Powered by Deep Web Technologies
Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Time and Space Variability of Spectral Estimates of Atmospheric Pressure  

Science Conference Proceedings (OSTI)

The purpose of this paper is to analyze the temporal and spatial behavior of atmospheric pressure spectra. The literature shows many examples of pressure, wind and temperature spectra whose shapes display a remarkable degree of universality. ...

Flavio G. Canavero; Franco Einaudi

1987-06-01T23:59:59.000Z

2

Enhancement in Surface Atmospheric Pressure Variability Associated with a Major Geomagnetic Storm  

E-Print Network (OSTI)

Observational studies indicate that there is a close association between geomagnetic storm and meteorological parameters. Geomagnetic field lines follow closely the isobars of surface pressure . A Physical mechanism linking upper atmospheric geomagnetic storm disturbances with tropospheric weather has been proposed by the author and her group where it is postulated that vertical mixing by turbulent eddy fluctuations results in the net transport upward of positive charges originating from lower levels accompanied simultaneously by downward flow of negative charges from higher levels. The present study reports enhancement of high frequency (geomagnetic storm (Ap index = 246) on 13 march 1989.

A. M. Selvam; S. Fadnavis; S. U. Athale; M. I. R. Tinmaker

1998-07-03T23:59:59.000Z

3

ARM - Measurement - Atmospheric pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

pressure pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

4

Simulation of Atmospheric Variability  

Science Conference Proceedings (OSTI)

A spectral atmospheric circulation model is time-integrated for approximately 18 years. The model has a global computational domain and realistic geography and topography. The model undergoes an annual cycle as daily values of seasonally varying ...

Syukuro Manabe; Douglas G. Hahn

1981-11-01T23:59:59.000Z

5

CDIAC Atmospheric Pressure Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pressure Atmospheric Pressure CDIAC Climate Holdings Containing Atmospheric Pressure Data Global Data Sets Data Set Name Investigators Data Type/Format Period of Record Global Historical Climatology Network (GHCN); Vs. 1 (CDIAC NDP-041) R.S. Vose et al. Surface stations; monthly mean sea-level pressure Varies by station; through 1990 Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (CDIAC NDP-026C) C.J. Hahn, S.G. Warren, and R. Eastman Six-hourly synoptic observations of sea-level pressure Land 1971-2009; Ocean 1952-2008 Global Historical Climatology Network (GHCN); Vs. 2 (Note: the above link takes you to NOAA's National Climatic Data Center website.) R.S. Vose et al. Surface stations; monthly mean sea-level pressure Varies by station; some through most recent month

6

atmospheric pressure | OpenEI  

Open Energy Info (EERE)

pressure pressure Dataset Summary Description (Abstract):Atmospheric Pressure (kPa)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Atmospheric Pressure (kPa)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated Unknown Keywords atmospheric pressure climate NASA SWERA UNEP Data text/csv icon Download Data (csv, 46 MiB)

7

Basic Meteorological Observations for Schools: Atmospheric Pressure  

Science Conference Proceedings (OSTI)

This article addresses measurement of atmospheric surface pressure using economical instruments. It is intended to provide members of the Society with a ready reference to respond to inquiries from earth and physical science teachers at the ...

John T. Snow; Michelle E. Akridge; Shawn B. Harley

1992-06-01T23:59:59.000Z

8

Mars Atmosphere Pressure Periodicities from Viking Observations  

Science Conference Proceedings (OSTI)

The first martian year of pressure data taken by the Viking landers on Mars is subjected to power spectrum analysis. The analysis suggests that strong periodicities are present in the martian atmosphere, especially at the high-latitude (48°N) ...

R. D. Sharman; J. A. Ryan

1980-09-01T23:59:59.000Z

9

Atmospheric Pressure Plasma Process And Applications  

SciTech Connect

This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

Peter C. Kong; Myrtle

2006-09-01T23:59:59.000Z

10

Atmospheric Pressure Deposition for Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

11

Atmospheric Pressure Deposition for Electrochromic Windows  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

12

Internal Versus SST-Forced Atmospheric Variability as Simulated by an Atmospheric General Circulation Model  

Science Conference Proceedings (OSTI)

The variability of atmospheric flow is analyzed by separating it into an internal part due to atmospheric dynamics only and an external (or forced) part due to the variability of sea surface temperature forcing. The two modes of variability are ...

Ali Harzallah; Robert Sadourny

1995-03-01T23:59:59.000Z

13

Homoclinic Dynamics: A Scenario for Atmospheric Ultralow-Frequency Variability  

Science Conference Proceedings (OSTI)

In this paper, a link will be established between atmospheric ultralow-frequency variability (ULFV) and the occurrence of homoclinic dynamics in models of large-scale atmospheric flow. It is known that uncoupled atmosphere models possess ...

Daan T. Crommelin

2002-05-01T23:59:59.000Z

14

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

1994-01-01T23:59:59.000Z

15

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

16

Free Floating Atmospheric Pressure Ball Plasmas  

NLE Websites -- All DOE Office Websites (Extended Search)

Free-Floating Atmospheric Pressure Ball Plasmas Free-Floating Atmospheric Pressure Ball Plasmas G. A. Wurden, Z. Wang, C. Ticos Los Alamos National Laboratory L Al NM 87545 USA Los Alamos, NM 87545 USA C. J. v. Wurden Los Alamos High School L Al NM 87544 Los Alamos, NM 87544 Presented at the PPPL Colloquium Sept. 17, 2008 U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA LA-UR-08-06284 Outline of this talk *A discussion of ball lightning reports in nature *How can ball plasmas be made in the laboratory? *Detailed experiments on long lived free floating *Detailed experiments on long-lived free-floating atmospheric pressure ball plasmas C i f l b b ll l i h "b ll *Comparison of laboratory ball plasmas with "ball lightning" *Summary U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA

17

Evolution Dynamics of Tropical Ocean-Atmosphere Annual Cycle Variability  

Science Conference Proceedings (OSTI)

The structure of ocean-atmosphere annual cycle variability is extracted from the revised Comprehensive Ocean-Atmosphere Data Set SSTs, surface winds, and the latent heat (LH) and net shortwave (SW) surface fluxes using the covariance-based ...

Sumant Nigam; Yi Chao

1996-12-01T23:59:59.000Z

18

Atmospheric pressure scanning transmission electron microscopy  

SciTech Connect

Scanning transmission electron microscope (STEM) images of gold nanoparticles (2.1 nm average diameter) at atmospheric pressure have been recorded through a 0.36 mm thick mixture of CO, O2 and He. This was accomplished using a reaction cell consisting of two electron-transparent silicon nitride membranes mounted on a specially designed specimen rod. Gas flow occurred through plastic tubing from the outside of the microscope to the specimen region and back. Gold nanoparticles of a full width half maximum diameter of 1.0 nm were visible above the background noise and the achieved resolution was 0.5 nm in accordance with calculations of the beam broadening.

De Jonge, Niels [ORNL; Veith, Gabriel M [ORNL; Bigelow, Wilbur C [ORNL

2010-01-01T23:59:59.000Z

19

Variable pressure power cycle and control system  

DOE Patents (OSTI)

A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

Goldsberry, Fred L. (Spring, TX)

1984-11-27T23:59:59.000Z

20

Modeling Climate Variability in the Tropical Atlantic Atmosphere  

Science Conference Proceedings (OSTI)

Climate variability in the tropical Atlantic sector as represented in six atmospheric general circulation models is examined. On the annual mean, most simulations overestimate wind stress away from the equator although much of the variability can ...

Jiande Wang; James A. Carton

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dissociation of carbon dioxide in atmospheric pressure microchannel plasma devices.  

E-Print Network (OSTI)

??Plasma discharge of carbon dioxide at atmospheric pressure was successfully demonstrated in microchannel plasma devices at breakdown voltages lower than 1 kVRMS. Optical emissions of… (more)

Oh, Taegon

2013-01-01T23:59:59.000Z

22

Carbon Dioxide Variability and Atmospheric Circulation  

Science Conference Proceedings (OSTI)

Hourly values of the concentration of atmospheric carbon dioxide at Mauna Loa Observatory (MLO) formed the basis for an investigation of concentration fluctuations on daily to monthly time scales. In agreement with earlier studies we found no ...

James C. Sadler; Colin S. Ramage; Arnold M. Hori

1982-06-01T23:59:59.000Z

23

Intraseasonal Variability in a Dry Atmospheric Model  

Science Conference Proceedings (OSTI)

A long integration of a primitive equation dry atmospheric model with time-independent forcing under boreal winter conditions is analyzed. A variety of techniques such as time filtering, space–time spectral analysis, and lag regressions are used ...

Hai Lin; Gilbert Brunet; Jacques Derome

2007-07-01T23:59:59.000Z

24

The Choice of Variable for Atmospheric Moisture Analysis  

Science Conference Proceedings (OSTI)

The implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to ...

Dick P. Dee; Arlindo M. da Silva

2003-01-01T23:59:59.000Z

25

Simulating Random Natural Variability in Time-Varying Atmospheric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Variability in Time-Varying Atmospheric Concentrations of Toxic Gas from Pipeline Ruptures Speaker(s): David J. Wilson Date: February 4, 2004 - 12:00pm Location: Bldg....

26

Atmospheric Variability on a Zonally Symmetric Land Planet  

Science Conference Proceedings (OSTI)

Atmospheric variability an a zonally symmetric planet in the absence of external forcing anomalies is studied. With idealized boundary conditions such as the absence of ocean and topography, and by using perpetual equinox solar forcing, a 15-year ...

Lai-Yung Leung; Gerald R. North

1991-08-01T23:59:59.000Z

27

Interannual Modes of Variability in Atmospheric Angular Momentum  

Science Conference Proceedings (OSTI)

The interannual variability of atmospheric angular momentum over a 26-yr period is studied regionally using monthly analyses of zonal winds derived from the global rawinsonde network. Variations in zonal-mean momentum, filtered to emphasize ...

Robert X. Black; David A. Salstein; Richard D. Rosen

1996-11-01T23:59:59.000Z

28

Simulating Random Natural Variability in Time-Varying Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulating Random Natural Variability in Time-Varying Atmospheric Simulating Random Natural Variability in Time-Varying Atmospheric Concentrations of Toxic Gas from Pipeline Ruptures Speaker(s): David J. Wilson Date: February 4, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jeiwon Deputy Random time series are found everywhere in nature. The Brownian motion of small particles; the price of assets (stocks) in financial markets; the diffusion of individual molecules through a membrane; the ballistic deposition of nano-particles onto a lattice substrate; and the time-varying concentration fluctuations at a point downwind from a pollution source all have a common dynamic description. All are stochastic processes where the local rate of change of the variable has a natural drift back to some equilibrium state, combined with a random fluctuating component. We will

29

Meteorological Variability and the Annual Surface Pressure Cycle on Mars  

Science Conference Proceedings (OSTI)

It is commonly admitted that the seasonal surface pressure cycle, observed on Mars by the two Viking landers, is due to condensation and sublimation of the atmospheric carbon dioxide in the polar caps. A three Martian year numerical simulation ...

Frédéric Hourdin; Phu Le Van; François Forget; Olivier Talagrand

1993-11-01T23:59:59.000Z

30

Carderock 2-ft Variable Pressure Cavitation Water Tunnel | Open Energy  

Open Energy Info (EERE)

2-ft Variable Pressure Cavitation Water Tunnel 2-ft Variable Pressure Cavitation Water Tunnel Jump to: navigation, search Basic Specifications Facility Name Carderock 2-ft Variable Pressure Cavitation Water Tunnel Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tunnel Beam(m) 0.6 Depth(m) 0.6 Water Type Freshwater Cost(per day) Contact POC Special Physical Features The 2-Foot Variable Pressure Cavitation Water Tunnel is a vertical plane, closed recirculating, variable-speed, variable-pressure, open jet test section, closed jet test section, and semi-rectangular test section. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 17 Recirculating Yes

31

Carderock 3-ft Variable Pressure Cavitation Water Tunnel | Open Energy  

Open Energy Info (EERE)

Variable Pressure Cavitation Water Tunnel Variable Pressure Cavitation Water Tunnel Jump to: navigation, search Basic Specifications Facility Name Carderock 3-ft Variable Pressure Cavitation Water Tunnel Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tunnel Beam(m) 0.7 Depth(m) 0.7 Water Type Freshwater Cost(per day) Contact POC Special Physical Features The 3-ft Variable Pressure Cavitation Water Tunnel is a vertical plane, closed recirculating with resorber, variable-speed, variable-pressure, two interchangeable circular test sections. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 25.8 Recirculating Yes Wind Capabilities Wind Capabilities None

32

Synoptic Variability of Ocean–Atmosphere Turbulent Fluxes Associated with Atmospheric Cyclones  

Science Conference Proceedings (OSTI)

Synoptic-scale variability in the air–sea turbulent fluxes in the areas of midlatitudinal western boundary currents is analyzed. In the Gulf Stream area, ocean–atmosphere fluxes on synoptic time- and space scales are clearly coordinated with the ...

Olga Zolina; Sergey K. Gulev

2003-08-01T23:59:59.000Z

33

Climate: monthly and annual average atmospheric pressure GIS data at  

Open Energy Info (EERE)

atmospheric pressure GIS data at atmospheric pressure GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract):Atmospheric Pressure (kPa)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Atmospheric Pressure (kPa)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are

34

Atmospheric-pressure guided streamers for liposomal membrane disruption  

Science Conference Proceedings (OSTI)

The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

2012-12-24T23:59:59.000Z

35

Multiscale Variability of the Atmospheric Mixed Layer over the Western Pacific Warm Pool  

Science Conference Proceedings (OSTI)

Sounding data from Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) have provided a first opportunity to document the variability of the atmospheric mixed layer over the western Pacific warm pool on ...

Richard H. Johnson; Paul E. Ciesielski; Jennifer A. Cotturone

2001-09-01T23:59:59.000Z

36

Multi-variable optimization of pressurized oxy-coal combustion  

E-Print Network (OSTI)

Simultaneous multi-variable gradient-based optimization with multi-start is performed on a 300 MWe wet-recycling pressurized oxy-coal combustion process with carbon capture and sequestration. The model accounts for realistic ...

Zebian, Hussam

2011-01-01T23:59:59.000Z

37

CDIAC Climate Data: Available Variables  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Variables Available in CDIAC Data Products Temperature Precipitation Cloudiness Sunshine Duration Snowfall and Snow Depth Atmospheric Pressure Atmospheric Moisture Surface...

38

Observed Atmospheric Responses to Global SST Variability Modes: A Unified Assessment Using GEFA  

Science Conference Proceedings (OSTI)

The authors present a comprehensive assessment of the observed atmospheric response to SST variability modes in a unified approach using the Generalized Equilibrium Feedback Analysis (GEFA). This study confirms a dominant atmospheric response to ...

Na Wen; Zhengyu Liu; Qinyu Liu; Claude Frankignoul

2010-04-01T23:59:59.000Z

39

Local Balance and Variability of Atmospheric Heat Budget over Oceans: Observation and Reanalysis-based Estimates  

Science Conference Proceedings (OSTI)

We quantify systematic differences between modern observation- and reanalysis-based estimates of atmospheric heating rates and identify dominant variability modes over tropical oceans. Convergence of heat fluxes between the top of the atmosphere ...

Sun Wong; Tristan S. L’Ecuyer; William S. Olson; Xianan Jiang; Eric J. Fetzer

40

Local Regimes of Atmospheric Variability: A Case Study of Southern California  

Science Conference Proceedings (OSTI)

The primary regimes of local atmospheric variability are examined in a 6-km regional atmospheric model of the southern third of California, an area of significant land surface heterogeneity, intense topography, and climate diversity. The model ...

Sebastien Conil; Alex Hall

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Observational Evidence for Oceanic Forcing of Atmospheric Variability in the Nordic Seas Area  

Science Conference Proceedings (OSTI)

Substantial predictability of the wintertime atmospheric variability in the Nordic (Greenland–Iceland–Norwegian and Barents) seas region is reported based on oceanic observations and atmospheric reanalysis data. In particular, about 60% of the ...

Pawel Schlichtholz

2013-05-01T23:59:59.000Z

42

Interdecadal Variability in a Hybrid Coupled Ocean–Atmosphere–Sea Ice Model  

Science Conference Proceedings (OSTI)

Interdecadal climate variability in an idealized coupled ocean–atmosphere–sea-ice model is studied. The ocean component is a fully three-dimensional primitive equation model and the atmospheric component is a two-dimensional (2D) energy balance ...

S. Kravtsov; M. Ghil

2004-07-01T23:59:59.000Z

43

The Basic Effects of Atmosphere–Ocean Thermal Coupling on Midlatitude Variability  

Science Conference Proceedings (OSTI)

Starting from the assumption that the atmosphere is the primary source of variability internal to the midlatitude atmosphere–ocean system on intraseasonal to interannual timescales, the authors construct a simple stochastically forced, one-...

Joseph J. Barsugli; David S. Battisti

1998-02-01T23:59:59.000Z

44

The effects of atmospheric pressure plasma on the synthesis of carbon nanotubes  

Science Conference Proceedings (OSTI)

In this study, we investigated the effects of atmospheric plasma on the synthesis of carbon nanotubes (CNTs) forests. Tall and high CNTs forests have been successfully grown on a large scale using a newly developed system called atmospheric pressure ... Keywords: Atmospheric pressure, Carbon nanotubes, Mass production, Plasma effects, Plasma enhanced chemical vapor deposition

Seok Seung Shin; Bum Ho Choi; Young Mi Kim; Jong Ho Lee; Dong Chan Shin

2009-04-01T23:59:59.000Z

45

Principal Modes of Atmospheric Variability in Model Atmospheres with and without Anomalous Sea Surface Temperature Forcing in the Tropical Pacific  

Science Conference Proceedings (OSTI)

Principal modes of low-frequency atmospheric variability and the influence of sea surface temperature anomalies on such modes are investigated by examining the output from two general circulation model experiments. In the first experiment (the “...

In-Sik Kang; Ngar-Cheung Lau

1986-11-01T23:59:59.000Z

46

Orographic Influences on the Distribution and Generation of Atmospheric Variability in a GCM  

Science Conference Proceedings (OSTI)

The effect of large-scale mountains on atmospheric variability is studied in a series of GCM experiments in which a single mountain is varied in height from 0 to 4 km. High-frequency (? 30 days) variability are ...

Jin-Yi Yu; Dennis L. Hartmann

1995-07-01T23:59:59.000Z

47

Interannual Variability of Land-Atmosphere Coupling Strength  

Science Conference Proceedings (OSTI)

Recent studies in the Global Land-Atmosphere Coupling Experiment (GLACE) established a framework to estimate the extent to which anomalies in the land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric ...

Zhichang Guo; Paul A. Dirmeyer

48

Long-Term Variability of Daily North Atlantic–European Pressure Patterns since 1850 Classified by Simulated Annealing Clustering  

Science Conference Proceedings (OSTI)

Reconstructed daily mean sea level pressure patterns of the North Atlantic–European region are classified for the period 1850 to 2003 to explore long-term changes of the atmospheric circulation and its impact on long-term temperature variability ...

A. Philipp; P. M. Della-Marta; J. Jacobeit; D. R. Fereday; P. D. Jones; A. Moberg; H. Wanner

2007-08-01T23:59:59.000Z

49

Atmospheric Pressure Low Current Plasma for Syngas Production from Alcohol  

E-Print Network (OSTI)

Abstract – Atmospheric pressure low current arc discharge between graphite electrodes with conical geometry in liquid ethanol/water mixture was investigated. Syngas production was demonstrated over large experimental conditions. In this paper we focus on discharge aspects. It is shown from pictures that the behavior of low current arc discharge with consumable electrodes represents non-stationary plasma. The energetic properties of plasmas can be used to carry out many applications, particularly in discharge based systems. Recently, research interest focuses on the Non Thermal Plasma (NTP) treatment of hydrocarbons, alcohol, or biomass aimed to improve the yield of synthetic gas (syngas: H2+CO) production at low cost [1, 4]. Experiments were performed on a plasma reactor consisting of two graphite electrodes with conical shape

Ahmed Khacef; Khadija Arabi; Olivier Aubry; Jean Marie Cormier

2012-01-01T23:59:59.000Z

50

Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry  

DOE Patents (OSTI)

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2013-07-16T23:59:59.000Z

51

Laser ablation electrospray ionization (LAESI) for atmospheric pressure, In vivo, and imaging mass spectrometry  

SciTech Connect

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation (LA) with electrospray ionization (ESI).

Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

2011-11-29T23:59:59.000Z

52

Nonisostatic Response of Sea Level to Atmospheric Pressure in the Eastern Mediterranean  

Science Conference Proceedings (OSTI)

We analyze 5 months of sea-level data from Katakolon, Greece, in terms of local atmospheric pressure and the two components of geostrophic wind. The response to pressure is isostatic at low and high frequencies, but significantly nonisostatic for ...

Christopher Garrett; Fouad Majaess

1984-04-01T23:59:59.000Z

53

Atmospheric Modes of Variability in a Changing Climate  

Science Conference Proceedings (OSTI)

The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing in a transient integration with a coupled global climate model is investigated. The spatial patterns of the leading modes of Northern Hemisphere ...

Jenny Brandefelt

2006-11-01T23:59:59.000Z

54

Land Surface Hydrology Parameterization for Atmospheric General Circulation models Including Subgrid Scale Spatial Variability  

Science Conference Proceedings (OSTI)

Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation ...

D. Entekhabi; P. S. Eagleson

1989-08-01T23:59:59.000Z

55

Radar Observations of Humidity Variability in and above the Marine Atmospheric Boundary Layer  

Science Conference Proceedings (OSTI)

Humidity variability at the top of the marine atmospheric boundary layer and in the overlying free troposphere was examined using data collected during the marine stratocumulus phase of the First Regional Experiment (FIRE) of the International ...

Allen B. White; C. W. Fairall; Dennis W. Thomson

1991-10-01T23:59:59.000Z

56

Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project  

Science Conference Proceedings (OSTI)

The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979–88 as part of the Atmospheric Model Intercomparison Project (AMIP). ...

K. R. Sperber; T. N. Palmer

1996-11-01T23:59:59.000Z

57

North Atlantic Interannual Variability in a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

The primary mode of sea surface temperature variability in the North Atlantic on interannual timescales during winter is examined in a coupled ocean–atmosphere model. The model, developed at die Geophysical Fluid Dynamics Laboratory, is global in ...

Thomas L. Delworth

1996-10-01T23:59:59.000Z

58

Changes in the Spread of the Variability of the Seasonal Mean Atmospheric States Associated with ENSO  

Science Conference Proceedings (OSTI)

For a fixed sea surface temperature (SST) forcing, the variability of the observed seasonal mean atmospheric states in the extratropical latitudes can be characterized in terms of probability distribution functions (PDFs). Predictability of the ...

Arun Kumar; Anthony G. Barnston; Peitao Peng; Martin P. Hoerling; Lisa Goddard

2000-09-01T23:59:59.000Z

59

Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France  

Science Conference Proceedings (OSTI)

Système d’analyse fournissant des renseignements atmosphériques à la neige (SAFRAN) is a mesoscale atmospheric analysis system for surface variables. It produces an analysis at the hourly time step using ground data observations. One of SAFRAN’s ...

P. Quintana-Seguí; P. Le Moigne; Y. Durand; E. Martin; F. Habets; M. Baillon; C. Canellas; L. Franchisteguy; S. Morel

2008-01-01T23:59:59.000Z

60

Scales of Variability in the Equatorial Pacific Inferred form Tropical Atmosphere-Ocean Buoy Array  

Science Conference Proceedings (OSTI)

The highly temporally resolved time series from the Tropical Atmosphere-Ocean moored buoy array are used to evaluate the scales of thermal variability in the upper equatorial Pacific. The TAO array consists of nearly 70 deep-ocean moorings ...

William S. Kessler; M. C. Spillane; Michael J. McPhaden; D. E. Harrison

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Influence of the AMOC Variability on the Atmosphere in CCSM3  

Science Conference Proceedings (OSTI)

The influence of the Atlantic meridional overturning circulation (AMOC) variability on the atmospheric circulation is investigated in a control simulation of the NCAR Community Climate System Model, version 3 (CCSM3), where the AMOC evolves from ...

Claude Frankignoul; Guillaume Gastineau; Young-Oh Kwon

2013-12-01T23:59:59.000Z

62

Variability in a Nonlinear Model of the Atmosphere with Zonally Symmetric Forcing  

Science Conference Proceedings (OSTI)

The variability in a two-level nonlinear atmospheric model is examined. The model domain is spherical. The sole forcing is a zonally symmetric parameterization of the December-February insulation. An extended 1500 day run is carefully analyzed.

Harry H. Hendon; Dennis L. Hartmann

1985-12-01T23:59:59.000Z

63

Multiple Equilibria, Natural Variability, and Climate Transitions in an Idealized Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

An idealized coupled ocean–atmosphere is constructed to study climatic equilibria and variability. The model focuses on the role of large-scale fluid motions in the climate system. The atmospheric component is an eddy-resolving two-level global ...

R. Saravanan; James C. Mc Williams

1995-10-01T23:59:59.000Z

64

Decadal Variability of Two Oceans and an Atmosphere  

Science Conference Proceedings (OSTI)

A model of the midlatitude, large-scale interaction between the upper ocean and the troposphere is used to illustrate possible mechanisms of connection between the decadal variability in the North Atlantic and in the North Pacific. The two ocean ...

Blanca Gallego; Paola Cessi

2001-07-01T23:59:59.000Z

65

Central-West Argentina Summer Precipitation Variability and Atmospheric Teleconnections  

Science Conference Proceedings (OSTI)

The interannual-to-multidecadal variability of central-west Argentina (CWA) summer (October–March) precipitation and associated tropospheric circulation are studied in the period 1900–2010. Precipitation shows significant quasi cycles with periods ...

Eduardo A. Agosta; Rosa H. Compagnucci

2012-03-01T23:59:59.000Z

66

Projection of Climate Change onto Modes of Atmospheric Variability  

Science Conference Proceedings (OSTI)

Two possible interpretations of forced climate change view it as projecting, either linearly or nonlinearly, onto the dominant modes of variability of the climate system. An evaluation of these two interpretations is performed using annual mean ...

DáithíA. Stone; Andrew J. Weaver; Ronald J. Stouffer

2001-09-01T23:59:59.000Z

67

Biennial Variability in an Atmospheric General Circulation Model  

Science Conference Proceedings (OSTI)

Recent observational analyses have indicated that tropospheric quasi-biennial oscillations (QBs) may play a fundamental role in regulating the timing and strength of El Niño and the Southern Oscillation. The biennial variability is examined in ...

Michael A. Alexander; Klaus M. Weickmann

1995-03-01T23:59:59.000Z

68

Coupled LandAtmosphere Intraseasonal Variability of the West African Monsoon in a GCM  

E-Print Network (OSTI)

Coupled Land­Atmosphere Intraseasonal Variability of the West African Monsoon in a GCM SALLY L of intraseasonal variability in the West African monsoon. This hypothesis is investigated with a set of three in the West African monsoon can exist independently of soil moisture; however, soil moisture and land

Matthews, Adrian

69

Low-Frequency Variability in the Arctic Atmosphere, Sea Ice, and Upper-Ocean Climate System  

Science Conference Proceedings (OSTI)

The low-frequency natural variability of the arctic climate system is modeled using a single-column, energy balance model of the atmosphere. sea ice, and upper-ocean system. Variability in the system is induced by forcing with realistic, random ...

C. M. Bitz; D. S. Battisti; R. E. Moritz; J. A. Beesley

1996-02-01T23:59:59.000Z

70

On the Theory of the Long-Term Variability of the Atmosphere  

Science Conference Proceedings (OSTI)

Much of the atmosphere's long-term variability is contained in the planetary modes with zonal wavenumber m?5. It is proposed that a considerable fraction of this variability is induced by the nonlinear interaction of synoptic-scale modes (m>5) ...

Joseph Egger; Heinz-Dieter Schilling

1983-05-01T23:59:59.000Z

71

Decadal Variability of the Indo-Pacific Warm Pool and Its Association with Atmospheric and Oceanic Variability in the NCEP–NCAR and SODA Reanalyses  

Science Conference Proceedings (OSTI)

Decadal variability of the Indo-Pacific warm pool (IPWP) sea surface temperature (SST) and its association with atmospheric and oceanic circulations are investigated with observed 50-yr (1952–2001) SST, and the NCEP–NCAR atmospheric and Simple ...

Hui Wang; Vikram M. Mehta

2008-11-01T23:59:59.000Z

72

Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure  

Science Conference Proceedings (OSTI)

Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out ...

Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

2011-01-01T23:59:59.000Z

73

Rate of Work Done by Atmospheric Pressure on the Ocean General Circulation and Tides  

Science Conference Proceedings (OSTI)

Quantitative analysis of the energetics of the ocean is crucial for understanding its circulation and mixing. The power input by fluctuations in atmospheric pressure pa resulting from the S1 and S2 air tides and the stochastic continuum is ...

Rui M. Ponte

2009-02-01T23:59:59.000Z

74

The Surface-Pressure Signature of Atmospheric Tides in Modern Climate Models  

Science Conference Proceedings (OSTI)

Although atmospheric tides driven by solar heating are readily detectable at the earth’s surface as variations in air pressure, their simulations in current coupled global climate models have not been fully examined. This work examines near-...

Curt Covey; Aiguo Dai; Dan Marsh; Richard S. Lindzen

2011-03-01T23:59:59.000Z

75

Does the Surface Pressure Equal the Weight per Unit Area of a Hydrostatic Atmosphere?  

Science Conference Proceedings (OSTI)

The common statement that the surface pressure in a hydrostatic atmosphere is equal to the weight per unit area of the air aloft is shown to be true only for a Cartesian world. Here the unit area is the surface area of the base of the atmospheric ...

Peter R. Bannon; Craig H. Bishop; James B. Kerr

1997-11-01T23:59:59.000Z

76

Simulation of the Tropical Pacific Climate with a Coupled Ocean-Atmosphere General Circulation Model. Part II: Interannual Variability  

Science Conference Proceedings (OSTI)

Two multiyear simulations with a coupled ocean-atmosphere general circulation model (GCM)-totaling 45 years-are used to investigate interannual variability at the equator. The model consists of the UCLA global atmospheric GCM coupled to the GFDL ...

A. W. Robertson; C-C. Ma; M. Ghil; C. R. Mechoso

1995-05-01T23:59:59.000Z

77

Beyond Thermal Interaction between Ocean and Atmosphere: On the Extratropical Climate Variability due to the Wind-Induced SST  

Science Conference Proceedings (OSTI)

Prescribing sea surface temperature (SST) for the atmospheric general circulation models (GCM) may not lead to underestimation of the coupled variability. In this study, a set of SST-driven atmospheric GCM experiments, starting from slightly ...

Dong Eun Lee; Zhengyu Liu; Yun Liu

2008-05-01T23:59:59.000Z

78

A Ground-Based Network for Atmospheric Pressure Fluctuations  

Science Conference Proceedings (OSTI)

In 1992, a surface-based, mesoscale microbarograph array with four pressure sensors was installed near the Hohenpeißenberg, southern Germany, and has since been in continuous operation. In this paper, a description of the sensors, the network, ...

T. Hauf; U. Finke; J. Neisser; G. Bull; J-G. Stangenberg

1996-10-01T23:59:59.000Z

79

Characteristic Patterns of Variability of Sea Level Pressure in the Northern Hemisphere  

Science Conference Proceedings (OSTI)

Seasonal and annual mean sea level pressures for the Northern Hemisphere have been analyzed to determine the dominant modes of interannual and longer period variability using monthly sea level pressure analyses as revised by Trenberth and Paolino ...

Kevin E. Trenberth; Daniel A. Paolino Jr.

1981-06-01T23:59:59.000Z

80

AN INVESTIGATION OF URANIUM CORROSION IN 100 C WATER AND 200 C STEAM AT ATMOSPHERIC PRESSURE  

DOE Green Energy (OSTI)

Material balance in atmospheric-pressure water and steam corrosion of uranium have been studied by examination of the phase composition and valence state of the corrosion product and by hydrogen-evolution measurements. The corrosion rates in atmospheric-pressure steam above 100 deg C are lower than those obtained in tests carried out in water with a hydrogen overpressure. The atmospheric-pressure-water corrosion product was found to be two phase: an oxygen- rich oxide, UO/sub 2.2/, and uncorroded metal particles. No hydride phase was detected, in contrast to previously reported evidence for hydride in uranium corrosion. The differences are explained on the basis of hydrogen pressure in the reaction vessel. (auth)

Stewart, O.M.; Berry, W.E.; Miller, P.D.; Vaughan, D.A.; Schroeder, J.B.; Fink, F.W.; Schwartz, C.M.

1958-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures  

E-Print Network (OSTI)

Knowledge of flammability limits is essential in the prevention of fire and explosion. There are two limits of flammability, upper flammability limit (UFL) and lower flammability limit (LFL), which define the flammable region of a combustible gas/vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures of hydrogen and each hydrocarbon were determined experimentally at room temperature (20ºC) and initial pressures ranging from 1.0 atm to 0.1 atm. The experiments were conducted in a closed cylindrical stainless steel vessel with upward flame propagation. It was found that the flammable region of hydrogen initially widens when the pressure decreases from 1.0 atm to 0.3 atm, then narrows with the further decrease of pressure. In contrast, the flammable regions of the hydrocarbons narrow when the pressure decreases. For hydrogen and the hydrocarbons, pressure has a much greater impact on the UFLs than on the LFLs. For binary mixtures of hydrogen and the hydrocarbons, the flammable regions of all mixtures widen when the fraction of hydrogen in the mixture increases. When the pressure decreases, the flammable regions of all mixtures narrow. The applications of Le Chatelier’s rule and the Calculated Adiabatic Flame Temperature (CAFT) model to the flammability limits of the mixtures were verified. It was found that Le Chatelier’s rule could predict the flammability limits much better than the CAFT model. The adiabatic flame temperatures (AFTs), an important parameter in the risk assessment of fire and explosion, of hydrogen and the hydrocarbons were also calculated. The influence of sub-atmospheric pressures on the AFTs was investigated. A linear relationship between the AFT and the corresponding flammability limit is derived. Furthermore, the consequence of fire relating to hydrogen and the hydrocarbons is discussed based on the AFTs of the chemicals.

Le, Thuy Minh Hai

2013-08-01T23:59:59.000Z

82

Using Variable Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model  

Science Conference Proceedings (OSTI)

A statically-nested, variable-mesh option has recently been introduced into the Community Atmosphere Model’s (CAM) Spectral Element (SE) dynamical core that has become the default in CAM version 5.3. This paper presents a series of tests of ...

Colin M. Zarzycki; Christiane Jablonowski; Mark A. Taylor

83

Long-Term Variability in a Coupled Atmosphere–Biosphere Model  

Science Conference Proceedings (OSTI)

A fully coupled atmosphere–biosphere model, version 3 of the NCAR Community Climate Model (CCM3) and the Integrated Biosphere Simulator (IBIS), is used to illustrate how vegetation dynamics may be capable of producing long-term variability in the ...

Christine Delire; Jonathan A. Foley; Starley Thompson

2004-10-01T23:59:59.000Z

84

Control and Monitoring Instrumentation for the Continuous Measurement of Atmospheric CO2 and Meteorological Variables  

Science Conference Proceedings (OSTI)

The NOAA/GMCC program was chartered to monitor the trends in those atmospheric constituents that can cause climate change. A four-observatory network was established, and a 15-year database has resulted for selected variables. At the inception, a ...

G. A. Herbert; E. R. Green; J. M. Harris; G. L. Koenig; S. J. Roughton; K. W. Thaut

1986-09-01T23:59:59.000Z

85

An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings  

DOE Green Energy (OSTI)

Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

2010-04-01T23:59:59.000Z

86

Modern Methods for Lipid AnalysisChapter 1 Atmospheric Pressure Ionization Techniques in Modern Lipid Analysis  

Science Conference Proceedings (OSTI)

Modern Methods for Lipid Analysis Chapter 1 Atmospheric Pressure Ionization Techniques in Modern Lipid Analysis Health Nutrition Biochemistry eChapters Methods - Analyses Books AOCS Press 2F9B8A831F53D269EADF2AB8911EFA88 AOCS Pr

87

On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.  

SciTech Connect

Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.

Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

2006-11-01T23:59:59.000Z

88

A Case for Including Atmospheric Thermodynamic Variables in Wind Turbine Fatigue Loading Parameter Identification  

DOE Green Energy (OSTI)

This paper makes the case for establishing efficient predictor variables for atmospheric thermodynamics that can be used to statistically correlate the fatigue accumulation seen on wind turbines. Recently, two approaches to this issue have been reported. One uses multiple linear-regression analysis to establish the relative causality between a number of predictors related to the turbulent inflow and turbine loads. The other approach, using many of the same predictors, applies the technique of principal component analysis. An examination of the ensemble of predictor variables revealed that they were all kinematic in nature; i.e., they were only related to the description of the velocity field. Boundary-layer turbulence dynamics depends upon a description of the thermal field and its interaction with the velocity distribution. We used a series of measurements taken within a multi-row wind farm to demonstrate the need to include atmospheric thermodynamic variables as well as velocity-related ones in the search for efficient turbulence loading predictors in various turbine-operating environments. Our results show that a combination of vertical stability and hub-height mean shearing stress variables meet this need over a period of 10 minutes.

Kelley, N. D.

1999-08-02T23:59:59.000Z

89

The Continuum of North Pacific Sea Level Pressure Patterns: Intraseasonal, Interannual, and Interdecadal Variability  

Science Conference Proceedings (OSTI)

This study combines k-means cluster analysis with linear unidimensional scaling to illustrate the spatial and temporal variability of the wintertime North Pacific sea level pressure (SLP) field. Daily wintertime SLP data derived from the NCEP–...

Nathaniel C. Johnson; Steven B. Feldstein

2010-02-01T23:59:59.000Z

90

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425[degrees]C and a cold-side temperature of 25[degrees]C could be varied between 17.6 W/m[sup 2] and 7,000 W/m[sup 2]. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50[degrees]C to 250[degrees]C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-01-01T23:59:59.000Z

91

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425{degrees}C and a cold-side temperature of 25{degrees}C could be varied between 17.6 W/m{sup 2} and 7,000 W/m{sup 2}. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50{degrees}C to 250{degrees}C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-12-31T23:59:59.000Z

92

Impact of Atmospheric Intraseasonal Variability in the Indian Ocean: Low-Frequency Rectification in Equatorial Surface Current and Transport  

Science Conference Proceedings (OSTI)

An ocean general circulation model (OGCM) is used to investigate the low-frequency (period longer than 90 days) rectification of atmospheric intraseasonal variability (10–90-day periods) in zonal surface current and transport of the equatorial ...

Weiqing Han; Peter Webster; Roger Lukas; Peter Hacker; Aixue Hu

2004-06-01T23:59:59.000Z

93

Structure of Oceanic and Atmospheric Low-Frequency Variability over the Tropical Pacific and Indian Oceans. Part I: COADS Observations  

Science Conference Proceedings (OSTI)

The recurrent modes of combined oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian oceans are calculated to provide quantitatively and structurally well-defined targets for simulation/prediction studies of ...

Sumant Nigam; Horng-Syi Shen

1993-04-01T23:59:59.000Z

94

Variability of the Thermohaline Circulation in an Ocean General Circulation Model Coupled to an Atmospheric Energy Balance Model  

Science Conference Proceedings (OSTI)

The variability of the ocean’s thermohaline circulation in an oceanic general circulation model (OGCM) coupled to a two-dimensional atmospheric energy balance model (EBM) is examined. The EBM calculates air temperatures by balancing heat fluxes, ...

David W. Pierce; K-Y. Kim; Tim P. Barnett

1996-05-01T23:59:59.000Z

95

Northern Hemisphere Winter Atmospheric Transient Eddy Heat Fluxes and the Gulf Stream and Kuroshio-Oyashio Extension Variability  

Science Conference Proceedings (OSTI)

Spatial and temporal co-variability between the atmospheric transient eddy heat fluxes (i.e. and ) in the Northern Hemisphere winter (January-March) and the paths of the Gulf Stream (GS), Kuroshio Extension (KE), and Oyashio Extension ...

Young-Oh Kwon; Terrence M. Joyce

96

On Robust Estimation of Low-Frequency Variability Trends in Discrete Markovian Sequences of Atmospheric Circulation Patterns  

Science Conference Proceedings (OSTI)

Identification and analysis of temporal trends and low-frequency variability in discrete time series is an important practical topic in the understanding and prediction of many atmospheric processes, for example, in analysis of climate change. ...

Illia Horenko

2009-07-01T23:59:59.000Z

97

Short-Term Climate Variability and Atmospheric Teleconnections from Satellite-Observed Outgoing Longwave Radiation. Part I: Simultaneous Relationships  

Science Conference Proceedings (OSTI)

Satellite-inferred short-term climate variability and atmospheric teleconnections are studied using seven years (1974–81) of Outgoing Longwave Radiation (OLR) data from NOAA polar orbiters. This study utilizes composite, partition-of-variance and ...

Ka-Ming Lau; Paul H. Chan

1983-12-01T23:59:59.000Z

98

A Joint Statistical and Dynamical Assessment of Atmospheric Response to North Pacific Oceanic Variability in CCSM3  

Science Conference Proceedings (OSTI)

Atmospheric response to North Pacific oceanic variability is assessed in Community Climate System Model, version 3 (CCSM3) using two statistical methods and one dynamical method. All methods identify an equivalent barotropic low response to a ...

Yafang Zhong; Zhengyu Liu

2008-11-01T23:59:59.000Z

99

Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma  

SciTech Connect

To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH{center_dot}) and superoxide anion radical (O{sub 2}{sup -}{center_dot}) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O{sub 2}{sup -}{center_dot} can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O{sub 2}{sup -}{center_dot} is crucial for sterilization of liquids via atmospheric-pressure plasma.

Tani, Atsushi; Fukui, Satoshi [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ono, Yusuke; Kitano, Katsuhisa [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Ikawa, Satoshi [Technology Research Institute of Osaka Prefecture, Izumi, Osaka 594-1157 (Japan)

2012-06-18T23:59:59.000Z

100

High-Resolution Atmospheric Sensing of Multiple Atmospheric Variables Using the DataHawk Small Airborne Measurement System  

Science Conference Proceedings (OSTI)

The DataHawk small airborne measurement system provides in situ atmospheric measurement capabilities for documenting scales as small as 1 m and can access reasonably large volumes in and above the atmospheric boundary layer at low cost. The design ...

Dale A. Lawrence; Ben B. Balsley

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modern Methods for Lipid AnalysisChapter 11 Analysis of Steroids by Liquid Chromatography — Atmospheric Pressure Photoionization Mass Spectrometry  

Science Conference Proceedings (OSTI)

Modern Methods for Lipid Analysis Chapter 11 Analysis of Steroids by Liquid Chromatography — Atmospheric Pressure Photoionization Mass Spectrometry Methods and Analyses eChapters Methods - Analyses Books 7B3610598EB68717295AAD02DBA4F828

102

High-Resolution Atmospheric Sensing of Multiple Atmospheric Variables Using the DataHawk Small Airborne Measurement System  

Science Conference Proceedings (OSTI)

The DataHawk small airborne measurement system provides in-situ atmospheric measurement capabilities for documenting scales as small as 1 m and can access reasonably large volumes in and above the atmospheric boundary layer at low cost. The design ...

Dale A. Lawrence; Ben B. Balsley

103

Development of a stable dielectric-barrier discharge enhanced laminar plasma jet generated at atmospheric pressure  

Science Conference Proceedings (OSTI)

A stable nonthermal laminar atmospheric-pressure plasma source equipped with dielectric-barrier discharge was developed to realize more efficient plasma generation, with the total energy consumption reduced to nearly 25% of the original. Temperature and emission spectra monitoring indicates that this plasma is uniform in the lateral direction of the jet core region. It is also found that this plasma contains not only abundant excited argon atoms but also sufficient excited N{sub 2} and OH. This is mainly resulted from the escape of abundant electrons from the exit, due to the sharp decrease of sustaining voltage and the coupling between ions and electrons.

Tang Jie; Li Shibo; Zhao Wei; Wang Yishan [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China); Duan Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu (China)

2012-06-18T23:59:59.000Z

104

The Influence of Midlatitude Ocean–Atmosphere Coupling on the Low-Frequency Variability of a GCM. Part I: No Tropical SST Forcing  

Science Conference Proceedings (OSTI)

This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under ...

Ileana Bladé

1997-08-01T23:59:59.000Z

105

Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone  

E-Print Network (OSTI)

In recent years, several potentially habitable, probably terrestrial exoplanets and exoplanet candidates have been discovered. The amount of CO2 in their atmosphere is of great importance for surface conditions and habitability. In the absence of detailed information on the geochemistry of the planet, this amount could be considered as a free parameter. Up to now, CO2 partial pressures for terrestrial planets have been obtained assuming an available volatile reservoir and outgassing scenarios. This study aims at calculating the allowed maximum CO2 pressure at the surface of terrestrial exoplanets orbiting near the outer boundary of the habitable zone by coupling the radiative effects of the CO2 and its condensation at the surface. These constraints might limit the permitted amount of atmospheric CO2, independent of the planetary reservoir. A 1D radiative-convective cloud-free atmospheric model was used. CO2 partial pressures are fixed according to surface temperature and vapor pressure curve. Considered scena...

von Paris, Philip; Hedelt, Pascal; Rauer, Heike; Selsis, Franck; Stracke, Barbara

2012-01-01T23:59:59.000Z

106

Evaluation of the Vertical Structure of Zonally Averaged Cloudiness and Its Variability in the Atmospheric Model Intercomparison Project  

Science Conference Proceedings (OSTI)

Estimates of zonally averaged cloudiness at each pressure level in 24 models participating in the Atmospheric Model Intercomparison Project are compared with the ISCCP C2 as well as the Nimbus 7 (N7) and Warren et al. (hereafter WH) observations. ...

Bryan C. Weare; Amip Modeling Groups

1996-12-01T23:59:59.000Z

107

Atmospheric variability of methyl chloride during the last 300 years from an Antarctic ice core and firn air  

E-Print Network (OSTI)

as a low-pass filter, smoothing variations in the atmospheric composition of a gas over decadal time scales core measurements from Siple Dome provide evidence for a cyclic natural variability on the order of 10 increase measured in firn air may largely be a result of natural processes, which may continue to affect

Saltzman, Eric

108

Estimating Spatial Variability in Atmospheric Properties over Remotely Sensed Land Surface Conditions  

Science Conference Proceedings (OSTI)

This paper investigates the spatial relationships between surface fluxes and near-surface atmospheric properties (AP), and the potential errors in flux estimation due to homogeneous atmospheric inputs over heterogeneous landscapes. A large-eddy ...

Giacomo Bertoldi; William P. Kustas; John D. Albertson

2008-08-01T23:59:59.000Z

109

Earth Rotation as a Proxy for Interannual Variability in Atmospheric Circulation, 1860-Present  

Science Conference Proceedings (OSTI)

Modern atmospheric and geodetic datasets have demonstrated that changes in the axial component of the atmosphere's angular momentum and in the rotation rate of the solid earth are closely coupled on time scales of up to several years. We ...

David A. Salstein; Richard D. Rosen

1986-12-01T23:59:59.000Z

110

Spatial Variability of Atmospheric Boundary Layer Structure over the Eastern Equatorial Pacific  

Science Conference Proceedings (OSTI)

Variations in the atmospheric boundary layer structure over the eastern equatorial Pacific are analyzed using 916 soundings collected during the First Global Atmospheric Research Program Global Experiment. Unstable boundary layer structures are ...

Bingfan Yin; Bruce A. Albrecht

2000-05-01T23:59:59.000Z

111

Nonlinear Resonance and Instability of Planetary Waves and Low-Frequency Variability in the Atmosphere  

Science Conference Proceedings (OSTI)

It is demonstrated in this work that linearly unstable planetary waves can be resonantly excited to finite amplitude in a nonlinear barotropic atmosphere with vorticity forcing and dissipation. In a weakly forced/dissipated atmosphere, it is ...

Peili Wu

1993-11-01T23:59:59.000Z

112

Low-Frequency Variability in the Midlatitude Atmosphere Induced by an Oceanic Thermal Front  

Science Conference Proceedings (OSTI)

This study examines the flow induced in a highly idealized atmospheric model by an east–west-oriented oceanic thermal front. The model has a linear marine boundary layer coupled to a quasigeostrophic, equivalent- barotropic free atmosphere. The ...

Yizhak Feliks; Michael Ghil; Eric Simonnet

2004-05-01T23:59:59.000Z

113

Palladium-catalyzed combustion of methane: Simulated gas turbine combustion at atmospheric pressure  

Science Conference Proceedings (OSTI)

Atmospheric pressure tests were performed in which a palladium catalyst ignites and stabilizes the homogeneous combustion of methane. Palladium exhibited a reversible deactivation at temperatures above 750 C, which acted to ``self-regulate`` its operating temperature. A properly treated palladium catalyst could be employed to preheat a methane/air mixture to temperatures required for ignition of gaseous combustion (ca. 800 C) without itself being exposed to the mixture adiabatic flame temperature. The operating temperature of the palladium was found to be relatively insensitive to the methane fuel concentration or catalyst inlet temperature over a wide range of conditions. Thus, palladium is well suited for application in the ignition and stabilization of methane combustion.

Griffin, T.; Weisenstein, W. [ABB Corporate Research Center, Daettwill (Switzerland); Scherer, V. [ABB Kraftwerke, Mannheim (Germany); Fowles, M. [ICI Katalco, Cleveland (United Kingdom)

1995-04-01T23:59:59.000Z

114

Effect of near atmospheric pressure nitrogen plasma treatment on Pt/ZnO interface  

SciTech Connect

The effect of near atmospheric pressure nitrogen plasma (NAP) treatment of platinum (Pt)/zinc oxide (ZnO) interface was investigated. NAP can nitride the ZnO surface at even room temperature. Hard x-ray photoelectron spectroscopy revealed that NAP treatment reduced the surface electron accumulation at the ZnO surface and inhibited the Zn diffusion into the Pt electrode, which are critical issues affecting the Schottky barrier height and the ideality factor of the Pt/ZnO structure. After NAP treatment, the Pt Schottky contact indicated an improvement of electrical properties. NAP treatment is effective for the surface passivation and the Schottky contact formation of ZnO.

Nagata, Takahiro; Haemori, Masamitsu; Chikyow, Toyohiro [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Yamashita, Yoshiyuki [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yoshikawa, Hideki; Kobayashi, Keisuke [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Uehara, Tsuyoshi [Sekisui Chemical Co., Ltd., Wadai, Tsukuba, Ibaraki 300-4292 (Japan)

2012-12-01T23:59:59.000Z

115

Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces  

DOE Patents (OSTI)

Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

Carr; Jeffrey W. (Livermore, CA)

2009-03-31T23:59:59.000Z

116

The Effect of Pressure Difference Control on Hydraulic Stability in a Variable Flow Air Conditioning System  

E-Print Network (OSTI)

This paper analyzes the effects of different pressure difference control methods on hydraulic stability in a variable flow air conditioning system when it is applied to different air conditioning water systems. According to control method and water system, it can be divided into direct return system pass-by control, direct return system terminal control, reversed return system pass-by control and reversed return system terminal control. The results indicate that reversed return system terminal control has the best hydraulic stability.

Zhang, Z.; Fu, Y.; Chen, Y.

2006-01-01T23:59:59.000Z

117

Short-Term Climatic Variability of the Arctic  

Science Conference Proceedings (OSTI)

The circulation of the Arctic atmosphere undergoes large fluctuations about its monthly and annual means. The statistics of Arctic sea level pressure and temperature are evaluated in order to place Arctic atmospheric variability into the context ...

John E. Walsh; William L. Chapman

1990-02-01T23:59:59.000Z

118

Atmospheric-Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films  

Science Conference Proceedings (OSTI)

Iron pyrite (cubic FeS{sub 2}) is a promising candidate absorber material for earth-abundant thin-film solar cells. In this report, single-phase, large-grain, and uniform polycrystalline pyrite thin films are fabricated on glass and molybdenum-coated glass substrates by atmospheric-pressure chemical vapor deposition (AP-CVD) using the reaction of iron(III) acetylacetonate and tert-butyl disulfide in argon at 300 C, followed by sulfur annealing at 500--550 C to convert marcasite impurities to pyrite. The pyrite-marcasite phase composition depends strongly on the concentration of sodium in the growth substrate and the sulfur partial pressure during annealing. Phase and elemental composition of the films are characterized by X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering spectrometry, and X-ray photoelectron spectroscopy. The in-plane electrical properties are surprisingly insensitive to phase and elemental impurities, with all films showing p-type, thermally activated transport with a small activation energy ({approx}30 meV), a room- temperature resistivity of {approx}1 {Omega} cm, and low mobility. These ubiquitous electrical properties may result from robust surface effects. These CVD pyrite thin films are well suited to fundamental electrical studies and the fabrication of pyrite photovoltaic device stacks.

Berry, Nicholas; Cheng, Ming; Perkins, Craig L.; Limpinsel, Moritz; Hemminger, John C.; Law, Matt (NREL); (UCI)

2012-10-23T23:59:59.000Z

119

Studies of regional-scale climate variability and change: Hidden Markov models and coupled ocean-atmosphere modes  

SciTech Connect

In this project we developed further a twin approach to the study of regional-scale climate variability and change. The two approaches involved probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs). We thus made progress in identifying the predictable modes of climate variability and investigating their impacts on the regional scale. In previous work sponsored by DOE�s Climate Change Prediction Program (CCPP), we had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale seasonal predictions of general circulation models (GCMs). Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might in�uence large-scale atmospheric circulation patterns on interannual and longer time scales; similar patterns were found in a hybrid coupled ocean�atmosphere�sea-ice model. In this continuation project, we built on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean�atmosphere modes. Our main project results consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM simulations, called empirical mode reduction (EMR); and observational studies of decadal and multi-decadal natural climate variability, informed by ICM simulations. A particularly timely by-product of this work is an extensive study of clustering of cyclone tracks in the extratropical Atlantic and the western Tropical Pacific, with potential applications to predicting landfall.

M. Ghil (UCLA), PI; S. Kravtsov (UWM); A. W. Robertson (IRI); P. Smyth (UCI)

2008-10-14T23:59:59.000Z

120

Variability of the South Atlantic Convergence Zone Simulated by an Atmospheric General Circulation Model  

Science Conference Proceedings (OSTI)

Interannual and decadal variability of the South Atlantic convergence zone (SACZ) during austral summer [season January–February–March (JFM)] is investigated. An attempt is made to separate the forced variability from the internal variability. ...

Marcelo Barreiro; Ping Chang; R. Saravanan

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Characteristics of indium oxide plasma filters deposited by atmospheric pressure CVD  

DOE Green Energy (OSTI)

Thin films of undoped and tin-doped In{sub 2}O{sub 3} are being investigated for use as plasma filters in spectral control applications for thermal photovoltaic cells. These films are required to exhibit high reflectance at wavelengths longer than the plasma wavelength {lambda}{sub p}, high transmittance at wavelengths shorter than {lambda}{sub p} and low absorption throughout the spectrum. Both types of films were grown via atmospheric pressure chemical vapor deposition (APCVD) on Si (100) and fused silica substrates using trimethylindium (TMI), tetraethyltin (TET), and oxygen as the precursors. Fourier Transform InfraRed (FTIR) spectroscopy was used to measure the filter transmittance and reflectance between 1.8--20 {micro}m. Nominal conditions used during the growth of undoped In{sub 2}O{sub 3} were a substrate temperature of 450 C and partial pressures of 1.4 {times} 10{sup {minus}4} atm. and 1 {times} 10{sup {minus}3} atm. for TMI and O{sub 2} respectively. The O{sub 2}/TMI partial pressure ratio and substrate temperature were systematically varied to control the filter characteristics. The plasma wavelength {lambda}{sub p} was found to be a sensitive function of these parameters. Post-growth annealing of the films was done in inert as well as air ambient at elevated temperatures, but was found to have no beneficial effect. Tin-doped In{sub 2}O{sub 3} was grown under similar conditions as above, with a typical TET partial pressure of 4 {times} 10{sup {minus}6} atm. Here also, the material properties and consequently the optical response were found to be strongly dependent on growth conditions such as O{sub 2} and TET partial pressures. Both undoped and tin-doped In{sub 2}O{sub 3} grown on fused silica exhibited enhanced transmittance due to the close matching of refractive indices of In{sub 2}O{sub 3} and silica. X-ray diffractometer measurements indicated that all these films were polycrystalline and highly textured towards the (111) direction. The best undoped and tin-doped In{sub 2}O{sub 3} films had a {lambda}{sub p} around 2.7 {micro}m, peak reflectance greater than 75% and residual absorption below 20%. These results indicate the promise of undoped and tin-doped In{sub 2}O{sub 3} as a material for plasma filters.

Langlois, E.; Murthy, S.D.; Bhat, I.; Gutmann, R. [Rensselaer Polytechnic Inst., Troy, NY (United States); Brown, E.; Dziendziel, R.; Freeman, M.; Choudhury, N. [Lockheed Martin Corp., Schenectady, NY (United States)

1995-07-01T23:59:59.000Z

122

Experiment plan for characterization of the properties of molten rock at atmospheric and elevated pressures: Magma Energy Research Project  

DOE Green Energy (OSTI)

Knowledge of the properties of molten rock (magma) is of importance to the Magma Energy Research Project of Sandia Laboratories. Facilities have been set up at Sandia to study the physical properties, chemistry, and corrosive nature of magma to 1600/sup 0/C and from atmospheric pressure to 4 kbar (400 MPa). Experiments at atmospheric pressure are being done in the presence of multicomponent gas mixtures to control the chemical activities of oxygen and sulfur. The high-pressure apparatus includes cold-seal small-volume pressure vessels (to 1100/sup 0/C and 1 kbar) and a large (750 cm/sup 3/ sample volume), internally heated pressure vessel (to 1600/sup 0/C and 4 kbar). The large vessel contains a number of penetrations for electrical leads and pressure lines, and is linked to a computer for data acquisition and control of experiments. Water and other dissolved volatiles (CO/sub 2/, CO, SO/sub 2/, S/sub 2/, H/sub 2/S, HCl, HF) have significant effects on all the properties of magma, and these effects will be studied in the high-pressure apparatus. Phase equilibria, viscosity, electrical conductivity, and materials compatibility will be the first properties to be examined under pressure. This report includes a review of the nature and chemical basis for the effects of dissolved volatiles on these properties of magma. 70 references, 10 figures.

Modreski, P.J.

1979-02-01T23:59:59.000Z

123

Modern Methods for Lipid AnalysisChapter 8 Analysis of Carotenoids Using Atmospheric Pressure Chemical Ionization Mass Spectrometry  

Science Conference Proceedings (OSTI)

Modern Methods for Lipid Analysis Chapter 8 Analysis of Carotenoids Using Atmospheric Pressure Chemical Ionization Mass Spectrometry Methods and Analyses eChapters Methods - Analyses Books AOCS Press 634F787D8F694E5A50C242671C4B87C5

124

Nonequilibrium Response of the Global Ocean to the 5-Day Rossby–Haurwitz Wave in Atmospheric Surface Pressure  

Science Conference Proceedings (OSTI)

The response of the global ocean to the surface pressure signal associated with the well-known 5-day Rossby–Haurwitz atmospheric mode is explored using analytical and numerical tools. Solutions of the Laplace tidal equations for a flat-bottom, ...

Rui M. Ponte

1997-10-01T23:59:59.000Z

125

A Correction for Land Contamination of Atmospheric Variables near Land–Sea Boundaries  

Science Conference Proceedings (OSTI)

Ocean models need over-ocean atmospheric forcing. However, such forcing is not necessarily provided near the land–sea boundary because 1) the atmospheric model grid used for forcing is frequently much coarser than the ocean model grid, and 2) ...

A. Birol Kara; Alan J. Wallcraft; Harley E. Hurlburt

2007-04-01T23:59:59.000Z

126

Simulation of the tropical Pacific climate with a coupled ocean - atmosphere general circulation model. Part II: Interannual variability  

Science Conference Proceedings (OSTI)

Two multiyear simulations with a coupled ocean-atmosphere general circulation model (GCM)-totaling 45 years-are used to investigate interannual variability at the equator. The model consists of the UCLA global atmospheric GCM coupled to the GFDL oceanic GCM, dynamically active over the tropical Pacific. Multichannel singular spectrum analysis along the equator identifies ENSO-like quasi-biennial (QB) and quasi-quadrennial (QQ) modes. Both consist of predominantly standing oscillations in sea surface temperature and zonal wind stress that peak in the central or east Pacific, accompanied by an oscillation in equatorial thermocline depth that is characterized by a phase shift of about 90{degrees} across the basin, with west leading east. Simulated interannual variability is weaker than observed in both simulations. One of these is dominated by the QB, the other by the QQ mode, although the two differ only in details of the surface-layer parameterizations. 42 refs., 19 figs., 2 tabs.

Robertson, A.W.; Ma, C.C.; Ghil, M. [Univ. of California, Los Angeles, CA (United States)] [and others

1995-05-01T23:59:59.000Z

127

Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet  

SciTech Connect

Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

Prevosto, L.; Mancinelli, B. R. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina) and Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales UBA Ciudad Universitaria Pab. I, (1428) Buenos Aires (Argentina)

2012-09-15T23:59:59.000Z

128

Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging  

SciTech Connect

This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

2013-01-01T23:59:59.000Z

129

CO oxidation over ruthenium: identification of the catalytically active phases at near-atmospheric pressures  

SciTech Connect

CO oxidation was carried out over Ru(0001) and RuO2(110) thin film grown on Ru(0001) at various O2/CO ratios near atmospheric pressures. Reaction kinetics, coupled with in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements were used to identify the catalytically relevant phases at different reaction conditions. Under stoichiometric and reducing conditions at all reaction temperatures, as well as net-oxidizing reaction conditions below {approx}475 K, a reduced metallic phase with chemisorbed oxygen is the thermodynamically stable and catalytically active phase. On this surface CO oxidation occurs at surface defect sites, for example step edges. Only at net-oxidizing reaction conditions and above {approx}475 K is the RuO2 thin film grown on metallic Ru stable and active. However, RuO2 is not active itself without the existence of the metal substrate, suggesting the importance of a strong metal-substrate interaction (SMSI).

Gao, Feng; Goodman, Wayne D.

2012-05-21T23:59:59.000Z

130

joint Spatiotemporal Modes of Surface Temperature and Sea Level Pressure Variability in the Northern Hemisphere during the Last Century  

Science Conference Proceedings (OSTI)

Coherent spatiotemporal modes of climatic variability are isolated based on a multivariate frequency domain singular value decomposition (SVD) of nearly a century of monthly Northern Hemisphere sea level pressure (SLP) and surface temperature ...

Michael E. Mann; Jeffrey Park

1996-09-01T23:59:59.000Z

131

New Insights into North European and North Atlantic Surface Pressure Variability, Storminess, and Related Climatic Change since 1830  

Science Conference Proceedings (OSTI)

The authors present initial results of a new pan-European and international storminess since 1800 as interpreted from European and North Atlantic barometric pressure variability (SENABAR) project. This first stage analyzes results of a new daily ...

Edward Hanna; John Cappelen; Rob Allan; Trausti Jónsson; Frank Le Blancq; Tim Lillington; Kieran Hickey

2008-12-01T23:59:59.000Z

132

Variability in Large-Scale Water Balance with Land Surface-Atmosphere Interaction  

Science Conference Proceedings (OSTI)

Persistent and prolonged periods of dry or moist conditions are often evident in the interannual variability of continental-type climates This variability appears as fluctuations around several distinct and preferred moisture states. These ...

Dara Entekhabi; Ignacio Rodriguez-Iturbe; Rafael L. Bras

1992-08-01T23:59:59.000Z

133

The Structure and Variability of the Marine Atmosphere around the Santa Barbara Channel  

Science Conference Proceedings (OSTI)

The Santa Barbara Channel is a region characterized by coupled interaction between the lower-level atmosphere, the underlying ocean, and the elevated topography of the coastline. The nature of these interactions and the resulting weather patterns ...

C. E. Dorman; C. D. Winant

2000-02-01T23:59:59.000Z

134

Transient Upwelling Generated by Two-Dimensional Atmospheric Forcing and Variability in the Coastline  

Science Conference Proceedings (OSTI)

The present paper deals with two-dimensional transient upwelling in a two-layer ocean of constant depth. Motions generated by several two-dimensional atmospheric forcings are investigated. Using asymptotic expansions in time, it is shown that the ...

Michel Crépon; Claude Richez

1982-12-01T23:59:59.000Z

135

From Short-Scale Atmospheric Variability to Global Climate Dynamics: Toward a Systematic Theory of Averaging  

Science Conference Proceedings (OSTI)

Traditionally, climate is defined by the properties of the averages of the meteorological fields over an appropriate time interval. In this paper the properties of the time-averaged observables of a red noise atmosphere and of a simplified model ...

C. Nicolis; G. Nicolis

1995-06-01T23:59:59.000Z

136

Stability and Variability in a Coupled Ocean–Atmosphere Climate Model: Results of 100-year Simulations  

Science Conference Proceedings (OSTI)

Two 100-year seasonal simulators, one performed with a low resolution atmospheric general circulation model (GCM) coupled to a mixed-layer ocean formulation and the other made with the GCM forced by prescribed ocean conditions, are compared to ...

David D. Houghton; Robert G. Gallimore; Linda M. Keller

1991-06-01T23:59:59.000Z

137

The Antarctic Atmospheric Energy Budget. Part I: Climatology and Intraseasonal-to-Interannual Variability  

Science Conference Proceedings (OSTI)

The authors present a new, observationally based estimate of the atmospheric energy budget for the Antarctic polar cap (the region poleward of 70°S). This energy budget is constructed using state-of-the-art reanalysis products from ECMWF [the ...

Michael Previdi; Karen L. Smith; Lorenzo M. Polvani

2013-09-01T23:59:59.000Z

138

Low-Frequency Variability in the Midlatitude Baroclinic Atmosphere Induced by an Oceanic Thermal Front  

Science Conference Proceedings (OSTI)

This study examines the flow induced by an east–west-oriented oceanic thermal front in a highly idealized baroclinic model. Previous work showed that thermal fronts could produce energetic midlatitude jets in an equivalent-barotropic atmosphere ...

Yizhak Feliks; Michael Ghil; Eric Simonnet

2007-01-01T23:59:59.000Z

139

Microwave plasma source operating with atmospheric pressure air-water mixtures  

Science Conference Proceedings (OSTI)

The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O {yields} NO{sup +}+ e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO{sub 2} and nitrous acid HNO{sub 2} have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O({sup 3}P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O{sub 2}(a{sup 1}{Delta}{sub g}) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O{sub 2}(a{sup 1}{Delta}{sub g}) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.

Tatarova, E.; Henriques, J. P.; Felizardo, E.; Lino da Silva, M.; Ferreira, C. M. [Institute of Plasmas and Nuclear Fusion, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisbon (Portugal); Gordiets, B. [Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow (Russian Federation)

2012-11-01T23:59:59.000Z

140

Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas  

SciTech Connect

A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

O'Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

2012-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Experimental Study on Focusing Multiple Atmospheric-Pressure Plasma Jets  

E-Print Network (OSTI)

We have studied atmospheric-pressure plasma jets using a quartz tube and electrodes by applying low frequencies and high voltages. To increase the number of charged particles per unit area, a bundle of multiple plasma jets was concentrated at one point. To study the characteristics of the jet, the plasma was injected into a magnetic field produced by external electromagnetic coils. It was found that the plasma jet was affected by the magnetic field.

Kiyoyuki Yambe; Hajime Sakakita; Haruhisa Koguchi; Satoru Kiyama; Nagayasu Ikeda; Yoichi Hirano

2008-01-01T23:59:59.000Z

142

Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries  

Science Conference Proceedings (OSTI)

Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-...

Gretchen Keppel-Aleks; James T. Randerson; Keith Lindsay; Britton B. Stephens; J. Keith Moore; Scott C. Doney; Peter E. Thornton; Natalie M. Mahowald; Forrest M. Hoffman; Colm Sweeney; Pieter P. Tans; Paul O. Wennberg; Steven C. Wofsy

2013-07-01T23:59:59.000Z

143

The Ocean Response to Low-Frequency Interannual Atmospheric Variability in the Mediterranean Sea. Part I: Sensitivity Experiments and Energy Analysis  

Science Conference Proceedings (OSTI)

In this study a general circulation model is used in order to investigate the interannual response of the Mediterranean Basin to low-frequency interannual variability in atmospheric forcing for the period 1980–88. The model incorporates a ...

G. Korres; N. Pinardi; A. Lascaratos

2000-02-01T23:59:59.000Z

144

Variability in a Mixed Layer Ocean Model Driven by Stochastic Atmospheric Forcing  

Science Conference Proceedings (OSTI)

A stochastic model of atmospheric surface conditions, developed from 30 years of data at Ocean Weather Station P in the northeast Pacific, is used to drive a mixed layer model of the upper mean. The spectral characteristics of anomalies in the ...

Michael A. Alexander; Cecile Penland

1996-10-01T23:59:59.000Z

145

The Antarctic Atmospheric Energy Budget. Part I: Climatology and Intraseasonal-to-Interannual Variability  

Science Conference Proceedings (OSTI)

We present a new, observationally based estimate of the atmospheric energy budget for the Antarctic polar cap (the region poleward of 70°S). This energy budget is constructed using state-of-the-art reanalysis products from ECMWF (the ERA-Interim ...

Michael Previdi; Karen L. Smith; Lorenzo M. Polvani

146

Mean Climate and Variability of the Atmosphere and Ocean on an Aquaplanet  

Science Conference Proceedings (OSTI)

Numerical experiments are described that pertain to the climate of a coupled atmosphere–ocean–ice system in the absence of land, driven by modern-day orbital and CO2 forcing. Millennial time-scale simulations yield a mean state in which ice caps ...

John Marshall; David Ferreira; J-M. Campin; Daniel Enderton

2007-12-01T23:59:59.000Z

147

Probability density function method for variable-density pressure-gradient-driven turbulence and mixing  

SciTech Connect

Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

Bakosi, Jozsef [Los Alamos National Laboratory; Ristorcelli, Raymond J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

148

Observed atmospheric response to cold season sea ice variability in the Arctic  

Science Conference Proceedings (OSTI)

The relation between weekly Arctic sea ice concentrations (SIC) from December to April and sea level pressure (SLP) during 1979-2007 is investigated using Maximum Covariance Analysis (MCA). In the North Atlantic sector, the interaction between the ...

Claude Frankignoul; Nathalie Sennéchael; Pierre Cauchy

149

Provisionally Corrected Surface Wind Data, Worldwide Ocean-Atmosphere Surface Fields, and Sahellan Rainfall Variability  

Science Conference Proceedings (OSTI)

Worldwide ship datasets of sea surface temperature (SST), sea level pressure (SLP), and surface vector wind are analyzed for a July-September composite of five Sabelian wet years (1950, 1952, 1953, 1954, 1958) minus five Sahelian dry years (1972, ...

M. Neil Ward

1992-05-01T23:59:59.000Z

150

Conceptual design of a pressure tube light water reactor with variable moderator control  

SciTech Connect

This paper presents the development of innovative pressure tube light water reactor with variable moderator control. The core layout is derived from a CANDU line of reactors in general, and advanced ACR-1000 design in particular. It should be stressed however, that while some of the ACR-1000 mechanical design features are adopted, the core design basics of the reactor proposed here are completely different. First, the inter fuel channels spacing, surrounded by the calandria tank, contains a low pressure gas instead of heavy water moderator. Second, the fuel channel design features an additional/external tube (designated as moderator tube) connected to a separate moderator management system. The moderator management system is design to vary the moderator tube content from 'dry' (gas) to 'flooded' (light water filled). The dynamic variation of the moderator is a unique and very important feature of the proposed design. The moderator variation allows an implementation of the 'breed and burn' mode of operation. The 'breed and burn' mode of operation is implemented by keeping the moderator tube empty ('dry' filled with gas) during the breed part of the fuel depletion and subsequently introducing the moderator by 'flooding' the moderator tube for the 'burn' part. This paper assesses the conceptual feasibility of the proposed concept from a neutronics point of view. (authors)

Rachamin, R.; Fridman, E. [Reactor Safety Div., Inst. of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden (Germany); Galperin, A. [Dept. of Nuclear Engineering, Ben-Gurion Univ. of the Negev, POB 653, Beer Sheva 84105 (Israel)

2012-07-01T23:59:59.000Z

151

Seasonal Influences on Coupled Ocean–Atmosphere Variability in the Tropical Atlantic Ocean  

Science Conference Proceedings (OSTI)

Numerous studies and observational analyses point to a connection between the annual cycle and tropical Atlantic variability, specifically the influence of the seasons. Although a previous study has shown that the annual cycle is not necessary ...

Susan C. Bates

2010-02-01T23:59:59.000Z

152

Multimodel Estimates of Atmospheric Response to Modes of SST Variability and Implications for Droughts  

Science Conference Proceedings (OSTI)

A set of idealized global model experiments was performed by several modeling centers as part of the Drought Working Group of the U.S. Climate Variability and Predictability component of the World Climate Research Programme (CLIVAR). The purpose ...

Philip J. Pegion; Arun Kumar

2010-08-01T23:59:59.000Z

153

Modeling the Biosphere–Atmosphere System: The Impact of the Subgrid Variability in Rainfall Interception  

Science Conference Proceedings (OSTI)

Subgrid variability in rainfall distribution has been widely recognized as an important factor to include in the representation of land surface hydrology within climate models. In this paper, using West Africa as a case study, the impact of the ...

Guiling Wang; Elfatih A. B. Eltahir

2000-08-01T23:59:59.000Z

154

Intraseasonal Tropical Atmospheric Variability Associated with the Two Flavors of El Niño  

Science Conference Proceedings (OSTI)

The characteristics of intraseasonal tropical variability (ITV) associated with the two flavors of El Niño [i.e., the canonical or eastern Pacific (EP) El Niño and the Modoki or central Pacific (CP) El Niño] are documented using composite and ...

Daria Gushchina; Boris Dewitte

2012-11-01T23:59:59.000Z

155

Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability  

Science Conference Proceedings (OSTI)

From observational analysis a Pacific mode of variability in the intertropical convergence zone (ITCZ)/cold tongue region is identified that possesses characteristics and interpretation similar to the dominant “meridional” mode of interannual–...

John C. H. Chiang; Daniel J. Vimont

2004-11-01T23:59:59.000Z

156

A Statistical-Dynamical Study of Empirically Determined Modes of Atmospheric Variability  

Science Conference Proceedings (OSTI)

The observed wintertime intraseasonal variability of the Northern Hemisphere midtropospheric circulation is analyzed within the framework of an equivalent barotropic model. The analysis centers on the wave domain empirical orthogonal functions (...

Siegfried D. Schubert

1985-01-01T23:59:59.000Z

157

Ensemble Atmospheric GCM Simulation of Climate Interannual Variability from 1979 to 1994  

Science Conference Proceedings (OSTI)

The climate interannual variability is examined using the general circulation model (GCM) developed at the Laboratoire de Météorologie Dynamique. The model is forced by the observed sea surface temperature for the period 1979–94. An ensemble of ...

Zhao-Xin Li

1999-04-01T23:59:59.000Z

158

System for detecting operating errors in a variable valve timing engine using pressure sensors  

SciTech Connect

A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

Wiles, Matthew A.; Marriot, Craig D

2013-07-02T23:59:59.000Z

159

Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice  

Science Conference Proceedings (OSTI)

Over Arctic sea ice, pressure ridges, floe and melt pond edges all introduce discrete obstructions to the flow of air or water past the ice, and are a source of form drag. In current climate models form drag is only accounted for by tuning the air-...

Michel Tsamados; Daniel L. Feltham; David Schroeder; Daniela Flocco; Sinead L. Farrell; Nathan Kurtz; Seymour W. Laxon; Sheldon Bacon

160

Modern Methods for Lipid AnalysisCh 6 Regiospecific Analysis of Triacylglycerols using Hi Performance Liquid Chromatography/AtmosphericPressure Chemical Ionization Mass Spectrometry  

Science Conference Proceedings (OSTI)

Modern Methods for Lipid Analysis Ch 6 Regiospecific Analysis of Triacylglycerols using Hi Performance Liquid Chromatography/AtmosphericPressure Chemical Ionization Mass Spectrometry Methods and Analyses eChapters Methods - Analyses Books

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modern Methods for Lipid AnalysisChapter 7 Qualitative and Quantitative Analysis of Triacylglycerolsby Atmospheric Pressure Ionization (APCI and ESI) Mass Spectrometry Techniques  

Science Conference Proceedings (OSTI)

Modern Methods for Lipid Analysis Chapter 7 Qualitative and Quantitative Analysis of Triacylglycerolsby Atmospheric Pressure Ionization (APCI and ESI) Mass Spectrometry Techniques Methods and Analyses eChapters Methods - Analyses Books AO

162

Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine  

SciTech Connect

Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

2013-07-11T23:59:59.000Z

163

Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource  

DOE Green Energy (OSTI)

A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

Goldsberry, F.L.

1982-03-01T23:59:59.000Z

164

Atomic Layer Deposition of Al2O3 and ZnO at Atmospheric Pressure ...  

Science Conference Proceedings (OSTI)

... a unique flow tube ALD reactor that operates at pressures between ~1 and 760 Torr. .... Scaling Theory of Continuum Dislocation Dynamics in Two and Three ...

165

Investigation on plasma parameters and step ionization from discharge characteristics of an atmospheric pressure Ar microplasma jet  

Science Conference Proceedings (OSTI)

In this communication, we report a technique to estimate the plasma parameters from the discharge characteristics of a microplasma device, operated in atmospheric pressure on the basis of homogeneous discharge model. By this technique, we investigate the plasma parameters of a microplasma jet produced by microplasma device consisting of coaxial capillary electrodes surrounded by dielectric tube. Our results suggest that the complex dependence of electrical discharge characteristics observed for microplasma device operated with Ar or it admixtures probably signify the existence of step ionization, which is well known in inductively coupled plasma.

Bora, B.; Bhuyan, H.; Favre, M.; Chuaqui, H.; Wyndham, E. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Ave. Vicuna Mackenna 4860, Santiago (Chile); Kakati, M. [Thermal Plasma Processed Materials Laboratory, Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402, Assam (India)

2012-06-15T23:59:59.000Z

166

Nonlinear propagation of a high-power focused femtosecond laser pulse in air under atmospheric and reduced pressure  

Science Conference Proceedings (OSTI)

This paper examines the propagation of focused femtosecond gigawatt laser pulses in air under normal and reduced pressure in the case of Kerr self-focusing and photoionisation of the medium. The influence of gas density on the beam dimensions and power and the electron density in the plasma column in the nonlinear focus zone of the laser beam has been studied experimentally and by numerical simulation. It has been shown that, in rarefied air, the radiation-induced reduction in the rate of plasma formation diminishes the blocking effect of the plasma on the growth of the beam intensity in the case of tight focusing. This allows higher power densities of ultrashort laser pulses to be reached in the focal waist region in comparison with beam self-focusing under atmospheric pressure.

Geints, Yu E; Zemlyanov, A A; Ionin, Andrei A; Kudryashov, Sergei I; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S

2012-04-30T23:59:59.000Z

167

Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation  

SciTech Connect

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T. [Centre for Plasma Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

2012-05-25T23:59:59.000Z

168

Auto-ignition during instationary jet evolution of dimethyl ether (DME) in a high-pressure atmosphere  

Science Conference Proceedings (OSTI)

The auto-ignition process during transient injection of gaseous dimethyl ether (DME) in a constant high-pressure atmosphere is studied experimentally by laser-optical methods and compared with numerical calculations. With different non-intrusive measurement techniques jet properties and auto-ignition are investigated at high temporal and spatial resolution. The open jet penetrates a constant pressure oxidative atmosphere of up to 4 MPa. During the transient evolution, the fuel jet entrains air at up to 720 K. The subsequent auto-ignition of the ignitable part of the jet occurs simultaneously over a wide spatial extension. The ignition delay times are not affected by variation of the nozzle exit velocity. Thus, the low-temperature oxidation is slow compared with the shorter time scales of mixing, so that chemical kinetics is dominating the process. The typical two-stage ignition is resolved optically with high-speed shadowgraphy at a sampling rate of 10 kHz. The 2D fields of jet velocity and transient mixture fraction are measured phase-coupled with Particle Image Velocimetry (PIV) and Tracer Laser Induced Fluorescence (LIF) during the time-frame of ignition. The instationary Probability Density Functions (PDF) of mixture fraction are described very well by Beta functions within the complete area of the open jet. Additional 1D flamelet simulations of the auto-ignition process are computed with a detailed reaction mechanism for DME [S. Fischer, F. Dryer, H. Curran, Int. J. Chem. Kinet. 32 (12) (2000) 713-740; H. Curran, S. Fischer, F. Dryer, Int. J. Chem. Kinet. 32 (12) (2000) 741-759]. Calculated ignition delay times are in very good agreement with the measured mean ignition delay times of 3 ms. Supplemental flamelet simulations address the influence of DME and air temperature, pressure and strain. Underneath a critical strain rate the air temperature is identified to be the most sensitive factor on ignition delay time. (author)

Fast, G.; Kuhn, D.; Class, A.G. [Institut fuer Kern- und Energietechnik, Forschungszentrum Karlsruhe GmbH, Weberstrasse 5, D-76133 Karlsruhe (Germany); Maas, U. [Institut fuer Technische Thermodynamik, Universitat Karlsruhe (TH), Kaiserstrasse 12, D-76128 Karlsruhe (Germany)

2009-01-15T23:59:59.000Z

169

Three-Dimensional Structure of Low-Frequency Pressure Variations in the Tropical Atmosphere  

Science Conference Proceedings (OSTI)

Results of a recent study show eastward propagation of information in the low-frequency variations of the tropical sea-level pressure (SLP) field. The current work extends that analysis to investigate the vertical structure of this signal. It is ...

T. P. Barnett

1985-12-01T23:59:59.000Z

170

A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure  

SciTech Connect

This study developed a large volume cold atmospheric plasma brush array, which was enhanced by a dielectric barrier discharge by integrating a pair of DC glow discharge in parallel. A platinum sheet electrode was placed in the middle of the discharge chamber, which effectively reduced the breakdown voltage and working voltage. Emission spectroscopy diagnosis indicated that many excited argon atoms were distributed almost symmetrically in the lateral direction of the plasma. The concentration variations of reactive species relative to the gas flow rate and discharge current were also examined.

Li Xuemei; Zhan Xuefang; Yuan Xin; Zhao Zhongjun; Yan Yanyue; Duan Yixiang [Research Center of Analytical Instrumentation, Analytical Testing Center, College of Chemistry, Sichuan University, Chengdu (China); Tang Jie [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China)

2013-07-15T23:59:59.000Z

171

Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves  

DOE Patents (OSTI)

An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

Efthimion, Philip C. (Bedminister, NJ); Helfritch, Dennis J. (Flemington, NJ)

1989-11-28T23:59:59.000Z

172

Internal variability in projections of twenty-first century Arctic sea ice loss: Role of the large-scale atmospheric circulation  

Science Conference Proceedings (OSTI)

Internal variability in twenty-first century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model version 3 (CCSM3) ensemble for the period 2000–...

Justin J. Wettstein; Clara Deser

173

The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of Variability and Regional Climate  

Science Conference Proceedings (OSTI)

The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include ...

M. A. Ringer; G. M. Martin; C. Z. Greeves; T. J. Hinton; P. M. James; V. D. Pope; A. A. Scaife; R. A. Stratton; P. M. Inness; J. M. Slingo; G.-Y. Yang

2006-04-01T23:59:59.000Z

174

Seasonal and Long-Term Atmospheric Responses to Reemerging North Pacific Ocean Variability: A Combined Dynamical and Statistical Assessment  

Science Conference Proceedings (OSTI)

The atmospheric response to a North Pacific subsurface oceanic temperature anomaly is studied in a coupled ocean–atmosphere general circulation model using a combined dynamical and statistical approach, with the focus on the evolution at seasonal ...

Zhengyu Liu; Yun Liu; Lixin Wu; R. Jacob

2007-03-01T23:59:59.000Z

175

On the Magnitude and Variability of Subgrid-Scale Eddy-Diffusion Coefficients in the Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

Eddy-viscosity closures for large eddy simulations (LES) of atmospheric boundary layer dynamics include a parameter (Smagorinsky constant cs), which depends upon physical parameters, such as distance to the ground, atmospheric stability, and ...

Jan Kleissl; Charles Meneveau; Marc B. Parlange

2003-10-01T23:59:59.000Z

176

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network (OSTI)

of Fractured Sandstone/Coal Samples Smeulders, D.M.J. ,stress on permeability of coal. Int. J. Rock Mech. Min. Sci.of Fractured Sandstone/Coal Samples under Variable Con?ning

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

177

Test facility for well logging cables (in air at atmospheric pressure)  

DOE Green Energy (OSTI)

A system has been built to test, in air at ambient pressure, short sections of electromechanical cables which are potentially useful for geothermal well logging service. Electrical characteristics of the test cable are monitored while the cable is exposed to elevated temperature and tensioned in a manner simulating loading experienced by a typical well logging cable. Cable conductor resistance, dielectric resistance and capacitance are measured. The cable can be exposed to bending, simulating that which occurs when passing over sheaves or wound on or off a drum. Cable anchors are arranged to permit nearly 100 percent strength tensioning in the heated section. Electrical connectors are made at the unstrained ends at ambient temperature. The system can also be used to tension test cable terminations at elevated temperatures.

Not Available

1977-02-01T23:59:59.000Z

178

HEART RATE AND BLOOD PRESSURE VARIABILITY UNDER MOON, MARS AND ZERO GRAVITY CONDITIONS DURING PARABOLIC FLIGHTS  

E-Print Network (OSTI)

PARABOLIC FLIGHTS Wouter Aerts1 , Pieter Joosen1 , Devy Widjaja1,2 , Carolina Varon1,2 , Steven Vandeput1 Leuven, Belgium, Email: andre.aubert@med.kuleuven.be ABSTRACT Gravity changes during partial-G parabolic to reduce postflight orthostatic intolerance. Key words: parabolic flight; heart rate; blood pressure

179

Production and Utilization of CO3- Produced by a Corona Discharge in Air for Atmospheric Pressure Chemical Ionization  

SciTech Connect

Atmospheric pressure chemical ionization is a multistep ionization process used in mass spectrometry and ion mobility spectrometry. The formation of product ions depends upon interactions with the analyte and the reactant ion species formed in the ionization source. The predominant reactant ion observed in a point-to-plane corona discharge in air occurs at m/z 60. There have been multiple references in the literature to the identity of this ion with some disagreement. It was postulated to be either CO3- or N2O2-. The identity of this ion is important as it is a key to the ionization of analytes. It was determined here to be CO3- through the use of 18O labeled oxygen. Further confirmation was provided through MS/MS studies. The ionization of nitroglycerine (NG) with CO3- produced the adduct NG•CO3-. This was compared to ionization with NO3- and Cl- reactant ions that also formed adducts with NG. The fragmentation patterns of these three adducts provides insight into the charge distribution and indicates that CO3- has a relatively high electron affinity similar to that of nitrate.

Ewing, Robert G.; Waltman, Melanie J.

2010-12-14T23:59:59.000Z

180

Relationships between South Atlantic SST Variability and Atmospheric Circulation over the South African Region during Austral Winter  

Science Conference Proceedings (OSTI)

The Southwestern Cape (SWC) region of South Africa is characterized by winter rainfall brought mainly via cold fronts and by substantial interannual variability. Previous work has found evidence that the interannual variability in SWC winter ...

C. J. C. Reason; D. Jagadheesha

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coupled Ocean–Atmosphere Interaction and Variability in the Tropical Atlantic Ocean with and without an Annual Cycle  

Science Conference Proceedings (OSTI)

Many previous studies point to a connection between the annual cycle and interannual variability in the tropical Atlantic Ocean. To investigate the importance of the annual cycle in the generation of tropical Atlantic variability (TAV) as well as ...

Susan C. Bates

2008-11-01T23:59:59.000Z

182

The Use of lce-Liquid Water Potential Temperature as a Thermodynamic Variable In Deep Atmospheric Models  

Science Conference Proceedings (OSTI)

Previous studies have shown liquid water potential temperature to be an inappropriate choice for a thermodynamic variable in a deep cumulus convection model. In this study, an alternate form of this variable called ice-liquid water potential ...

Gregory J. Tripoli; William R. Cotton

1981-05-01T23:59:59.000Z

183

Centennial Trend and Decadal-to-Interdecadal Variability of Atmospheric Angular Momentum in CMIP3 and CMIP5 Simulations  

Science Conference Proceedings (OSTI)

The climatology and trend of atmospheric angular momentum from the phase 3 and the phase 5 Climate Model Intercomparison Project (CMIP3 and CMIP5, respectively) simulations are diagnosed and validated with the Twentieth Century Reanalysis (20CR). ...

Houk Paek; Huei-Ping Huang

2013-06-01T23:59:59.000Z

184

Northern Hemisphere Winter Atmospheric Transient Eddy Heat Fluxes and the Gulf Stream and Kuroshio–Oyashio Extension Variability  

Science Conference Proceedings (OSTI)

Spatial and temporal covariability between the atmospheric transient eddy heat fluxes (i.e., ??T? and ??q?) in the Northern Hemisphere winter (January–March) and the paths of the Gulf Stream (GS), Kuroshio Extension (KE), and Oyashio Extension ...

Young-Oh Kwon; Terrence M. Joyce

2013-12-01T23:59:59.000Z

185

Short-Term Climate Variability and Atmospheric Teleconnections from Satellite-Observed Outgoing Longwave Radiation. Part II: Lagged Correlations  

Science Conference Proceedings (OSTI)

As a sequel to Part I of this study, lagged relationships in atmospheric teleconnections associated with outgoing longwave radiation (OLR) are investigated using Lagged Cross Correlations (LCC). The feasibility of extratropical seasonal-to-...

Ka-Ming Lau; Paul H. Chan

1983-12-01T23:59:59.000Z

186

Optimized Fan Control In Variable Air Volume HVAC Systems Using Static Pressure Resets: Strategy Selection and Savings Analysis  

E-Print Network (OSTI)

The potential of static pressure reset (SPR) control to save fan energy in variable air volume HVAC systems has been well documented. Current research has focused on the creation of reset strategies depending on specific system features. As the commissioning process has begun to require the prediction of savings, knowledge of the extent to which various SPR control strategies impact fan energy has become increasingly important. This research aims to document existing SPR control strategies and utilize building data and simulation to estimate fan energy use. A comprehensive review of the literature pertaining to SPR control was performed and the results were organized into a top-down flow chart tool. Based on the type of feedback available from a particular system, or lack thereof, this tool will facilitate the selection of a SPR control strategy. A field experiment was conducted on a single duct variable air volume system with fixed discharge air temperature and static pressure setpoints. Finally, an air-side model of the experimental system was created using detailed building design information and calibrated using field measurements. This model was used to estimate the fan energy required to supply the trended airflow data using fixed static pressure (FSP) and SPR control based on zone demand, system demand, and outside air temperature. While utilizing trend data from November 1, 2008 to February 12, 2009, the FSP control of the experimental system was used as the baseline for ranking the energy savings potential of nine different forms of duct static pressure control. The highest savings (73-74%) were achieved using zonal demand based SPR control. System demand based SPR control yielded savings ranging from 59 to 76%, which increased when the duct sensor was positioned near the fan discharge and under similar zone load conditions. The outside air temperature based SPR control yielded savings of 65% since the experimental system supplied primarily perimeter zones. Finally, increasing the FSP setpoint from 2 to 3 inWG increased fan energy by 45%, while decreasing the setpoint from 2 to 1 inWG decreased fan energy by 41%.

Kimla, John

2009-12-01T23:59:59.000Z

187

Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen  

SciTech Connect

Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

2011-10-04T23:59:59.000Z

188

Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements  

SciTech Connect

Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

Niemi, K.; O'Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

2013-07-15T23:59:59.000Z

189

Seasonal and Interannual Variability of Atmospheric Heat Sources and Moisture Sinks as Determined from NCEP–NCAR Reanalysis  

Science Conference Proceedings (OSTI)

Using the National Centers for Environmental Predictions (NCEP)–National Center for Atmospheric Research (NCAR) reanalysis, distributions of the heat source Q1 and moisture sink Q2 between 50°N and 50°S are determined for a 15-yr period from 1980 ...

Michio Yanai; Tomohiko Tomita

1998-03-01T23:59:59.000Z

190

Intraseasonal Atmospheric Variability in the Extratropics and Its Relation to the Onset of Tropical Pacific Sea Surface Temperature Anomalies  

Science Conference Proceedings (OSTI)

Previous research has shown that seasonal-mean boreal winter variations in the subtropical/extratropical sea level pressure and wind stress fields over the central North Pacific are significantly related to the state of the El Niño–Southern ...

Bruce T. Anderson

2007-03-01T23:59:59.000Z

191

Northern Hemispheric Trends of Pressure Indices and Atmospheric Circulation Patterns in Observations, Reconstructions, and Coupled GCM Simulations  

Science Conference Proceedings (OSTI)

The decadal trend behavior of the Northern Hemisphere atmospheric circulation is investigated utilizing long-term simulations with different state-of-the-art coupled general circulation models (GCMs) for present-day climate conditions (1990), ...

C. C. Raible; T. F. Stocker; M. Yoshimori; M. Renold; U. Beyerle; C. Casty; J. Luterbacher

2005-10-01T23:59:59.000Z

192

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network (OSTI)

Understanding the gas phase flow and transport of volatile organic compounds (VOCs) in unsaturated zones is indispensable to develop effective environmental remediation strategies, to create precautions for fresh water protection, and to provide guidance for land and water resources management. Atmospheric pressure and water table fluctuations are two important natural processes at the upper and lower boundaries of the unsaturated zone, respectively. However, their significance has been neglected in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi-analytical and numerical solutions are developed to calculate the subsurface gas flow field and the gas phase transport of VOCs in active soil vapor extraction (SVE), barometric pumping (BP) and natural attenuation taking into account the atmospheric pressure and the water table fluctuations. The accuracy of the developed solutions are checked by comparing with published analytical solutions under extreme conditions, newly developed numerical solutions in COMSOL Multiphysics and field measured data. Results indicate that both the atmospheric pressure and the tidal-induced water table fluctuations significantly change the gas flow field in active SVE, especially when the vertical gas permeability is small (less than 0.4 Darcy). The tidal-induced downward moving water table increases the depth-averaged radius of influence (ROI) for the gas pumping well. However, this downward moving water table leads to a greater vertical pore gas velocity away from the gas pumping well, which is unfavorable for removing VOCs. The gas flow rate to/from the barometric pumping well can be accurately calculated by our newly developed solutions in both homogeneous and multi-layered unsaturated zones. Under natural unsaturated zone conditions, the time-averaged advective flux of the gas phase VOCs induced by the atmospheric pressure and water table fluctuations is one to three orders of magnitude less than the diffusive flux. The time-averaged advective flux is comparable with the diffusive flux only when the gas-filled porosity is very small (less than 0.05). The density-driven flux is negligible.

You, Kehua

2013-05-01T23:59:59.000Z

193

Pilot Study of the Effects of Simulated Turbine Passage Pressure on Juvenile Chinook Salmon Acclimated with Access to Air at Absolute Pressures Greater than Atmospheric  

DOE Green Energy (OSTI)

The impacts of pressure on juvenile salmon who pass through the turbines of hydroelectric dams while migrating downstream on the Columbia and Snake rivers has not been well understood, especially as these impacts relate to injury to the fish's swim bladder. The laboratory studies described here were conducted by Pacific Northwest National Laboratory for the US Army Corps of Engineers Portland District at PNNL's fisheries research laboratories in 2004 to investigate the impacts of simulated turbine passage pressure on fish permitted to achieve neutral buoyancy at pressures corresponding to depths at which they are typically observed during downstream migration. Two sizes of juvenile Chinook salmon were tested, 80-100mm and 125-145mm total length. Test fish were acclimated for 22 to 24 hours in hyperbaric chambers at pressures simulating depths of 15, 30, or 60 ft, with access to a large air bubble. High rates of deflated swim bladders and mortality were observed. Our results while in conclusive show that juvenile salmon are capable of drawing additional air into their swimbladder to compensate for the excess mass of implanted telemetry devices. However they may pay a price in terms of increased susceptibility to injury, predation, and death for this additional air.

Carlson, Thomas J.; Abernethy, Cary S.

2005-04-28T23:59:59.000Z

194

Expansion of the cathode spot and generation of shock waves in the plasma of a volume discharge in atmospheric-pressure helium  

SciTech Connect

The expansion of the cathode spot and the generation of shock waves during the formation and development of a pulsed volume discharge in atmospheric-pressure helium were studied by analyzing the emission spectra of the cathode plasma and the spatiotemporal behavior of the plasma glow. The transition of a diffuse volume discharge in a centimeter-long gap into a high-current diffuse mode when the gas pressure increased from 1 to 5 atm and the applied voltage rose from the statistical breakdown voltage to a 100% overvoltage was investigated. Analytical expressions for the radius of the cathode spot and its expansion velocity obtained in the framework of a spherically symmetric model agree satisfactorily with the experimental data.

Omarov, O. A.; Kurbanismailov, V. S.; Arslanbekov, M. A.; Gadzhiev, M. Kh.; Ragimkhanov, G. B.; Al-Shatravi, Ali J. G. [Dagestan State University (Russian Federation)

2012-01-15T23:59:59.000Z

195

Generation of negative ions in the gas phase from a 12CaO{center_dot}7Al{sub 2}O{sub 3} membrane-coated ceramic heater under atmospheric pressure  

Science Conference Proceedings (OSTI)

12CaO{center_dot}7Al{sub 2}O{sub 3} (C12A7) crystal is able to generate strong and high purity oxygen anion (O{sup -}) beam under reduced pressure. However, the emission of O{sup -} or related species under atmospheric pressure has not been evaluated. In this study, the characteristics of negative ion species emissions from the C12A7 membrane-coated ceramic heater under atmospheric pressure were investigated by quadrupole mass spectrometer. Negative ion species were confirmed to be emitted even under atmospheric pressure. It was supposed that the detected negative ion clusters, such as O{sup -}(H{sub 2}O){sub n}, O{sub 2}{sup -}(H{sub 2}O){sub n}, and CO{sub 4}{sup -}(H{sub 2}O){sub n}, were generated by the reaction of negative ions emitted from the heater with impurities in He gas.

Yamamoto, Mitsuo [College of Arts and Sciences, University of Tokyo, Tokyo 153-8902 (Japan); Shima, Akio [Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Nishioka, Masateru [Research Center for Compact Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Miyagi 983-8551 (Japan); Sadakata, Masayoshi [Department of Environmental Chemical Engineering, Kogakuin University, Tokyo 192-0015 (Japan)

2008-12-15T23:59:59.000Z

196

In-cylinder pressure and inter-cycle variability analysis for a compression ignition engine : Bayesian approaches.  

E-Print Network (OSTI)

??This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of… (more)

Bodisco, Timothy Alexis

2013-01-01T23:59:59.000Z

197

Self-consistent Method for Determining Vertical Profiles of Aerosol and Atmospheric Properties Using a High Spectral Resolution Rayleigh-Mie Lidar  

Science Conference Proceedings (OSTI)

A self-consistent method of inverting high spectral resolution, Rayleigh-Mie lidar signals to obtain profiles of atmospheric state variables, as well as aerosol properties, is presented. Assumed are a known air pressure at a reference height, ...

D. A. Krueger; L. M. Caldwell; C. Y. She; R. J. Alvarez II

1993-08-01T23:59:59.000Z

198

Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a northern Wisconsin forest using a Bayesian model calibration  

SciTech Connect

Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem-atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km(2) regional flux estimate found June to August 2003 NEE, ER and GEP to be -290 +/- 89, 408 +/- 48, and 698 +/- 73 gC m(-2), respectively. Aggregated NEE, ER and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447 m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then re-aggregated to a regional estimate, the resulting NEE, ER and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA. (C) 2007 Elsevier B.V. All rights reserved.

Ricciuto, Daniel M [ORNL; Butler, Martha [Pennsylvania State University; Davis, Kenneth [Pennsylvania State University; Cook, Bruce D [University of Minnesota, St Paul

2008-01-01T23:59:59.000Z

199

X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure  

Science Conference Proceedings (OSTI)

This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor; Kostyrya, Igor D. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Ma Hao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

2012-12-15T23:59:59.000Z

200

Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels  

SciTech Connect

The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

Klobukowski, Erik R [ORNL; Tenhaeff, Wyatt E [ORNL; McCamy, James [PPG; Harris, Caroline [PPG; Narula, Chaitanya Kumar [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Physical and Chemical Characterization of Kuwaiti Atmospheric Dust and Synthetic Dusts: Effects on the Pressure Drop and Fractional Efficiency of HEPA Filters  

E-Print Network (OSTI)

The importance of clean air to the indoor air quality affecting the well-being of human occupants and rising energy consumption has highlighted the critical role of air filter performance. Actual performance of air filters installed in air handling units in Kuwait tends to deviate from the performance predicted by laboratory results. Therefore, accurate filter performance prediction is important to estimate filter lifetime, and to reduce energy and maintenance operating costs. To ensure appropriate filter selection for a specific application, particulate contaminants existing in the Kuwaiti atmospheric dust were identified and characterized both physically and chemically and compared to the synthetic dust used in laboratories. This paper compares the physical and chemical characterization Kuwaiti atmospheric dust with the available commercial synthetic dusts. It also tests full scale HEPA pleated V-shaped filters used in Heating Ventilation and Air Conditioning (HVAC) and gas turbine applications to study the effect of different synthetic dust types and their particle size distributions on the pressure drop and fractional efficiency using DEHS testing according to DIN 1822.

Al-Attar, I.; Wakeman, R. J.; Tarleton, E. S.; Husain, A.

2010-01-01T23:59:59.000Z

202

A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures  

Science Conference Proceedings (OSTI)

A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N{sub 2}, air, or argon environment at pressures exceeding 50 Torr.

Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A. [Department of Electrical and Computer Engineering, Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, Texas 79409-3102 (United States)

2012-07-15T23:59:59.000Z

203

Method and apparatus for directing ions and other charged particles generated at near atmospheric pressures into a region under vacuum  

SciTech Connect

A method and apparatus for focusing dispersed charged particles. More specifically, a series of elements within a region maintained at a pressure between 10.sup.-1 millibar and 1 bar, each having successively larger apertures forming an ion funnel, wherein RF voltages are applied to the elements so that the RF voltage on any element has phase, amplitude and frequency necessary to define a confinement zone for charged particles of appropriate charge and mass in the interior of the ion funnel, wherein the confinement zone has an acceptance region and an emmitance region and where the acceptance region area is larger than the emmitance region area.

Smith, Richard D. (Richland, WA); Shaffer, Scott A. (Seattle, WA)

2000-01-01T23:59:59.000Z

204

Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3  

Science Conference Proceedings (OSTI)

The recently developed GFDL Atmospheric Model version 3 (AM3), an atmospheric general circulation model (GCM), incorporates a prognostic treatment of cloud drop number to simulate the aerosol indirect effect. Since cloud drop activation depends on ...

Jean-Christophe Golaz; Marc Salzmann; Leo J. Donner; Larry W. Horowitz; Yi Ming; Ming Zhao

2011-07-01T23:59:59.000Z

205

1-D fluid model of atmospheric-pressure rf He+O{sub 2} cold plasmas: Parametric study and critical evaluation  

SciTech Connect

In this paper atmospheric-pressure rf He+O{sub 2} cold plasmas are studied by means of a 1-D fluid model. 17 species and 60 key reactions selected from a study of 250+ reactions are incorporated in the model. O{sub 2}{sup +}, O{sub 3}{sup -}, and O are the dominant positive ion, negative ion, and reactive oxygen species, respectively. Ground state O is mainly generated by electron induced reactions and quenching of atomic and molecular oxygen metastables, while three-body reactions leading to the formation of O{sub 2} and O{sub 3} are the main mechanisms responsible for O destruction. The fraction of input power dissipated by ions is {approx}20%. For the conditions considered in the study {approx}6% of the input power is coupled to ions in the bulk and this amount will increase with increasing electronegativity. Radial and electrode losses of neutral species are in most cases negligible when compared to gas phase processes as these losses are diffusion limited due to the large collisionality of the plasma. The electrode loss rate of neutral species is found to be nearly independent of the surface adsorption probability p for p > 0.001 and therefore plasma dosage can be quantified even if p is not known precisely.

Yang Aijun; Wang Xiaohua; Rong Mingzhe; Liu Dingxin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Iza, Felipe [School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Kong, Michael G. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

2011-11-15T23:59:59.000Z

206

INHIBITION OF METHANE ATMOSPHERIC FLAMES BY ...  

Science Conference Proceedings (OSTI)

... atmospheric pressure was studied. The burner temperature was maintained at 65 “C by using a thermostat. The volumetric velocity ...

2011-10-20T23:59:59.000Z

207

The Climatology of the Middle Atmosphere in a Vertically Extended Version of the Met Office’s Climate Model. Part II: Variability  

Science Conference Proceedings (OSTI)

Stratospheric variability is examined in a vertically extended version of the Met Office global climate model. Equatorial variability includes the simulation of an internally generated quasi-biennial oscillation (QBO) and semiannual oscillation (...

Scott M. Osprey; Lesley J. Gray; Steven C. Hardiman; Neal Butchart; Andrew C. Bushell; Tim J. Hinton

2010-11-01T23:59:59.000Z

208

The Roles of External Forcings and Internal Variabilities in the Northern Hemisphere Atmospheric Circulation Change from the 1960s to the 1990s  

Science Conference Proceedings (OSTI)

The Northern Hemisphere atmospheric circulation change from the 1960s to the 1990s shows a strong positive North Atlantic Oscillation (NAO) and a deepening of the Aleutian low. The issue regarding the contributions of external forcings and ...

Martin P. King; Fred Kucharski; Franco Molteni

2010-12-01T23:59:59.000Z

209

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

measuring equipment Atmospheric Aerosols Atmospheric aerosol research at Berkeley Lab seeks to understand the air quality and climate impacts of particles in the atmosphere. On...

210

How Well Do Atmospheric General Circulation Models Capture the Leading Modes of the Interannual Variability of the Asian–Australian Monsoon?  

Science Conference Proceedings (OSTI)

The authors evaluate the performances of 11 AGCMs that participated in the Atmospheric Model Intercomparison Project II (AMIP II) and that were run in an AGCM-alone way forced by historical sea surface temperature covering the period 1979–99 and ...

Tianjun Zhou; Bo Wu; Bin Wang

2009-03-01T23:59:59.000Z

211

On the Joint Role of Subtropical Atmospheric Variability and Equatorial Subsurface Heat Content Anomalies in Initiating the Onset of ENSO Events  

Science Conference Proceedings (OSTI)

Previous research has shown that seasonal mean variations in both the subtropical/extratropical sea level pressures over the central North Pacific and the subsurface heat content anomalies in the western equatorial Pacific are significantly ...

Bruce T. Anderson

2007-04-01T23:59:59.000Z

212

Interannual Variability in the Northern Hemisphere Winter Middle Atmosphere in Control and Perturbed Experiments with the GFDL SKYHI General Circulation Model  

Science Conference Proceedings (OSTI)

This paper reports on interannual variability of the Northern Hemisphere winter stratospheric circulation as simulated by the 40-level GFDL “SKYHI” general circulation model. A 31-year control simulation was performed using a climatological ...

Kevin Hamilton

1995-01-01T23:59:59.000Z

213

The Relationship of Rainfall Variability in Western Equatorial Africa to the Tropical Oceans and Atmospheric Circulation. Part II: The Boreal Autumn  

Science Conference Proceedings (OSTI)

This paper examines the mechanisms controlling the year-to-year variability of rainfall over western equatorial Africa during the rainy season of October–December. Five regions with distinct behavior are analyzed separately. Only two show strong ...

Amin K. Dezfuli; Sharon E. Nicholson

2013-01-01T23:59:59.000Z

214

The Relationship of Rainfall Variability in Western Equatorial Africa to the Tropical Oceans and Atmospheric Circulation. Part I: The Boreal Spring  

Science Conference Proceedings (OSTI)

This paper examines the factors governing rainfall variability in western equatorial Africa (WEA) during the April–June rainy season. In three of the five regions examined some degree of large-scale forcing is indicated, particularly in the region ...

Sharon E. Nicholson; Amin K. Dezfuli

2013-01-01T23:59:59.000Z

215

Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)  

Science Conference Proceedings (OSTI)

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

2012-01-01T23:59:59.000Z

216

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Kirchstetter with aerosol measurement instrument Atmospheric Aerosols Atmospheric aerosol research at LBNL seeks to understand the air quality and climate impacts of particles...

217

Large-Scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part II: Turbulent Pressure Fluctuations and the Budgets of Heat Flux, Stress and Turbulent Kinetic Energy  

Science Conference Proceedings (OSTI)

A method is developed for retrieving turbulent pressure fluctuations from tower measurements of velocity and temperature, through use of the equations of motion. This method is applied to a series of large-scale eddies which are defined by their ...

J. M. Wilczak; Joost A. Businger

1984-12-01T23:59:59.000Z

218

Interannual Variation of Global Atmospheric Angular Momentum  

Science Conference Proceedings (OSTI)

The relative atmospheric angular momentum (RAM) integrated over the globe is an explicit variable representing the state of the atmospheric general circulation. After removing the annual, semiannual, and higher-frequency components, the filtered ...

Tsing-Chang Chen; Joseph J. Tribbia; Ming-Cheng Yen

1996-10-01T23:59:59.000Z

219

Atmospheric attenuation of solar radiation  

DOE Green Energy (OSTI)

The attenuation of solar radiation by the atmosphere between the heliostat and receiver of a Central Receiver solar energy system has been computed for a number of atmospheric conditions and tower-heliostat distances. The most important atmospheric variable is found to be the atmospheric aerosol content. No dependence of atmospheric water vapor is found and only a weak dependence on solar zenith angle. For a 500 m heliostat-tower distance two to four percent reductions are expected under typical desert conditions (50 to 120 km visibility). The reduction is approximately linear with heliostat-tower distance. A representative value of the attenuation coefficient is 0.051 km/sup -1/.

Randall, C.M.

1977-05-18T23:59:59.000Z

220

Constraining the Influence of Natural Variability to Improve Estimates of Global Aerosol Indirect Effects in a Nudged Version of the Community Atmosphere Model 5  

SciTech Connect

Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e. multi-scale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of -1.54 ± 0.02 W/m2 and -1.63 ± 0.17 W/m2 for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world’s area in which a statistically significant aerosol indirect effect can be detected (68% and 25% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean aerosol indirect radiative forcing estimates of -0.80 W/m2 and -0.56 W/m2, respectively. The one-year nudged results compare well with previous estimates from three-year free-running simulations (-0.77 W/m2), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional parameterizations.

Kooperman, G. J.; Pritchard, M. S.; Ghan, Steven J.; Wang, Minghuai; Somerville, Richard C.; Russell, Lynn

2012-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Atmospheric Water Vapor over China  

Science Conference Proceedings (OSTI)

Chinese radiosonde data from 1970 to 1990 are relatively homogeneous in time and are used to examine the climatology, trends, and variability of China’s atmospheric water vapor content. The climatological distribution of precipitable water (PW) ...

Panmao Zhai; Robert E. Eskridge

1997-10-01T23:59:59.000Z

222

Atmospheric optical calibration system  

DOE Patents (OSTI)

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

1988-01-01T23:59:59.000Z

223

Atmospheric optical calibration system  

DOE Patents (OSTI)

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

Hulstrom, R.L.; Cannon, T.W.

1988-10-25T23:59:59.000Z

224

Measurements of Sea Surface Height Variability in the Eastern South Atlantic from Pressure Sensor–Equipped Inverted Echo Sounders: Baroclinic and Barotropic Components  

Science Conference Proceedings (OSTI)

Variability in sea surface height (SSH) can be decomposed into two contributions: one from changes in mass in the water column (barotropic) and the other from purely steric changes (baroclinic). Both contributions can be determined from data ...

Sheekela Baker-Yeboah; D. Randolph Watts; Deirdre A. Byrne

2009-12-01T23:59:59.000Z

225

ARM - Measurement - Atmospheric moisture  

NLE Websites -- All DOE Office Websites (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer

226

On Sub-ENSO Variability  

Science Conference Proceedings (OSTI)

Multichannel singular spectrum analysis (MSSA) of surface zonal wind, sea surface temperature (SST), 20° isotherm depth, and surface zonal current observations (between 1990 and 2004) identifies three coupled ocean–atmosphere modes of variability ...

Noel S. Keenlyside; Mojib Latif; Anke Dürkop

2007-07-01T23:59:59.000Z

227

The Incorporation of Atmospheric Variability into DIRSIG  

E-Print Network (OSTI)

of Energy under Contract No. DE-AC02-98CH10886. BNL-63555 CLOSURE EXPERIMENT ­ MODTRAN-3 PREDICTION than calibration uncertainty may be important. The radiative transfer model MODTRAN-3 is used the MODTRAN-3 predicted value with the direct-normal short-wave irradiance measured by a calibrated

Salvaggio, Carl

228

A study of the performance of an ion shutter for drift tubes in atmospheric pressure ion mobility spectrometry: Computer models and experimental findings  

Science Conference Proceedings (OSTI)

Ion mobility spectra are initiated when ions, derived from a sample, are pulsed or injected through ion shutters into a drift region. The effect on signal intensity from electric fields arising from the shutter grids (E{sub s}) and a superimposed electric field of the drift tube (E{sub d}) was determined experimentally and simulated computationally for ion motion at ambient pressure. The combination of these two fields influenced shutter performance in three ways: (1) intensity of an ion peak was suppressed by increased current in the baseline due to continuous leakage of ions into the drift region from insufficient E{sub s} to block ion motion when needed, at a given value of E{sub d}; (2) the ion shutter provided maximum peak intensity with some optimal ratio of E{sub s}/E{sub d} when ions were fully blocked except using the injection time; (c) the signal intensity was reduced when the blocking voltage of the ion shutter exceeded this optimal E{sub s}/E{sub d} ratio from ion depletion at the shutter grids. The optimal ratio from the computer models was equal to 1.50, whereas a value of 2.50 was obtained from the experimental findings. This difference was attributed to nonideal geometry with the grids of the shutter and the conducting elements in the drift tube establishing both E{sub s} and E{sub d}. As both the experimental and modeling results demonstrated, a mobility dependence of ion yield from the ionization source was found to cause a mobility dependent ion signal at the collector electrode.

Tadjimukhamedov, Fatkhulla K.; Eiceman, Gary A. [Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Puton, Jaroslaw [Department of Environmental Sciences, Laboratory of Applied Environmental Chemistry, University of Kuopio, Mikkeli FIN-50100 (Finland); Stone, John A. [Department of Chemistry, Queens University, Kingston, Ontario K7L 3N6 (Canada)

2009-10-15T23:59:59.000Z

229

Design of a variable-conductance vacuum insulation  

DOE Green Energy (OSTI)

This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

Benson, D K; Potter, T F; Tracy, C E

1994-01-01T23:59:59.000Z

230

TOGA COARE: The Coupled Ocean—Atmosphere Response Experiment  

Science Conference Proceedings (OSTI)

Despite significant progress in the Tropical Ocean—Global Atmosphere (TOGA) program, a number of major hurdles remain before the primary objective, prediction of the variability of the coupled ocean—atmosphere system on time scales of months to ...

Peter J. Webster; Roger Lukas

1992-09-01T23:59:59.000Z

231

Multiscale Low-Frequency Circulation Modes in the Global Atmosphere  

Science Conference Proceedings (OSTI)

In this paper, fundamental multiscale circulation modes in the global atmosphere are identified with the objective of providing better understanding of atmospheric low-frequency variabilities over a wide range of spatial and temporal scales. With ...

K-M. Lau; P-J. Sheu; I-S. Kang

1994-05-01T23:59:59.000Z

232

Pressure multiplying dispenser  

SciTech Connect

A pressure multiplying dispenser for delivering fluid, preferably as a spray to the atmosphere, from a source of fluid, preferably a spray bottle, is described. The dispenser includes in combination a hollow cylindrical member, a nozzle delivery tube within the cylindrical member and a hollow actuator piston slideable within the cylindrical member which acts to multiply the pressure of a squeeze applied to the spray bottle.

DeFord, Henry S. (Kennewick, WA); Moss, Owen R. (Kennewick, WA)

1986-01-01T23:59:59.000Z

233

Geostatistical Mapping of Precipitation from Rain Gauge Data Using Atmospheric and Terrain Characteristics  

Science Conference Proceedings (OSTI)

A geostatistical framework for integrating lower-atmosphere state variables and terrain characteristics into the spatial interpolation of rainfall is presented. Lower-atmosphere state variables considered are specific humidity and wind, derived ...

Phaedon C. Kyriakidis; Jinwon Kim; Norman L. Miller

2001-11-01T23:59:59.000Z

234

Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures  

SciTech Connect

A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

Khan, M. Rashid (Morgantown, WV)

1990-01-01T23:59:59.000Z

235

Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures  

DOE Patents (OSTI)

A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated. 7 figs.

Khan, M.R.

1989-05-12T23:59:59.000Z

236

Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time M. Splitt University of Oklahoma Norman, Oklahoma Recent work in this area by Charles Wade (1987) lays out the groundwork for monitoring data quality for projects with large networks of instruments such as the Atmospheric Radiation Measurement (ARM) Program. Wade generated objectively analyzed fields of meteorological variables (temperature, pressure, humidity, and wind) and then compared the objectively analyzed value at the sensor location with the value produced by the sensor. Wade used a Barne's objective analysis scheme to produce objective data values for a given meteorological variable (q) in two- dimensional space. The objectively analyzed value should

237

Interannual Variability of Trace Gases in the Subtropical Winter Stratosphere  

Science Conference Proceedings (OSTI)

Measurements of water vapor and methane from the Halogen Occultation Experiment instrument on board the Upper Atmosphere Research Satellite are used to study the interannual variability of trace gas distributions in the atmosphere. Particular ...

L. J. Gray; J. M. Russell Jr.

1999-04-01T23:59:59.000Z

238

Indian Ocean Intraseasonal Variability in an Ocean General Circulation Model  

Science Conference Proceedings (OSTI)

The impact of atmospheric intraseasonal variability on the tropical Indian Ocean is examined with an ocean general circulation model (OGCM). The model is forced by observation-based wind stresses and surface heat fluxes from an atmospheric ...

A. Schiller; J. S. Godfrey

2003-01-01T23:59:59.000Z

239

Using CMAQ for Exposure Modeling and Characterizing the Subgrid Variability for Exposure Estimates  

Science Conference Proceedings (OSTI)

Atmospheric processes and the associated transport and dispersion of atmospheric pollutants are known to be highly variable in time and space. Current air-quality models that characterize atmospheric chemistry effects, for example, the Community ...

Vlad Isakov; John S. Irwin; Jason Ching

2007-09-01T23:59:59.000Z

240

The South Pacific Meridional Mode: A Mechanism for ENSO-like Variability  

Science Conference Proceedings (OSTI)

In this study we investigate the connection between the South Pacific atmospheric variability and the tropical Pacific climate in models of different degrees of coupling between atmosphere and ocean. A robust mode of variability, defined as the ...

Honghai Zhang; Amy Clement; Pedro Di Nezio

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Air flow and pressure inside a pressure-swirl spray and their effects on spray development  

SciTech Connect

Air flow and pressure inside a pressure-swirl spray for direct injection (DI) gasoline engines and their effects on spray development have been analyzed at different injector operating conditions. A simulation tool was utilized and the static air pressure at the centerline of the spray was measured to investigate the static pressure and flow structure inside the swirl spray. To investigate the effect of static air pressure on swirl spray development, a liquid film model was applied and the Mie-scattered images were captured. The simulation and experiment showed that recirculation vortex and air pressure drop inside the swirl spray were observable and the air pressure drop was greater at high injection pressure. At high fuel temperature, the air pressure at the nozzle exit showed higher value compared to the atmospheric pressure and then continuously decreased up to few millimeters distance from the nozzle exit. The pressure drop at high fuel temperatures was more than that of atmospheric temperature. This reduced air pressure was recovered to the atmospheric pressure at further downstream. The results from the liquid film model and macroscopic spray images showed that the air pressure started to affect the liquid film trajectory about 3 mm from the nozzle exit and this effect was sustained until the air pressure recovered to the atmospheric pressure. However, the entrained air motion and droplet size have more significant influence on the spray development after the most of the liquid sheet is broken-up and the spray loses its initial momentum. (author)

Moon, Seoksu; Bae, Choongsik [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejon 305-701 (Korea); Abo-Serie, Essam [Department of Mechanical Engineering and Design, Coventry University, Priory Street, Coventry CV1 5FB (United Kingdom)

2009-01-15T23:59:59.000Z

242

Non-linear Evolution of Rayleigh-Taylor Instability in a Radiation Supported Atmosphere  

E-Print Network (OSTI)

The non-linear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small scale structures are also suppressed in this case. In the non-linear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a variable Eddington tensor (VET) versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the non-linear development of RTI...

Jiang, Yan-Fei; Stone, James

2012-01-01T23:59:59.000Z

243

Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon. Part I: Associations of Wavelet-Filtered Large-Scale Atmospheric Circulation and Global Sea Surface Temperature  

Science Conference Proceedings (OSTI)

Horn of Africa rainfall varies on multiple time scales, but the underlying climate system controls on this variability have not been examined comprehensively. This study therefore investigates the linkages between June–September Horn of Africa (...

Zewdu T. Segele; Peter J. Lamb; Lance M. Leslie

2009-06-01T23:59:59.000Z

244

Wind Tunnel Evaluation of PAM II Pressure Ports  

Science Conference Proceedings (OSTI)

The Portable Automated Mesonet II (PAM II) is a network of automated remote weather stations developed by the National Center for Atmospheric Research (NCAR) for measuring wind speed and direction, atmospheric pressure, temperature, humidity, and ...

Fikri Adnan Akyüz; Henry Liu; Tom Horst

1991-06-01T23:59:59.000Z

245

Evaluation of a Regional Atmospheric Model Using Measurements of Surface Heat Exchange Processes from a Site in Antarctica  

Science Conference Proceedings (OSTI)

A regional atmospheric climate model with a horizontal grid spacing of 55 km has been used to simulate the Antarctic atmosphere during an austral summer period. ECMWF reanalyses were used to force the atmospheric prognostic variables from the ...

Nicole P. M. van Lipzig; Erik van Meijgaard; Johannes Oerlemans

1999-09-01T23:59:59.000Z

246

CDIAC Atmospheric Moisture Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Moisture Atmospheric Moisture CDIAC Climate Holdings Containing Atmospheric Moisture Data Global Data Sets Data Set Name Investigators Data Type/Format Period of Record Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (CDIAC NDP-026C) C.J. Hahn, S.G. Warren, and R. Eastman Six-hourly synoptic observations of dew point depression (combined with air temperature) Land 1971-2009; Ocean 1952-2008 Regional Data Sets Data Set Name Investigators Data Type/Format Period of Record Six- and Three-Hourly Meteorological Observations from 223 Former U.S.S.R. Stations (CDIAC NDP-048) V. Razuvaev et al. Surface stations; 6- and 3-hourly observations of relative humidity, vapor pressure, humidity deficit, and dew point temperature Varies by station; through 2000

247

Stochastic Forcing of Ocean Variability by the North Atlantic Oscillation  

Science Conference Proceedings (OSTI)

At middle and high latitudes, the magnitude of stochastic wind stress forcing of the ocean by atmospheric variability on synoptic time scales (i.e., “weather” related variability) is comparable to that of the seasonal cycle. Stochastic forcing ...

Kettyah C. Chhak; Andrew M. Moore; Ralph F. Milliff

2009-01-01T23:59:59.000Z

248

COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS  

Science Conference Proceedings (OSTI)

Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The disequilibrium is likely limited to wells screened across the water table (i.e., open to the deep vadose zone) where the depth to water is large or a low-permeability layer occurs in the vadose zone. Such wells are a pathway for air movement between the deep vadose zone and land surface and this sustains the pressure disequilibrium between the well bore and the atmosphere for longer time periods. Barometric over-response was not observed with the absolute pressure transducers because barometric compensation was achieved by directly measuring the air pressure within the well. Users of vented pressure transducers should be aware of the over-response issue in certain Hanford Site wells and ascertain if it will affect the use of the data. Pressure disequilibrium between the well and the atmosphere can be identified by substantial air movement through the wellbore. In wells exhibiting pressure disequilibrium, it is recommended that absolute pressure transducers be used rather than vented transducers for applications that require precise automated determinations of well water-level changes in response to barometric pressure fluctuations.

MCDONALD JP

2011-09-08T23:59:59.000Z

249

On Computing the Horizontal Pressure Gradient Force in Sigma Coordinates  

Science Conference Proceedings (OSTI)

Corby et al. present a finite-difference expression for the horizontal pressure gradient force in sigma coordinates that, in a barotropic atmosphere where the temperature varies linearly with logarithm of pressure, has the same net truncation ...

Maurice Danard; Qing Zhang; John Kozlowski

1993-11-01T23:59:59.000Z

250

A Microwave Occultation Observing System Optimized to Characterize Atmospheric Water, Temperature, and Geopotential via Absorption  

Science Conference Proceedings (OSTI)

A new remote sensing concept extrapolated from the GPS occultation concept is presented in which the signal frequencies are chosen to determine atmospheric water, temperature, and the geopotential of atmospheric pressure surfaces. Using ...

E. R. Kursinski; S. Syndergaard; D. Flittner; D. Feng; G. Hajj; B. Herman; D. Ward; T. Yunck

2002-12-01T23:59:59.000Z

251

Simulation Errors Associated with the Neglect of Oceanic Salinity in an Atmospheric GCM  

Science Conference Proceedings (OSTI)

In all the atmospheric general circulation models (GCMs) at the Goddard Laboratory for Atmospheres (GLA), the influence of oceanic salinity on the saturation vapor pressure of seawater is ignored. Since the relative humidity in the oceanic ...

Y. C. Sud; G. K. Walker

1997-01-01T23:59:59.000Z

252

Radiative Measurements of Pressure Modulator Operation  

Science Conference Proceedings (OSTI)

The pressure modulator is extensively used in atmospheric measurements but is not well characterized in terms of its spectroscopic operation. A series of measurements on a carbon monoxide radiometer is described and comparisons are made with ...

J. R. Drummond; A. Ashton

1990-02-01T23:59:59.000Z

253

Variable Screw Compressor, Variable Screw Compressor Suppliers ...  

U.S. Energy Information Administration (EIA)

Variable Screw Compressor Suppliers & air compressor Manufacturers Directory. Source Top Quality Variable Screw Compressor Suppliers, air ...

254

Association between Winter Precipitation and Water Level Fluctuations in the Great Lakes and Atmospheric Circulation Patterns  

Science Conference Proceedings (OSTI)

Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake ...

Sergei N. Rodionov

1994-11-01T23:59:59.000Z

255

Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate  

Science Conference Proceedings (OSTI)

Recently available satellite observations from the Atmospheric Infrared Sounder (AIRS) are used to calculate relative humidity in the troposphere. The observations illustrate many scales of variability in the atmosphere from the seasonal ...

Andrew Gettelman; William D. Collins; Eric J. Fetzer; Annmarie Eldering; Fredrick W. Irion; Phillip B. Duffy; Govindasamy Bala

2006-12-01T23:59:59.000Z

256

Clustering a Global Field of Atmospheric Profiles by Mixture Decomposition of Copulas  

Science Conference Proceedings (OSTI)

This work focuses on the clustering of a large dataset of atmospheric vertical profiles of temperature and humidity in order to model a priori information for the problem of retrieving atmospheric variables from satellite observations. Here, each ...

Mathieu Vrac; Alain Chédin; Edwin Diday

2005-10-01T23:59:59.000Z

257

Do Global Models Properly Represent the Feedback between Land and Atmosphere?  

Science Conference Proceedings (OSTI)

The Global Energy and Water Cycle Experiment/Climate Variability and Predictability (GEWEX/CLIVAR) Global Land–Atmosphere Coupling Experiment (GLACE) has provided an estimate of the global distribution of land–atmosphere coupling strength during ...

Paul A. Dirmeyer; Randal D. Koster; Zhichang Guo

2006-12-01T23:59:59.000Z

258

Estimating the Fractal Dimension and the Predictability of the Atmosphere  

Science Conference Proceedings (OSTI)

The fractal dimension, Lyapunov-exponent spectrum, Kolmogorov entropy, and predictability are analyzed for chaotic attractors in the atmosphere by analyzing the time series of daily surface temperature and pressure over several regions of the ...

X. Zeng; R. A. Pielke; R. Eykholt

1992-04-01T23:59:59.000Z

259

Trend Analysis for Atmospheric Hydrocarbon Partitioning Using Continuous Thermodynamics  

Science Conference Proceedings (OSTI)

The partitioning of atmospheric hydrocarbons into vapor and condensed phases when the species count is large is considered using the formalism of continuous thermodynamics. The vapor saturation pressures and condensate species distribution are ...

K. Harstad

2005-08-01T23:59:59.000Z

260

The Mass of the Atmosphere: A Constraint on Global Analyses  

Science Conference Proceedings (OSTI)

The total mass of the atmosphere varies mainly from changes in water vapor loading; the former is proportional to global mean surface pressure and the water vapor component is computed directly from specific humidity and precipitable water using ...

Kevin E. Trenberth; Lesley Smith

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Interannual Variability and Trend of Precipitable Water over Southern Greece  

Science Conference Proceedings (OSTI)

The precipitable water (PW) content was estimated over southern Greece for three atmospheric layers, using 28-yr twice-daily radiosonde measurements of temperature, humidity, and atmospheric pressure. Precipitable water demonstrates considerable ...

P. A. Kassomenos; G. R. McGregor

2006-04-01T23:59:59.000Z

262

Performance Variability  

NLE Websites -- All DOE Office Websites (Extended Search)

Variability Variability of Highly Parallel Architectures William T.C. Kramer 1 and Clint Ryan 2 1 Department of Computing Sciences, University of California at Berkeley and the National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory 2 Department of Computing Sciences, University of California at Berkeley Abstract. The design and evaluation of high performance computers has concentrated on increasing computational speed for applications. This performance is often measured on a well configured dedicated sys- tem to show the best case. In the real environment, resources are not always dedicated to a single task, and systems run tasks that may influ- ence each other, so run times vary, sometimes to an unreasonably large extent. This paper explores the amount of variation seen across four large distributed memory systems in a systematic manner. It then

263

The Boulder Atmospheric Observatory  

Science Conference Proceedings (OSTI)

The Boulder Atmospheric Observatory (BAO) is a unique research facility for studying the planetary boundary layer and for testing and calibrating atmospheric sensors. The facility includes a 300 m tower instrumented with fast- and slow-response ...

J. C. Kaimal; J. E. Gaynor

1983-05-01T23:59:59.000Z

264

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Observatory (UAO) Pilot Experiment at NYC" - Michael Reynolds, BNL 17:30 "EML Pilot Studies for the Urban Atmospheric Observatory" - Hsi-Na (Sam) Lee, EML 17:40 "A...

265

Vertical Coordinate Transformation of Vertically-Discretized Atmospheric Fields  

Science Conference Proceedings (OSTI)

The problem of transforming fields of atmospheric variables from one vertical coordinate system to another without altering their dynamic balance is discussed. A curve fitting scheme applied to the data points in each grid column is proposed ...

Rainer Bleck

1984-12-01T23:59:59.000Z

266

Intraseasonal Land–Atmosphere Coupling in the West African Monsoon  

Science Conference Proceedings (OSTI)

Via its impact on surface fluxes, subseasonal variability in soil moisture has the potential to feed back on regional atmospheric circulations, and thereby rainfall. An understanding of this feedback mechanism in the climate system has been ...

Christopher M. Taylor

2008-12-01T23:59:59.000Z

267

Ocean Eddy Dynamics in a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear adjustment of the ...

P. Berloff; W. Dewar; S. Kravtsov; J. McWilliams

2007-05-01T23:59:59.000Z

268

Persistent Anomalies, Blocking and Variations in Atmospheric Predictability  

Science Conference Proceedings (OSTI)

We consider regimes of low-frequency variability in large-scale atmospheric dynamics. The model used for the study of these regimes is the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere, with simplified forcing, ...

B. Legras; M. Ghil

1985-03-01T23:59:59.000Z

269

Stable Schemes for Nonlinear Vertical Diffusion in Atmospheric Circulation Models  

Science Conference Proceedings (OSTI)

The intensity of vertical mixing in atmospheric models generally depends on wind shear and static stability, making the diffusion process nonlinear. Traditional implicit numerical schemes, which treat the variables to be diffused implicitly but ...

Claude Girard; Yves Delage

1990-03-01T23:59:59.000Z

270

The Structure of the Near-Neutral Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

Recent observational data (turbulence variables by sonic anemometers and three-dimensional flow pattern by Doppler lidar), obtained during the Cooperative Atmosphere Surface Exchange Study field campaign in October 1999 (CASES-99), show evidence ...

Philippe Drobinski; Pierre Carlotti; Rob K. Newsom; Robert M. Banta; Ralph C. Foster; Jean-Luc Redelsperger

2004-03-01T23:59:59.000Z

271

The Response of Tropical Atmospheric Energy Budgets to ENSO  

Science Conference Proceedings (OSTI)

The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent ...

Michael Mayer; Kevin E. Trenberth; Leopold Haimberger; John T. Fasullo

2013-07-01T23:59:59.000Z

272

Study of the Martian upper atmosphere using radio tracking data  

E-Print Network (OSTI)

Since the first in situ observations of the Martian atmosphere were made by the twin Viking landers, we have learned considerably more about its composition, dynamics and variability. Not only did the new data on global ...

Mazarico, Erwan Matías Alexandre, 1981-

2008-01-01T23:59:59.000Z

273

A Compositing Approach for Preserving Significant Features in Atmospheric Profiles  

Science Conference Proceedings (OSTI)

Composite profiles of thermodynamic and kinematic variables are prepared to represent the characteristics of the environment within which a particular atmospheric phenomenon occurs. During the averaging process, it is desirable to retain the ...

Rodger A. Brown

1993-03-01T23:59:59.000Z

274

Climate Drift in a Coupled Land–Atmosphere Model  

Science Conference Proceedings (OSTI)

A coupled land–atmosphere climate model is examined for evidence of climate drift in the land surface state variable of soil moisture. The drift is characterized as pathological error growth in two different ways. First is the systematic error ...

Paul A. Dirmeyer

2001-02-01T23:59:59.000Z

275

Statistical Significance Test for Transition Matrices of Atmospheric Markov Chains  

Science Conference Proceedings (OSTI)

Low-frequency variability of large-scale atmospheric dynamics can be represented schematically by a Markov chain of multiple flow regimes. This Markov chain contains useful information for the long-range forecaster, provided that the statistical ...

Robert Vautard; Kingtse C. Mo; Michael Ghil

1990-08-01T23:59:59.000Z

276

The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate  

Science Conference Proceedings (OSTI)

An atmospheric general circulation model with prescribed sea surface temperature and cloudiness was integrated for 50 years in order to study atmosphere-land surface interactions. The temporal variability of model soil moisture and precipitation ...

Thomas L. Delworth; Syukuro Manabe

1988-05-01T23:59:59.000Z

277

2–3-Day Convective Variability in the Tropical Western Pacific  

Science Conference Proceedings (OSTI)

This paper is an examination of 2–3-day convective variability in the tropical Pacific region. The initial focus of the paper is on the western tropical Pacific during the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response ...

Carol Anne Clayson; Brian Strahl; Jon Schrage

2002-03-01T23:59:59.000Z

278

Changes of Variability in Response to Increasing Greenhouse Gases. Part II: Hydrology  

Science Conference Proceedings (OSTI)

This paper examines hydrological variability and its changes in two different versions of a coupled ocean–atmosphere general circulation model developed at the National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory ...

Richard T. Wetherald

2009-11-01T23:59:59.000Z

279

Dynamical Origin of Low-Frequency Variability in a Highly Nonlinear Midlatitude Coupled Model  

Science Conference Proceedings (OSTI)

A novel mechanism of decadal midlatitude coupled variability, which crucially depends on the nonlinear dynamics of both the atmosphere and the ocean, is presented. The coupled model studied involves quasigeostrophic atmospheric and oceanic ...

S. Kravtsov; P. Berloff; W. K. Dewar; M. Ghil; J. C. McWilliams

2006-12-01T23:59:59.000Z

280

Pacific Decadal Variability: The Tropical Pacific Mode and the North Pacific Mode  

Science Conference Proceedings (OSTI)

Pacific decadal variability is studied in a series of coupled global ocean–atmosphere simulations aided by two “modeling surgery” strategies: partial coupling (PC) and partial blocking (PB). The PC experiments retain full ocean–atmosphere ...

L. Wu; Z. Liu; R. Gallimore; R. Jacob; D. Lee; Y. Zhong

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pressure Tubes  

Science Conference Proceedings (OSTI)

Table 8   Specifications for carbon and alloy steel pressure tubes (ASTM)...medium-strength carbon-molybdenum alloy

282

Dynamic Pressure  

Science Conference Proceedings (OSTI)

... The higher pressure range will cover the important application of gas turbine engine testing. Gas turbines are used for propulsion on aircraft and ...

2013-07-15T23:59:59.000Z

283

Orthobaric Density: A Thermodynamic Variable for Ocean Circulation Studies  

Science Conference Proceedings (OSTI)

A new density variable, empirically corrected for pressure, is constructed. This is done by first fitting compressibility (or sound speed) computed from global ocean datasets to an empirical function of pressure and in situ density (or specific ...

Roland A. de Szoeke; Scott R. Springer; David M. Oxilia

2000-11-01T23:59:59.000Z

284

Statistical Relations between Ocean/Atmosphere Fluctuations in the Tropical Pacific  

Science Conference Proceedings (OSTI)

Advanced statistical techniques have been used to conduct a study of the relationships between ocean and atmosphere variables in the tropical Pacific Ocean. The results of the study show that the ocean variables can hindcast features of the trade ...

T. P. Barnett

1981-08-01T23:59:59.000Z

285

A Coupled Atmosphere–Ocean GCM Study of the ENSO Cycle  

Science Conference Proceedings (OSTI)

This study examines interannual variability produced by a recent version of the University of California, Los Angeles, coupled atmosphere–ocean general circulation model (CGCM). The CGCM is shown to produce ENSO-like climate variability with ...

Jin-Yi Yu; Carlos R. Mechoso

2001-05-01T23:59:59.000Z

286

Kinematics of Eddy–Mean Flow Interaction in an Idealized Atmospheric Model  

Science Conference Proceedings (OSTI)

The authors analyze atmospheric variability simulated in a two-layer baroclinic ?-channel quasigeostrophic model by combining Eulerian and feature-tracking analysis approaches. The leading mode of the model's low-frequency variability (LFV) is ...

Sergey Kravtsov; Sergey K. Gulev

2013-08-01T23:59:59.000Z

287

Advantages of a Topographically Controlled Runoff Simulation in a Soil–Vegetation–Atmosphere Transfer Model  

Science Conference Proceedings (OSTI)

Two methods to incorporate subgrid variability in soil moisture and runoff production into soil–vegetation–atmosphere transfer (SVAT) models are compared: 1) the variable infiltration capacity model approach (VIC), and 2) a modified “TOPMODEL” ...

Kirsten Warrach; Marc Stieglitz; Heinz-Theo Mengelkamp; Ehrhard Raschke

2002-04-01T23:59:59.000Z

288

Relevance of the Mesoscale Entrainment Instability to the Marine Cloud-topped Atmospheric Boundary Layer  

Science Conference Proceedings (OSTI)

Mesoscale variability in entrainment across the inversion capping the cloud-topped atmospheric boundary layer (CTBL) has been proposed as an explanation for mesoscale variability in cloud thickness. The relevance of this mechanism, called ...

Hugh A. Rand; Christopher S. Bretherton

1993-04-01T23:59:59.000Z

289

Effect of ocean mesoscale variability on the mean state of tropical Atlantic climate  

E-Print Network (OSTI)

J. J. Antonov, 2002: World Ocean Atlas 2001: Objectiveand variability in tropical ocean regions. Clim. Dynm. , 18,air-sea fluxes for Tropical Ocean Global Atmosphere Coupled-

Seo, H; Jochum, M; Murtugudde, R; Miller, A J

2006-01-01T23:59:59.000Z

290

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

291

PRESSURE TRANSDUCER  

DOE Patents (OSTI)

A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

Sander, H.H.

1959-10-01T23:59:59.000Z

292

Snow Mass over North America: Observations and Results from the Second Phase of the Atmospheric Model Intercomparison Project  

Science Conference Proceedings (OSTI)

Eighteen global atmospheric general circulation models (AGCMs) participating in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2) are evaluated for their ability to simulate the observed spatial and temporal variability ...

Allan Frei; Ross Brown; James A. Miller; David A. Robinson

2005-10-01T23:59:59.000Z

293

Enhanced MJO-like Variability at High SST  

Science Conference Proceedings (OSTI)

The authors report a significant increase in Madden–Julian oscillation (MJO)–like variability in a superparameterized version of the NCAR Community Atmosphere Model run with high sea surface temperatures (SSTs). A series of aquaplanet simulations ...

Nathan P. Arnold; Zhiming Kuang; Eli Tziperman

2013-02-01T23:59:59.000Z

294

Modes of Interannual and Interdecadal Variability of Pacific SST  

Science Conference Proceedings (OSTI)

The multichannel singular spectrum analysis has been used to characterize the spatio–temporal structures of interdecadal and interannual variability of SST over the Pacific Ocean from 20°S to 58°N. Using the Comprehensive Ocean–Atmosphere Data ...

Xuebin Zhang; Jian Sheng; Amir Shabbar

1998-10-01T23:59:59.000Z

295

Simulation of North Atlantic Low-Frequency SST Variability  

Science Conference Proceedings (OSTI)

The role of atmospheric circulation anomalies in generating midlatitude sea surface temperature (SST) variability is investigated by means of ocean general circulation model (OGCM) experiments, in which observed winds are prescribed during the ...

Ute Luksch

1996-09-01T23:59:59.000Z

296

Impact of Gravity Waves on Marine Stratocumulus Variability  

Science Conference Proceedings (OSTI)

The impact of gravity waves on marine stratocumulus is investigated using a large-eddy simulation model initialized with sounding profiles composited from the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study ...

Qingfang Jiang; Shouping Wang

2012-12-01T23:59:59.000Z

297

Mesoscale Weather Effects of Variable Snow Cover over Northeast Colorado  

Science Conference Proceedings (OSTI)

Data from the PROFS (Program for Regional Observing and Forecasting Services) surface mesonetwork have been used to document the effect of variable snow cover on atmospheric boundary layer properties cloudiness and weather conditions over north ...

Richard H. Johnson; George S. Young; James J. Toth; Raymond M. Zehr

1984-06-01T23:59:59.000Z

298

Intraseasonal Variability of the South China Sea Summer Monsoon  

Science Conference Proceedings (OSTI)

The objective of this study is to explore, based on the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data, the intraseasonal variability of the South China Sea (SCS) summer monsoon (...

Jiangyu Mao; Johnny C. L. Chan

2005-07-01T23:59:59.000Z

299

Estimation of Ultraviolet-B Irradiance under Variable Cloud Conditions  

Science Conference Proceedings (OSTI)

Methods to estimate the irradiance of ultraviolet-B (UVB; 280–320 nm) radiation are needed to assess biological effects of changes in atmospheric composition. Measurements of the spatial distribution of sky cloud cover, temporal variability of ...

Richard H. Grant; Gordon M. Heisler

2000-06-01T23:59:59.000Z

300

Modeling the Effect of Land Surface Evaporation Variability on Precipitation Variability. Part II: Time- and Space-Scale structure  

Science Conference Proceedings (OSTI)

This is the second of a two-part article investigating the impact of variations of land surface evaporability on the interannual variability of precipitation. The first goal of this part is to analyze the relationship between the atmospheric ...

Oreste Reale; Paul Dirmeyer; Adam Schlosser

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Simulations of the Eastern North Pacific Intraseasonal Variability in CMIP5 GCMs  

Science Conference Proceedings (OSTI)

As a key component of tropical atmospheric variability, intraseasonal variability (ISV) over the eastern North Pacific Ocean (ENP) exerts pronounced influences on regional weather and climate. Since general circulation models (GCMs) are essential ...

Xianan Jiang; Eric D. Maloney; Jui-Lin F. Li; Duane E. Waliser

2013-06-01T23:59:59.000Z

302

North Atlantic Decadal Variability: Air–Sea Coupling, Oceanic Memory, and Potential Northern Hemisphere Resonance  

Science Conference Proceedings (OSTI)

In this paper, the causes and mechanisms of North Atlantic decadal variability are explored in a series of coupled ocean–atmosphere simulations. The model captures the major features of the observed North Atlantic decadal variability. The North ...

Lixin Wu; Zhengyu Liu

2005-01-01T23:59:59.000Z

303

Anatomy of North Pacific Decadal Variability  

Science Conference Proceedings (OSTI)

A systematic analysis of North Pacific decadal variability in a full-physics coupled ocean–atmosphere model is executed. The model is an updated and improved version of the coupled model studied by Latif and Barnett. Evidence is sought for ...

Niklas Schneider; Arthur J. Miller; David W. Pierce

2002-03-01T23:59:59.000Z

304

Gulf Stream Variability and Ocean–Atmosphere Interactions  

Science Conference Proceedings (OSTI)

Time series of Gulf Stream position derived from the TOPEX/Poseidon altimeter from October 1992 to November 1998 are used to investigate the lead and lag relation between the Gulf Stream path as it leaves the continental shelf and the changes in ...

Claude Frankignoul; Gaelle de Coëtlogon; Terrence M. Joyce; Shenfu Dong

2001-12-01T23:59:59.000Z

305

Atmospheric Circulation Effects on Wind Speed Variability at Turbine Height  

Science Conference Proceedings (OSTI)

Mean monthly wind speed at 70 m above ground level is investigated for 11 sites in Minnesota for the period 1995–2003. Wind speeds at these sites show significant spatial and temporal coherence, with prolonged periods of above- and below-normal ...

Katherine Klink

2007-04-01T23:59:59.000Z

306

Singular Modes and Low-Frequency Atmospheric Variability  

Science Conference Proceedings (OSTI)

Recently, it has been shown that the EOFs (empirical orthogonal functions) of the solutions of a stationary linear model to an ensemble of white noise forcing fields are the Schmidt modes (singular modes) of the model' linear operator. If the ...

Werner Metz

1994-06-01T23:59:59.000Z

307

Interannual Variability of Patterns of Atmospheric Mass Distribution  

Science Conference Proceedings (OSTI)

Using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) for 1958 to 2001, adjusted for bias over the southern oceans prior to 1979, an analysis is made of global patterns of monthly mean anomalies of ...

Kevin E. Trenberth; David P. Stepaniak; Lesley Smith

2005-08-01T23:59:59.000Z

308

Exact Averaging of Atmospheric State and Flow Variables  

Science Conference Proceedings (OSTI)

A new set of averaging rules is put forward that exactly determines the means of air temperature, mixing ratio, and velocity by incorporating weighting factors in accordance with physical conservation laws. For the temperature and velocity, ...

Andrew S. Kowalski

2012-05-01T23:59:59.000Z

309

Stratified Turbulence and the Mesoscale Variability of the Atmosphere  

Science Conference Proceedings (OSTI)

An analysis is made of Gage's proposal that the horizontal energy spectrum at mesoscale wavelengths is produced by upscale energy transfer through quasi-two-dimensional turbulence. It is suggested that principal sources of such energy can be ...

D. K. Lilly

1983-03-01T23:59:59.000Z

310

Response of the Antarctic Circumpolar Current to Atmospheric Variability  

Science Conference Proceedings (OSTI)

Historical hydrographic profiles, combined with recent Argo profiles, are used to obtain an estimate of the mean geostrophic circulation in the Southern Ocean. Thirteen years of altimetric sea level anomaly data are then added to reconstruct the ...

J. B. Sallée; K. Speer; R. Morrow

2008-06-01T23:59:59.000Z

311

Total atmospheric emissivities for a tropical climate  

SciTech Connect

The total atmospheric flux emissivities as a function of water vapor optical depth are reported for meteorological condtions in Thailand. The water vapor optical depth was first calculated as a function of height up to 12 km from the annual average upper air pressures, temperature, and dew points at Bangkok. The flux emissivity was then computed using tabulated data for the flux emissivities of water vapor, carbon dioxide, and ozone at 20/sup 0/C. (SPH)

Exell, R.H.B.

1978-01-01T23:59:59.000Z

312

Interdecadal and Interannual Variability in the Northern Extratropical Circulation Simulated with the JMA Global Model. Part I: Wintertime Leading Mode  

Science Conference Proceedings (OSTI)

Interdecadal and interannual atmospheric variability in the extratropical Northern Hemisphere is investigated using an atmospheric GCM. The model used for this research is a T42 GCM version of the Japan Meteorological Agency (JMA-GSM89) global ...

Ryuichi Kawamura; Masato Sugi; Nobuo Sato

1995-12-01T23:59:59.000Z

313

Robotic Joint Torque Testing: A Critical Tool in the Development of Pressure Suit Mobility Elements  

E-Print Network (OSTI)

Pressure suits allow pilots and astronauts to survive in extreme environments at the edge of Earth’s atmosphere and in the vacuum of space. One obstacle that pilots and astronauts face is that gas-pressurized suits stiffen ...

Meyen, Forrest Edward

314

Influence of a Tropical Island Mountain on Solar Radiation, Air Temperature and Vapor Pressure  

Science Conference Proceedings (OSTI)

Measured solar radiation, air temperature, and water vapor pressure at 17 stations on the northwest flank of Haleakala, Maui, Hawaii are compared with modeled clear day solar radiation and free atmosphere air temperature and water vapor pressure. ...

Dennis Nullet

1989-03-01T23:59:59.000Z

315

The Role of Terrain and Pressure Stresses in Rocky Mountain Lee Cyclones  

Science Conference Proceedings (OSTI)

The earth–atmosphere exchange of storm absolute dynamic circulation by mountain-induced surface pressure stress and the response of the circulation in a Rocky Mountain Ice cyclone is examined. Surface pressure stresses that transfer horizontal ...

Alan C. Czarnetzki; Donald R. Johnson

1996-04-01T23:59:59.000Z

316

Radiosonde Pressure Sensor Performance: Evaluation Using Tracking Radars  

Science Conference Proceedings (OSTI)

The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute ...

C. L. Parsons; G. A. Norcross; R. L. Brooks

1984-12-01T23:59:59.000Z

317

Sea Level Pressure Minimum along the Kuroshio and Its Extension  

Science Conference Proceedings (OSTI)

Atmospheric effects of sea surface temperature (SST) fronts along the Kuroshio and Kuroshio Extension (K-KE) are investigated by examining spatial characteristics of the climatological sea level pressure (SLP), surface winds and surface heat flux (...

Youichi Tanimoto; Tomohisa Kanenari; Hiroki Tokinaga; Shang-Ping Xie

2011-08-01T23:59:59.000Z

318

Absolute permeability as a function of confining pressure, pore pressure and temperature  

SciTech Connect

This work is an investigation of the absolute permeability of unconsolidated sand and consolidated sandstone cores to distilled water as a function of the temperature of the system, confining pressure on the core and the pore pressure of the flowing liquid. The results of this study indicate that temperatures is not an important variable that needs to be reproduced in the laboratory. Confining pressure and pore pressure affect permeability in a predictable manner. This allows measurements at a lower pressure level to be extrapolated to higher pressure conditions. 21 refs.

Gobran, B.D.; Brigham, W.E.; Ramey, H.J. Jr.

1981-01-01T23:59:59.000Z

319

Atmospheric Laser Communication  

Science Conference Proceedings (OSTI)

Atmospheric laser communication, often referred to as free-space optics (FSO) or free-space laser (FSL) communication, is similar to fiber optic cable in terms of carrier wavelength and bandwidth capability, but data are transmitted directly ...

Kenneth W. Fischer*Michael R. Witiw; Jeffrey A. Baars+; T. R. Oke

2004-05-01T23:59:59.000Z

320

Atmospheric Available Energy  

Science Conference Proceedings (OSTI)

The total potential energy of the atmosphere is the sum of its internal and gravitational energies. The portion of this total energy available to be converted into kinetic energy is determined relative to an isothermal, hydrostatic, equilibrium ...

Peter R. Bannon

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY  

SciTech Connect

We present a retrieval method based on Bayesian analysis to infer the atmospheric compositions and surface or cloud-top pressures from transmission spectra of exoplanets with general compositions. In this study, we identify what can unambiguously be determined about the atmospheres of exoplanets from their transmission spectra by applying the retrieval method to synthetic observations of the super-Earth GJ 1214b. Our approach to inferring constraints on atmospheric parameters is to compute their joint and marginal posterior probability distributions using the Markov Chain Monte Carlo technique in a parallel tempering scheme. A new atmospheric parameterization is introduced that is applicable to general atmospheres in which the main constituent is not known a priori and clouds may be present. Our main finding is that a unique constraint of the mixing ratios of the absorbers and two spectrally inactive gases (such as N{sub 2} and primordial H{sub 2}+ He) is possible if the observations are sufficient to quantify both (1) the broadband transit depths in at least one absorption feature for each absorber and (2) the slope and strength of the molecular Rayleigh scattering signature. A second finding is that the surface pressure or cloud-top pressure can be quantified if a surface or cloud deck is present at low optical depth. A third finding is that the mean molecular mass can be constrained by measuring either the Rayleigh scattering slope or the shapes of the absorption features, thus enabling one to distinguish between cloudy hydrogen-rich atmospheres and high mean molecular mass atmospheres. We conclude, however, that without the signature of molecular Rayleigh scattering-even with robustly detected infrared absorption features (>10{sigma})-there is no reliable way to tell from the transmission spectrum whether the absorber is a main constituent of the atmosphere or just a minor species with a mixing ratio of X{sub abs} < 0.1%. The retrieval method leads us to a conceptual picture of which details in transmission spectra are essential for unique characterizations of well-mixed exoplanet atmospheres.

Benneke, Bjoern; Seager, Sara, E-mail: bbenneke@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

2012-07-10T23:59:59.000Z

322

Intraseasonal Variability in a Two-Layer Model and Observations  

Science Conference Proceedings (OSTI)

A two-layer shallow-water model with R15 truncation and topographic forcing is used to study intraseasonal variability in the Northern Hemisphere’s (NH’s) extratropical atmosphere. The model’s variability is dominated by oscillations with average ...

Christian L. Keppenne; Steven L. Marcus; Masahide Kimoto; Michael Ghil

2000-04-01T23:59:59.000Z

323

FOAM: Fast Ocean Atmosphere Model | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

FOAM: Fast Ocean Atmosphere Model FOAM: Fast Ocean Atmosphere Model FOAM: Fast Ocean Atmosphere Model FOAM is a fully coupled, mixed-resolution, general circulation model designed for high-throughput (simulated years per day) while still providing a good simulated mean climate and simulated variability. FOAM uses the combination of a low resolution (R15) atmosphere model, a highly efficient medium-resolution ocean model, and distributed memory parallel processing to achieve high throughput on relatively modest numbers of processors (16-64). The quality of the simulated climate compares well with higher resolution models. No flux corrections are used. FOAM's intended purpose is to study long-term natural variability in the climate system. FOAM is also well suited for paleoclimate applications. FOAM is highly

324

ON THE STABILITY OF SUPER-EARTH ATMOSPHERES  

SciTech Connect

We investigate the stability of super-Earth atmospheres around M stars using a seven-parameter, analytical framework. We construct stability diagrams in the parameter space of exoplanetary radius versus semimajor axis and elucidate the regions in which the atmospheres are stable against the condensation of their major constituents, out of the gas phase, on their permanent nightside hemispheres. We find that super-Earth atmospheres that are nitrogen-dominated (Earth-like) occupy a smaller region of allowed parameter space, compared to hydrogen-dominated atmospheres, because of the dual effects of diminished advection and enhanced radiative cooling. Furthermore, some super-Earths which reside within the habitable zones of M stars may not possess stable atmospheres, depending on the mean molecular weight and infrared photospheric pressure of their atmospheres. We apply our stability diagrams to GJ 436b and GJ 1214b, and demonstrate that atmospheric compositions with high mean molecular weights are disfavored if these exoplanets possess solid surfaces and shallow atmospheres. Finally, we construct stability diagrams tailored to the Kepler data set, for G and K stars, and predict that about half of the exoplanet candidates are expected to harbor stable atmospheres if Earth-like conditions are assumed. We include 55 Cancri e and CoRoT-7b in our stability diagram for G stars.

Heng, Kevin [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093, Zuerich (Switzerland); Kopparla, Pushkar [ETH Zuerich, Institute for Atmospheric and Climate Science, Universitaetstrasse 16, CH-8092, Zuerich (Switzerland)

2012-07-20T23:59:59.000Z

325

Early evolution of the terrestrial atmosphere and hydrosphere  

SciTech Connect

A possible picture is outlined for the evolution of the primitive atmosphere and hydrosphere of the earth: the surface temperature would have been below 0/sup 0/C initially (since the solar constant was lower than today), and the injection of CO/sub 2/ into the atmosphere would not have been balanced by Urey equilibrium processes because of the lack of contact with liquid water. The greenhouse effect in the primitive atmosphere would have melted the ice in the equatorial zone after a time interval of order 10/sup 8/ yr, when the CO/sub 2/ pressure had risen to 1 atm.

Mukhin, L.M.; Moroz, V.I.

1977-01-01T23:59:59.000Z

326

ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAtmospheric State, Cloud Microphysics & ProductsAtmospheric State, Cloud Microphysics & Radiative Flux Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux 1997.01.01 - 2010.12.31 Site(s) NSA SGP TWP General Description This data product contains atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

327

Surface Modification by Atmospheric Pressure Plasma for Improved Bonding  

E-Print Network (OSTI)

of plasma-treated carbon fiber reinforced epoxy composites.behavior of a PAN-based carbon fiber-reinforced epoxyof plasma-treated carbon fiber reinforced epoxy composites.

Williams, Thomas Scott

2013-01-01T23:59:59.000Z

328

Free Floating Atmospheric Pressure Ball Plasmas | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

329

THERMALLY DRIVEN ATMOSPHERIC ESCAPE  

Science Conference Proceedings (OSTI)

Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

Johnson, Robert E., E-mail: rej@virginia.ed [Engineering Physics, Thornton Hall B102, University of Virginia, Charlottesville, VA 22902 (United States); Physics Department, New York University, New York, NY 10003 (United States)

2010-06-20T23:59:59.000Z

330

NOTES AND CORRESPONDENCE Tropical Atmospheric Variability Forced by Oceanic Internal Variability  

E-Print Network (OSTI)

to the equatorial heat budget because they not only move heat horizontally toward the equator (Hansen and Paul 1984 to the equatorial heat budget led to the hy- pothesis that a part of the observed interannual vari- ability in SST. Introduction This study is part of a series of studies aimed at quan- tifying the effect of tropical

Jochum, Markus

331

Atmosphere–Land Surface Interactions over the Southern Great Plains: Characterization from Pentad Analysis of DOE ARM Field Observations and NARR  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site data are analyzed to provide insight into atmosphere–land surface interactions generating summertime precipitation variability. Pentad-...

Alfredo Ruiz-Barradas; Sumant Nigam

2013-02-01T23:59:59.000Z

332

Effect of hydrostatic pressure on the ambient pressure superconductor CePt3Si  

E-Print Network (OSTI)

We studied the evolution of superconductivity (sc) and antiferromagnetism (afm) in the heavy fermion compound CePt3Si with hydrostatic pressure. We present a pressure-temperature phase diagram established by electrical transport measurements. Pressure shifts the superconducting transition temperature, Tc, to lower temperatures. Antiferromagnetism is suppressed at a critical pressure Pc ? 0.5 GPa. Key words: CePt3Si, superconductivity, antiferromagnetism, hydrostatic pressure Superconductivity (sc) is one of the most striking effects in solid state physics. In a conventional superconductor Cooper pairing is mediated by phonons. In general, magnetism destroys superconductivity. In heavy fermion systems, however, sc exists in close proximity to magnetism, promoting the suspicion that the sc is mediated by magnetic excitations. Since the discovery of sc in the heavy fermion compound CeCu2Si2 at atmospheric pressure [1], only a few Ce-based systems were found which also exhibit sc at atmospheric pressure, like CeMIn5 (M=Co, Ir) [4]. Most superconducting pure Ce-based systems show sc only under applied pressure sufficient to suppress long range magnetic order, like CeIn3 [2] or CeRh2Si2 [3]. CeIn3 displays a typical temperature-pressure phase diagram for these compounds; antiferromagnetism (afm) is suppressed to zero temperature with pressure and sc develops right in the vicinity where afm disappears [2]. Very recently another material, namely CePt3Si, was found showing magnetic order and sc at atmospheric pressure [5]. In contrast to the systems mentioned before, the crystal

M. Nicklas A

2004-01-01T23:59:59.000Z

333

ARM - Measurement - Atmospheric temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

334

Article Atmospheric Science  

NLE Websites -- All DOE Office Websites (Extended Search)

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp © The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp *Corresponding author (email: luchunsong110@gmail.com) Article Atmospheric Science February 2013 Vol.58 No.4-5: 545  551 doi: 10.1007/s11434-012-5556-6 A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds LU ChunSong 1,2* , LIU YanGang 2 & NIU ShengJie 1 1 Key Laboratory for Atmospheric Physics and Environment of China Meteorological Administration, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Atmospheric Sciences Division, Brookhaven National Laboratory, New York 11973, USA

335

BNL | Atmospheric Systems Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric System Research is a DOE observation-based research program Atmospheric System Research is a DOE observation-based research program created to advance process-level understanding of the key interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics, with the ultimate goal of reducing the uncertainty in global and regional climate simulations and projections. General areas of research at BNL under this program include studies of aerosol and cloud lifecycles, and cloud-aerosol-precipitation interactions. Contact Robert McGraw, 631.344.3086 aerosols Aerosol Life Cycle The strategic focus of the Aerosol Life Cycle research is observation-based process science-examining the properties and evolution of atmospheric aerosols. Observations come from both long-term studies conducted by the

336

Electrochemical cell having improved pressure vent  

DOE Patents (OSTI)

The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

Dean, Kevin (Pontiac, MI); Holland, Arthur (Troy, MI); Fillmore, Donn (Waterford, MI)

1993-01-01T23:59:59.000Z

337

Precomputed atmospheric scattering  

Science Conference Proceedings (OSTI)

We present a new and accurate method to render the atmosphere in real time from any viewpoint from ground level to outer space, while taking Rayleigh and Mie multiple scattering into account. Our method reproduces many effects of the scattering of light, ...

Eric Bruneton; Fabrice Neyret

2008-06-01T23:59:59.000Z

338

The Mean Meridional Circulation of the Atmosphere Using the Mass above Isentropes as the Vertical Coordinate  

Science Conference Proceedings (OSTI)

The mean meridional circulation of the atmosphere is presented using the mass (more specifically, the pressure corresponding to the mass) above the isentrope of interest as the vertical coordinate. In this vertical coordinate, the mass-weighted ...

Gang Chen

2013-07-01T23:59:59.000Z

339

A Characterization of the Present-Day Arctic Atmosphere in CCSM4  

Science Conference Proceedings (OSTI)

Simulation of key features of the Arctic atmosphere in the Community Climate System Model, version 4 (CCSM4) is evaluated against observational and reanalysis datasets for the present-day (1981–2005). Surface air temperature, sea level pressure, ...

Gijs de Boer; William Chapman; Jennifer E. Kay; Brian Medeiros; Matthew D. Shupe; Steve Vavrus; John Walsh

2012-04-01T23:59:59.000Z

340

An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation  

Science Conference Proceedings (OSTI)

An improved parameterization is presented for estimating effective atmospheric emissivity for use in calculating downwelling longwave radiation based on temperature, humidity, pressure, and solar radiation observations. The first improvement is ...

Todd M. Crawford; Claude E. Duchon

1999-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Jeffreys' Drag Instability Applied to Waves in the Lower Atmosphere: Linear and Nonlinear Growth Rates  

Science Conference Proceedings (OSTI)

In a geostrophically balanced region of the atmosphere the horizontal pressure gradients do no work since they are aligned at right angles to the winds, but near the earth's surface where friction destroys geostrophic balance these large-scale ...

George Chimonas

1994-12-01T23:59:59.000Z

342

Application of a Differential Fuel-Cell Analyzer for Measuring Atmospheric Oxygen Variations  

Science Conference Proceedings (OSTI)

A commercially available differential fuel-cell analyzer has been adapted to make field-based ppm-level measurements of atmospheric O2 variations. With the implementation of rapid calibrations and active pressure and flow control, the analysis ...

Britton B. Stephens; Peter S. Bakwin; Pieter P. Tans; Ron M. Teclaw; Daniel D. Baumann

2007-01-01T23:59:59.000Z

343

Surface texturing of superconductors by controlled oxygen pressure  

DOE Patents (OSTI)

A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

Chen, N.; Goretta, K.C.; Dorris, S.E.

1999-01-05T23:59:59.000Z

344

Surface texturing of superconductors by controlled oxygen pressure  

DOE Patents (OSTI)

A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

Chen, Nan (Downers Grove, IL); Goretta, Kenneth C. (Downers Grove, IL); Dorris, Stephen E. (La Grange Park, IL)

1999-01-01T23:59:59.000Z

345

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Column Description An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Outline Outline * A little philosophy

346

AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES  

Science Conference Proceedings (OSTI)

We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

Robinson, Tyler D. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Catling, David C., E-mail: robinson@astro.washington.edu [Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195-1310 (United States)

2012-09-20T23:59:59.000Z

347

Energy Savings of Variable Speed Motors  

E-Print Network (OSTI)

This paper investigates the energy savings available by utilizing variable speed motors on pump and fan applications. Conventional control of flow or pressure in process plants is normally accomplished by throttling the various streams with control valves. Depending on the system and the actual operating conditions, this throttling may consume a considerable amount of energy. The hydraulics of different systems are investigated to generalize high energy saving applications. Typical pump characteristics at varying speeds are investigated since most performance curves are only available at a constant speed. The various types of variable speed electric motors are discussed. However, the primary variable speed system recommended is a variable frequency speed system which utilizes standard induction motors. Specific cases of centrifugal pump applications and cooling tower fan service are presented. Turndown frequencies, stream factors, and electric rates are included in the evaluation. The energy savings of a variable speed system becomes significant when flow rates vary widely and the electrical rates are high.

Fishel, F. D.

1979-01-01T23:59:59.000Z

348

A strain gage?variable area flowmeter  

Science Conference Proceedings (OSTI)

This article presents a unique hybrid flowmeter that combines the turndown ratio/low resistance benefits of a variable area differential pressure flowmeter with the low component simplicity of a target flowmeter. The design attaches a single element strain gage to the flexural membrane suspended in a fluid flow passage

D. W. Guillaume; D. DeVries

1990-01-01T23:59:59.000Z

349

Simulation of El Niño-Southern Oscillation-like Variability in a Global AOGCM and its Response to CO2 Increase  

Science Conference Proceedings (OSTI)

A 75-year integration of a coupled atmosphere–ocean model is examined for tropical interannual variability. The atmospheric model has interactive cloud and a seasonal cycle. The fluxes of heat and salinity into the ocean component of the model ...

Simon Tett

1995-06-01T23:59:59.000Z

350

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

351

Hydrostatic Adjustment in Nonisothermal Atmospheres  

Science Conference Proceedings (OSTI)

The author examines hydrostatic adjustment due to heating in two nonisothermal atmospheres. In the first case both the temperature and lapse rate decrease with height; in the second case the atmosphere consists of a troposphere with constant ...

Dean G. Duffy

2003-01-01T23:59:59.000Z

352

Efficient rendering of atmospheric phenomena  

Science Conference Proceedings (OSTI)

Rendering of atmospheric bodies involves modeling the complex interaction of light throughout the highly scattering medium of water and air particles. Scattering by these particles creates many well-known atmospheric optical phenomena including rainbows, ...

Kirk Riley; David S. Ebert; Martin Kraus; Jerry Tessendorf; Charles Hansen

2004-06-01T23:59:59.000Z

353

The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer  

Science Conference Proceedings (OSTI)

The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) is described, and some examples of the environmental variables that can be derived from its measurements and the types of research that these can support are briefly presented. The M-...

P. J. Minnett; R. O. Knuteson; F. A. Best; B. J. Osborne; J. A. Hanafin; O. B. Brown

2001-06-01T23:59:59.000Z

354

An Investigation of Terrain Effects on the Mesoscale Spectrum of Atmospheric Motions  

Science Conference Proceedings (OSTI)

Wind and temperature data collected on commercial aircraft during the Global Atmospheric Sampling Program (GASP) are used to investigate the effects of underlying terrain on mesoscale variability, and the observational results are interpreted ...

G. D. Nastrom; D. C. Fritts; K. S. Gage

1987-10-01T23:59:59.000Z

355

On the Annual Cycle of the Tropical Pacific Atmosphere and Ocean  

Science Conference Proceedings (OSTI)

The annual cycle in sea surface temperature (SST), surface wind and other atmospheric variables in the tropical Pacific are described. The primary data sets of SST and surface wind are derived from ship observations in the Pacific between 29°N ...

John D. Horel

1982-12-01T23:59:59.000Z

356

Retrieval of Atmospheric Temperature Profiles from AMSU-A Measurement Using a Neural Network Approach  

Science Conference Proceedings (OSTI)

Backpropagation neural networks are applied to retrieve atmospheric temperature profiles and tropopause variables from the NOAA-15 Advanced Microwave Sounding Unit-A (AMSU-A) measurement based on two different data sources. The first case uses ...

Lei Shi

2001-03-01T23:59:59.000Z

357

Vertical Transports by Plumes within the Moderately Convective Marine Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

Bursts in the kinematic vertical transports of heat and horizontal momentum in a moderately convective marine atmospheric surface layer are studied by applying the variable interval time averaging (VITA) detection method to principal components ...

Richard A. Mason; Hampton N. Shirer; Robert Wells; George S. Young

2002-04-01T23:59:59.000Z

358

The Regional Atmospheric Water Budget over Southwestern Germany under Different Synoptic Conditions  

Science Conference Proceedings (OSTI)

This study addresses the question of how complex topography in a low-mountain region affects the partitioning and the variability of the atmospheric water budget components (WBCs) as a function of synoptic-scale flow conditions. The WBCs are ...

Romi Sasse; Gerd Schädler; Christoph Kottmeier

2013-02-01T23:59:59.000Z

359

Characterization of Turbulent Latent and Sensible Heat Flux Exchange between the Atmosphere and Ocean in MERRA  

Science Conference Proceedings (OSTI)

Turbulent fluxes of heat and moisture across the atmosphere–ocean interface are fundamental components of the earth’s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and ...

J. Brent Roberts; Franklin R. Robertson; Carol A. Clayson; Michael G. Bosilovich

2012-02-01T23:59:59.000Z

360

Estimating the Contribution of Leonard and Cross Terms to the Subfilter Scale from Atmospheric Measurements  

Science Conference Proceedings (OSTI)

The theoretical analysis presented recently on the role of Leonard and cross terms in determining the subfilter contribution when using a running mean is verified using atmospheric measurements. Measurements of variables with different spectral ...

S. Galmarini; F. Michelutti; P. Thunis

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Extreme Cold Winter Temperatures in Europe under the Influence of North Atlantic Atmospheric Blocking  

Science Conference Proceedings (OSTI)

North Atlantic atmospheric blocking conditions explain part of the winter climate variability in Europe, being associated with anomalous cold winter temperatures. In this study, the generalized extreme value (GEV) distribution is fitted to monthly ...

Jana Sillmann; Mischa Croci-Maspoli; Malaak Kallache; Richard W. Katz

2011-11-01T23:59:59.000Z

362

January and July Global Distributions of Atmospheric Heating for 1986, 1987, and 1988  

Science Conference Proceedings (OSTI)

Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986–88 from the ECMWF/TOGA assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating ...

Todd K. Schaack; Donald R. Johnson

1994-08-01T23:59:59.000Z

363

Testing the Annular Mode Autocorrelation Time Scale in Simple Atmospheric General Circulation Models  

Science Conference Proceedings (OSTI)

A new diagnostic for measuring the ability of atmospheric models to reproduce realistic low-frequency variability is introduced in the context of Held and Suarez’s 1994 proposal for comparing the dynamics of different general circulation models. ...

Edwin P. Gerber; Sergey Voronin; Lorenzo M. Polvani

2008-04-01T23:59:59.000Z

364

The Monsoon as a Selfregulating Coupled OceanAtmosphere System  

E-Print Network (OSTI)

DRAFT The Monsoon as a Self­regulating Coupled Ocean­Atmosphere System Peter J. Webster 1 Observational studies have shown that the Asian­Australasian monsoon system exhibits variability over a wide, the South Asian monsoon (at least as described by Indian precipitation) exhibits a smaller range

Webster, Peter J.

365

ARM - Measurement - Atmospheric turbulence  

NLE Websites -- All DOE Office Websites (Extended Search)

turbulence turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

366

Differential atmospheric tritium sampler  

DOE Patents (OSTI)

An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

1990-01-01T23:59:59.000Z

367

Atmospheric Release Advisory Capability  

SciTech Connect

The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years.

Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

1983-02-01T23:59:59.000Z

368

Atmospheric Mercury Research Update  

Science Conference Proceedings (OSTI)

This report is a summary and analysis of research findings on utility and environmental mercury from 1997 to 2003. The update categorizes and describes recent work on mercury in utility-burned coal and its route through power plants, the measures for its control, and its fate in the environment following emissions from utility stacks. This fate includes atmospheric chemistry and transport, deposition to land and water surfaces, aquatic cycling, the dynamics of mercury in freshwater fish food webs, and th...

2004-03-30T23:59:59.000Z

369

Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE  

SciTech Connect

All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0{sub 2}) and nitrous oxide (N{sub 2}O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in the global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO{sub 2} and N{sub 2}O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N{sub 2}O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO{sub 2}, roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N{sub 2}O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone. (B204)

Weiss, R.F.

1998-10-15T23:59:59.000Z

370

Mercury Vapor Pressure Correlation  

Science Conference Proceedings (OSTI)

An apparent difference between the historical mercury vapor concentration equations used by the mercury atmospheric measurement community ...

2012-10-09T23:59:59.000Z

371

An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation Complex for Atmospheric Radiation Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Polkin, V. P. Shmargunov, S. A. Terpugova, S. A. Turchinovich, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction The instrumentation complex is described, which has been prepared for radiative experiments in the region of Tomsk (West Siberia). The complex consists of three groups of devices to measure (a) the characteristics of the total downward radiation; (b) the most variable components of the atmospheric transparency directly affecting the income of radiation (aerosol optical depth [AOD], total content of water vapor, ozone, etc.); and (c) aerosol and meteorological parameters of the near-ground layer of the

372

ORISE: Climate and Atmospheric Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate and Atmospheric Research Climate and Atmospheric Research Capabilities Overview U.S. Climate Reference Network U.S. Historical Climate Network Contact Us Oak Ridge Institute for Science Education Climate and Atmospheric Research The Oak Ridge Institute for Science and Education (ORISE) partners with the National Oceanic and Atmospheric Administration's Atmospheric Turbulence and Diffusion Division (ATDD) to conduct climate research focused on issues of national and global importance. Research is performed with personnel support from ORISE's Independent Environmental Assessment and Verification (IEAV) programs, as well as in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL), and numerous other organizations, government agencies, universities and private research institutions.

373

A sustained oscillation in a toy-model of the coupled atmosphere-ocean system  

E-Print Network (OSTI)

Interaction between atmospheric mid-latitude flow and wind-driven ocean circulation is studied coupling two idealized low-order spectral models. The barotropic Charney-DeVore model with three components simulates a bimodal mid-latitude atmospheric circulation in a channel with two stable flow patterns induced by topography. The wind-driven ocean double gyre circulation in a square basin (of half the channel length) is modeled by an equivalent barotropic formulation of the Veronis model with 21 components, which captures Rossby-wave dynamics and nonlinear decadal variability. When coupled, the atmosphere forces the ocean by wind-stress while, simultaneously, the ocean affects the atmosphere by thermal forcing in terms of a vorticity source. Coupled atmosphere-ocean simulations show two stable flow patterns associated with the topographically induced atmospheric bimodality and a sustained oscillation due to interaction between atmospheric bimodality and oceanic Rossby dynamics. The oscillation is of inter-annua...

Bothe, Oliver

2011-01-01T23:59:59.000Z

374

PNNL: FCSD: Atmospheric Sciences & Global Change: Programs &...  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs & Facilities Atmospheric Measurements Laboratory Atmospheric Radiation Measurement (ARM) Program and ARM Climate Research Facility ARM Aerial Facility Environmental...

375

Lightning, atmospheric electricity and climate change  

SciTech Connect

Temperature records indicate that a global warming of 0.5{minus}0.7{degrees}C has occurred over the past century (Hansen and Lebedeff, 1987). Whether this trend is a result of increased trace gas concentrations in the atmosphere, or simply a result of natural variability; is still not known. These temperature trends are derived from thousands of observations worldwide. However, these observations are concentrated largely over continental areas, and then mainly in the northern hemisphere`s populated regions. This northern hemisphere continental bias results in large uncertainties in estimates of global temperature trends. Due to the increasing evidence that the present buildup of greenhouse gases in the atmosphere may result in an additional global warming of 1-5{degrees}C by the year 2050 (IPCC, 1990), it is increasingly important to find afternative methods to monitor fluctuations in global surface temperatures. As shown by two recent studies (Williams, 1992; Price, 1993), the global atmospheric electric circuit may provide a promising afternative for monitoring future climate change.

Price, C.

1993-10-01T23:59:59.000Z

376

pressure_measurements  

Science Conference Proceedings (OSTI)

... piston gauges, ball gages, pressure transducers, pressure gauges, non-mercurial barometers, and manometers in both gas and oil media using ...

2013-06-30T23:59:59.000Z

377

Gas pressure reduction circuits  

Science Conference Proceedings (OSTI)

This note describes passive pressure reduction devices for use with sensitive instruments. Two gas circuits are developed which not only provide a pressure reduction under flow demand

D. W. Guillaume; D. DeVries

1989-01-01T23:59:59.000Z

378

Effect of Process Variables  

Science Conference Proceedings (OSTI)

Pressure Water Leaching Molybdenum and Nickel from Mo-Ni Ore of Black Shale without Reagent · Recovery of Rare Earth Metals from Wasted Magnet.

379

Extraction of Freshwater and Energy from Atmosphere  

E-Print Network (OSTI)

Author offers and researches a new, cheap method for the extraction of freshwater from the Earth atmosphere. The suggected method is fundamentally dictinct from all existing methods that extract freshwater from air. All other industrial methods extract water from a saline water source (in most cases from seawater). This new method may be used at any point in the Earth except Polar Zones. It does not require long-distance freshwater transportation. If seawater is not utilized for increasing its productivity, this inexpensive new method is very environment-friendly. The author method has two working versions: (1) the first variant the warm (hot) atmospheric air is lifted by the inflatable tube in a high altitude and atmospheric steam is condenced into freswater: (2) in the second version, the warm air is pumped 20-30 meters under the sea-surface. In the first version, wind and solar heating of air are used for causing air flow. In version (2) wind and propeller are used for causing air movment. The first method does not need energy, the second needs a small amount. Moreover, in variant (1) the freshwater has a high pressure (>30 or more atm.) and can be used for production of energy such as electricity and in that way the freshwater cost is lower. For increasing the productivity the seawater is injected into air and solar air heater may be used. The solar air heater produces a huge amount of electricity as a very powerful electricity generation plant. The offered electricity installation in 100 - 200 times cheaper than any common electric plant of equivalent output. Key words: Extraction freshwater, method of getting freshwater, receiving energy from atmosphere, powerful renewal electric plant.

Alexander Bolonkin

2007-04-19T23:59:59.000Z

380

Inverse Modeling of Intra-annual Variability in the Subtropical North Pacific  

Science Conference Proceedings (OSTI)

Climatological data on the oceanic and atmospheric variability are inverted to study seasonal variation of the Kuroshio Extension (KE) and the recirculation gyre to the south. The processed datasets include climatological fluxes of heat, salt, ...

Max Yaremchuk; Konstantin Lebedev

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Decadal Climate Variability over the North Pacific and North America: Dynamics and Predictability  

Science Conference Proceedings (OSTI)

The dynamics and predictability of decadal climate variability over the North Pacific and North America are investigated by analyzing various observational datasets and the output of a state of the art coupled ocean–atmosphere general circulation ...

M. Latif; T. P. Barnett

1996-10-01T23:59:59.000Z

382

The Role of Ice–Ocean Interactions in the Variability of the North Atlantic Thermohaline Circulation  

Science Conference Proceedings (OSTI)

The simulated influence of Arctic sea ice on the variability of the North Atlantic climate is discussed in the context of a global coupled ice–ocean–atmosphere model. This coupled system incorporates a general circulation ocean model, an ...

Marika M. Holland; Cecilia M. Bitz; Michael Eby; Andrew J. Weaver

2001-03-01T23:59:59.000Z

383

Convective Precipitation Variability as a Tool for General Circulation Model Analysis  

Science Conference Proceedings (OSTI)

Precipitation variability is analyzed in two versions of the Community Atmospheric Model (CAM), the standard model, CAM, and a “multiscale modeling framework” (MMF), in which the cumulus parameterization has been replaced with a cloud-resolving ...

Charlotte A. DeMott; David A. Randall; Marat Khairoutdinov

2007-01-01T23:59:59.000Z

384

A Linear Model of Wintertime Low-Frequency Variability. Part I: Formulation and Forecast Skill  

Science Conference Proceedings (OSTI)

A linear inverse model (LIM) suitable for studies of atmospheric extratropical variability on longer than weekly timescales is constructed using observations of the past 30 years. Notably, it includes tropical diabatic heating as an evolving ...

Christopher R. Winkler; Matthew Newman; Prashant D. Sardeshmukh

2001-12-01T23:59:59.000Z

385

South Atlantic Variability Arising from Air–Sea Coupling: Local Mechanisms and Tropical–Subtropical Interactions  

Science Conference Proceedings (OSTI)

Interannual variability in the southern and equatorial Atlantic is investigated using an atmospheric general circulation model (AGCM) coupled to a slab ocean model (SOM) in the Atlantic in order to isolate features of air–sea interactions ...

Sylwia Trzaska; Andrew W. Robertson; John D. Farrara; Carlos R. Mechoso

2007-07-01T23:59:59.000Z

386

A Comparative Analysis of the Temporal Variability of Lightning Observations and GOES Imagery  

Science Conference Proceedings (OSTI)

Lightning Positioning and Tracking System (LPATS) data received by the Cooperative Institute for Research in the Atmosphere via a real-time weather data network were used to study the temporal variability of lightning for a frontal system and ...

P. B. Roohr; T. H. Vonder Haar

1994-11-01T23:59:59.000Z

387

Coupled Variability and Predictability in a Stochastic Climate Model of the Tropical Atlantic  

Science Conference Proceedings (OSTI)

The coupled variability and predictability of the tropical Atlantic ocean–atmosphere system were analyzed within the framework of a linear stochastic climate model. Despite the existence of a meridional dipole as the leading mode, tropical ...

Faming Wang; Ping Chang

2008-12-01T23:59:59.000Z

388

A Variable Sky-View Platform for the Measurement of Ultraviolet Radiation  

Science Conference Proceedings (OSTI)

One of the more difficult tasks confronting atmospheric researchers today is the acquisition of long-term radiometric measurements that encapsulate variability in the sky hemisphere as well as time. High quality spatial measurements would allow ...

Christopher Kuchinke; Manuel Nunez

2003-08-01T23:59:59.000Z

389

A Last Saturation Analysis of ENSO Humidity Variability in the Subtropical Pacific  

Science Conference Proceedings (OSTI)

Water vapor tracers of last saturation were used in an atmospheric tracer transport model to evaluate ENSO variability in the generation of the dry air that defines the subtropical middle troposphere over the North Pacific. Fifteen Northern ...

John V. Hurley; Joseph Galewsky

2010-02-01T23:59:59.000Z

390

Sensitivity of Arctic Climate Variability to Mean State: Insights from the Cretaceous  

Science Conference Proceedings (OSTI)

This study investigates Arctic climate variability during a period of extreme warmth using the Community Climate System Model, version 3 (CCSM3) coupled ocean–atmosphere general circulation model. Four mid-Cretaceous simulations were completed ...

Christopher J. Poulsen; Jing Zhou

2013-09-01T23:59:59.000Z

391

Phase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend  

Science Conference Proceedings (OSTI)

The extratropical annular-mode-like atmospheric responses to ENSO and global warming and the internal variability of annular modes are associated with similar, yet distinct, dynamical characteristics. In particular, La Niña, global warming, and ...

Gang Chen; Jian Lu; Dargan M. W. Frierson

2008-11-01T23:59:59.000Z

392

Interdecadal Trend and ENSO-Related Interannual Variability in Southern Hemisphere Blocking  

Science Conference Proceedings (OSTI)

The interdecadal trend and ENSO-related interannual variability in the frequency and intensity of atmospheric blocking in the Southern Hemisphere are analyzed by a statistical model that takes account of serial correlation in the datasets. ...

Li Dong; Timothy J. Vogelsang; Stephen J. Colucci

2008-06-01T23:59:59.000Z

393

Secular Changes of Annual and Interannual Variability in the Tropics during the Past Century  

Science Conference Proceedings (OSTI)

Wavelet transforms, which can unfold signals in both time and frequency domains, are used to analyze the Comprehensive Ocean and Atmospheric Data Sets for the period 1870–1988. The focus is on secular changes in the interannual variability and ...

Daifang Gu; S. G. H. Philander

1995-04-01T23:59:59.000Z

394

Low-Frequency Variability in a Baroclinic ? Channel with Land–Sea Contrast  

Science Conference Proceedings (OSTI)

Atmospheric low-frequency variability (LFV) is studied in a two-layer quasigeostrophic model. The model geometry is a periodic ? channel with flat bottom and zonally inhomogeneous thermal forcing. As a result of the idealized land–sea contrast, ...

S. Kravtsov; A. W. Robertson; M. Ghil

2003-09-01T23:59:59.000Z

395

Mechanisms Governing Interannual Variability of Upper-Ocean Temperature in a Global Ocean Hindcast Simulation  

Science Conference Proceedings (OSTI)

The interannual variability in upper-ocean (0–400 m) temperature and governing mechanisms for the period 1968–97 are quantified from a global ocean hindcast simulation driven by atmospheric reanalysis and satellite data products. The ...

Scott C. Doney; Steve Yeager; Gokhan Danabasoglu; William G. Large; James C. McWilliams

2007-07-01T23:59:59.000Z

396

Indian Ocean Dipolelike Variability in the CSIRO Mark 3 Coupled Climate Model  

Science Conference Proceedings (OSTI)

Coupled ocean–atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. ...

Wenju Cai; Harry H. Hendon; Gary Meyers

2005-05-01T23:59:59.000Z

397

Surface Energy Fluxes and Coupled Variability in the Tropics of a Coupled General Circulation Model  

Science Conference Proceedings (OSTI)

The effect of wind-evaporative feedbacks upon ENSO, and the coupling of Pacific and Indian Ocean variability, is considered based upon a 110-yr simulation from a coupled ocean and atmosphere general circulation model.

R. L. Miller; X. Jiang

1996-07-01T23:59:59.000Z

398

What Drives the Variability of Evaporative Demand across the Conterminous United States?  

Science Conference Proceedings (OSTI)

To understand the sources of temporal and spatial variability of atmospheric evaporative demand across the conterminous United States (CONUS), a mean-value, second-moment uncertainty analysis is applied to a spatially distributed dataset of daily ...

Michael Hobbins; Andrew Wood; David Streubel; Kevin Werner

2012-08-01T23:59:59.000Z

399

A Finite-Difference GCM Dynamical Core with a Variable-Resolution Stretched Grid  

Science Conference Proceedings (OSTI)

A finite-difference atmospheric model dynamics, or dynamical core using variable resolution, or stretched grids, is developed and used for regional–global medium-term and long-term integrations.

Michael S. Fox-Rabinovitz; Georgiy L. Stenchikov; Max J. Suarez; Lawrence L. Takacs

1997-11-01T23:59:59.000Z

400

Forced and Free Intraseasonal Variability over the South Asian Monsoon Region Simulated by 10 AGCMs  

Science Conference Proceedings (OSTI)

This study examines intraseasonal (20–70 day) variability in the South Asian monsoon region during 1997/98 in ensembles of 10 simulations with 10 different atmospheric general circulation models. The 10 ensemble members for each model are forced ...

Man Li C. Wu; Siegfried Schubert; In-Sik Kang; Duane Waliser

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Do General Circulation Models Underestimate the Natural Variability in the Arctic Climate?  

Science Conference Proceedings (OSTI)

The authors examine the natural variability of the arctic climate system simulated by two very different models: the Geophysical Fluid Dynamics Laboratory (GFDL) global climate model, and an area-averaged model of the arctic atmosphere–sea ice–...

D. S. Battisti; C. M. Bitz; R. E. Moritz

1997-08-01T23:59:59.000Z

402

Stationary Wave Accumulation and the Generation of Low-Frequency Variability on Zonally Varying Flows  

Science Conference Proceedings (OSTI)

A potent mechanism for the generation of low-frequency atmospheric variability on vortex basic states consisting of a single potential vorticity jump, or contour, separating two regions of uniform equivalent barotropic potential vorticity is ...

K. L. Swanson

2000-07-01T23:59:59.000Z

403

Is the Interannual Variability of the Summer Asian–Pacific Oscillation Predictable?  

Science Conference Proceedings (OSTI)

The summer (June–August) Asian–Pacific Oscillation (APO) measures the interannual variability of large-scale atmospheric circulation over the Asian–North Pacific Ocean sector. In this study, the authors assess the predictability of the summer APO ...

Yanyan Huang; Huijun Wang; Ping Zhao

2013-06-01T23:59:59.000Z

404

Links between Snow Cover, Surface Skin Temperature, and Rainfall Variability in the North American Monsoon System  

Science Conference Proceedings (OSTI)

The influence of land–atmosphere interactions on the variability of the North American monsoon system (NAMS) is investigated using the Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder, the Climate ...

Toshi Matsui; Venkat Lakshmi; Eric Small

2003-06-01T23:59:59.000Z

405

Temporal Variability of Fair-Weather Cumulus Statistics at the ACRF SGP Site  

Science Conference Proceedings (OSTI)

Continental fair-weather cumuli exhibit significant diurnal, day-to-day, and year-to-year variability. This study describes the climatology of cloud macroscale properties, over the U.S. Department of Energy’s Atmospheric Radiation Measurement (...

Larry K. Berg; Evgueni I. Kassianov

2008-07-01T23:59:59.000Z

406

Climate Variability and Radiocarbon in the CM2Mc Earth System Model  

Science Conference Proceedings (OSTI)

The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential ...

Eric D. Galbraith; Eun Young Kwon; Anand Gnanadesikan; Keith B. Rodgers; Stephen M. Griffies; Daniele Bianchi; Jorge L. Sarmiento; John P. Dunne; Jennifer Simeon; Richard D. Slater; Andrew T. Wittenberg; Isaac M. Held

2011-08-01T23:59:59.000Z

407

The Effect of Intraseasonal Circulation Variability on Winter Temperature Forecast Skill  

Science Conference Proceedings (OSTI)

The prediction of winter in the United States from Pacific sea surface temperatures was examined using a jackknifed regression scheme and a measure of intraseasonal atmospheric circulation variability. Employing a jackknifed regression ...

Keith W. Dixon; Robert P. Harnack

1986-01-01T23:59:59.000Z

408

Interannual (ENSO) and Interdecadal (ENSO-like) Variability in the Southern Hemisphere Tropospheric Circulation  

Science Conference Proceedings (OSTI)

Recent work has identified variability in the Pacific Ocean SST with a structure qualitatively similar to ENSO, but at lower frequencies than ENSO. Zhang et al. have documented the atmospheric circulation anomalies in the Tropics and Northern ...

RenéD. Garreaud; David S. Battisti

1999-07-01T23:59:59.000Z

409

Development of a pressure gain combustor for improved cycle efficiency  

SciTech Connect

This paper presents results from an experimental research program attempting to improve the thermodynamic efficiencies of gas-turbine combustors. An elementary thermodynamic analysis shows that the thermodynamic cycle efficiencies of gas turbines can be significantly improved by using unsteady combustion that achieves quasi-constant-volume combustion. The ability to produce the so-called pressure gain via this process has already been demonstrated by others for pressures less than 3 atmospheres. This paper presents experimental results for pressures up to 11 atmospheres, compares certain process parameters to a numerical simulation, and briefly examines the problem of scale-up. Results of pollutant measurements over the 2--11 atmospheric range of operation are also included.

Gemmen, R.S.; Richards, G.A.; Janus, M.C.

1994-09-01T23:59:59.000Z

410

Atmospheric Plasma Deposition of Diamond-like Carbon Coatings  

DOE Green Energy (OSTI)

DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of material that may be treated. The deposition of DLC at atmospheric pressure has been demonstrated by several researchers. Izake, et al [53] and Novikov and Dymont [54] have demonstrated an electrochemical process that is carried out with organic compounds such as methanol and acetylene dissolved in ammonia. This process requires that the substrates be immersed in the liquid [53-54]. The atmospheric pressure deposition of DLC was also demonstrated by Kulik, et al. utilizing a plasma torch. However, this process requires operating temperatures in excess of 800 oC [55]. In this report, we investigate the deposition of diamond-like carbon films using a low temperature, atmospheric pressure plasma-enhanced chemical vapor deposition (PECVD) process. The films were characterized by solid-state carbon-13 nuclear magnetic resonance (13C NMR) and found to have a ratio of sp2 to sp3 carbon of 43 to 57%. The films were also tested for adhesion, coefficient of friction, and dielectric strength.

Ladwig, Angela

2008-01-23T23:59:59.000Z

411

High pressure xenon ionization detector  

DOE Patents (OSTI)

A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

Markey, John K. (New Haven, CT)

1989-01-01T23:59:59.000Z

412

High pressure xenon ionization detector  

DOE Patents (OSTI)

A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

Markey, J.K.

1989-11-14T23:59:59.000Z

413

VARIABLE TIME DELAY MEANS  

DOE Patents (OSTI)

An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

Clemensen, R.E.

1959-11-01T23:59:59.000Z

414

The Monsoon as a Self-regulating Coupled Ocean-Atmosphere System  

E-Print Network (OSTI)

DRAFT The Monsoon as a Self-regulating Coupled Ocean-Atmosphere System Peter J. Webster1, Christina that the Asian-Australasian monsoon system exhibits variability over a wide-range of space and time scales (3­5 years) and interdecadal. Despite this range of variability, the South Asian monsoon (at least

Webster, Peter J.

415

EMSL: Science: Atmospheric Aerosol Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

416

A Simulation of Variability of ENSO Forecast Skill  

Science Conference Proceedings (OSTI)

In many prediction schemes, the skill of long-range forecasts of ENSO events depends on the time of year. Such variability could be directly due to seasonal changes in the basic ocean-atmosphere system or due to the state of ENSO itself.

M. K. Davey; D. L. T. Anderson; S. Lawrence

1996-01-01T23:59:59.000Z

417

Decadal Variability in a Simplified Wind-Driven Ocean Model  

Science Conference Proceedings (OSTI)

The impact of an unsteady wind forcing on oceanic low-frequency variability is conceptually studied using a reduced-gravity shallow-water model. A time-averaged wind forcing and a simple ocean–atmosphere coupling is completed by a stochastic ...

Philip Sura; Frank Lunkeit; Klaus Fraedrich

2000-08-01T23:59:59.000Z

418

Analysis and Modeling of the Natural Variability of Climate  

Science Conference Proceedings (OSTI)

After removing annual variability, power spectral analyses of local atmospheric temperature from hundreds of stations and ice core records have been carried out from timescales of 1 day to 200 kyr. A clear sequence of power-law behaviors is found ...

Jon D. Pelletier

1997-06-01T23:59:59.000Z

419

ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC  

E-Print Network (OSTI)

ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

Moelders, Nicole

420

Atmospheric Chemistry and Physics  

E-Print Network (OSTI)

Abstract. A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14 C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14 C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (f TC

unknown authors

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Atmospheric Corrosion Test Sites  

Science Conference Proceedings (OSTI)

Table 27   Some marine-atmospheric corrosion test sites around the world...Zealand Phia Marine 0.2 0.12 15.8 2.4 � � � � Greece Rafina Marine 0.2 0.12 13.6 1.0 � � � � Rhodes Marine 0.2 0.12 14.3 1.5 � � � � Netherlands Schagen Marine 2.4 1.5 17.0 2.0 � � � � Spain Almeria � 0.035 0.022 22.4 1.6 � � � � Cartagena � 0.050 0.031 5.2 1.9 � � � � La Coruña � 0.160 0.1 26.2 1.4...

422

Course Objectives | Physical Geography addresses the dynamics of major Earth systems--Atmosphere (weather, climate and climate change), Biosphere (plant communities), Lithosphere (geology, soils, and landforms), Hydrosphere (oceans, lakes, and  

E-Print Network (OSTI)

Achievement and Access Center coordinates accommodations and services for all students who are eligible. 3 Insolation & Global Radiation Chp. 4 Global Temperature Patterns Chp. 5 Atmospheric Pressure, Wind

Peterson, Blake R.

423

Surface Pressure Response to Elevated Tidal Heating Sources: Comparison of Earth and Mars  

Science Conference Proceedings (OSTI)

Modern atmospheric tidal theory has shown that the dominance of the terrestrial semidiurnal surface pressure oscillation, relative to its diurnal counterpart, is the result of the elevated heating source generated by solar heating of ...

Richard W. Zurek

1980-05-01T23:59:59.000Z

424

Pressure Measurements Using an Airborne Differential Absorption Lidar. Part I: Analysis of the Systematic Error Sources  

Science Conference Proceedings (OSTI)

Systematic error sources that require correction when making remote airborne measurements of the atmospheric pressure field in the lower troposphere, using an oxygen differential absorption lidar, are analyzed. A detailed analysis of this ...

Cyrille N. Flamant; Geary K. Schwemmer; C. Laurence Korb; Keith D. Evans; Stephen P. Palm

1999-05-01T23:59:59.000Z

425

The Kinematic Structure of a Hurricane with Sea Level Pressure Less Than 900 mb  

Science Conference Proceedings (OSTI)

A National Oceanic and Atmospheric Administration aircraft recorded the first Doppler radar data in a tropical cyclone with a minimum sea level pressure (MSLP) <900 mb during a reconnaissance mission in Hurricane Gilbert on 14 September 1988, ...

Peter Dodge; Robert W. Burpee; Frank D. Marks Jr.

1999-06-01T23:59:59.000Z

426

Further Comparison of Two Synoptic Surface Wind and Pressure Analysis Methods  

Science Conference Proceedings (OSTI)

The geostrophic stream and potential functions of Sangster and the derived flat pressure field of Pielke and Cram are further compared. A simple numerical experiment with an idealized mountain-atmosphere system compares the two methods and their ...

Jennifer M. Cram; Roger A. Pielke

1989-03-01T23:59:59.000Z

427

Effects of Stratification on the Large-Scale Ocean Response to Barometric Pressure  

Science Conference Proceedings (OSTI)

Single-layer (barotropic) models have been commonly used in studies of the inverted barometer effect and the oceanic response to atmospheric pressure loading. The potential effects of stratification on this response are explored here using a ...

Rui M. Ponte; Sergey V. Vinogradov

2007-02-01T23:59:59.000Z

428

The Relationships among Wind, Horizontal Pressure Gradient, and Turbulent Momentum Transport during CASES-99  

Science Conference Proceedings (OSTI)

Relationships among the horizontal pressure gradient, the Coriolis force, and the vertical momentum transport by turbulent fluxes are investigated using data collected from the Cooperative Atmosphere-Surface Exchange Study in 1999 (CASES99). Wind ...

Jielun Sun; Donald H. Lenschow; Larry Mahrt; Carmen Nappo

429

Environmental Variability during TOGA COARE  

Science Conference Proceedings (OSTI)

This study provides quantitative estimates of the thermodynamic and kinematic structures of the troposphere during various convective regimes observed during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. The ...

Christopher Lucas; Edward J. Zipser

2000-08-01T23:59:59.000Z

430

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

Fernández-Juricic, Esteban

431

Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Radiation Measurement (ARM) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

432

Aerosol optical depth of the atmosphere over the ocean in the wavelength range 0.37-4 µm  

Science Conference Proceedings (OSTI)

At least two problems, the climatic impact of aerosols and improvement in techniques for space-borne sensing, require investigation of the spatiotemporal variability of the aerosol optical depth (AOD) over the ocean. The marine atmosphere covers an area ...

S. M. Sakerin; D. M. Kabanov; A. V. Smirnov; B. N. Holben

2008-05-01T23:59:59.000Z

433

Estimated Global Hydrographic Variability  

Science Conference Proceedings (OSTI)

An estimate is made of the three-dimensional global oceanic temperature and salinity variability, omitting the seasonal cycle, both as a major descriptive element of the ocean circulation and for use in the error estimates of state estimation. ...

Gaël Forget; Carl Wunsch

2007-08-01T23:59:59.000Z

434

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

435

Mountain Forces and the Atmospheric Energy Budget  

Science Conference Proceedings (OSTI)

Although mountains are generally thought to exert forces on the atmosphere, the related transfers of energy between earth and atmosphere are not represented in standard energy equations of the atmosphere. It is shown that the axial rotation of the ...

Joseph Egger

2011-11-01T23:59:59.000Z

436

Baiu rainband termination in atmospheric and atmosphere-ocean models  

Science Conference Proceedings (OSTI)

Baiu rainband is a summer rainband stretching from eastern China through Japan towards the Northwest Pacific. The climatological termination of the Baiu rainband is investigated using Japanese 25-year ReAnalysis (JRA25), a stand-alone atmospheric ...

Akira Kuwano-Yoshida; Bunmei Taguchi; Shang-Ping Xie

437

Effects of diurnal variation on a tropical coupling system: a 2-dimensional coupled ocean-cloud resolving atmosphere modeling study  

Science Conference Proceedings (OSTI)

The effects of diurnal variation on tropical atmospheric and oceanic variability are investigated with a two-dimensional coupled ocean-cloud resolving atmosphere model. The experiment with a time-invariant solar zenith angle is compared to the control ... Keywords: diurnal variation, tropical coupling system

Shouting Gao; Yushu Zhou

2008-05-01T23:59:59.000Z

438

Krypton-85 in the atmosphere  

E-Print Network (OSTI)

Measurement results are presented on 85Kr content in the atmosphere over the European part of Russia in 1971-1995 based on the analysis of the commercial krypton, which is separated from air by industrial plants. Our results are by 15 per cent lower then 85Kr activites observed over West Europe. According our prediction by 2030 85Kr content in the atmosphere over Europe will amount to 1,5-3 Bq in m3 air. Average 85Kr release to the atmosphere from regeneration of spent nuclear fuel (SNF) is estimated, some 180 TBq per a ton SNF. It is advisable to recommence monitoring of 85Kr content within Russia.

A. T. Korsakov; E. G. Tertyshnik

2013-07-09T23:59:59.000Z

439

Krypton-85 in the atmosphere  

E-Print Network (OSTI)

Measurement results are presented on 85Kr content in the atmosphere over the European part of Russia in 1971-1995 based on the analysis of the commercial krypton, which is separated from air by industrial plants. Our results are by 15 per cent lower then 85Kr activites observed over West Europe. According our prediction by 2030 85Kr content in the atmosphere over Europe will amount to 1,5-3 Bq in m3 air. Average 85Kr release to the atmosphere from regeneration of spent nuclear fuel (SNF) is estimated, some 180 TBq per a ton SNF. It is advisable to recommence monitoring of 85Kr content within Russia.

Korsakov, A T

2013-01-01T23:59:59.000Z

440

Discovery of carbon monoxide in the upper atmosphere of Pluto  

E-Print Network (OSTI)

Pluto's icy surface has changed colour and its atmosphere has swelled since its last closest approach to the Sun in 1989. The thin atmosphere is produced by evaporating ices, and so can also change rapidly, and in particular carbon monoxide should be present as an active thermostat. Here we report the discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition, and find that the line-centre signal is more than twice as bright as a tentative result obtained by Bockelee-Morvan et al. in 2000. Greater surface-ice evaporation over the last decade could explain this, or increased pressure could have caused the atmosphere to expand. The gas must be cold, with a narrow line-width consistent with temperatures around 50 K, as predicted for the very high atmosphere, and the line brightness implies that CO molecules extend up to approximately 3 Pluto radii above the surface. The upper atmosphere must have changed markedly over only a decade since the prior search, and more alterations could occur by the...

Greaves, J S; Friberg, P

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

On the possible noble gas deficiency of Pluto's atmosphere  

E-Print Network (OSTI)

We use a statistical-thermodynamic model to investigate the formation and composition of noble-gas-rich clathrates on Pluto's surface. By considering an atmospheric composition close to that of today's Pluto and a broad range of surface pressures, we find that Ar, Kr and Xe can be efficiently trapped in clathrates if they formed at the surface, in a way similar to what has been proposed for Titan. The formation on Pluto of clathrates rich in noble gases could then induce a strong decrease in their atmospheric abundances relative to their initial values. A clathrate thickness of order of a few centimeters globally averaged on the planet is enough to trap all Ar, Kr and Xe if these noble gases were in protosolar proportions in Pluto's early atmosphere. Because atmospheric escape over an extended period of time (millions of years) should lead to a noble gas abundance that either remains constant or increases with time, we find that a potential depletion of Ar, Kr and Xe in the atmosphere would best be explained ...

Mousis, Olivier; Mandt, Kathleen E; Schindhelm, Eric; Weaver, Harold A; Stern, S Alan; Waite, J Hunter; Gladstone, Randy; Moudens, Audrey

2013-01-01T23:59:59.000Z

442

THE FACILITY 350 HELIUM-ATMOSPHERE SYSTEM. Final Report, Metallurgy Division Program 1.5.5  

SciTech Connect

The He atmosphere system in Argonne's Facility 350 is described in detail. The system is straightforward, employing drying and carbon towers for the removal of moisture, oxygen, and other impurities. The bulk of the 15,000 ft/ sup 3/ of He atmosphere is continuously recirculated at nearly atmospheric pressure. Purification is accomplished at 140 psig on a portion of the gas that is passed through the drying tower at room temperature and the carbon towers at -- 46 deg C (--50 deg F). The operation is continuous, requiring a minimum of maintenance and operational manpower. The He atmosphere is supplied to the glove- boxes with impurity levels below 3,000 ppm nitrogen, 1,000 ppm oxygen, and 50 ppm moisture. Such purity levels prevent oxidation and combustion of the Pu materials being processed. Experimental data concerning the adsorption of oxygen from He by activated carbon over a range of temperature and pressure conditions are reported. (auth)

Mayfield, R.M.; Tope, W.G.; Shuck, A.B.

1962-12-01T23:59:59.000Z

443

VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study  

DOE Data Explorer (OSTI)

VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international CLIVAR program the major goal of which is to develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. The principal program objectives are: 1) the improved understanding and regional/global model representation of aerosol indirect effects over the SEP; 2) the elimination of systematic errors in the region of coupled atmospheric-ocean general circulation models, and improved model simulations and predictions of the coupled climate in the SEP and global impacts of the system variability. VOCALS is organized into two tightly coordinated components: 1) a Regional Experiment (VOCALSREx), and 2) a Modeling Program (VOCALS-Mod). Extended observations (e.g. IMET buoy, satellites, EPIC/PACS cruises) will provide important additional contextual datasets that help to link the field and the modeling components. The coordination through VOCALS of observational and modeling efforts (Fig. 3) will accelerate the rate at which field data can be used to improve simulations and predictions of the tropical climate variability [Copied from the Vocals Program Summary of June 2007, available as a link from the VOCALS web at http://www.eol.ucar.edu/projects/vocals/]. The CLIVAR sponsored program to under which VOCALS falls is VAMOS, which stands for Variability of the American Monsoon Systems.

Wood, Robert [VOCALS-REx PI, University of Washington; Bretherton, Christopher [GEWEX/GCSS Representative, University of Washington; Huebert, Barry [SOLAS Representative, University of Hawaii; Mechoso, Roberto C. [VOCALS Science Working Group Chair, UCLA; Weller, Robert [Woods Hole Oceanographic Institution

444

PRESSURE WELDING--BIBLIOGRAPHY  

SciTech Connect

A bibliography containing 117 references from the years 1944 to 1961 on pressure welding is presented. (N.W.R.)

1960-01-01T23:59:59.000Z

445

Glossary Term - Composition of the Earth's Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

the Earth's Atmosphere Source: Definition of the U.S. Standard Atmosphere (1976) CRC Handbook of Chemistry and Physics, 77th Edition Gas Formula Abundance percent by volume...

446

A Computational Thermodynamic Analysis of Atmospheric ...  

Science Conference Proceedings (OSTI)

Feb 1, 2001 ... The vacuum atmosphere is typically 0.1 atm. However, the vacuum atmosphere creates two major problems: air leakage and batch operation to ...

447

On the Pressure Gradient Force Error in ?-Coordinate Spectral Models  

Science Conference Proceedings (OSTI)

The pressure gradient force error of the spectral technique used in combination with the ? vertical coordinate was examined in an idealized case of an atmosphere at rest and in hydrostatic equilibrium. Small-scale (one-point and three-point) ...

Zavis?a I. Janji?

1989-10-01T23:59:59.000Z

448

The Workshop in Atmospheric Predictability  

Science Conference Proceedings (OSTI)

A workshop on the subject of atmospheric predictability was held during 23-25 April 2001 at the Naval Postgraduate School in Monterey, California. Of primary concern was the nature of forecast uncertainty due to initial conditionuncertainty of ...

Ronald M. Errico; Rolf Langland; David P. Baumhefner

2002-09-01T23:59:59.000Z

449

(Chemistry of the global atmosphere)  

SciTech Connect

The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

Marland, G.

1990-09-27T23:59:59.000Z

450

Precursors to atmospheric blocking events  

E-Print Network (OSTI)

Atmospheric blocking events disturb synoptic-scale features from their normal eastward progression, causing anomalous weather conditions for the duration of the blocking event. The essence of blocking can be captured by ...

Marino, Garrett P

2009-01-01T23:59:59.000Z

451

Automated Measurements of Atmospheric Visibility  

Science Conference Proceedings (OSTI)

The concept of using a solid-state, linear-array imaging device coupled with computerized scene analysis and display to measure daytime atmospheric visibility is described. Computer software is implemented for routine conversion of observed ...

W. Viezee; W. E. Evans

1983-08-01T23:59:59.000Z

452

The Navy's Operational Atmospheric Analysis  

Science Conference Proceedings (OSTI)

In January of 1988, significant upgrades were made to the Navy Operational Global Atmospheric Prediction System (NOGAPS). Among these improvements was the implementation of a multivariate optimum interpolation analysis scheme. Since that time, ...

James S. Goerss; Patricia A. Phoebus

1992-06-01T23:59:59.000Z

453

Stochastic Simulation of Atmospheric Trajectories  

Science Conference Proceedings (OSTI)

Methods are presented for generating an ensemble of synthetic atmospheric trajectories. These include methods for a set of independent trajectories, and methods for a correlated set of sequential trajectories. The models incorporate first-order ...

Mitchell J. Small; Perry J. Samson

1983-02-01T23:59:59.000Z

454

Variable Speed Drive Volumetric Tracking (VSDVT) for Airflow Control in Variable Air Volume (VAV) Systems  

E-Print Network (OSTI)

An airflow control method has been developed for variable air volume (VAV) systems. This airflow control method is named VSD volumetric tracking (VSDVT) since both the supply and return airflows are determined using signals of the variable speed drives (VSD) instead of the flow stations. Its performance is studied and compared with the fan tracking (FT) method using model simulations. The VSDVT maintains a constant building pressure and the required outside airflow under all load conditions, reduces the annual return air fan energy by up to 50%, and the annual supply air fan energy by up to 30%. This paper presents the VSDVT method, the system models, and the simulation results.

Liu, M.

2002-01-01T23:59:59.000Z

455

Pressure reducing regulator  

DOE Patents (OSTI)

A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

Whitehead, J.C.; Dilgard, L.W.

1995-10-10T23:59:59.000Z

456

Georeactor Variability and Integrity  

E-Print Network (OSTI)

As a deep-Earth energy source, the planetocentric nuclear-fission georeactor concept is on a more secure scientific footing than the previous idea related to the assumed growth of the inner core. Unlike previously considered deep-Earth energy sources, which are essentially constant on a human time-scale, variability in nuclear fission reactors can arise from changes in composition and/or position of fuel, moderators, and neutron absorbers. Tantalizing circumstantial evidence invites inquiry into the possibility of short-term planetocentric nuclear fission reactor variability. This brief communication emphasizes the importance of scientific integrity and highlights the possibility of variable georeactor power output so that these might be borne in mind in future investigations, especially those related to the Earth's heat flux.

J. Marvin Herndon

2005-10-04T23:59:59.000Z

457

Georeactor Variability and Integrity  

E-Print Network (OSTI)

As a deep-Earth energy source, the planetocentric nuclear-fission georeactor concept is on a more secure scientific footing than the previous idea related to the assumed growth of the inner core. Unlike previously considered deep-Earth energy sources, which are essentially constant on a human time-scale, variability in nuclear fission reactors can arise from changes in composition and/or position of fuel, moderators, and neutron absorbers. Tantalizing circumstantial evidence invites inquiry into the possibility of short-term planetocentric nuclear fission reactor variability. This brief communication emphasizes the importance of scientific integrity and highlights the possibility of variable georeactor power output so that these might be borne in mind in future investigations, especially those related to the Earth's heat flux.

Herndon, J M

2005-01-01T23:59:59.000Z

458

Fluorescence emission induced by extensive air showers in dependence on atmospheric conditions  

E-Print Network (OSTI)

Charged particles of extensive air showers (EAS), mainly electrons and positrons, initiate the emission of fluorescence light in the Earth's atmosphere. This light provides a calorimetric measurement of the energy of cosmic rays. For reconstructing the primary energy from an observed light track of an EAS, the fluorescence yield in air has to be known in dependence on atmospheric conditions, like air temperature, pressure, and humidity. Several experiments on fluorescence emission have published various sets of data covering different parts of the dependence of the fluorescence yield on atmospheric conditions. Using a compilation of published measurements, a calculation of the fluorescence yield in dependence on altitude is presented. The fluorescence calculation is applied to simulated air showers and different atmospheric profiles to estimate the influence of the atmospheric conditions on the reconstructed shower parameters.

Keilhauer, Bianca

2009-01-01T23:59:59.000Z

459

Treating exhaust gas from a pressurized fluidized bed reaction system  

DOE Patents (OSTI)

Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

Isaksson, J.; Koskinen, J.

1995-08-22T23:59:59.000Z

460

Effect of Short-Term Solar Ultraviolet Flux Variability in a Coupled Model of Photochemistry and Dynamics  

Science Conference Proceedings (OSTI)

Variability in the solar ultraviolet radiative flux is known to cause changes in the chemistry and dynamics of the middle and upper atmosphere. Specifically, the 27-day solar rotation signal in irradiance has been correlated with responses in ...

Xun Zhu; Jeng-Hwa Yee; Elsayed R. Talaat

2003-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Effects of Midlatitude Waves over and around the Tibetan Plateau on Submonthly Variability of the East Asian Summer Monsoon  

Science Conference Proceedings (OSTI)

Convective variability at submonthly time scales (7–25 days) over the Yangtze and Huaihe River basins (YHRBs) and associated large-scale atmospheric circulation during the mei-yu season were examined using interpolated outgoing longwave radiation ...

Hatsuki Fujinami; Tetsuzo Yasunari

2009-07-01T23:59:59.000Z

462

Precipitation Recycling Variability and Ecoclimatological Stability—A Study Using NARR Data. Part I: Central U.S. Plains Ecoregion  

Science Conference Proceedings (OSTI)

Precipitation recycling is one of the key mechanisms linking the land surface and atmospheric dynamics. This work explores the physical mechanisms that modulate precipitation recycling variability at the daily-to-intraseasonal time scales in the ...

Francina Dominguez; Praveen Kumar

2008-10-01T23:59:59.000Z

463

The Mid-Quaternary Climatic Transition as the Free Response of a Three-Variable Dynamical Model  

Science Conference Proceedings (OSTI)

A simplified version of a previously described dynamical model governing global ice mass, atmospheric carbon dioxide, and mean ocean temperature (that may also be a proxy for some other CO2–controlling oceanic variable, e.g., nutrient supply) is ...

Barry Saltzman; Alfonso Sutera

1987-01-01T23:59:59.000Z

464

The Spatiotemporal Structure of Twentieth-Century Climate Variations in Observations and Reanalyses. Part II: Pacific Pan-Decadal Variability  

Science Conference Proceedings (OSTI)

The spatiotemporal structure of Pacific pan-decadal variability (PDV) is isolated in global long-term surface temperature (ST) datasets and reanalysis atmospheric parameter fields from which El Niño–Southern Oscillation (ENSO) effects have been ...

Junye Chen; Anthony D. Del Genio; Barbara E. Carlson; Michael G. Bosilovich

2008-06-01T23:59:59.000Z

465

Interannual Variability of Precipitation in an Ensemble of AMIP Climate Simulations Conducted with the CCC GCM2  

Science Conference Proceedings (OSTI)

In this paper log–linear analysis and analysis of variance methods were used to analyze the interannual variability and potential predictability of precipitation as simulated in an ensemble of six 10-yr Atmospheric Model Intercomparison Project ...

Xiaolan L. Wang; Francis W. Zwiers

1999-05-01T23:59:59.000Z

466

The Probability Distribution of Sea Surface Wind Speeds: Effects of Variable Surface Stratification and Boundary Layer Thickness  

Science Conference Proceedings (OSTI)

Air–sea exchanges of momentum, energy, and material substances of fundamental importance to the variability of the climate system are mediated by the character of the turbulence in the atmospheric and oceanic boundary layers. Sea surface winds ...

Adam Hugh Monahan

2010-10-01T23:59:59.000Z

467

Low-Frequency Variability of the Equatorial Pacific Ocean Using a New Pseudostress Dataset: 1930–1989  

Science Conference Proceedings (OSTI)

Interannual and interdecadal variability of the equatorial Pacific are examined using a new pseudostress dataset. The monthly mean pseudostress fields (1930–89)are derived from Comprehensive Ocean-Atmosphere Data Set (COADS) pseudostresses using ...

Jay F. Shriver; James J. O'Brien

1995-11-01T23:59:59.000Z

468

Modeling 18° Water Variability  

Science Conference Proceedings (OSTI)

Variability of 18° Water formation is investigated with an isopycnic-coordinate model of the North Atlantic. A 30-year spinup integration is used as a “control” experiment in which the upper water column in the Sargasso Sea is shown to be in ...

Robert Marsh; Adrian L. New

1996-06-01T23:59:59.000Z

469

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

470

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

471

CC Pressure Test  

SciTech Connect

The inner vessel heads including bypass and beam tubes had just been welded into place and dye penetrant checked. The vacuum heads were not on at this time but the vacuum shell was on covering the piping penetrating into the inner vessel. Signal boxes with all feed through boards, the instrumentation box, and high voltage boxes were all installed with their pump outs capped. All 1/4-inch instrumentation lines were terminated at their respective shutoff valves. All vacuum piping used for pumping down the inner vessel was isolated using o-ring sealed blind flanges. PV215A (VAT Series 12), the 4-inch VRC gate valve isolating the cyropump, and the rupture disk had to be removed and replaced with blind flanges before pressurizing due to their pressure limitations. Stresses in plates used as blind flanges were checked using Code calcualtions. Before the CC test, vacuum style blanks and clamps were hydrostatically pressure tested to 150% of the maximum test pressure, 60 psig. The Code inspector and Research Division Safety had all given their approval to the test pressure and procedure prior to filling the vessel with argon. The test was a major success. Based on the lack of any distinguishable pressure drop indicated on the pressure gages, the vessel appeared to be structurally sound throughout the duration of the test (approx. 3 hrs.). A major leak in the instrumentation tubing was discovered at half of the maximum test pressure and was quickly isolated by crimping and capping with a compression fitting. There were some slight deviations in the actual procedure used. The 44 psig relief valve located just outside the cleanroom had to be capped until the pressure in the vessel indicated 38 psi. This was to allow higher supply pressures and hence, higher flows through the pressurizing line. Also, in order to get pressure readings at the cryostat without exposing any personnel to the potentially dangerous stored energy near the maximum test pressure, a camera was installed at the top of the vessel to view the indicator mounted there. The monitor was viewed at the ante room adjacent to the cleanroom. The holding pressure of 32 psig (4/5 of the maximum test pressure) was only maintained for about 20 minutes instead of the half hour recommendation in the procedure. We felt that this was sufficient time to Snoop test and perform the pressure drop test. After the test was completed, the inspector for CBI Na-Con and the Research Divison Safety Officer signed all of required documentation.

Dixon, K.; /Fermilab

1990-07-12T23:59:59.000Z

472

Hydrostatic Pressure Retainment.  

E-Print Network (OSTI)

??There is a great deal of attention being concentrated on reducing the weight of pressure vessels and fuel/oxidizer tanks (tankage) by 10% to 20%. Most… (more)

Setlock, Robert J., Jr.

2004-01-01T23:59:59.000Z

473

National Atmospheric Release Advisory Center  

NLE Websites -- All DOE Office Websites (Extended Search)

NARAC TOC NARAC TOC The National Atmospheric Release Advisory Center, NARAC, provides tools and services to the Federal Government, that map the probable spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC provides atmospheric plume predictions in time for an emergency manager to decide if taking protective action is necessary to protect the health and safety of people in affected areas. Located at the Lawrence Livermore National Laboratory, NARAC is a national support and resource center for planning, real-time assessment, emergency response, and detailed studies of incidents involving a wide variety of hazards, including nuclear, radiological, chemical, biological, and natural emissions. In an emergency situation (if lives are at risk), event-specific NARAC

474

Variable percentage sampler  

DOE Patents (OSTI)

A remotely operable sampler is provided for obtaining variable percentage samples of nuclear fuel particles and the like for analyses. The sampler has a rotating cup for a sample collection chamber designed so that the effective size of the sample inlet opening to the cup varies with rotational speed. Samples of a desired size are withdrawn from a flowing stream of particles without a deterrent to the flow of remaining particles.

Miller, Jr., William H. (Knoxville, TN)

1976-01-01T23:59:59.000Z

475

Variable laser attenuator  

DOE Patents (OSTI)

The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

Foltyn, S.R.

1987-05-29T23:59:59.000Z

476

Variable laser attenuator  

SciTech Connect

The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

Foltyn, Stephen R. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

477

Solar-type Variables  

E-Print Network (OSTI)

The rich acoustic oscillation spectrum in solar-type variables make these stars particularly interesting for studying fluid-dynamical aspects of the stellar interior. I present a summary of the properties of solar-like oscillations, how they are excited and damped and discuss some of the recent progress in using asteroseismic diagnostic techniques for analysing low-degree acoustic modes. Also the effects of stellar-cycle variations in low-mass main-sequence stars are addressed.

Houdek, Gunter

2009-01-01T23:59:59.000Z

478

Errors in all variables  

SciTech Connect

We present a thorough derivation of the posterior for the straight line fit employing the hyper-plane prior. For the example of the parabola we enlarge the scope to nonlinear problems, however simplify it to be solved resembling the straight line solution. Finally we come to the problem of determining the exponents of a scaling law, where in logarithmic form the scaling exponents are linear coefficients of logarithmic variables.

Preuss, R.; Dose, V. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

2005-11-23T23:59:59.000Z

479

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-Assisted Fracture: Materials Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday, Chris San Marchi, and Dorian Balch Sandia National Laboratories Livermore, CA Hydrogen Pipeline Working Group Workshop Augusta, GA August 30-31, 2005 SNL has 40+ years experience with effects of high-pressure hydrogen gas on materials * Design and maintenance of welded stainless steel pressure vessels for containment of high-pressure H 2 isotopes - Extensive testing of stainless steels exposed to high-pressure H 2 gas * Six-year program in 1970s focused on feasibility of using natural gas pipeline network for H 2 gas - Materials testing in high-pressure H 2 gas using laboratory specimens and model pipeline - Examined fusion zone and heat affected zones of welds * Active SNL staff have authored 70+ papers and organized 6

480

Demonstration Development Project: Assessment of Pressurized Oxy-Coal Technology for Steam-Electric Power Plants  

Science Conference Proceedings (OSTI)

The use of pressurized oxy-combustion technology to support steam–electric power production has been proposed by several organizations as a potential low-cost way to enable a dramatic reduction in CO2 emissions from coal-fired power plants. The pressurized oxy-coal technology realizes most of the benefits of atmospheric pressure oxy-coal technology and offers the prospect of additional efficiency and cost benefits. The technology is, however, in the early stages of development.

2010-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "variable atmospheric pressure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Effects of Pressure on Collision, Coalescence, and Breakup of Raindrops. Part I: Experiments at 50 kPa  

Science Conference Proceedings (OSTI)

Previous breakup experiments have been carried out at laboratory pressures (100 kPa). However, raindrop interactions mainly take place higher up in the atmosphere, even in the supercooled part of a cloud where drops can be initiated by shedding ...

Roland List; C. Fung; R. Nissen

2009-08-01T23:59:59.000Z

482

Miniaturized pressurization system  

DOE Patents (OSTI)

This invention relates to pressurization systems and liquid rocket propulsion systems, and particularly to those used to attitude control or maneuvering of small space vehicles or airborne vehicles where the requirement for thrust is intermittent rather than continuous, and must be available rapidly upon demand. This invention also relates to increasing performance of such propulsion systems, by way of eliminating inert mass from the propulsion system. The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.

Whitehead, J.C.; Swink, D.G.

1990-12-31T23:59:59.000Z

483

A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas  

Science Conference Proceedings (OSTI)

A computationally fast line-by-line method for the determination of atmospheric absorption is described. This method is based on the creation of an Automatized Atmospheric Absorption Atlas (4A) covering all possible plausible atmospheric ...

N. A. Scott; A. Chedin

1981-07-01T23:59:59.000Z

484

PRESSURE ACTIVATED SEALANT TECHNOLOGY  

Science Conference Proceedings (OSTI)

The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

Michael A. Romano

2004-04-01T23:59:59.000Z

485

Envera Variable Compression Ratio Engine  

DOE Green Energy (OSTI)

Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new technologies are packaged together to provide the greatest gains at the least cost. Aggressive engine downsiz

Charles Mendler

2011-03-15T23:59:59.000Z

486

Quality Assurance in Atmospheric Modeling  

Science Conference Proceedings (OSTI)

This paper summarizes a number of best practices associated with the use of numerical models of the atmosphere and is motivated by the rapid growth in the number of model users, who have a range of scientific and technical preparations. An underlying ...

Thomas T. Warner

2011-12-01T23:59:59.000Z

487

Geomagnetic Effects on Atmospheric Neutrinos  

E-Print Network (OSTI)

Geomagnetic effects distort the zenith angle distribution of sub--GeV and few--GeV atmospheric neutrinos, breaking the up--down symmetry that would be present in the absence of neutrino oscillations and without a geomagnetic field. The geomagnetic effects also produce a characteristic azimuthal dependence of the $\

Paolo Lipari; T. K. Gaisser; Todor Stanev

1998-03-09T23:59:59.000Z

488

Extreme Anomalous Atmospheric Circulation in the West Antarctic Peninsula Region in Austral Spring and Summer 2001/02, and Its Profound Impact on Sea Ice and Biota  

Science Conference Proceedings (OSTI)

Exceptional sea ice conditions occurred in the West Antarctic Peninsula (WAP) region from September 2001 to February 2002, resulting from a strongly positive atmospheric pressure anomaly in the South Atlantic coupled with strong negative ...

Robert A. Massom; Sharon E. Stammerjohn; Raymond C. Smith; Michael J. Pook; Richard A. Iannuzzi; Neil Adams; Douglas G. Martinson; Maria Vernet; William R. Fraser; Langdon B. Quetin; Robin M. Ross; Yuko Massom; H. Roy Krouse

2006-08-01T23:59:59.000Z

489

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known hadronic models, SIBYLL 2.1 and QGSJET-II. The atmospheric neutrino flux in the energy range $10-10^7$ GeV was computed within the 1D approach to solve nuclear cascade equations in the atmosphere, which takes into account non-scaling behavior of the inclusive cross-sections for the particle production, the rise of total inelastic hadron-nucleus cross-sections and nonpower-law character of the primary cosmic ray spectrum. This approach was recently tested in the atmospheric muon flux calculations [1]. The results of the neutrino flux calculations are compared with the Frejus, AMANDA-II and IceCube measurement data.

S. I. Sinegovsky; A. A. Kochanov; T. S. Sinegovskaya

2010-10-12T23:59:59.000Z

490

METAL SPRAYER FOR USE IN VACUUM OR INERT ATMOSPHERE  

DOE Patents (OSTI)

A metal sprayer is described for use in a vacuum or inert atmosphere with a straight line wire feed and variable electrode contact angle. This apparatus comprises two wires which are fed through straight tubes of two mechanisms positioned on opposite sides of a central tube to which an inert gas is fed. The two mechanisms and the wires being fed constitute electrodes to which electrical current is supplied so that the wires are melted by the electric are formed at their contacting region and sprayed by the gas supplied by the central tube. This apparatus is designed specifically to apply a zirconium coating to uranium in an inert atmosphere and without the use of an oxidizing flame.

Monroe, R.E.

1958-10-14T23:59:59.000Z

491

Jets with Variable R  

E-Print Network (OSTI)

We introduce a new class of jet algorithms designed to return conical jets with a variable Delta R radius. A specific example, in which Delta R scales as 1/pT, proves particularly useful in capturing the kinematic features of a wide variety of hard scattering processes. We implement this Delta R scaling in a sequential recombination algorithm and test it by reconstructing resonance masses and kinematic endpoints. These test cases show 10-20% improvements in signal efficiency compared to fixed Delta R algorithms. We also comment on cuts useful in reducing continuum jet backgrounds.

David Krohn; Jesse Thaler; Lian-Tao Wang

2009-03-02T23:59:59.000Z

492

Zonal Winds and the Angular Momentum Balance of Venus’ Atmosphere within and above the Clouds  

Science Conference Proceedings (OSTI)

Temperatures and pressures inferred from radio occultation data acquired by the Pioneer Venus orbiter between September 1982 and November 1983 are used to derive cyclostrophic zonal winds in the middle atmosphere of Venus (1350 to 2.1 mb, 10° to ...

R. L. Walterscheid; G. Schubert; M. Newman; A. J. Kliore

1985-10-01T23:59:59.000Z

493

Observed Propagation and Structure of the 33-h Atmospheric Kelvin Wave  

Science Conference Proceedings (OSTI)

The structure of the 33-h Kelvin wave, a normal mode of the atmosphere, is examined in 6-hourly station and NCEP–NCAR reanalysis data. Cross-spectral analysis of 6 yr (1993–98) of tropical station pressure data shows a peak in coherence in a ...

Adrian J. Matthews; Roland A. Madden

2000-11-01T23:59:59.000Z

494

Compressed Air Sample Technology for Isotopic Analysis of Atmospheric Carbon Monoxide  

Science Conference Proceedings (OSTI)

A methodology for the collection of large (1000 L) air samples for isotopic analysis of atmospheric carbon monoxide is presented. A low-background, high-pressure, high-flow sampling system with a residual background of less than 2 ppbv CO has ...

John E. Mak; Carl A. M. Brenninkmeijer

1994-04-01T23:59:59.000Z

495

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

Baker, T.H.; Ott, H.L.

1994-01-11T23:59:59.000Z

496

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

Baker, Tod H. (O' Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

1994-01-01T23:59:59.000Z

497

Decadal Variability of the Aleutian Low and Its Relation to High-Latitude Circulation  

Science Conference Proceedings (OSTI)

The January–February mean central pressure of the Aleutian low is investigated as an index of North Pacific variability on interannual to decadal timescales. Since the turn of the century, 37% of the winter interannual variance of the Aleutian ...

James E. Overland; Jennifer Miletta Adams; Nicholas A. Bond

1999-05-01T23:59:59.000Z

498

Interannual Variability of Surface Fields over the Indian Ocean during Recent Decades  

Science Conference Proceedings (OSTI)

The interannual variability of surface meteorological fields over the Indian Ocean during the period 1954–76 is studied using 2 million ship reports obtained from different sources. Monthly mean fields of wind, pressure, air temperature, mixing ...

Daniel L. Cadet; Bradley C. Diehl

1984-10-01T23:59:59.000Z

499

North Pacific Decadal Variability and Climate Change in the IPCC AR4 Models  

Science Conference Proceedings (OSTI)

The two leading modes of North Pacific sea surface temperature (SST) and sea level pressure (SLP), as well as their connections to tropical variability, are explored in the 24 coupled climate models used in the Intergovernmental Panel on Climate ...

Jason C. Furtado; Emanuele Di Lorenzo; Niklas Schneider; Nicholas A. Bond

2011-06-01T23:59:59.000Z

500

Solar Irradiance Variability  

E-Print Network (OSTI)

The Sun has long been considered a constant star, to the extent that its total irradiance was termed the solar constant. It required radiometers in space to detect the small variations in solar irradiance on timescales of the solar rotation and the solar cycle. A part of the difficulty is that there are no other constant natural daytime sources to which the Sun's brightness can be compared. The discovery of solar irradiance variability rekindled a long-running discussion on how strongly the Sun affects our climate. A non-negligible influence is suggested by correlation studies between solar variability and climate indicators. The mechanism for solar irradiance variations that fits the observations best is that magnetic features at the solar surface, i.e. sunspots, faculae and the magnetic network, are responsible for almost all variations (although on short timescales convection and p-mode oscillations also contribute). In spite of significant progress important questions are still open. Thus there is a debat...

Solanki, Sami K

2012-01-01T23:59:59.000Z