7yc s{ 6\\?7( jy Mr\\i)\\yc( OOO H? nsy{ji7yu7 1j_jc( {s) ns))7P\\cjsy ns7{{juj7yc( PjPc 8e $7(c {s) 1jy7\\)jcL s{ h7w)7((jsy OOZ nT^U$0h k?? t ^ $T0vh* v. 6^k0 2U0n$h^ .hva /v?'$ I?2$h?nC$?v' O9 p7y7)\\P O?Q ?9 0y...7)wL nsy(ji7)\\cjsy( O?Q Q? I7)j?\\cjsy s{ V 2d7uc)\\ s{ V ^ 126 nT^U$0h k t 6^k0 k^h?^m?1?$* ^ 'I /v?'$ I?2$h?mC$?v' ?jjj C? t t2d7uc)\\ s{ , , O?D %? U7)jsi 2d7uc)\\ O?o 69 .)7lr7yuL 2d7uc)\\ OQb H? U)sd7)cj7( s{ 6\\?7 2d7uc)\\ OQQt U7\\? s{ ) t2d7...

  15. Carbon and energy payback of variable renewable generation

    E-Print Network [OSTI]

    Thomson, Rachel Camilla

    2014-06-30T23:59:59.000Z

    The continued drive to reduce Greenhouse Gas (GHG) emissions in order to mitigate climate change has led to an increase in demand for low-carbon energy sources, and the development of new technologies to harness the ...

  16. Linearly-acting variable-reluctance generator for thermoacoustic applications

    E-Print Network [OSTI]

    Knodel, Philip Clinton

    2014-01-01T23:59:59.000Z

    Advances in battlefield equipment have created a demand for portable power systems with greater power density and more flexibility than current battery sources alone can provide. One potential solution lies in portable, ...

  17. Wave variability and wave spectra for wind generated gravity waves

    E-Print Network [OSTI]

    Bretschneider, Charles L.

    1959-01-01T23:59:59.000Z

    \\?\\jP\\-P7 cJ)srwJ cJ7 usr)c7(L s{ U)s{7((s) /? 6? /sJy(sy \\yi a)9 h? h9 Urcq s{ cJ7 Cyj?7)(jcL s{ n\\Pj{s)yj\\e m7)?7P7L] a)9 n9 U? m7((7 s{ $J7 n\\Pj{s)yj\\ ns_d\\yLe '7f v)P7\\y(] cJ7 m7\\uJ 0)s(jsy ms\\)ie \\yi scJ7) s{{ju7( s{ cJ7 C9 2? ^)_L ns)d( s{ 0...Jc \\yi f\\?7 d7)jsi (lr\\)7i j( (rww7(c7i9 ?c j( {sryi cJ\\c cJ7 _\\)wjy\\P d)s-\\-jPjcL ij(c)j-rcjsy s{ f\\?7 J7jwJc( {sPPsf( h\\LP7jwJW( ij(c)j-rcjsy uPs(7PL9 $Jj( usyuPr(jsy j( -\\(7i rdsy ob )7us)i( s{ \\-src 100 f\\?7( 7\\uJ dPr( (7?7)\\P 7Sc)\\ Psyw )7us)i( c...

  18. NERC Presentation: Accommodating High Levels of Variable Generation,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3ServicesNEET FY 12a-12Environmental Policy

  19. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 40, NO. 2, MARCH/APRIL 2004 565 Modeling and Control of a Variable-Speed

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    -alone diesel and gasoline generators, and aerospace and naval power generation systems where a variable speed and Control of a Variable-Speed Constant-Frequency Synchronous Generator With Brushless Exciter Chunting Mi-frequency power generation system for renewable and distributed energy applications. The generation system

  20. Using closures for code generation Marc Feeley

    E-Print Network [OSTI]

    Feeley, Marc

    which offers the advantages of an interpreter with the speed of compiled code. Code generation relies - environment (i.e. the set of current variable bindings). This operation is called closure. We speakUsing closures for code generation Marc Feeley Guy Lapalme D¬īepartement d'informatique et de

  1. Hybrid solar-fossil fuel power generation

    E-Print Network [OSTI]

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01T23:59:59.000Z

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  2. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01T23:59:59.000Z

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  3. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  4. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  5. In Situ Column Generation for a Cutting-Stock Problem

    E-Print Network [OSTI]

    Jon Lee

    2005-04-21T23:59:59.000Z

    Apr 21, 2005 ... The ILPs holistically integrate the master and subproblem of the usual price driven pattern-generation paradigm, resulting in a unified model†...

  6. January 2013 Most Viewed Documents for Power Generation And Distributi...

    Office of Scientific and Technical Information (OSTI)

    January 2013 Most Viewed Documents for Power Generation And Distribution Lessons from Large-Scale Renewable Energy Integration Studies: Preprint Bird, L.; Milligan, M. Small punch...

  7. Knowledge Generation

    SciTech Connect (OSTI)

    BRABSON,JOHN M.; DELAND,SHARON M.

    2000-11-02T23:59:59.000Z

    Unattended monitoring systems are being studied as a means of reducing both the cost and intrusiveness of present nuclear safeguards approaches. Such systems present the classic information overload problem to anyone trying to interpret the resulting data not only because of the sheer quantity of data but also because of the problems inherent in trying to correlate information from more than one source. As a consequence, analysis efforts to date have mostly concentrated on checking thresholds or diagnosing failures. Clearly more sophisticated analysis techniques are required to enable automated verification of expected activities level concepts in order to make automated judgments about safety, sensor system integrity, sensor data quality, diversion, and accountancy.

  8. Process for applying control variables having fractal structures

    DOE Patents [OSTI]

    Bullock, IV, Jonathan S. (Oak Ridge, TN); Lawson, Roger L. (Oliver Springs, TN)

    1996-01-01T23:59:59.000Z

    A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.

  9. Process for applying control variables having fractal structures

    DOE Patents [OSTI]

    Bullock, J.S. IV; Lawson, R.L.

    1996-01-23T23:59:59.000Z

    A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.

  10. High-precision triangular-waveform generator

    DOE Patents [OSTI]

    Mueller, T.R.

    1981-11-14T23:59:59.000Z

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  11. Final Technical Report - Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling

    SciTech Connect (OSTI)

    Shafer, John M

    2012-11-05T23:59:59.000Z

    The three major components of this research were: 1. Application of minimally invasive, cost effective hydrogeophysical techniques (surface and borehole), to generate fine scale (~1m or less) 3D estimates of subsurface heterogeneity. Heterogeneity is defined as spatial variability in hydraulic conductivity and/or hydrolithologic zones. 2. Integration of the fine scale characterization of hydrogeologic parameters with the hydrogeologic facies to upscale the finer scale assessment of heterogeneity to field scale. 3. Determination of the relationship between dual-domain parameters and practical characterization data.

  12. Strategies and Decision Support Systems for Integrating Variable Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategic Capital InvestmentsStrategic Energy

  13. Advanced Variable Speed Air-Source Integrated Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmarkControlWaste Heat

  14. Variable nonlinear resistances

    E-Print Network [OSTI]

    Howard, James Edgar

    1955-01-01T23:59:59.000Z

    VARIETAL". NONLINEAR RESIS'IANCES A Thes1s JA'. 4ES EDGAR HOWARD as to style and content by Head Department January 1955 LIBRARY A 4 IS COLLEGE PF TEXAS VARIABLE NONLINEAR RESISTANCES A Thesis By JAMES EDGAR HOWARD Submitted...

  15. Soil Disturbance from an Integrated Mechanical Forest Fuel Reduction

    E-Print Network [OSTI]

    Bolding, M. Chad

    Soil Disturbance from an Integrated Mechanical Forest Fuel Reduction Operation in Southwest Oregon1 literature has quantified harvesting system effectiveness or soil disturbance concerns from such operations. This paper reports results of soil disturbance generated from an integrated forest harvesting

  16. Variables Influencing HRSG Designs

    E-Print Network [OSTI]

    Ganapathy, V.; Rentz, J.

    Heat Recovery Steam Generators (HRSG's) are widely used in chemical plants, refineries, incineration and cogeneration systems and in general for recovering energy from waste gas streams. In applications such as hydrogen or sulfuric acid plants...

  17. Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two variations. Index Terms--Wind energy conversion system, power generation control, sliding mode control

  18. Optimization of Wind Power and Its Variability With a Computational Intelligence Approach

    E-Print Network [OSTI]

    Kusiak, Andrew

    Optimization of Wind Power and Its Variability With a Computational Intelligence Approach Zijun is presented for maximizing the generation of wind power while minimizing its variability. In the optimization model, data-driven approaches are used to model the wind-power generation process based on industrial

  19. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene ControlsCounselGeneral User Generation

  20. EXTENSION OF THE MAXIMUM POWER REGION OF DOUBLY-SALIENT VARIABLE RELUCTANCE MOTORS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -Salient Variable Reluctance Motors (DSVRM) has been investigated and developed for variable-speed drives during, variable-frequency generators, wind wheels, machine tools, etc.). In these applications, it is generally necessary to operate in a regime of a high speed ux-weakening (zone of maximum constant power), for a better

  1. Estimating the age of alleles by use of intraallelic variability

    SciTech Connect (OSTI)

    Slatkin, M.; Rannala, B. [Univ of California, Berkeley, CA (United States)

    1997-02-01T23:59:59.000Z

    A method is presented for estimating the age of an allele by use of its frequency and the extent of variation among different copies. The method uses the joint distribution of the number of copies in a population sample and the coalescence times of the intraallelic gene genealogy conditioned on the number of copies. The linear birth-death process is used to approximate the dynamics of a rare allele in a finite population. A maximum-likelihood estimate of the age of the allele is obtained by Monte Carlo integration over the coalescence times. The method is applied to two alleles at the cystic fibrosis (CFTR) locus, {Delta}F508 and G542X, for which intraallelic variability at three intronic microsatellite loci has been examined. Our results indicate that G542X is somewhat older than {Delta}F508. Although absolute estimates depend on the mutation rates at the microsatellite loci, our results support the hypothesis that {Delta}F508 arose <500 generations ({approx}10,000 years) ago. 32 refs., 4 figs.

  2. ESF Subsurface Standby Generator Analysis

    SciTech Connect (OSTI)

    L. Fernandez

    1998-04-17T23:59:59.000Z

    The purpose of this analysis is to outline and recommend two standby generator systems. These systems shall provide power during a utility outage to critical Alcove No.5's thermal test loads and to subsurface flow through ventilation loads. Critical loads that will be supported by these generator systems will be identified and evaluated. Additionally, other requirements from the Exploratory Studies Facilities Design Requirements (ESFDR) document will be evaluated. Finally, the standby generator systems will be integrated into the existing ESF subsurface distribution system. The objective of this analysis is to provide design inputs for an efficient and reliable standby generator systems which will provide power for critical loads during a power outage; specifically, Alcove No.5's thermal test loads and the subsurface flow through ventilation loads. Additionally, preliminary one-line diagrams will be developed using this analysis as a primary input.

  3. Integrative Bioengineering Institute

    SciTech Connect (OSTI)

    Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

    2009-01-09T23:59:59.000Z

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

  4. advanced integrated operator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equation (quantum Markovian master equation). We consider the path integral for quantum operation with a simple infinitesimal generator. Vasily E. Tarasov 2007-06-14 6...

  5. Power Systems Integration Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Power Systems Integration Laboratory may include: * Manufacturers of distributed generation and...

  6. Scientific Innovation Through Integration Investing in Innovation

    E-Print Network [OSTI]

    of living tissues and cells as well as quantitative investigation of molecular interaction dynamics and molecular chemical-state information simultaneously. Next-generation metabolomics characterization-photon fluorescence microscope: Seamlessly integrates nonlinear two-photon excitation, laser scanning confocal

  7. Nebraska Statewide Wind Integration Study: Executive Summary

    SciTech Connect (OSTI)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01T23:59:59.000Z

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

  8. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20T23:59:59.000Z

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  9. Variable Crop Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Sammons, Ray

    1980-01-01T23:59:59.000Z

    )OC lAL45.7 173 1. 1224 Texas Agricultural Extension Service The Texas A&M University System Daniel C. Pfannstiel,Director colleg e Station, Texas / f , ' '~ :';,; ,,: ''': ~ " k , -~. _Variable _Crop Share _Leases ... Marvin... Sartin and Ray Sammons* Renting or leasing farmland is part of many modern farming operations and increases average farm size in U. S. agriculture. Economies of size are vitally import ant to farm operations as they strive to cope with the continuous...

  10. Impact of Power Generation Uncertainty on Power System Static Performance

    E-Print Network [OSTI]

    Liberzon, Daniel

    in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

  11. IDRC/Next Generation Sequencing Research Associate I Open Applicant Pool IDRC (Next Generation Sequencing Core)/OVPR/CSU

    E-Print Network [OSTI]

    Rutledge, Steven

    IDRC/Next Generation Sequencing Research Associate I Open Applicant Pool IDRC (Next Generation description of the Research Associate I position: The Next Generation Sequencing Core Facility are desired. 3) Flexible and team oriented individual preferred as hours will often be variable and all

  12. Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel with the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)

  13. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Valve Actuation EGR Loop Controls Variable Intake Electrically Driven Components Turbo Technology Aftertreatment Integration of Cummins Business Component Technologies in a...

  14. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01T23:59:59.000Z

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  15. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Energy Savers [EERE]

    Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate...

  16. XXZ scalar products, Miwa variables and discrete KP

    E-Print Network [OSTI]

    O. Foda; G. Schrader

    2010-05-21T23:59:59.000Z

    We revisit the quantum/classical integrable model correspondence in the context of inhomogeneous finite length XXZ spin-1/2 chains with periodic boundary conditions and show that the Bethe scalar product of an arbitrary state and a Bethe eigenstate is a discrete KP tau-function. The continuous Miwa variables of discrete KP are the rapidities of the arbitrary state.

  17. Historical Range of Variability and Current Landscape Condition Analysis

    E-Print Network [OSTI]

    Historical Range of Variability and Current Landscape Condition Analysis: South Central Highlands the Reference Period E. Overview of Integrated Ecosystem Management ... p 30 F. Literature Cited ... p 34 structures C. Legacies of Euro-American Settlement and Current Conditions ... p 67 1. Logging ("High

  18. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31T23:59:59.000Z

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with ďrealisticĒ PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with ďwell behavedĒ PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

  19. Variable waveband infrared imager

    DOE Patents [OSTI]

    Hunter, Scott R.

    2013-06-11T23:59:59.000Z

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  20. Variable Frequency Drives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 - USAF Wind Power Program Latitude: N.

  1. Variable Refrigerant Flow Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 - USAF Wind Power Program Latitude: N.Data

  2. NREL: Energy Systems Integration - Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Energy Systems Integration Facility Newsroom The Energy Systems Integration Facility (ESIF) will be one of the only megawatt-scale test facilities in the United...

  3. Understanding and Managing Generation Y

    E-Print Network [OSTI]

    Wallace, Kevin

    2007-12-14T23:59:59.000Z

    There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

  4. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

    E-Print Network [OSTI]

    Duda, Kevin R.

    The ďVariable Vector Countermeasure Suit (V2Suit) for Space Habitation and ExplorationĒ is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities ...

  5. A MICROFLUIDIC-ELECTRIC PACKAGE FOR POWER MEMS GENERATORS

    E-Print Network [OSTI]

    induction turbine-generator, and demonstrated a maximum output power of 192ĶW under driven excitation [1]. Holmes et al. have integrated a 7.5mm diameter permanent-magnet generator, an axial-flow polymer turbineA MICROFLUIDIC-ELECTRIC PACKAGE FOR POWER MEMS GENERATORS Florian Herrault, Chang-Hyeon Ji, Seong

  6. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  7. A simulation model for generation of aquifer characteristics and contaminant concentrations

    E-Print Network [OSTI]

    Deena, Jayaram

    1993-01-01T23:59:59.000Z

    simulation model was developed to generate aquifer characteristics such as hydraulic conductivity, porosity and organic carbon content. The variability of aquifer characteristics is represented by the fields generated using the simulation model. Random...

  8. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  9. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  10. WELL-CENTERED OVERRINGS OF AN INTEGRAL DOMAIN

    E-Print Network [OSTI]

    Heinzer, William

    WELL-CENTERED OVERRINGS OF AN INTEGRAL DOMAIN William Heinzer Department of Mathematics, Purdue of A if and only if B is flat and well-centered over A. If the integral closure of A is a Krull domain in Theorem 3.6 that every finitely generated well-centered over- ring of an integrally closed domain is flat

  11. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15T23:59:59.000Z

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  12. A Method to Study the Effect of Renewable Resource Variability on Power System Dynamics

    E-Print Network [OSTI]

    Liberzon, Daniel

    1 A Method to Study the Effect of Renewable Resource Variability on Power System Dynamics Yu reliance on renewable resources, such as wind or solar. It is well known that the integration proposes a set-theoretic method to assess the effect of variability associated with renewable-based elec

  13. Analysis of Heart Rate Variability Using Time-Varying Filtering of Heart Transplanted Patients

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Analysis of Heart Rate Variability Using Time-Varying Filtering of Heart Transplanted Patients the heart rate variability (HRV), obtained by using the time-varying integral pulse frequency modulation (TVIPFM) which is well adapted to the exercise stress testing. We consider that the mean heart period

  14. PV Integration by Building Energy Management System

    E-Print Network [OSTI]

    Boyer, Edmond

    stands for any variable that could be PV, grid power, or load power if calculation is valid for allPV Integration by Building Energy Management System Rim.MissaouiĻ, Ghaith.WarkozekĻ, Seddik. BachaLab.grenoble-inp.fr Abstract- This paper focuses on Energy Management System (EMS) applied to the residential sector. The EMS

  15. Benchmarking Variable Cost Performance in an Industrial Power Plant

    E-Print Network [OSTI]

    Kane, J. F.; Bailey, W. F.

    " of utilities exported from the power plant to the actual cost of the fuel and electricity required to produce them, generating a single number or "index." Variable cost performance is benchmarked by comparing the index from one period of time to the index...

  16. Adaptive Calculation of Variable Coefficients Elliptic Differential Equations via Wavelets

    E-Print Network [OSTI]

    Averbuch, Amir

    Description Generating a "good" discrete representation for continuous operators is one of the basic problemsAdaptive Calculation of Variable Coefficients Elliptic Differential Equations via Wavelets Amir rather than in the original physical space can speed up the performance of the sparse solver by a factor

  17. Offshore Series Wind Turbine Variable Hub heights & rotor diameters

    E-Print Network [OSTI]

    Firestone, Jeremy

    3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

  18. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01T23:59:59.000Z

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  19. Truck Thermoacoustic Generator and Chiller

    SciTech Connect (OSTI)

    Robert Keolian

    2011-03-31T23:59:59.000Z

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  20. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect (OSTI)

    Acker, T.; Pete, C.

    2012-03-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  1. Abstract--A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous

    E-Print Network [OSTI]

    Chen, Zhe

    1 Abstract--A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine of this variable speed wind turbine based on multiple generators drive-train configuration. Index Terms--Wind power

  2. Steam generator operating experience, update for 1989--1990

    SciTech Connect (OSTI)

    Frank, L.

    1991-12-01T23:59:59.000Z

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity. It provides: results of 1989 and 1990 steam generator inspections; highlights prevalent problem areas; improvements that have been made in nondestructive testing methods; preventive measures; repair techniques; and replacement procedures. It describes the equipment of the three (3) major suppliers and discusses recent examinations of 76 plants. Major areas of concern are the steam generator degradation mechanisms that affect tube integrity or cause tube leakage and tube failure. These include; (1) intergranular attack (IGA); (2) intergranular stress corrosion cracking (IGSCC); (3) primary water stress corrosion cracking (PWSCC); (4) pitting; and (5) vibrational wear and fatigue. Also discussed are plugging, sleeving, heat treatment, peening, chemical cleaning, and steam generator replacements. The current status of regulatory instruments and inspection guidelines for ensuring the steam generator integrity, is discussed with the highlights of steam generator research. New potential safety issues such as circumferential cracking and tube plug cracking are also discussed.

  3. Generation gaps in engineering?

    E-Print Network [OSTI]

    Kim, David J. (David Jinwoo)

    2008-01-01T23:59:59.000Z

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  4. HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX

    E-Print Network [OSTI]

    De Loera, Jesķs A.

    HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX V. BALDONI, N. BERLINE, J. A. DE LOERA, M. K of integrating a polynomial function f over a rational simplex. We prove that the problem is NP-hard for ar, if the polynomial depends only on a fixed number of variables, while its degree and the dimension of the simplex

  5. IFIP/IEEE International Conference on Very Large Scale Integration

    E-Print Network [OSTI]

    Pierre, Laurence

    -Signal IC Design ∑ 3-D Integration ∑ Physical Design ∑ SoC Design for Variability, Reliability, Fault22nd IFIP/IEEE International Conference on Very Large Scale Integration VLSI-SoC 2014 October 6-8, 2014 Playa del Carmen, Mexico Iberostar TucŠn and Quetzal Hotel General Chairs: Arturo Sarmiento Reyes

  6. Hamiltonian analysis of the double null 2+2 decomposition of Ashtekar variables

    E-Print Network [OSTI]

    R. A. d'Inverno; P Lambert; J. A. Vickers

    2006-04-06T23:59:59.000Z

    We derive a canonical analysis of a double null 2+2 Hamiltonian description of General Relativity in terms of complex self-dual 2-forms and the associated SO(3) connection variables. The algebra of first class constraints is obtained and forms a Lie algebra that consists of two constraints that generate diffeomorphisms in the two surface, a constraint that generates diffeomorphisms along the null generators and a constraint that generates self-dual spin and boost transformations.

  7. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  8. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03T23:59:59.000Z

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  9. Analysis and characterization of ancillary service demand response strategies for variable air volume HVAC systems

    E-Print Network [OSTI]

    Blum, David H. (David Henry)

    2013-01-01T23:59:59.000Z

    Output variability and prediction difficulties with respect to solar and wind electricity resources increase the requirement of grid-scale reserve capacity and add strain to existing firm generators used for reserves and ...

  10. Predictive and Corrective Scheduling in Electric Energy Systems with Variable Resources

    E-Print Network [OSTI]

    Gu, Yingzhong

    2014-11-05T23:59:59.000Z

    In the past decade, there has been sustained efforts around the globe in developing renewable energy-based generation in power systems. However, many renewables such as wind and solar are variable resources. They pose significant challenges to near...

  11. Novel Evaluation Methods for Complex Systems via Adaptive Sequential Exploration of Variables Interactions†

    E-Print Network [OSTI]

    Al Rashdan, Ahmad Y. M.

    2014-12-01T23:59:59.000Z

    The complex and coupled behavior of variables in the currently developing Generation IV reactors and Small Modular Reactors is becoming a major incentive to seek efficient design methods. This research develops and validates ...

  12. Computer Assisted Parallel Program Generation

    E-Print Network [OSTI]

    Kawata, Shigeo

    2015-01-01T23:59:59.000Z

    Parallel computation is widely employed in scientific researches, engineering activities and product development. Parallel program writing itself is not always a simple task depending on problems solved. Large-scale scientific computing, huge data analyses and precise visualizations, for example, would require parallel computations, and the parallel computing needs the parallelization techniques. In this Chapter a parallel program generation support is discussed, and a computer-assisted parallel program generation system P-NCAS is introduced. Computer assisted problem solving is one of key methods to promote innovations in science and engineering, and contributes to enrich our society and our life toward a programming-free environment in computing science. Problem solving environments (PSE) research activities had started to enhance the programming power in 1970's. The P-NCAS is one of the PSEs; The PSE concept provides an integrated human-friendly computational software and hardware system to solve a target ...

  13. Manifold Integration: Data Integration on Multiple Manifolds

    E-Print Network [OSTI]

    Choi, Hee Youl

    2011-08-08T23:59:59.000Z

    MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements for the degree of DOCTOR OF PHILOSOPHY... May 2010 Major Subject: Computer Science MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements...

  14. Variable rate CELP speech coding using widely variable parameter updates

    E-Print Network [OSTI]

    Moodie, Myron L.

    1995-01-01T23:59:59.000Z

    bit rates for a given quality level. This work develops new techniques, referred to as widely variable CELP parameter updates, which dynamically adapt the transmit frequency of the CELP spectral parameters to the characteristics of the input speech...

  15. Down-hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28T23:59:59.000Z

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  16. Attend a Webinar on AMO's Next Generation Electric Machines Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will fund four to six projects that develop a new generation of energy efficient, high power density, high speed, integrated medium voltage drive systems for a wide variety of...

  17. Electron beam dynamics for the ISIS bremsstrahlung beam generation system

    E-Print Network [OSTI]

    Block, Robert E. (Robert Edward)

    2011-01-01T23:59:59.000Z

    An electron beam transport system was designed for use in the Bremsstrahlung Beam Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose of this electron transport system was to provide for ...

  18. AMO FOA Targets Advanced Components for Next-Generation Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 20 million is now available to develop a new generation of energy efficient, high power density, high speed integrated MV drive systems for a wide variety of critical energy...

  19. The Florida Energy Efficiency Building Code, the Second Generation

    E-Print Network [OSTI]

    Dixon, R. W.

    1985-01-01T23:59:59.000Z

    This paper discusses the Revision of the Residential Sections of the Florida Energy Efficiency Code for Building Construction. The procedures utilized in the Revision and the concepts integrated in to the 2nd Generation of the Florida Specific...

  20. Circumferential cracking of steam generator tubes

    SciTech Connect (OSTI)

    Karwoski, K.J.

    1997-04-01T23:59:59.000Z

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

  1. Quantum information with modular variables

    E-Print Network [OSTI]

    A. Ketterer; S. P. Walborn; A. Keller; T. Coudreau; P. Milman

    2014-06-24T23:59:59.000Z

    We introduce a novel strategy, based on the use of modular variables, to encode and deterministically process quantum information using states described by continuous variables. Our formalism leads to a general recipe to adapt existing quantum information protocols, originally formulated for finite dimensional quantum systems, to infinite dimensional systems described by continuous variables. This is achieved by using non unitary and non-gaussian operators, obtained from the superposition of gaussian gates, together with adaptative manipulations in qubit systems defined in infinite dimensional Hilbert spaces. We describe in details the realization of single and two qubit gates and briefly discuss their implementation in a quantum optical set-up.

  2. Numerical Integration Numerical Summation

    E-Print Network [OSTI]

    Cohen, Henri

    Numerical Integration Numerical Summation Numerical Extrapolation Numerical Recipes for Multiprecision Computations #12;Numerical Integration Numerical Summation Numerical Extrapolation Multiprecision, integration, summation, extrapolation, evaluation of continued fractions, Euler products and sums, complete

  3. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01T23:59:59.000Z

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  4. Improved quantum correlations in second harmonic generation with a squeezed pump

    E-Print Network [OSTI]

    E. MArcellina; J. F. Corney; M. K. Olsen

    2013-02-11T23:59:59.000Z

    We investigate the effects of a squeezed pump on the quantum properties and conversion efficiency of the light produced in single-pass second harmonic generation. Using stochastic integration of the two-mode equations of motion in the positive-P representation, we find that larger violations of continuous-variable harmonic entanglement criteria are available for lesser effective interaction strengths than with a coherent pump. This enhancement of the quantum properties also applies to violations of the Reid-Drummond inequalities used to demonstrate a harmonic version of the Einstein-Podolsky-Rosen paradox. We find that the conversion efficiency is largely unchanged except for very low pump intensities and high levels of squeezing.

  5. Generation to Generation: The Heart of Family Medicine

    E-Print Network [OSTI]

    Winter, Robin O

    2012-01-01T23:59:59.000Z

    Ageism in the Workplace. Generations Spring, 5. Westman,of caring for multiple generations simultaneously. StronglyGeneration to Generation: The Heart of Family Medicine

  6. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27T23:59:59.000Z

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  7. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  8. The Cauchy Integral Formula

    E-Print Network [OSTI]

    Steve Bell

    2009-06-24T23:59:59.000Z

    Feb 23, 2009 ... Cauchy Integral Formula basics. I'm using the enumerate environment on this slide. 1. The Cauchy Integral Formula was discovered by Cauchy†...

  9. Integrated design : a generative multi-performative design approach

    E-Print Network [OSTI]

    Fasoulaki, Eleftheria

    2008-01-01T23:59:59.000Z

    There are building systems, called "modularized", in which the component systems (for structure, lighting, etc) can be analyzed and synthesized independently since their performance and design do not interact or affect one ...

  10. Next-Generation Wireless Instrumentation Integrated with Mathematical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cells used to convert aluminum oxide to aluminum. Smelter pots emit fluorinated hydrocarbons, CF4 and C2F6, which have global warming potentials of 6,500 (i.e., 1 ton of CF4...

  11. Project Profile: Baseload CSP Generation Integrated with Sulfur...

    Energy Savers [EERE]

    a change in the oxidation (combustion) state of the storage medium can be used to drive a gas turbine. This scheme does not rely on temperature gradient for heat recovery, and...

  12. Programmable active droplet generation enabled by integrated pneumatic micropumps

    E-Print Network [OSTI]

    Zeng, Yong; Shin, Mimi; Wang, Tanyu

    2013-01-01T23:59:59.000Z

    through programming the pumping configurations and the application to multi-volume digital PCR for precise and quantitative detection of genetic targets. Overall, our results suggest that the pump-based droplet microfluidics provide a robust platform...

  13. Integrating Distributed Generation: Regulation and Trends in three leading countries

    E-Print Network [OSTI]

    Anaya, Karim L.; Pollitt, Michael G.

    2015-01-01T23:59:59.000Z

    . In addition, it has the most developed permitting and sitting procedures which have improved over time. Priority access to the grid is given to wind energy along with long-term targets for wind development. As of 2012, there were around 5,020 wind turbines... which accounted for 30% of the domestic electricity supply. The size of the majority of wind turbines is between 0.5 and 0.9 MW and represents 42% of the total wind capacity (DEA, 2012). Figure 8 illustrates the trend in wind energy (onshore...

  14. Next-Generation Wireless Instrumentation Integrated with Mathematical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewStateDepartment of(BETO)NextNext of

  15. Integration of Demand Side Management, Distributed Generation, Renewable

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm GmbHCaltechOpensystems,Energy

  16. Integration of Demand Side Management, Distributed Generation, Renewable

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm

  17. Overview of Options to Integrate Stationary Power Generation from Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgramTechnologiesCells with

  18. Project Profile: Baseload CSP Generation Integrated with Sulfur-Based

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlantLongThermochemical Heat Storage

  19. Integrated Design and Manufacturing of Thermoelectric Generator Using

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEtheInspection Report:Instructions forLandfill Gas to

  20. NREL Variability and Reserves Analysis for the Western Interconnect (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; King, J.

    2011-10-01T23:59:59.000Z

    Additional variability and uncertainty increase reserve requirements. In this light, this presentation discusses how use of generation reserves can be optimized for managing variability and uncertainty. Conclusions of this presentation are: (1) Provided a method for calculating additional reserve requirements due to wind and solar production; (2) Method is based on statistical analysis of historical time series data; (3) Reserves are dynamic, produced for each hour; (4) Reserve time series are calculated from and synchronized to simulation data; (5) PROMOD can not model directly, but workarounds exist for regulation and spin; and (6) Other production modeling packages have varying capability for reserves modeling.

  1. Explosive flux compression generators for rail gun power sources

    SciTech Connect (OSTI)

    Fowler, C.M.; Peterson, D.R.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; King, J.C.

    1980-01-01T23:59:59.000Z

    A class of explosive magnetic flux compression generators is described that has been used successfully to power rail guns. A program to increase current magnitudes and pulse lengths is outlined. Various generator loss terms are defined and plans to overcome some of them are discussed. Included are various modifications of the conventional strip generators that are more resistant to undesirable expansion of generator components from magnetic forces. Finally, an integral rail gun is discussed that has coaxial geometry. Integral rail guns utilize the rails themselves as flux compression generator elements and, under ideal conditions, are theoretically capable of driving projectiles to arbitrarily high velocities. Integral coaxial rail guns should be superior in some regards to their square bore counterparts.

  2. Anyonic statistics with continuous variables

    E-Print Network [OSTI]

    Jing Zhang; Changde Xie; Kunchi Peng; Peter van Loock

    2008-10-30T23:59:59.000Z

    We describe a continuous-variable scheme for simulating the Kitaev lattice model and for detecting statistics of abelian anyons. The corresponding quantum optical implementation is solely based upon Gaussian resource states and Gaussian operations, hence allowing for a highly efficient creation, manipulation, and detection of anyons. This approach extends our understanding of the control and application of anyons and it leads to the possibility for experimental proof-of-principle demonstrations of anyonic statistics using continuous-variable systems.

  3. Realistic interpretation of Grassmann variables

    E-Print Network [OSTI]

    Roman Sverdlov

    2015-03-26T23:59:59.000Z

    The goal of this paper is to define the Grassmann integral in terms of a limit of a sum around a well-defined contour so that Grassmann numbers gain geometric meaning rather than symbols. The unusual rescaling properties of the integration of an exponential is due to the fact that the integral attains the known values only over a specific set of contours and not over their rescaled versions. Such contours live in infinite dimensional space and their sides are infinitesimal, and they make infinitely many turns. Finally, two different products are used: anticommutting wedge product and a Clifford dot product (the wedge product is used in the finite part of the integral and the Clifford dot product is used between the finite and infinitesimal parts). The integrals of non-analytic functions will become well-defined, although their specific value is unknown due to the various hidden parameters.

  4. Variable metric conjugate gradient methods

    SciTech Connect (OSTI)

    Barth, T.; Manteuffel, T.

    1994-07-01T23:59:59.000Z

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  5. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    DOE Patents [OSTI]

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22T23:59:59.000Z

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  6. Systems integration for global sustainability

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Le, A. Z. Khan, Improving integration for integrated coastal347 ISSUE 6225 Systems integration for global sustainabilitySUSTAINABILITY Systems integration for global sustainability

  7. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  10. Next generation information systems

    SciTech Connect (OSTI)

    Limback, Nathan P [Los Alamos National Laboratory; Medina, Melanie A [Los Alamos National Laboratory; Silva, Michelle E [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive databases are progressions of the tools that can be used in new ways and further developed to enhance the mission of nonproliferation and threat reduction.

  11. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

  12. Lightweight Integration of Documents and Services Nkechi Nnadi and Michael Bieber

    E-Print Network [OSTI]

    Bieber, Michael

    a relatively straightforward, sustainable infrastructure for integrating documents and services. Users see. Categories and Subject Descriptors H.3.7 [Information Storage and Retrieval]: Digital Libraries ≠ systems libraries. The Digital Library Integration Infrastructure (DLII) automatically generates links for digital

  13. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24T23:59:59.000Z

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  14. Turnitin Moodle Direct Integration

    E-Print Network [OSTI]

    de Lijser, Peter

    Turnitin Moodleģ Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMarkģ 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3

  15. Managing Variability throughout the Software Development Lifecycle

    E-Print Network [OSTI]

    Managing Variability throughout the Software Development Lifecycle Neil Loughran and Awais Rashid levels of the software development lifecycle, especially when new requirements arise. We believe of the software development lifecycle. Moreover, the effects of variability and, in particular, new variabilities

  16. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  17. Harmonic generation from indium-rich plasmas

    SciTech Connect (OSTI)

    Ganeev, R. A.; Kulagin, I. A. [Akadempribor Scientific Association, Academy of Sciences of Uzbekistan, Tashkent 700125 (Uzbekistan); Singhal, H.; Naik, P. A.; Arora, V.; Chakravarty, U.; Chakera, J. A.; Khan, R. A.; Raghuramaiah, M.; Gupta, P. D. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Redkin, P. V. [Samarkand State University, Samarkand 703004 (Uzbekistan)

    2006-12-15T23:59:59.000Z

    An experimental study of high-order harmonic generation in In, InSb, InP, and InGaP plasmas using femtosecond laser radiation with variable chirp is presented. Intensity enhancement of the 13th and 21st harmonics compared to the neighboring harmonics by a factor of 200 and 10, respectively, is observed. It is shown that the harmonic spectrum from indium-containing plasma plumes can be considerably modified by controlling the chirp of the driving laser pulse.

  18. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123Ė130). This ...

  19. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01T23:59:59.000Z

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  20. Projected integrated farm in Nepal

    SciTech Connect (OSTI)

    Dhital, K.

    1980-01-01T23:59:59.000Z

    A proposed integrated crop-livestock agro-processing complex to be based at Janakpur, Nepal is described. This project was proposed by the Agricultural Development Bank and is a small effort towards creating a self-sufficient rural community similar to one reported in China. The plan of the farm aims to achieve the integration of several agricultural, aquacultural, solar energy and biogas energy components with complete recycling of waste. These include biogas plants with associated slurry and storage tanks for operating a 3-kW generator, a 3.7-kW pump, providing domestic cooking, as well as energy to operate a fruit-processing plant. Energy for water heating, crop drying and refrigeration will be supplied by solar energy. Fish, livestock, fruits and vegetables will be produced by the farm.

  1. Analysis of a teetered, variable-speed rotor: final report

    SciTech Connect (OSTI)

    Weber, T.L.; Wilson, R.E.; Walker, S.N. (Oregon State Univ., Corvallis, OR (USA). Dept. of Mechanical Engineering) [Oregon State Univ., Corvallis, OR (USA). Dept. of Mechanical Engineering

    1991-06-01T23:59:59.000Z

    A computer model of a horizontal axis wind turbine (HOOT) with four structural degrees of freedom has been derived and verified. The four degrees of freedom include flapwise motion of the blades, teeter motion, and variable rotor speed. Options for the variable rotor speed include synchronous, induction, and constant-tip speed generator models with either start, stop, or normal operations. Verification is made by comparison with analytical solutions and mean and cyclic ESI-80 data. The Veers full-field turbulence model is used as a wind input for a synchronous and induction generator test case during normal operation. As a result of the comparison, it is concluded that the computer model can be used to predict accurately mean and cyclic loads with a turbulent wind input. 47 refs., 19 figs.

  2. Hydropower at flood control reservoirs - the variable speed option

    SciTech Connect (OSTI)

    Laurence, K.; Yale, J. [Stone & Webster Engineering Corp., Denver, CO (United States)

    1995-12-31T23:59:59.000Z

    Application of hydroelectric turbine-generators to flood control has been limited due to the inability of a single turbine to operate efficiently over the wide head and flow ranges encountered. Multiple and different unit combinations have been applied to this problem, but the cost of the additional unit(s), powerhouse, and supporting facilities typically causes the project to become unfeasible. Variable speed operation can increase the operating range of a single turbine, and significantly improve efficiency over single speed units. This can make hydroelectric generation at flood control projects feasible. This paper presents a comparison of the application of variable speed units, two speed units, and single speed units at the Blue River Dam Hydroelectric Project. The project consists of the addition of a powerhouse to an existing Army Corps of Engineers flood control project. Efficiency data for the different types of units are compared and historical flow and release data are used in a computer model to simulate plant operation.

  3. Quantum simulation of quantum field theory using continuous variables

    E-Print Network [OSTI]

    Kevin Marshall; Raphael Pooser; George Siopsis; Christian Weedbrook

    2015-03-27T23:59:59.000Z

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has led to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is believed to be hard using a classical computer. Building on this, we give an experimental implementation based on cluster states that is feasible with today's technology.

  4. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30T23:59:59.000Z

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  5. Multisensory integration of social information in adult aging†

    E-Print Network [OSTI]

    Hunter, Edyta Monika

    2011-01-01T23:59:59.000Z

    Efficient navigation of our social world depends on the generation, interpretation and combination of social signals within different sensory systems. However, the influence of adult aging on cross-modal integration of emotional stimuli remains...

  6. Geometric numerical integration of nonholonomic systems and optimal control problems

    E-Print Network [OSTI]

    M. de Leon; D. Martin de Diego; A. Santamaria Merino

    2002-12-02T23:59:59.000Z

    A geometric derivation of numerical integrators for nonholonomic systems and optimal control problems is obtained. It is based in the classical technique of generating functions adapted to the special features of nonholonomic systems and optimal control problems.

  7. Integrated Low-Jitter 400-MHz Femtosecond Waveguide Laser

    E-Print Network [OSTI]

    Shmulovich, J.

    An integrated passively mode-locked waveguide laser generating 440-fs pulses at 394-MHz repetition rate is demonstrated on an 18 mm times 44 mm silica waveguide chip. The laser self-starts, and uses a saturable Bragg ...

  8. Nebraska Statewide Wind Integration Study: April 2008 - January 2010

    SciTech Connect (OSTI)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01T23:59:59.000Z

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

  9. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01T23:59:59.000Z

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  10. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Cost Analysis, Phase 1. CWEC-2003-06. Davis, California: California Windanalysis of the effect of wind timing and variability on the system integration costs

  11. 2007 SCE Business Briefing Challenges Integrating Electric

    E-Print Network [OSTI]

    Scott, Christopher

    Southern California Edison #12;2 2007 SCE Business Briefing Outline ∑ Context: Energy Needs vs. Water;16 2007 SCE Business Briefing Hauling and Disposal Estimates Disposal Facility Mileage R/T Costs2007 SCE Business Briefing Challenges Integrating Electric Generation and Potable Aquifer Usage

  12. ISSN 1745-9648 Electrifying Integration: Electricity

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Electrifying Integration: Electricity Production and the South East Europe Regional: The paper provides an overview of the generation of electricity in ten countries in South East Europe during of the electricity markets in South East Europe is explored. We conduct a cross-country analysis of electricity

  13. Scientific Innovation Through Integration Investing in Innovation

    E-Print Network [OSTI]

    Scientific Innovation Through Integration Investing in Innovation: EMSL and the American Recovery transfer (FRET) in living cells. Transcriptional profiling using next-generation sequencing technology (RNA Act, EMSL users are benefitting from a $60 million investment in innovation that will further develop

  14. Integrating Correlated Bayesian Networks Using Maximum Entropy

    SciTech Connect (OSTI)

    Jarman, Kenneth D.; Whitney, Paul D.

    2011-08-30T23:59:59.000Z

    We consider the problem of generating a joint distribution for a pair of Bayesian networks that preserves the multivariate marginal distribution of each network and satisfies prescribed correlation between pairs of nodes taken from both networks. We derive the maximum entropy distribution for any pair of multivariate random vectors and prescribed correlations and demonstrate numerical results for an example integration of Bayesian networks.

  15. Periodic Cluster Mutations and Related Integrable Maps

    E-Print Network [OSTI]

    Allan P Fordy

    2014-03-31T23:59:59.000Z

    One of the remarkable properties of cluster algebras is that any cluster, obtained from a sequence of mutations from an initial cluster, can be written as a Laurent polynomial in the initial cluster (known as the "Laurent phenomenon"). There are many nonlinear recurrences which exhibit the Laurent phenomenon and thus unexpectedly generate integer sequences. The mutation of a typical quiver will not generate a recurrence, but rather an erratic sequence of exchange relations. How do we "design" a quiver which gives rise to a given recurrence? A key role is played by the concept of "periodic cluster mutation", introduced in 2009. Each recurrence corresponds to a finite dimensional map. In the context of cluster mutations, these are called "cluster maps". What properties do cluster maps have? Are they integrable in some standard sense? In this review I describe how integrable maps arise in the context of cluster mutations. I first explain the concept of "periodic cluster mutation", giving some classification results. I then give a review of what is meant by an integrable map and apply this to cluster maps. Two classes of integrable maps are related to interesting monodromy problems, which generate interesting Poisson algebras of functions, used to prove complete integrability and a linearisation. A connections to the Hirota-Miwa equation is explained.

  16. Voltage controlled MESFET pulse shape generator

    SciTech Connect (OSTI)

    Burkhart, S.C.

    1994-10-26T23:59:59.000Z

    A programmable pulse shape generator capable of producing pulse shapes for Nova and Beamlet has been designed and simulated using the circuit code SPICE. The design utilizes power MESFETS, which are commonly used in microwave amplifiers. The pulse shape is varied by setting a bias voltage on each in a chain of MESFETS with a 200 ps temporal resolution. The electrical pulse then drives an integrated electro-optic modulator similar to what is on Beamlet. Pulse shapes 22 and 25, used on Nova, have been generated by this design. There is no fundamental barrier to making such a pulse generator for use on the National Ignition Facility. In fact, the longer time scales on the NIF pulse will ease the high speed requirements of the pulse shape generator allowing the use of less expensive components. The next step will be to build a prototype circuit for initial testing on Beamlet and Nova.

  17. Coal Gasification for Power Generation, 3. edition

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  18. Wind Integration Study Methods (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2011-04-01T23:59:59.000Z

    This presentation provides an overview of common elements, differences, integration costs, and errors in integration analysis.

  19. Total Solar Irradiance Variability and the Solar Activity Cycle

    E-Print Network [OSTI]

    Probhas Raychaudhuri

    2006-05-06T23:59:59.000Z

    It is suggested that the solar variability is due to the perturbed nature of the solar core and this variability is provided by the variability of the solar neutrino flux from the solar neutrino detectors i.e., Homestake, Superkamiokande, SAGE and GALLEX-GNO. The solar neutrino flux in the standard solar model (SSM) was calculated on the assumption of L_nu (neutrino luminosity) = L_gamma (optical luminosity) which implies that if there is a change in optical luminosity then solar neutrino flux data will also be changed. An internal dynamo due to the cyclic variation of nuclear energy generation inside the core of the sun is responsible for the solar activity cycle was suggested and thus the internal magnetic field is also variable. Again the changes in the nuclear energy generation induce structural changes that result in variations of the global solar parameters i.e., luminosity, radius and temperatures etc. From the analysis of total solar irradiance (TSI) data during the year from 1970 to 2003 we have found five phases within the solar activity cycle. The first phase (I) starts before two years from the sunspot minimum. The second phase (II) starts at the time of sunspot minimum and phase (III) starts before 2/3 years from sunspot maximum whereas phase (IV) starts at sunspot maximum and fifth phase (V) starts at after 2-3 years from sunspot maximum.

  20. Integrated control system and method

    DOE Patents [OSTI]

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29T23:59:59.000Z

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  1. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13T23:59:59.000Z

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  2. Creating a Cognitive Agent in a Virtual World: Planning, Navigation, and Natural Language Generation

    E-Print Network [OSTI]

    Hewlett, William

    2013-01-01T23:59:59.000Z

    Generation . . . . . . . . . . . . . . . . . . . . .Language Generation . . . . . . . . . . . . . . . . .Language Generation . . . . . . . . . . . . . . . . . . . .

  3. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  4. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  5. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26T23:59:59.000Z

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  6. Variable Structure Control of a

    E-Print Network [OSTI]

    Ge, Shuzhi Sam

    . INTRODUCTION Modelling and control of flexible link manipulators have been studied intensively controller for regulation of a flexible beam. Due to its simplicity and robustness to parametricVariable Structure Control of a Distributed-Parameter Flexible Beam S. S. Ge,* T. H. Lee, G. Zhu, F

  7. Optimization and heat and water integration for biodiesel production

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization and heat and water integration for biodiesel production from cooking oil generation of biodiesel using waste cooking oil and algae oil. We consider 5 different technologies is to simultaneously optimize and heat integrate the production of biodiesel from each of the different oil sources

  8. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  9. HyperKhaler Metrics Building and Integrable Models

    E-Print Network [OSTI]

    E. H. Saidi; M. B. Sedra

    2005-12-18T23:59:59.000Z

    Methods developed for the analysis of integrable systems are used to study the problem of hyperK\\"ahler metrics building as formulated in D=2 N=4 supersymmetric harmonic superspace. We show, in particular, that the constraint equation $\\beta\\partial^{++2}\\omega -\\xi^{++2}\\exp 2\\beta\\omega =0$ and its Toda like generalizations are integrable. Explicit solutions together with the conserved currents generating the symmetry responsible of the integrability of these equations are given. Other features are also discussed

  10. Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System

    SciTech Connect (OSTI)

    Randy Peden; Sanjiv Shah

    2005-07-26T23:59:59.000Z

    This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.

  11. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  12. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  13. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  14. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  15. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  16. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect (OSTI)

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  17. Simulating solar power plant variability : a review of current methods.

    SciTech Connect (OSTI)

    Lave, Matthew; Ellis, Abraham [Sandia National Laboratories, Albuquerque, NM; Stein, Joshua S. [Sandia National Laboratories, Albuquerque, NM

    2013-06-01T23:59:59.000Z

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  18. Talkiní Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  19. SNE TRAFIC GENERATOR

    Energy Science and Technology Software Center (OSTI)

    003027MLTPL00 Network Traffic Generator for Low-rate Small Network Equipment Software† http://eln.lbl.gov/sne_traffic_gen.html†

  20. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Cycle Shown for ATB SteamCarbon 3 * ATB reforming * Steamcarbon 3 * Syngas generated during reforming * 70% H 2 * 20% CO * Syngas composition agrees with...

  1. Next-generation transcriptome assembly

    E-Print Network [OSTI]

    Martin, Jeffrey A.

    2012-01-01T23:59:59.000Z

    technologies - the next generation. Nat Rev Genet 11, 31-algorithms for next-generation sequencing data. Genomicsassembly from next- generation sequencing data. Genome Res

  2. State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture

    SciTech Connect (OSTI)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be achieved by using the adaptive KF.

  3. Bringing Water into an Integrated Assessment Framework

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Thomson, Allison M.; Sands, Ronald; Pitcher, Hugh M.

    2010-11-30T23:59:59.000Z

    We developed a modeling capability to understand how water is allocated within a river basin and examined present and future water allocations among agriculture, energy production, other human requirements, and ecological needs. Water is an essential natural resource needed for food and fiber production, household and industrial uses, energy production, transportation, tourism and recreation, and the functioning of natural ecosystems. Anthropogenic climate change and population growth are anticipated to impose unprecedented pressure on water resources during this century. Pacific Northwest National Laboratory (PNNL) researchers have pioneered the development of integrated assessment (IA) models for the analysis of energy and economic systems under conditions of climate change. This Laboratory Directed Research and Development (LDRD) effort led to the development of a modeling capability to evaluate current and future water allocations between human requirements and ecosystem services. The Water Prototype Model (WPM) was built in STELLAģ, a computer modeling package with a powerful interface that enables users to construct dynamic models to simulate and integrate many processes (biological, hydrological, economics, sociological). A 150,404-km2 basin in the United States (U.S.) Pacific Northwest region served as the platform for the development of the WPM. About 60% of the study basin is in the state of Washington with the rest in Oregon. The Columbia River runs through the basin for 874 km, starting at the international border with Canada and ending (for the purpose of the simulation) at The Dalles dam. Water enters the basin through precipitation and from streamflows originating from the Columbia River at the international border with Canada, the Spokane River, and the Snake River. Water leaves the basin through evapotranspiration, consumptive uses (irrigation, livestock, domestic, commercial, mining, industrial, and off-stream power generation), and streamflow through The Dalles dam. Water also enters the Columbia River via runoff from land. The model runs on a monthly timescale to account for the impact of seasonal variations of climate, streamflows, and water uses. Data for the model prototype were obtained from national databases and ecosystem model results. The WPM can be run from three sources: 1) directly from STELLA, 2) with the isee Playerģ, or 3) the web version of WPM constructed with NetSimģ software. When running any of these three versions, the user is presented a screen with a series of buttons, graphs, and a table. Two of the buttons provide the user with background and instructions on how to run the model. Currently, there are five types of scenarios that can be manipulated alone or in combination using the Sliding Input Devices: 1) interannual variability (e.g., El NiŮo), 2) climate change, 3) salmon policy, 4) future population, and 5) biodiesel production. Overall, the WPM captured the effects of streamflow conditions on hydropower production. Under La NiŮa conditions, more hydropower is available during all months of the year, with a substantially higher availability during spring and summer. Under El NiŮo conditions, hydropower would be reduced, with a total decline of 15% from normal weather conditions over the year. A policy of flow augmentation to facilitate the spring migration of smolts to the ocean would also reduce hydropower supply. Modeled hydropower generation was 23% greater than the 81 TWh reported in the 1995 U.S. Geological Survey (USGS) database. The modeling capability presented here contains the essential features to conduct basin-scale analyses of water allocation under current and future climates. Due to its underlying data structure iv and conceptual foundation, the WPM should be appropriate to conduct IA modeling at national and global scales.

  4. Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    by the year 2020 [2]. Wind turbines can operate either with a fixed speed or a variable speed. In the case and then as fluctuations in the electrical power on the grid. The variable-speed turbine operation offers several major acoustical [3]. Among variable speed constant-frequency wind turbines, the doubly fed induction generator

  5. Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation

    E-Print Network [OSTI]

    Adegoke, Adesola Ayodeji

    2006-10-30T23:59:59.000Z

    &PIfortheLNG,GTL,andIntegratedGTLPower- GenerationProjects?????????????????? 41 A1 OverviewofGTLProcessDesignedwithAspenPlus...???? 51 1 CHAPTERI INTRODUCTION 1.1 Background Naturalgasisaclean,versatileandthereforedesirablesourceoffuel.Astrongfactorthat defines..., usingtheheatcontentofthesteamstreamand/orthetail-gasstream. TheIntegratedGTLPower-Generationprocesswasmodeledusingacombination Aspen Plus, for the GTL process and Steam System Assessment Tool (DOE), for the power generation. The design of the integrated GTL Power-generation process...

  6. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  7. Cranial Variability in Amazonian Marmosets

    E-Print Network [OSTI]

    Aguiar, John Marshall

    2011-02-22T23:59:59.000Z

    (Callithrix, Callitrichidae) have been discovered in recent years, as well as the exceptional dwarf marmoset Callibella humilis. Most of these species were described on the basis of their pelage and presumed separation by major rivers. I performed... analyses of craniometric variables by taxa and by river basins, in order to determine if there are significant cranial distinctions between taxa separated by rivers. I analyzed quantitative cranial and mandibular characters of Callibella humilis...

  8. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    SciTech Connect (OSTI)

    Mortensen, Holly M., E-mail: mortensen.holly@epa.gov [Office of Research and Development, US Environmental Protection Agency, National Center for Computational Toxicology, US EPA, 109 TW Alexander Dr., Mailcode B205-01, Research Triangle Park, NC 27711 (United States); Euling, Susan Y. [Office of Research and Development, US Environmental Protection Agency, National Center for Environmental Assessment, US EPA, 1200 Pennsylvania Ave., NW, Mail Code 8623P, Washington, DC 20460 (United States)

    2013-09-15T23:59:59.000Z

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.

  9. Community-oriented information integration

    E-Print Network [OSTI]

    Katsis, Ioannis

    2009-01-01T23:59:59.000Z

    2.6.1 Community-oriented Integration . . 2.6.2Chapter 5 Integration Conclusions and FutureFigure Community-oriented Integration Architecture . . . .

  10. Art Integration and Cognitive Development

    E-Print Network [OSTI]

    Baker, Dawn

    2013-01-01T23:59:59.000Z

    journal on arts integration in schools and communities. 1(Art Integration and Cognitive Development Dawn Baker,in the curriculum. Art integration involves learning core

  11. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Wu, Shuang; Lu, Hongjing; Lee, Alan; Yuille, Alan

    2009-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  12. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Shuang Wu; Hongjing Lu; Alan Lee; Alan Yuille

    2011-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  13. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  14. Second generation PFB for advanced power generation

    SciTech Connect (OSTI)

    Robertson, A.; Van Hook, J.

    1995-11-01T23:59:59.000Z

    Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

  15. Contracting for wind generation

    E-Print Network [OSTI]

    Newbery, David

    The UK Government proposes offering long-term Feed-in-Tariffs (FiTs) to low-carbon generation to reduce risk and encourage new entrants. Their preference is for a Contract-for-Difference (CfD) or a premium FiT (pFiT) for all generation regardless...

  16. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  17. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  18. The fifth generation computer

    SciTech Connect (OSTI)

    Moto-Oka, T.; Kitsuregawa, M.

    1985-01-01T23:59:59.000Z

    The leader of Japan's Fifth Generation computer project, known as the 'Apollo' project, and a young computer scientist elucidate in this book the process of how the idea came about, international reactions, the basic technology, prospects for realization, and the abilities of the Fifth Generation computer. Topics considered included forecasting, research programs, planning, and technology impacts.

  19. Dual-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)] [Flowind Corp., San Rafael, CA (United States)

    1996-10-01T23:59:59.000Z

    Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

  20. Next Generation Radioisotope Generators | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2April 2013 ESH&SNext Big IdeaPower