Sample records for variable atmospheric pressure

  1. Atmospheric Pressure Reactor System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Reactor System Atmospheric Pressure Reactor System The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the...

  2. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric

  3. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  4. atmospheric pressure ionization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Atmospheric Pressure, in Vivo, and Imaging Mass. For example, atmospheric pressure infrared MALDI (AP IR-MALDI), capable of producing ions from small ionization (DESI),5...

  5. NETL SOFC: Atmospheric Pressure Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWaterTerryAtmospheric

  6. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01T23:59:59.000Z

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  7. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2001-01-01T23:59:59.000Z

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  8. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20T23:59:59.000Z

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  9. Variable pressure power cycle and control system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1984-11-27T23:59:59.000Z

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  10. The electrodeless discharge at atmospheric pressure

    SciTech Connect (OSTI)

    Laroussi, M.

    1999-07-01T23:59:59.000Z

    Recently the generation and applications of atmospheric pressure plasmas received increased interest in the plasma research community. Applications such as the surface modification of materials, and the decontamination of matter have been under investigation. In this context, the authors introduce a new means of generating an atmospheric pressure discharge, which is suitable for use in the above-mentioned applications, and in the treatment of undesirable or polluting gases, such as VOC's. This device is a capacitively coupled discharge. It is basically made of a non-conducting tube with two independent loops of wire wrapped around it, and separated by a distance d. A stable discharge is generated inside the tube when an AC voltage of few hundred volts to few kilovolts, at a frequency of few kilohertz, is applied between the loops. One end of the tube is completely open to the outside air, and a seed gas (generally a noble gas such as Helium) is introduced in the tube. The plasma generated with this method is weakly ionized, cold, and is maintained by a relatively low input power (few tens of watts, depending on the size of the tube). In this paper, the discharge electrical characteristics, its radiation emission characteristics, and the measurement of relevant plasma parameters will be presented.

  11. atmospheric pressure corona: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric conditions. Our module is capable of measuring temperature, pressure, wind speed, and particle concentration. The module will take measurements every minute and the...

  12. atmospheric pressure plasmas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric conditions. Our module is capable of measuring temperature, pressure, wind speed, and particle concentration. The module will take measurements every minute and the...

  13. atmospheric pressure measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric conditions. Our module is capable of measuring temperature, pressure, wind speed, and particle concentration. The module will take measurements every minute and the...

  14. atmospheric pressure radio: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric conditions. Our module is capable of measuring temperature, pressure, wind speed, and particle concentration. The module will take measurements every minute and the...

  15. atmospheric pressure plasma: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric conditions. Our module is capable of measuring temperature, pressure, wind speed, and particle concentration. The module will take measurements every minute and the...

  16. atmospheric pressure field: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric conditions. Our module is capable of measuring temperature, pressure, wind speed, and particle concentration. The module will take measurements every minute and the...

  17. atmospheres pressure mixed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  18. atmospheric pressure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  19. atmospheric pressure hf: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  20. atmospheric pressure photoionization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  1. atmospheric pressure argon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  2. atmospheric pressure nitrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  3. atmospheric pressure direct: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  4. atmospheric pressure cvd: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  5. atmospheric pressure glow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  6. atmospheric pressure photoionisation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  7. atmospheric pressure microdischarge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  8. atmospheric pressure cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  9. atmospheric pressure maldi: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  10. Stability measurements of PPL atmospheric pressure arc

    SciTech Connect (OSTI)

    Roquemore, L.; Zweben, S.J. [Princeton Plasma Physics Lab., NJ (United States); Wurden, G.A. [Los Alamos National Lab., NM (United States)

    1997-12-31T23:59:59.000Z

    Experiments on the stability of atmospheric pressure arcs have been started at PPL to understand and improve the performance of arc furnaces used for processing applications in metallurgy and hazardous waste treatment. Previous studies have suggested that the violent instabilities in such arcs may be due to kink modes. A 30 kW, 500 Amp CW DC experimental arc furnace was constructed with a graphite cathode and a molten steel anode. The arc plasma is diagnosed with 4000 frames/sec digital camera, Hall probes, and voltage and current monitors. Under certain conditions, the arc exhibits an intermittent helical instability, with the helix rotating at {approx}600 Hz. The nature of the instability is investigated. A possible instability mechanism is the self-magnetic field of the arc, with saturation occurring due to inhomogeneous heating in a helical arc. The effect of external DC and AC magnetic fields on the instability is investigated. Additionally, arc deflection due to external transverse magnetic field is investigated. The deflection angle is found to be proportional to the applied field, and is in good agreement with a simple model of the {rvec J} x {rvec b} force on the arc jet.

  11. Nitrogen Atmospheric Pressure Post Discharges for Surface Biological Decontamination inside

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nitrogen Atmospheric Pressure Post Discharges for Surface Biological Decontamination inside Small) (PET) capillary tubes of different shapes and lengths and decontamination of flow tubes, both for several years at the Orsay Plasma Lab. Its biological decontamination efficiency has been demonstrated

  12. A simplified system of pressure surfaces for atmospheric analysis 

    E-Print Network [OSTI]

    Shay, Francis Schofield

    1959-01-01T23:59:59.000Z

    LIBRARY A g M COLLEGE OF TEXAS A SIMPLIFIED SYSTEM OF PRESSURE SURFACES FOR ATMOSPHERIC ANALYSIS A Thesis By FRANCIS S. SHAY + Captain USAF Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of MASTER OP SCIENCE May 1959 Major Subject: Meteorology A SIMPLIFIED SYSTEM OF PRESSURE SURFACES FOR ATMOSPHERIC ANALYSIS A Thesis By FRANCIS S. SHAY Captain USAF jpp roved j as to style and content...

  13. E-Print Network 3.0 - atmospheric pressure helium-oxygen Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copyright permission to reproduce figures andor text from this article 12;Remote Atmospheric-Pressure... ) were treated with an atmospheric-pressure oxygen and...

  14. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, Gary (Gloucester, VA); D'Silva, Arthur P. (Ames, IA); Fassel, Velmer A. (Ames, IA)

    1986-05-06T23:59:59.000Z

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  15. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05T23:59:59.000Z

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  16. Atmospheric-pressure guided streamers for liposomal membrane disruption

    SciTech Connect (OSTI)

    Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

    2012-12-24T23:59:59.000Z

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  17. Multi-variable optimization of pressurized oxy-coal combustion

    E-Print Network [OSTI]

    Zebian, Hussam

    2011-01-01T23:59:59.000Z

    Simultaneous multi-variable gradient-based optimization with multi-start is performed on a 300 MWe wet-recycling pressurized oxy-coal combustion process with carbon capture and sequestration. The model accounts for realistic ...

  18. E-Print Network 3.0 - atmospheric pressure microwave Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric dynamics and to unravel the direct and coupling... atmosphere using remote sensing" ABSTRACT Understanding the influence of solar variability in the...

  19. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect (OSTI)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of)] [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)] [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06T23:59:59.000Z

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  20. Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure

    E-Print Network [OSTI]

    Kamali, Ali Reza; Fray, Derek J.

    2015-01-23T23:59:59.000Z

    2012, Accepted 00th January 2012 DOI: 10.1039/x0xx00000x www.rsc.org/ Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure Ali Reza Kamalia, Derek J. Fraya A route for producing diamond nanocrystals is reported... into the graphite between the layers of graphite/graphene under the influence of the cathodic potential. The electrolysis reaction can be expressed as: 2Li+ + Cl- = 2Li (at the cathode) + Cl2 (at the anode) ?G°800° C = 650.8kJ (1). Although the diameter...

  1. Atmospheric pressure cold plasma as an antifungal therapy

    SciTech Connect (OSTI)

    Sun Peng; Wu Haiyan [College of Engineering, Peking University, Beijing 100871 (China); Sun Yi; Liu Wei; Li Ruoyu [Department of Dermatology and Venereology, Peking Univ. 1st Hospital and Research Center for Medical Mycology, Peking Univ., Beijing 100034 (China); Zhu Weidong; Lopez, Jose L. [Department of Applied Science and Technology and Center for Microplasma Science and Technology, Saint Peter's College, Jersey City, New Jersey 07306 (United States); Zhang Jue; Fang Jing [College of Engineering, Peking University, Beijing 100871 (China); Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2011-01-10T23:59:59.000Z

    A microhollow cathode based, direct-current, atmospheric pressure, He/O{sub 2} (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  2. Electron kinetics in a microdischarge in nitrogen at atmospheric pressure

    SciTech Connect (OSTI)

    Levko, Dmitry [LAPLACE (Laboratoire Plasma et Conversion d'Energie), Universite de Toulouse, UPS, INPT Toulouse, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)] [LAPLACE (Laboratoire Plasma et Conversion d'Energie), Universite de Toulouse, UPS, INPT Toulouse, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)

    2013-12-14T23:59:59.000Z

    Electron kinetics during a microdischarge in nitrogen at atmospheric pressure is studied using the one-dimensional Particle-in-Cell/Monte Carlo Collisions model. It is obtained that the electron energy distribution function can be divided into three parts, namely, the non-equilibrium low-energy part, the Maxwellian function at moderate energies, and the high-energy tail. Simulation results showed that the role of the high-energy tail of electron energy distribution increases, when the distance between electrodes increases.

  3. Electrical characteristics and formation mechanism of atmospheric pressure plasma jet

    SciTech Connect (OSTI)

    Liu, Lijuan; Zhang, Yu; Tian, Weijing; Meng, Ying; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2014-06-16T23:59:59.000Z

    The behavior of atmospheric pressure plasma jet produced by a coplanar dielectric barrier discharge in helium in external electrostatic and magnetic field is investigated. Net negative charges in the plasma jet outside the tube were detected. The deflection of the plume in the external field was observed. The plasma jet is suggested to be formed by the electron beam from the temporal cathode which is accelerated by a longitudinal field induced by the surface charges on the dielectric tube or interface between the helium and ambient air. The helium flow is necessary for the jet formation in the surrounding air.

  4. Driven Motion and Instability of an Atmospheric Pressure Arc

    SciTech Connect (OSTI)

    Max Karasik

    1999-12-01T23:59:59.000Z

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  5. Atmospheric Pressure Deposition for Electrochromic Windows | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource HeatEnergy Atmospheric Pressure Deposition for

  6. Etching process of silicon dioxide with nonequilibrium atmospheric pressure plasma

    SciTech Connect (OSTI)

    Yamakawa, Koji; Hori, Masaru; Goto, Toshio; Den, Shoji; Katagiri, Toshirou; Kano, Hiroyuki [Department of Quantum Engineering, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8603 (Japan); Department of Electrical Engineering and Computer Science, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8603 (Japan); Department of Quantum Engineering, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8603 (Japan); Department of Engineering, Katagiri Engineering Co., Ltd., Minamikase Saiwai-ku, Kawasaki 661-8661 (Japan); NU-EcoEngineering Co., Ltd., Ooaza, Kurozasa Aza, Umazutsumi, Miyoshi-cho, Nishikamo-gun, Aichi 470-0201 (Japan)

    2005-07-01T23:59:59.000Z

    An ultrahigh etch rate (14 {mu}m/min) of SiO{sub 2} and a high selectivity of SiO{sub 2}/Si over 200 were achieved using a microwave-excited nonequilibrium atmospheric pressure plasma source employing He, NF{sub 3}, and H{sub 2}O gases, which have been developed for application to microelectromechanical systems and other bionanotechnology fields. In order to clarify the etching mechanism, two diagnostic methods have been performed: (1) imaging of plasma emission with an intensified charge-coupled device camera, and (2) absorption measurements using Fourier transform infrared spectroscopy. The etching characteristics are discussed in relation to the spatial distributions of the species involved. The etch rate depended considerably on the distance between the plasma and the substrate. Some radicals generated from the feed gases reached the substrate directly, while other radicals recombined into different species, which reached the substrate. An abundance of HF molecules were produced through a reaction between radicals generated by the atmospheric pressure discharge of NF{sub 3} and H{sub 2}O. From these measurements, it has been found that the HF molecules generated played a role in producing the high etch rate of SiO{sub 2} and high etch selectivity of SiO{sub 2}/Si.

  7. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    SciTech Connect (OSTI)

    Robert F. Hicks; Hans W. Herrmann

    2003-12-15T23:59:59.000Z

    The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas.

  8. Atmospheric-pressure plasma decontamination/sterilization chamber

    DOE Patents [OSTI]

    Herrmann, Hans W. (Los Alamos, NM); Selwyn, Gary S. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  9. atmospheric pressure surface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K. 27 Ch4. Atmosphere and Surface Energy Balances Geosciences Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps...

  10. Optical emission spectroscopy of atmospheric pressure microwave plasmas

    SciTech Connect (OSTI)

    Jia Haijun; Fujiwara, Hiroyuki; Kondo, Michio [Research Center for Photovoltaics (RCPVs), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Kuraseko, Hiroshi [Furukawa Electric Co., Ltd., Production Technology Development Center, 6 Yawata-Kaigandori, Chiba 290-8555 (Japan)

    2008-09-01T23:59:59.000Z

    The optical emission behaviors of Ar, He, and Ar+He plasmas generated in air using an atmospheric pressure microwave plasma source have been studied employing optical emission spectroscopy (OES). Emissions from various source gas species and air were observed. The variations in the intensities and intensity ratios of specific emissions as functions of the microwave power and gas flow rate were analyzed to investigate the relationship between the emission behavior and the plasma properties. We find that dependence of the emission behavior on the input microwave power is mainly determined by variations in electron density and electron temperature in the plasmas. On the other hand, under different gas flow rate conditions, changes in the density of the source gas atoms also significantly affect the emissions. Interestingly, when plasma is generated using an Ar+He mixture, emissions from excited He atoms disappear while a strong H{sub {alpha}} signal appears. The physics behind these behaviors is discussed in detail.

  11. Controlled Microdroplet Transport in an Atmospheric Pressure Microplasma

    E-Print Network [OSTI]

    Maguire, P D; Kelsey, C P; Bingham, A; Montgomery, E P; Bennet, E D; Potts, H E; Rutherford, D; McDowell, D A; Diver, D A; Mariotti, D

    2015-01-01T23:59:59.000Z

    We report the controlled injection of near-isolated micron-sized liquid droplets into a low temperature He-Ne steady-state rf plasma at atmospheric pressure. The H2O droplet stream is constrained within a 2 mm diameter quartz tube. Imaging at the tube exit indicates a log-normal droplet size distribution with an initial count mean diameter of 15 micrometers falling to 13 micrometers with plasma exposure. The radial velocity profile is approximately parabolic indicating near laminar flow conditions with the majority of droplets travelling at >75% of the local gas speed and having a plasma transit time of < 100 microseconds. The maximum gas temperature, determined from nitrogen spectral lines, was below 400 K and the observed droplet size reduction implies additional factors beyond standard evaporation, including charge and surface chemistry effects. The successful demonstration of controlled microdroplet streams opens up possibilities for gas-phase microreactors and remote delivery of active species for pla...

  12. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    SciTech Connect (OSTI)

    Liu, Fu-cheng [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)] [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Yan, Wen; Wang, De-zhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-12-15T23:59:59.000Z

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transform spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.

  13. The influence of atmospheric pressure on landfill methane emissions

    SciTech Connect (OSTI)

    Czepiel, P.M.; Shorter, J.H.; Mosher, B.; Allwine, E.; McManus, J.B.; Harriss, R.C.; Kolb, C.E.; Lamb, B.K

    2003-07-01T23:59:59.000Z

    Landfills are the largest source of anthropogenic methane (CH{sub 4}) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH{sub 4} emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH{sub 4} emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m{sup 3} CH{sub 4} min{sup -1}. A simple regression model of our results was used to calculate an annual emission rate of 8.4x10{sup 6} m{sup 3} CH{sub 4} year{sup -1}. These data, along with CH{sub 4} oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH{sub 4} generation at this landfill. A reported gas collection rate of 7.1x10{sup 6} m{sup 3} CH{sub 4} year{sup -1} and an estimated annual rate of CH{sub 4} oxidation by cover soils of 1.2x10{sup 6} m{sup 3} CH{sub 4} year{sup -1} resulted in a calculated annual CH{sub 4} generation rate of 16.7x10{sup 6} m{sup 3} CH{sub 4} year{sup -1}. These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.

  14. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, In vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

    2011-11-29T23:59:59.000Z

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation (LA) with electrospray ionization (ESI).

  15. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2014-08-19T23:59:59.000Z

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  16. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16T23:59:59.000Z

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  17. atmospheric pressure radio-frequency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric conditions. Our module is capable of measuring temperature, pressure, wind speed, and particle concentration. The module will take measurements every minute and...

  18. atmospheric pressure matrix-assisted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  19. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures 

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  20. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  1. Influence of dissociative recombination on the LTE of argon high-frequency plasmas at atmospheric pressure

    E-Print Network [OSTI]

    Boyer, Edmond

    at atmospheric pressure A. Sáinz1 , J. Margot2 , M. C. García1 , M. D. Calzada1 1 Grupo de Espectroscopía de influencing its analytical performances are the electron density (ne) and temperature (Te), as well as the gas+ ) are also expected to play an important role in the discharge kinetics. At atmospheric pressure

  2. New nonlinear mechanisms of midlatitude atmospheric low-frequency variability

    E-Print Network [OSTI]

    and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands Abstract

  3. Energy-Saving Design for Pressure Difference Control in Variable Flow Air Conditioning Systems

    E-Print Network [OSTI]

    Chen, Y.; Zhang, Z.

    2006-01-01T23:59:59.000Z

    This paper analyzes energy-saving design for pressure-difference control in a variable flow air conditioning system, including the application of a pressure-difference control valve and the installation position of a pressure-difference transducer...

  4. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOE Patents [OSTI]

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11T23:59:59.000Z

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  5. Thermodynamic analysis and experimental study of the effect of atmospheric pressure on the ice point

    SciTech Connect (OSTI)

    Harvey, A. H. [Thermophysical Properties Division National Institute of Standards and Technology, Boulder, Colorado (United States)] [Thermophysical Properties Division National Institute of Standards and Technology, Boulder, Colorado (United States); McLinden, M. O. [Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, Colorado (United States)] [Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, Colorado (United States); Tew, W. L. [Sensor Science Division National Institute of Standards and Technology, Gaithersburg, Maryland (United States)] [Sensor Science Division National Institute of Standards and Technology, Gaithersburg, Maryland (United States)

    2013-09-11T23:59:59.000Z

    We present a detailed thermodynamic analysis of the temperature of the ice point as a function of atmospheric pressure. This analysis makes use of accurate international standards for the properties of water and ice, and of available high-accuracy data for the Henry's constants of atmospheric gases in liquid water. The result is an ice point of 273.150 019(5) K at standard atmospheric pressure, with higher ice-point temperatures (varying nearly linearly with pressure) at lower pressures. The effect of varying ambient CO{sub 2} concentration is analyzed and found to be significant in comparison to other uncertainties in the model. The thermodynamic analysis is compared with experimental measurements of the temperature difference between the ice point and the triple point of water performed at elevations ranging from 145 m to 4302 m, with atmospheric pressures from 101 kPa to 60 kPa.

  6. Ocean color and atmospheric dimethyl sulfide: On their mesoscale variability

    E-Print Network [OSTI]

    Matrai, Patricia A; Balch, William M; Cooper, David J; Saltzman, Eric S

    1993-01-01T23:59:59.000Z

    periods of' time, covering mesoscale Campbell, J. W. and W.Dimethyl Sulfide' On Their Mesoscale Variability PATRICIA A.Miami, Miami, Florida The mesoscale variability of dimethyl

  7. atmospheric pressure phenomena: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and structure compared well by atmospheric bores and solitons strongly depend upon the life cycle of these phenomena. 1. Introduction One Geerts, Bart 344 Flight Path Planning...

  8. atmospheric pressure study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosion At The Polar Arctic Sunrise Physics (arXiv) Summary: We attempt is to provide accumulated evidence and qualitative understanding of the associated atmospheric phenomena...

  9. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    E-Print Network [OSTI]

    Boyer, Edmond

    of large volume, low power, high chemical reactivity, and low gas temperature. At atmospheric pressure in air at atmospheric pressure David Z. Pai,a Deanna A. Lacoste, and Christophe O. Laux Laboratoire EM2C January 2010; published online 6 May 2010 In atmospheric pressure air preheated from 300 to 1000 K

  10. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing -comparisons with observations

    E-Print Network [OSTI]

    Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing] A global simulation of the ocean response to atmospheric wind and pressure forcing has been run during the barotropic response of the global ocean to atmospheric wind and pressure forcing - comparisons

  11. atmospheric pressure chemical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    small ancient craters2 Geosciences Websites Summary: by P via direct and indirect greenhouse effects2-6 . The13 size of craters embedded within ancient by atmospheric effects9...

  12. atmospheric pressure cold: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equatorial cold tongue mode attains its maximum Haak, Hein 16 FLOWS OF MASS, MOMENTUM AND ENERGY IN THE SOLAR ATMOSPHERE A SOHOORIENTED VIEW OF COLD LOOPS Physics Websites Summary:...

  13. Atmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium and ammonia

    E-Print Network [OSTI]

    of titanium in a nitrogen atmosphere forms TiN with only a slight dependence on substrate temperatureAtmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium, Massachusetts 02138 (Received 15 December 1994; accepted 28 October 1995) Near stoichiometric titanium nitride

  14. atmospheric pressure helium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical...

  15. Antarctic Circumpolar Current System and its Response to Atmospheric Variability

    E-Print Network [OSTI]

    Kim, Yong Sun 1976-

    2012-08-16T23:59:59.000Z

    in the meridional location of ACC fronts is observed in the Pacific sector in association to minor sea surface cooling trends. Therefore, unlike in the Indian sector, the regional Pacific Ocean response is significantly sensitive to dominant atmospheric forcing...

  16. Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model

    E-Print Network [OSTI]

    Stéphane Vannitsem; Jonathan Demaeyer; Lesley De Cruz; Michael Ghil

    2014-12-01T23:59:59.000Z

    We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable version by adding a dynamical equation for the passive advection of temperature in the ocean, together with an energy balance model. The bifurcation analysis and the numerical integration of the model reveal the presence of low-frequency variability (LFV) concentrated on and near a long-periodic, attracting orbit. This orbit combines atmospheric and oceanic modes, and it arises for large values of the meridional gradient of radiative input and of frictional coupling. Chaotic behavior develops around this orbit as it loses its stability; this behavior is still dominated by the LFV on decadal and multi-decadal time scales that is typical of oceanic processes. Atmospheric diagnostics also reveals the presence of predominant low- and high-pressure zones, as well as of a subtropical jet; these features recall realistic climatological properties of the oceanic atmosphere. Finally, a predictability analysis is performed. Once the decadal-scale periodic orbits develop, the coupled system's short-term instabilities --- as measured by its Lyapunov exponents --- are drastically reduced, indicating the ocean's stabilizing role on the atmospheric dynamics. On decadal time scales, the recurrence of the solution in a certain region of the invariant subspace associated with slow modes displays some extended predictability, as reflected by the oscillatory behavior of the error for the atmospheric variables at long lead times.

  17. atmospheric pressure air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and power for a given heat transfer capability and ambient temperature in an air motorcompressor to achieve a given pressure ratio. It is shown that the optimal frontier is...

  18. atmospheric pressure pulsed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P (T -aH)T (T... Shay, Francis Schofield 2012-06-07 79 Effect of Electromagnetic Pulse Transverse Inhomogeneity on the Ion Acceleration by Radiation Pressure CERN Preprints...

  19. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    SciTech Connect (OSTI)

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01T23:59:59.000Z

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  20. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    SciTech Connect (OSTI)

    Hussain, S., E-mail: shussain@uos.edu.pk, E-mail: shussainuos@yahoo.com; Qazi, H. I. A.; Badar, M. A. [Department of Physics, University of Sargodha, 40100 Sargodha (Pakistan)] [Department of Physics, University of Sargodha, 40100 Sargodha (Pakistan)

    2014-03-15T23:59:59.000Z

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the ? and ? modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in ? mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  1. Experimental study on the emission spectra of microwave plasma at atmospheric pressure

    SciTech Connect (OSTI)

    Zhang, Boya; Wang, Qiang; Zhang, Guixin, E-mail: guixin@mail.tsinghua.edu.cn [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Shanshan [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Shenzhen Power Supply Co. Ltd., Shenzhen 518000, Guangdong (China)

    2014-01-28T23:59:59.000Z

    An experimental study on microwave plasma at atmospheric pressure was conducted by employing optical emission spectroscopy. Based on a microwave plasma generation device developed for nanoparticle synthesis, we studied the influence of input microwave power and gas flow rate on the optical emission behaviors and electron temperature of plasma using Ar, He, and N{sub 2} as working gas, respectively. The physics behind these behaviors was discussed. The results are useful in characterizing microwave plasma at atmospheric pressure and can be used for improving nanoparticle synthesis system for commercial use in the future.

  2. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    SciTech Connect (OSTI)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)] [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2014-01-15T23:59:59.000Z

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  3. Striated microdischarges in an asymmetric barrier discharge in argon at atmospheric pressure

    SciTech Connect (OSTI)

    Hoder, Tomas; Loffhagen, Detlef; Wilke, Christian; Grosch, Helge; Schaefer, Jan; Weltmann, Klaus-Dieter; Brandenburg, Ronny [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany)

    2011-10-15T23:59:59.000Z

    The investigation of striated microdischarges in barrier discharges in argon at atmospheric pressure is reported. Microdischarges were investigated by means of electrical measurements correlated with intensified CCD camera imaging. The scaling law theory known from low-pressure glow discharge diagnostics was applied in order to describe and explain this phenomenon. The investigated microdischarge is characterized as a transient atmospheric-pressure glow discharge with a stratified column. It can be described by similarity parameters i/r{approx_equal}0.13 A/cm, pr{approx_equal}5 Torr cm, and 3<{lambda}/r<5 with the current i, pressure p, interval of subsequent striations {lambda}, and radius of the plasma channel r. An attempt to describe the mechanism of creation of a striated structure is given, based on an established model of the spatial electron relaxation.

  4. On the relationship between Synoptic Wintertime Atmospheric Variability and path shifts in the Gulf Stream and the Kuroshio Extension

    E-Print Network [OSTI]

    Joyce, Terrence M.

    to a few years due to propagation of wind-forced variability within the ocean. Yet these shiftsOn the relationship between Synoptic Wintertime Atmospheric Variability and path shifts in the Gulf of wintertime atmospheric variability in the synoptic band (2:8 days) using a relatively new data set for air

  5. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01T23:59:59.000Z

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.

  6. Role of trace impurities in large-volume noble gas atmospheric-pressure glow discharges

    E-Print Network [OSTI]

    Raja, Laxminarayan L.

    Role of trace impurities in large-volume noble gas atmospheric-pressure glow discharges Xiaohui. Large-volume APG discharges find numerous applications in processing of material surfaces,1 ozone-purity helium is presented, and the role of trace impurities in such noble gas plasmas is established. Trace

  7. Atmospheric pressure intercalation of oxygen via wrinkles between graphene and a metal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Atmospheric pressure intercalation of oxygen via wrinkles between graphene and a metal Amina with graphene, an atomically thin sheet of carbon atoms in a honeycomb lattice. These prospects are urging, has reached such maturity that graphene now appears as an alternative to indium tin oxide

  8. Radio frequency induced ionized collisional flow model for application at atmospheric pressures

    E-Print Network [OSTI]

    Roy, Subrata

    Radio frequency induced ionized collisional flow model for application at atmospheric pressures and radio frequency (rf) induced plasma-sheath dynamics, using multifluid equations. For the former, argon inherent in nonequilibrium discharges such as obtained through radio frequency (rf) or microwave excitation

  9. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    SciTech Connect (OSTI)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

    2014-04-15T23:59:59.000Z

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

  10. The Effect of Pressure Difference Control on Hydraulic Stability in a Variable Flow Air Conditioning System

    E-Print Network [OSTI]

    Zhang, Z.; Fu, Y.; Chen, Y.

    2006-01-01T23:59:59.000Z

    This paper analyzes the effects of different pressure difference control methods on hydraulic stability in a variable flow air conditioning system when it is applied to different air conditioning water systems. According to control method and water...

  11. TURBULENT PRESSURE IN THE ENVELOPES OF YELLOW HYPERGIANTS AND LUMINOUS BLUE VARIABLES

    E-Print Network [OSTI]

    TURBULENT PRESSURE IN THE ENVELOPES OF YELLOW HYPERGIANTS AND LUMINOUS BLUE VARIABLES Richard B turbulent pressure) affects the structure and stability of luminous post­red-supergiant stars is critically and generates energetic shocks or if convection is unable to transport all of the super-Eddington luminous flux

  12. Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions

    SciTech Connect (OSTI)

    Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

    1995-12-31T23:59:59.000Z

    When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

  13. Internal variability of the tropical Pacific ocean Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

    E-Print Network [OSTI]

    Jochum, Markus

    Internal variability of the tropical Pacific ocean M. Jochum Earth, Atmospheric and Planetary model of the tropical Pacific ocean is analyzed to quantify the interannual variability caused by internal variability of ocean dynamics. It is found that along the Pacific cold tongue internal variability

  14. Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness

    SciTech Connect (OSTI)

    Yersak, Alexander S.; Lee, Yung C. [Department of Mechanical Engineering, University of Colorado at Boulder, 1045 Regent Drive, 422 UCB, Boulder, Colorado 80309-0422 (United States); Spencer, Joseph A.; Groner, Markus D., E-mail: mgroner@aldnanosolutions.com [ALD NanoSolutions, Inc., 580 Burbank Street, Unit 100, Broomfield, Colorado 80020 (United States)

    2014-01-15T23:59:59.000Z

    Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al{sub 2}O{sub 3} films were grown on a moving polymer web substrate at 100?°C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13?nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76?ms were demonstrated with a web speed of 1?m/s and a vertical gap height of 0.5?mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD.

  15. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge

    SciTech Connect (OSTI)

    Zhang, J.; Wang, Y. H.; Wang, D. Z. [Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-08-15T23:59:59.000Z

    Understanding the routes to chaos occurring in atmospheric-pressure dielectric barrier discharge systems by changing controlling parameters is very important to predict and control the dynamical behaviors. In this paper, a route of a quasiperiodic torus to chaos via the strange nonchaotic attractor is observed in an atmospheric-pressure dielectric barrier discharge driven by triangle-wave voltage. By increasing the driving frequency, the discharge system first bifurcates to a quasiperiodic torus from a stable single periodic state, and then torus and phase-locking periodic state appear and disappear alternately. In the meantime, the torus becomes increasingly wrinkling and stretching, and gradually approaches a fractal structure with the nonpositive largest Lyapunov exponent, i.e., a strange nonchaotic attractor. After that, the discharge system enters into chaotic state. If the driving frequency is further increased, another well known route of period-doubling bifurcation to chaos is also observed.

  16. Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge

    DOE Patents [OSTI]

    Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.

    2006-04-11T23:59:59.000Z

    Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.

  17. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    SciTech Connect (OSTI)

    Babij, Micha?; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol; Gotszalk, Teodor [Wroc?aw University of Technology, Wybrze?e Wyspia?skiego 27, 50-370 Wroc?aw (Poland)] [Wroc?aw University of Technology, Wybrze?e Wyspia?skiego 27, 50-370 Wroc?aw (Poland); Silberring, Jerzy [AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)] [AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-05-15T23:59:59.000Z

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  18. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOE Patents [OSTI]

    Park, Jaeyoung; Henins, Ivars

    2005-06-21T23:59:59.000Z

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  19. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    SciTech Connect (OSTI)

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura [INAF-Trieste Astronomical Observatory, Trieste (Italy)] [INAF-Trieste Astronomical Observatory, Trieste (Italy); Provenzale, Antonello [Institute of Atmospheric Sciences and Climate-CNR, Torino (Italy)] [Institute of Atmospheric Sciences and Climate-CNR, Torino (Italy); Ferri, Gaia; Ragazzini, Gregorio, E-mail: vladilo@oats.inaf.it [Department of Physics, University of Trieste, Trieste (Italy)] [Department of Physics, University of Trieste, Trieste (Italy)

    2013-04-10T23:59:59.000Z

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  20. Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere -- in the Metric System

    E-Print Network [OSTI]

    Eihle, W. O.; Powers, R. J.; Clark, R.A.

    TR-16 1968 Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere?in the Metric System W.O. Eihle R.J. Powers R.A. Clark...

  1. The habitable zone of Earth-like planets with different levels of atmospheric pressure

    E-Print Network [OSTI]

    Vladilo, Giovanni; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-01-01T23:59:59.000Z

    As a contribution to the study of the habitability of extrasolar planets, we implemented a 1-D Energy Balance Model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p=1/3 bar to p=3 bar. At low pressure, the habitability is...

  2. Numerical study on microwave-sustained argon discharge under atmospheric pressure

    SciTech Connect (OSTI)

    Yang, Y.; Hua, W., E-mail: huaw@scu.edu.cn; Guo, S. Y. [School of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China)] [School of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China)

    2014-04-15T23:59:59.000Z

    A numerical study on microwave sustained argon discharge under atmospheric pressure is reported in this paper. The purpose of this study is to investigate both the process and effects of the conditions of microwave-excited gas discharge under atmospheric pressure, thereby aiding improvements in the design of the discharge system, setting the appropriate working time, and controlling the operating conditions. A 3D model is presented, which includes the physical processes of electromagnetic wave propagation, electron transport, heavy species transport, gas flow, and heat transfer. The results can be obtained by means of the fluid approximation. The maxima of the electron density and gas temperature are 4.96?×?10{sup 18} m{sup ?3} and 2514.8?K, respectively, and the gas pressure remains almost unchanged for typical operating conditions with a gas flow rate of 20 l/min, microwave power of 1000 W, and initial temperature of 473?K. In addition, the conditions (microwave power, gas flow rate, and initial temperature) of discharge are varied to obtain deeper information about the electron density and gas temperature. The results of our numerical study are valid and clearly describe both the physical process and effects of the conditions of microwave-excited argon discharge.

  3. Development of the Variable Atmosphere Testing Facility for Blow-Down Analysis of the Mars Hopper Prototype

    SciTech Connect (OSTI)

    Nathan D. Jerred; Robert C. O'Brien; Steven D. Howe; James E. O'Brien

    2013-02-01T23:59:59.000Z

    Recent developments at the Center for Space Nuclear Research (CSNR) on a Martian exploration probe have lead to the assembly of a multi-functional variable atmosphere testing facility (VATF). The VATF has been assembled to perform transient blow-down analysis of a radioisotope thermal rocket (RTR) concept that has been proposed for the Mars Hopper; a long-lived, long-ranged mobile platform for the Martian surface. This study discusses the current state of the VATF as well as recent blow-down testing performed on a laboratory-scale prototype of the Mars Hopper. The VATF allows for the simulation of Mars ambient conditions within the pressure vessel as well as to safely perform blow-down tests through the prototype using CO2 gas; the proposed propellant for the Mars Hopper. Empirical data gathered will lead to a better understanding of CO2 behavior and will provide validation of simulation models. Additionally, the potential of the VATF to test varying propulsion system designs has been recognized. In addition to being able to simulate varying atmospheres and blow-down gases for the RTR, it can be fitted to perform high temperature hydrogen testing of fuel elements for nuclear thermal propulsion.

  4. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    SciTech Connect (OSTI)

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki; Hori, Masaru [Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakamura, Kae; Hayashi, Moemi; Kajiyama, Hiroaki; Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kano, Hiroyuki [NU Eco-Engineering Co., Ltd., 1237-87 Umazutsumi, Kurozasa-cho, Miyoshi-shi, Nishikamo-gun, Aichi 470-0201 (Japan)

    2012-03-12T23:59:59.000Z

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  5. Pulsed microwave discharge in a capillary filled with atmospheric-pressure gas

    SciTech Connect (OSTI)

    Gritsinin, S. I., E-mail: gritsinins@mail.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gushchin, P. A. [Gubkin Russian State University of Oil and Gas (Russian Federation)] [Gubkin Russian State University of Oil and Gas (Russian Federation); Davydov, A. M. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Ivanov, E. V. [Gubkin Russian State University of Oil and Gas (Russian Federation)] [Gubkin Russian State University of Oil and Gas (Russian Federation); Kossyi, I. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-08-15T23:59:59.000Z

    A pulsed microwave coaxial capillary plasma source generating a thin plasma filament along the capillary axis in an atmospheric-pressure argon flow is described. The dynamics of filament formation is studied, and the parameters of the gas and plasma in the contraction region are determined. A physical model of discharge formation and propagation is proposed. The model is based on the assumption that, under the conditions in which the electric fields is substantially below the threshold value, the discharge operates in a specific form known as a self-sustained-non-self-sustained (SNS) microwave discharge.

  6. A plasma needle for generating homogeneous discharge in atmospheric pressure air

    SciTech Connect (OSTI)

    Li Xuechen; Yuan Ning; Jia Pengying; Chen Junying [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2010-09-15T23:59:59.000Z

    Homogeneous discharge in air is often considered to be the ultimate low-temperature atmospheric pressure plasmas for industrial applications. In this paper, we present a method whereby stable homogeneous discharge in open air can be generated by a simple plasma needle. The discharge mechanism is discussed based on the spatially resolved light emission waveforms from the plasma. Optical emission spectroscopy is used to determine electron energy and rotational temperature, and results indicate that both electron energy and rotational temperature increase with increasing the applied voltage. The results are analyzed qualitatively based on the discharge mechanism.

  7. CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. Palladium and Platinum

    E-Print Network [OSTI]

    Goodman, Wayne

    CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. PalladiumVed: NoVember 3, 2008 CO oxidation on Pd(100), -(111), -(110), and Pt(110) single crystals was studied compositions. At low pressures the reaction fell into two regimes, one with a CO-dominant surface where the CO2

  8. The effect of bed temperature on oxygen partial pressures in an atmospheric fluidized bed combustor

    SciTech Connect (OSTI)

    Malik, S.R. [PCSIR, Karachi (Pakistan). Fuel Research Centre; Gibbs, B.M. [Univ. of Leeds (United Kingdom). Dept. of Fuel and Energy

    1996-12-31T23:59:59.000Z

    One of the factors which cause corrosion of in-bed material is the existence of low oxygen levels. Therefore, oxygen`s partial pressure measurements are important for corrosion studies in atmospheric fluidized bed combustor (AFBC). The effect of bed temperature on oxygen levels has been discussed in this paper. The experiments were conducted on a 0.3 meters square combustor. In-bed oxygen partial pressures were measured using zirconia oxygen probes and recorded on a computerized data logging system. Detail statistical analysis of the data has been presented. The probability density function (PDF) was the most important statistical parameter which reveals not only how long environment is exposed to oxidizing reducing conditions but also the probability whether corrosion could occur.

  9. Ultrahigh-speed etching of organic films using microwave-excited nonequilibrium atmospheric-pressure plasma

    SciTech Connect (OSTI)

    Yamakawa, Koji; Hori, Masaru; Goto, Toshio; Den, Shoji; Katagiri, Toshirou; Kano, Hiroyuki [Department of Quantum Engineering, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8603 (Japan); Depertment of Electrical Engineering and Computer Science, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8603 (Japan); Department of Quantum Engineering, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8603 (Japan); Department of Engineering, Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumu-Ku, Yokohama, Kanagawa 230-0003 (Japan); NU-EcoEngineering Co., Ltd., Ooaza Kurozasa Aza Umazutsumi Miyoshi-cho Nishikamo-gun Aichi 470-0201 (Japan)

    2005-08-15T23:59:59.000Z

    An ultrahigh etch rate (24 {mu}m/min at 155 deg. C and 0.3 mm/min at 325 deg. C) of an organic film was successfully achieved using a microwave-excited nonequilibrium atmospheric-pressure plasma source employing He and O{sub 2} gases. This has the potential to be applied to various kinds of fabrication of structures for microelectromechanical systems and bionanotechnology. A stable glow discharge was realized between the narrow gap (200 {mu}m) electrodes covered with a dielectric film in atmospheric pressure. The etching characteristics were investigated by changing the O{sub 2} flow rate and the distance of the substrate from the electrode. In order to clarify the ultrahigh etching mechanism, in situ diagnostic methods, including two-dimensional imaging of optical emissions in the plasma with an intensified charge-coupled device camera, electron-density evaluation using the Stark-broadened profile of the hydrogen Balmer beta line in optical emission spectroscopy, and two dimensional spatial distribution of ozone density measured with ultraviolet absorption spectroscopy, have been performed. It was found that O atoms were the dominant etching species for ultrahigh-speed etching of the organic film, and the effect of ozone on the etching process was negligible.

  10. Atmospheric structure and variability in areas of convective storms determined from 3-h rawinsonde data

    E-Print Network [OSTI]

    Wilson, Gregory Sims

    1975-01-01T23:59:59.000Z

    (1974) indicates RMS vector errors in wind speed for the AVE II data as follows: Level Elevation An le 700 mb 500 mb 300 Htb 40' 0. 5 m s 0. 8 m s " 1. 0ms 10' -1 2. 5ms -1 4. 5 ms 7. 8 m s 'ihese RNS errors agree closely with those.... , Texas A&M University Chairman of Advisory Committee: Dr. James R. Scoggins The structure and variability of the atmosphere in areas of radar- observed convection is established by using the unique 3-h rawinsonde and surface data from NASA's second...

  11. Effects of gravity and pressure on laminar coflow methaneair diffusion flames at pressures from 1 to 60 atmospheres

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    levels exhibited a similar power- law dependence of the maximum carbon conversion on pressure gravitational acceleration scales with pres- sure-squared, increasing pressure drastically alters the shapes

  12. Final Report DE-FG02-00ER54583: "Physics of Atmospheric Pressure Glow Discharges" and "Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas"

    SciTech Connect (OSTI)

    Uwe Kortshagen; Joachim Heberlein; Steven L. Girshick

    2009-06-01T23:59:59.000Z

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  13. Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

    E-Print Network [OSTI]

    Coclite, A; De Palma, P; Pascazio, G

    2015-01-01T23:59:59.000Z

    The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined ...

  14. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    SciTech Connect (OSTI)

    Park, Sanghoo; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Youn Moon, Se [High-enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Park, Jaeyoung [5771 La Jolla Corona Drive, La Jolla, CA 92037 (United States)

    2014-02-24T23:59:59.000Z

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 450–1000?nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popovi?. In 280–450?nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  15. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    DOE Patents [OSTI]

    Carr; Jeffrey W. (Livermore, CA)

    2009-03-31T23:59:59.000Z

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  16. Spatiotemporal correlation between microdischarges in concentric ring pattern in dielectric barrier discharge at atmospheric pressure

    SciTech Connect (OSTI)

    Dong Lifang; Liu Liang; Wang Yongjie; Yue Han; Li Xinchun [College of Physics Science and Technology, Hebei University, Baoding 071002 (China) and Hebei Key Laboratory of Optic-electronic Information Materials, Baoding 071002 (China)

    2012-06-15T23:59:59.000Z

    The spatiotemporal correlation between microdischarges of the concentric ring pattern in a dielectric barrier discharge in argon at atmospheric pressure is studied by the wavelet-correlation technique for the first time. The concentric ring patterns lasting more than 5 min have been obtained under circular boundaries with different sizes by suddenly raising the applied voltage. The average correlation coefficient between microdischarge clusters increases with their discharge region increasing. The wavelet-correlation shows a higher correlation degree between the microdischarge clusters at the edge where (d|U{sub appl}|/dt)<0 than at the edge where (d|U{sub appl}|/dt)>0 in per half-cycle of the applied voltage U{sub appl}.

  17. Effect of dielectric wall temperature on plasma plume in an argon atmospheric pressure discharge

    SciTech Connect (OSTI)

    Song, Jian; Huo, Yuxin; Wang, Youyin; Yu, Daren, E-mail: yudaren@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jingfeng; Wei, Liqiu [Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-15T23:59:59.000Z

    In this letter, the effect of the dielectric wall temperature on the length and volume of an atmospheric pressure plasma jet (APPJ) is investigated using a single-electrode configuration driven with an AC power supply. To distinguish the APPJ status from the argon flow rate, the three modes, laminar, transition, and turbulent, are separated. When the dielectric wall is heated, the APPJ length and volume are enhanced. Also, the transition regions remarkably expand over a large range of flow rates. The results indicate that different factors contribute to the expansion of the transition region. The increase in the radial and axial velocities is the main cause of the expansion of the transition region to the low-velocity region. The expansion to the high-velocity region is dominantly induced by a change in the viscosity.

  18. Surface Modification of Material by Irradiation of Low Power Atmospheric Pressure Plasma Jet

    SciTech Connect (OSTI)

    Akamatsu, Hiroshi; Ichikawa, Kazunori [Kobe City College of Technology, 8-3 Gakuenhigashimachi, Kobe, Hyogo, 651-2194 (Japan); Azuma, Kingo [University of Hyogo, 2167 Shosya, Himeji, Hyogo, 671-2280 (Japan); Onoi, Masahiro [Metal Technology Co., Ltd., 713 Shake Aza Narihira, Ebina, Kanagawa, 243-0424 (Japan)

    2010-10-13T23:59:59.000Z

    Application of a low power atmospheric pressure plasma jet for surface modifications of acrylic, aluminum, and highly crystalline graphite has been carried out experimentally. The plasma jet was generated with batteries-driven high voltage modulator. The power consumed for the plasma generation was estimated to be 0.12 W. The plasma had hydroxyl radicals, which is known as a strong oxider from an observation of optical emission spectrum. After the irradiation of the plasma, the surfaces of acrylic and aluminum became to be hydrophilic from the compartment of contact angle of water on these surfaces. The surface of highly crystalline graphite irradiated by the plasma jet had oxygen-rich functional groups such as C-O, C = O, and O = C-O.

  19. High-pressure arcs as vacuum-atmosphere interface and plasma lens for nonvacuum electron beam welding machines, electron beam melting, and nonvacuum ion material modification

    SciTech Connect (OSTI)

    Hershcovitch, A. [AGS Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)] [AGS Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    1995-11-01T23:59:59.000Z

    Atmospheric pressure plasmas can be used to provide a vacuum-atmosphere interface as an alternative to differential pumping. Vacuum-atmosphere interface utilizing a cascade arc discharge was successfully demonstrated and a 175 keV electron beam was successfully propagated from vacuum through such a plasma interface and out into atmospheric pressure. Included in the article are a theoretical framework, experimental results, and possible applications for this novel interface. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Surface pretreatment of plastics with an atmospheric pressure plasma jet - Influence of generator power and kinematics

    SciTech Connect (OSTI)

    Moritzer, E., E-mail: elmar.moritzer@ktp.upb.de; Leister, C., E-mail: elmar.moritzer@ktp.upb.de [Kunststofftechnik Paderborn (KTP), University of Paderborn, Warburger Strasse 100, D-33098 Paderborn (Germany)

    2014-05-15T23:59:59.000Z

    The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.

  1. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    SciTech Connect (OSTI)

    Li, D.; Liu, D. X., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi (China); Nie, Q. Y.; Li, H. P. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Chen, H. L. [Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Kong, M. G., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-05-19T23:59:59.000Z

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3?×?10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  2. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect (OSTI)

    Chiper, Alina Silvia; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi (Romania)] [Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi (Romania)

    2013-06-07T23:59:59.000Z

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  3. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    SciTech Connect (OSTI)

    Robinson, A.L. [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1996-05-01T23:59:59.000Z

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  4. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect (OSTI)

    Matsui, Makoto; Yamagiwa, Yoshiki [Department of Mechanical Engineering, Shizuoka University, 3-5-4 Johoku, Naka, Hamamatsu, 432-8561 Shizuoka (Japan); Tanaka, Kensaku; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo (Japan); Nomura, Satoshi; Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583 Chiba (Japan)

    2012-08-01T23:59:59.000Z

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  5. Diamond and Related Materials, 2 (1993) 661 666 661 Degenerate four-wave mixing diagnostics of atmospheric pressure

    E-Print Network [OSTI]

    Zare, Richard N.

    -3]. An r.f. inductively coupled plasma offers the benefits of an "electrodeless" discharge for minimum film application of this new spectroscopic technique to an atmospheric pressure plasma synthesis reactor. DFWM measurements of the CH radicals in the boundary layer of an r.f. inductively coupled plasma deposition reactor

  6. CO oxidation over Ru(0001) at near-atmospheric pressures: From chemisorbed oxygen to RuO2

    E-Print Network [OSTI]

    Goodman, Wayne

    modulation Infrared reflection absorption spectroscopy Reaction kinetics a b s t r a c t RuO2(110) was formed polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electronCO oxidation over Ru(0001) at near-atmospheric pressures: From chemisorbed oxygen to RuO2 Feng Gao

  7. Optimized Fan Control In Variable Air Volume HVAC Systems Using Static Pressure Resets: Strategy Selection and Savings Analysis

    E-Print Network [OSTI]

    Kimla, John

    2010-07-14T23:59:59.000Z

    The potential of static pressure reset (SPR) control to save fan energy in variable air volume HVAC systems has been well documented. Current research has focused on the creation of reset strategies depending on specific system features...

  8. Constraints on early Mars atmospheric pressure1 inferred from small ancient craters2

    E-Print Network [OSTI]

    Kite, Edwin

    , airblasts, meteors, and meteorites. The 201327 Chelyabinsk airburst exemplifies atmospheric destruction

  9. CO Oxidation over AuPd(100) from Ultrahigh Vacuum to Near-Atmospheric Pressures: CO Adsorption-Induced Surface Segregation and Reaction Kinetics

    E-Print Network [OSTI]

    Goodman, Wayne

    ; ReVised Manuscript ReceiVed: July 7, 2009 Polarization-modulation infrared reflection absorptionCO Oxidation over AuPd(100) from Ultrahigh Vacuum to Near-Atmospheric Pressures: CO Adsorption vacuum (UHV) and near-atmospheric pressures.28 AuPd(100) is a good choice for the study since

  10. Soot formation in laminar premixed methane/oxygen flames at atmospheric pressure

    SciTech Connect (OSTI)

    Xu, F.; Lin, K.C.; Faeth, G.M. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Aerospace Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Aerospace Engineering

    1998-10-01T23:59:59.000Z

    Flame structure and soot formation were studied within soot-containing laminar premixed methane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  11. Development of a dielectric barrier discharge enhanced plasma jet in atmospheric pressure air

    SciTech Connect (OSTI)

    Li Xuechen; Chang Yuanyuan; Jia Pengying [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Xu Longfei; Fang Tongzhen; Wang Long [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-09-15T23:59:59.000Z

    A plasma jet equipped with dielectric barrier discharge (DBD) is developed to generate diffuse air plasma with fairly large gap and cross sectional area. The diffuse air plasma has two discharge modes under different gap widths from the nozzle to the ground plate electrode. For large gap width, a diffuse plume fills the whole space between the nozzle and the plate electrode after coaxial DBD is ignited when the applied voltage reaches a certain value. Rather than diffuse plasma plume, a bright plasma column bridges the nozzle and the plate electrode with further increasing the applied voltage under small gap width. By optical and electrical measurement, results show that the macroscopically diffuse discharge in air is obtained by the superimposition of radially distributed streamers that appear at different cycles of the applied voltage, and the bright plasma column belongs to atmospheric pressure glow discharge. The molecular vibrational temperature and the gas temperature are given as functions of the peak value of the applied voltage.

  12. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    SciTech Connect (OSTI)

    Subedi, D. P. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel (Nepal); Tyata, R. B. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Electrical, Khwopa College of Engineering, Libali-2, Bhaktapur (Nepal); Shrestha, R. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Physics, Basu College, Kalighat, Byasi, Bhaktapur (Nepal); Wong, C. S. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05T23:59:59.000Z

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup ?3} while the electron temperature is estimated to be ? 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  13. ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 26, NO. 4, 2009, 701706 Variability of Northeast China River Break-up Date

    E-Print Network [OSTI]

    River Break-up Date WANG Huijun1,2 ( ¡) and SUN Jianqi1,2 (ê ) 1 Institute of Atmospheric Physics investigates the variability of the break-up dates of the rivers in Northeast China from their icebound states for the period of 1957­2005 and explores some potential explanatory mechanisms. Results show that the break-up

  14. Harmonic propagation of variability in surface energy balance within a coupled soil-vegetation-atmosphere system

    E-Print Network [OSTI]

    Gentine, P.

    [1] The response of a soil-vegetation-atmosphere continuum model to incoming radiation forcing is investigated in order to gain insights into the coupling of soil and atmospheric boundary layer (ABL) states and fluxes. The ...

  15. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect (OSTI)

    Laity, George [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Applied Science and Technology Maturation Department, Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Fierro, Andrew; Dickens, James; Neuber, Andreas [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Frank, Klaus [Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich–Alexander University at Erlangen-Nürnberg, 91058 Erlangen (Germany)

    2014-03-28T23:59:59.000Z

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0?mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5?×?10{sup 17}?cm{sup ?3} and peak N atom densities of 9.9?×?10{sup 17}?cm{sup ?3} are observed within the first ?1.0?mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0?nm band of the vacuum ultraviolet spectrum.

  16. Soot formation in laminar premixed ethylene/air flames at atmospheric pressure

    SciTech Connect (OSTI)

    Xu, F.; Sunderland, P.B.; Faeth, G.M. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Aerospace Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Aerospace Engineering

    1997-03-01T23:59:59.000Z

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78--0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electric microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling, and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suggest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  17. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    SciTech Connect (OSTI)

    Begum, Asma [Independent University, Bangladesh, School of Engineering and Computer Science, Bashundhara, Dhaka (Bangladesh); Laroussi, Mounir [Old Dominion University, Department of Electrical and Computer Engineering, Norfolk, Virginia (United States); Pervez, Mohammad Rasel [Master Mind College, Department of Physics, Dhanmondi, Dhaka (Bangladesh)

    2013-06-15T23:59:59.000Z

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10{sup 11} cm{sup -3} and it reaches to the maximum of 10{sup 12} cm{sup -3}.

  18. An atmospheric pressure, fluidized bed combustion system burning high-chlorine coals in the convection section

    SciTech Connect (OSTI)

    Liu, K.; Xie, W.; Pan, W.P.; Riley, J.T.

    2000-03-01T23:59:59.000Z

    The possibility of fireside corrosion in power plant boiler components is always a major concern when the fuels include high-sulfur and high-chlorine coals (or refuse waste). Sulfur and chloride products may play important roles especially in fireside corrosion in atmospheric pressure, fluidized bed combustion (AFBC) systems, caused by the capture of sulfur and chlorine by limestone used as bed material in the combustor, and the resulting deposition of sulfur- or chlorine-rich compounds onto metallic surfaces. Results were reported from tests in a 0.1-MW{sub th} AFBC system where 1,000-h test burns were conducted using two coals with widely differing chlorine levels, and limestone was used as the sulfur sorbent. Coupons of three stainless steels (Types 304 [UNS S30400], 309 [UNS S30900], 347 [UNS S34700]) were exposed to the hot flue gases in the freeboard ({approximately} 10- cm below the location of the convection pass tubes). Deposits formed on the alloys contained high sulfur concentrations in their outer parts, as well as sodium, potassium, magnesium, and calcium. Sulfur appeared to be associated with calcium and magnesium, suggesting that the fly ash may have reacted further after being deposited on the surface of the coupon. Areas of high sulfur concentration also correlated well with areas of high chromium content of the inner layers of the scales. cross sections of samples indicated that sulfur had penetrated into the alloy and reacted to form sulfide corrosion products. There was no direct evidence to show that alkali chlorides were involved in the corrosion process. No chloride was identified in the alloy samples. There was slight oxide spallation observed on all three alloys, with the degree of spallation in the following order: Type 304 > Type 347 > Type 309.

  19. Conceptual design of a pressure tube light water reactor with variable moderator control

    SciTech Connect (OSTI)

    Rachamin, R.; Fridman, E. [Reactor Safety Div., Inst. of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden (Germany); Galperin, A. [Dept. of Nuclear Engineering, Ben-Gurion Univ. of the Negev, POB 653, Beer Sheva 84105 (Israel)

    2012-07-01T23:59:59.000Z

    This paper presents the development of innovative pressure tube light water reactor with variable moderator control. The core layout is derived from a CANDU line of reactors in general, and advanced ACR-1000 design in particular. It should be stressed however, that while some of the ACR-1000 mechanical design features are adopted, the core design basics of the reactor proposed here are completely different. First, the inter fuel channels spacing, surrounded by the calandria tank, contains a low pressure gas instead of heavy water moderator. Second, the fuel channel design features an additional/external tube (designated as moderator tube) connected to a separate moderator management system. The moderator management system is design to vary the moderator tube content from 'dry' (gas) to 'flooded' (light water filled). The dynamic variation of the moderator is a unique and very important feature of the proposed design. The moderator variation allows an implementation of the 'breed and burn' mode of operation. The 'breed and burn' mode of operation is implemented by keeping the moderator tube empty ('dry' filled with gas) during the breed part of the fuel depletion and subsequently introducing the moderator by 'flooding' the moderator tube for the 'burn' part. This paper assesses the conceptual feasibility of the proposed concept from a neutronics point of view. (authors)

  20. System for detecting operating errors in a variable valve timing engine using pressure sensors

    DOE Patents [OSTI]

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02T23:59:59.000Z

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  1. Decadal Variability in the Formation of the North Pacific Subtropical Mode Water: Oceanic versus Atmospheric Control

    E-Print Network [OSTI]

    Qiu, Bo

    , during which time high regional eddy variability infuses high-PV KE water into the recirculation gyre

  2. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer

    SciTech Connect (OSTI)

    Albrecht, Sascha, E-mail: s.albrecht@fz-juelich.de; Stroh, Fred, E-mail: f.stroh@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Stratosphere (IEK-7), 52428 Jülich (Germany)] [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Stratosphere (IEK-7), 52428 Jülich (Germany); Klopotowski, Sebastian, E-mail: s.klopotowski@uni-wuppertal.de; Derpmann, Valerie, E-mail: v.derpmann@uni-wuppertal.de; Klee, Sonja, E-mail: s.klee@uni-wuppertal.de; Brockmann, Klaus J., E-mail: brockma@uni-wuppertal.de; Benter, Thorsten, E-mail: tbenter@uni-wuppertal.de [Physical and Theoretical Chemistry, Institute for Pure and Applied Mass Spectrometry, University of Wuppertal, 42097 Wuppertal (Germany)] [Physical and Theoretical Chemistry, Institute for Pure and Applied Mass Spectrometry, University of Wuppertal, 42097 Wuppertal (Germany)

    2014-01-15T23:59:59.000Z

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID.

  3. Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation pathways (RCPs 4.5 and 8.5) using the Community Earth System Model­Biogeochemistry (CESM1- BGC). CO2

  4. atmospheric-pressure chemical vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    studied intensively and has overcome some of the constraints of traditional high-pressure high-temperature (HPHT) diamond synthesis methods (more) Chen, Yu-Chun 2009-01-01 12...

  5. Line formation in AGB atmospheres including velocity effects. Molecular line profile variations of long period variables

    E-Print Network [OSTI]

    Nowotny, W; Aringer, B

    2010-01-01T23:59:59.000Z

    The atmospheres of evolved red giants are considerably influenced by pulsations of the stellar interiors and developing stellar winds. The resulting complex velocity fields severely affect molecular line profiles observable in NIR spectra. With the help of model calculations the complex line formation process in AGB atmospheres was explored with the focus on velocity effects. Furthermore, we aimed for atmospheric models which are able to quantitatively reproduce line profile variations found in observed spectra of pulsating late-type giants. Models describing pulsation-enhanced dust-driven winds were used to compute synthetic spectra under the assumptions of chemical equilibrium and LTE and by solving the radiative transfer in spherical geometry including velocity effects. Radial velocities derived from Doppler-shifted synthetic line profiles provide information on the gas velocities in the line-forming region of the spectral features. On the basis of dynamic models we investigated in detail the finding that ...

  6. Low-Frequency Variability in the Midlatitude Baroclinic Atmosphere Induced by an Oceanic Thermal Front

    E-Print Network [OSTI]

    Ghil, Michael

    oscillatory modes dominate. As the two layers become nearly equal, antisymmetric oscillatory modes become of the atmospheric marine boundary layer (AMBL) to oceanic fronts has been studied in observations, as well's dynamics depends on the layer-depth ratio. When the model is nearly equivalent-barotropic, symmetric

  7. How does the atmospheric variability drive the aerosol residence time in the Arctic region?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for enhanced cloud evaporation and hence a decrease in the fraction of solar radiation reflected by the cloud cover. This strong climatic retroaction is referred to as the `semi-direct effect' of BC aerosols. BC of the atmospheric aerosol concentration is paramount to assess its radiative effects in the Arctic, a region

  8. Analytical and experimental investigations of gas turbine model combustor acoustics operated at atmospheric pressure

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analytical and experimental investigations of gas turbine model combustor acoustics operated the eigenmodes of the combustor results from the resonant coupling between pressure disturbances in the flame distribution within the combustor, except when these frequencies match. When the frequencies are close to each

  9. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOE Patents [OSTI]

    Efthimion, Philip C. (Bedminister, NJ); Helfritch, Dennis J. (Flemington, NJ)

    1989-11-28T23:59:59.000Z

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  10. Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum

    SciTech Connect (OSTI)

    Ermolov, A.; Mak, K. F.; Tani, F.; Hölzer, P.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)] [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Russell, P. St. J. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany) [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)

    2013-12-23T23:59:59.000Z

    A technique for optically accessing ultra-high vacuum environments, via a photonic-crystal fiber with a long small hollow core, is described. The small core and the long bore enable a pressure ratio of over 10{sup 8} to be maintained between two environments, while permitting efficient and unimpeded delivery of light, including ultrashort optical pulses. This delivery can be either passive or can encompass nonlinear optical processes such as optical pulse compression, deep UV generation, supercontinuum generation, or other useful phenomena.

  11. CO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures: A combined in situ PM-IRAS and reaction kinetics study

    E-Print Network [OSTI]

    Goodman, Wayne

    CO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures Accepted for publication 14 October 2008 Available online 5 November 2008 Keywords: Pt-group metals CO a c t The CO oxidation reaction on Pt-group metals (Pt, Rh, and Pd) has been investigated at low (610À

  12. A dominant role of oxygen additive on cold atmospheric-pressure He + O{sub 2} plasmas

    SciTech Connect (OSTI)

    Yang, Aijun; Liu, Dingxin, E-mail: liudingxin@gmail.com, E-mail: xhw@mail.xjtu.edu.cn; Rong, Mingzhe; Wang, Xiaohua, E-mail: liudingxin@gmail.com, E-mail: xhw@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-08-15T23:59:59.000Z

    We present in this paper how oxygen additive impacts on the cold atmospheric-pressure helium plasmas by means of a one-dimensional fluid model. For the oxygen concentration [O{sub 2}]?>??0.1%, the influence of oxygen on the electron characteristics and the power dissipation becomes important, e.g., the electron density, the electron temperature in sheath, the electron-coupling power, and the sheath width decreasing by 1.6 to 16 folds with a two-log increase in [O{sub 2}] from 0.1% to 10%. Also the discharge mode evolves from the ? mode to the ? mode. The reactive oxygen species are found to peak in the narrow range of [O{sub 2}]?=?0.4%–0.9% in the plasmas, similar to their power-coupling values. This applies to their wall fluxes except for those of O* and O{sub 2}{sup ?}. These two species have very short lifetimes, thus only when generated in boundary layers within several micrometers next to the electrode can contribute to the fluxes. The dominant reactive oxygen species and the corresponding main reactions are schematically presented, and their relations are quantified for selected applications.

  13. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage

    SciTech Connect (OSTI)

    Li Xuechen; Niu Dongying; Yin Zengqian [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Fang Tongzhen; Wang Long [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-08-15T23:59:59.000Z

    The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ion appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.

  14. THE STRUCTURE SENSITIVITY OF n-HEPTANE DEHYDROCYCLIZATION AND HYDROGENOLYSIS CATALYZED BY PLATINUM SINGLE CRYSTALS AT ATMOSPHERIC PRESSURE

    SciTech Connect (OSTI)

    Gillespie, W. D.; Herz, R. K.; Petersen, E. E.; Somorjai, G. A.

    1980-09-01T23:59:59.000Z

    The dehydrocyclization and hydrogenolysis of n~heptane catalyzed by platinum single crystal surfaces have been investigated at temperatures from 533 to 603 K in the range of one atmosphere total pressure, The flat (111), stepped (557), and kinked (10,8,7) and (25,10,7) surfaces used tn this study were characterized in ultrahigh vacuum by low energy electron diffraction and Auger electron spectroscopy before and after reaction experiments. The rate of dehydrocyclization to toluene on the four surfaces increased in the order (111) (25,10,7) (557) (10,8,7), Hydrogenolysis, however, increased in the order (557) (10,8,7) (111) (25,10,7), As a result, the selectivity of toluene production versus hydrogenolysis increased by an order of magnitude in the order (25,10,7) (111) (10,8,7) (557). The sum of the rates of hydrogenolysis and toluene production remains relatively constant. The effect of preoxidation of the single crystal catalysts was to increase the rate of hydrogenolysis and decrease the rate of dehydrocyclization, Iri general, the reaction rates decreased with increasing reaction time. This decrease was shown to be the result of the depositon of irreversibly adsorbed carbonaceous species.

  15. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect (OSTI)

    Chen, Zhaoquan, E-mail: zqchen@aust.edu.cn [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Yin, Zhixiang, E-mail: zxyin66@163.com; Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Xia, Guangqing; Liu, Minghai [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Kudryavtsev, A. A. [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation)

    2014-10-21T23:59:59.000Z

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  16. Influence of Penning effect on the plasma features in a non-equilibrium atmospheric pressure plasma jet

    SciTech Connect (OSTI)

    Chang, Zhengshi; Zhang, Guanjun [School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Jiang, Nan; Cao, Zexian, E-mail: zxcao@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-14T23:59:59.000Z

    Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10?cm wide active electrode and a frequency of applied voltage down to 0.5?Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH{sub 3} into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.

  17. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect (OSTI)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue; Yan, Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Zhongsheng; Zhou, Yixiao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-15T23:59:59.000Z

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  18. Dynamic light scattering in sooting premixed atmospheric-pressure methane-, propane-, ethene-, and propene-oxygen flames

    SciTech Connect (OSTI)

    Lamprecht, A.; Eimer, W.; Kohse-Hoeinghaus, K. [Univ. Bielefeld (Germany)] [Univ. Bielefeld (Germany)

    1999-07-01T23:59:59.000Z

    In a systematic investigation under well-defined flame conditions, dynamic light scattering (DLS) was applied to the determination of soot particle radii with the aim of examining the suitability of this technique for accurate soot particle sizing. In particular, flat premixed methane-, propane-, ethene-, and propene-oxygen flames at atmospheric pressure were investigated, and particle sizes were obtained as a function of stoichiometry and height above the burner surface. In combination with absorption measurements, soot volume fraction and particle number density were determined; also, the temperature was measured at each flame condition. In comparison to absorption techniques, attractive features of DLS are its independence of the particle refractive index and its insensitivity to fluorescence interference; also, it offers spatial resolution. In principle, additional information on the particle size distribution as well as on the global shape of the particles may be obtained from DLS experiments. This study is therefore an evaluation of the potential of DLS as a complement to other soot diagnostic techniques.

  19. Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge

    SciTech Connect (OSTI)

    Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng; Yan, Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Niu, Zheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-08-18T23:59:59.000Z

    Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etch the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.

  20. The influence of metallurgical variables on the temperature dependence of irradiation hardening in pressure vessel steels

    SciTech Connect (OSTI)

    Odette, G.R.; Lucas, G.E.; Klingensmith, R.D. [Univ. of California, Santa Barbara, CA (United States). Dept. of Mechanical Engineering

    1996-12-31T23:59:59.000Z

    Yield stress elevations ({Delta}{sigma}{sub y}) in pressure vessel steels irradiated at intermediate flux and fluence systematically decreased with increasing temperature and decreasing copper and nickel content. Lower stress relief temperature also decreased {Delta}{sigma}{sub y} at bulk copper concentrations greater than about 0.3%. The dependence of {Delta}{sigma}{sub y} on irradiation temperature between 260 and 316 C increased with copper and nickel content and decreased with phosphorus content. When normalized by the average {Delta}{sigma}{sub y}, the fractional temperature dependence correlates with a simple empirical chemistry factor of copper and phosphorus. The correlation predicts data on the irradiation temperature dependence of {Delta}{sigma}{sub y} found in the literature within a standard error of about 0.3 MPa/{degree}C and is consistent with current understanding of hardening mechanisms. However, questions remain about the effects at very low flux and finer scale variations over smaller temperature intervals.

  1. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, AlaskaWhenimage ARM Dataparticlemoisture

  2. Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet

    E-Print Network [OSTI]

    Schneider, S; Narberhaus, F; Bandow, J E; Denis, B; Benedikt, J

    2011-01-01T23:59:59.000Z

    Cold atmospheric pressure plasmas can be used for treatment of living tissues or for inactivation of bacteria or biological macromolecules. The treatment is usually characterized by a combined effect of UV and VUV radiation, reactive species, and ions. This combination is usually beneficial for the effectiveness of the treatment but it makes the study of fundamental interaction mechanisms very difficult. Here we report on an effective separation of VUV/UV photons and heavy reactive species in the effluent of a micro scale atmospheric pressure plasma jet ($\\mu$-APPJ). The separation is realized by an additional flow of helium gas under well-defined flow conditions, which deflects heavy particles in the effluent without affecting the VUV and UV photons. Both components of the effluent, the photons and the reactive species, can be used separately or in combination for sample treatment. The results of treatment of a model plasma polymer film and vegetative Bacillus subtilis and Escherichia coli cells are shown an...

  3. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect (OSTI)

    Niemi, K.; O'Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

    2013-07-15T23:59:59.000Z

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  4. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect (OSTI)

    Li, Shou-Zhe, E-mail: lisz@dlut.edu.cn; Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang [Key Laboratory of Materials Modification by Laser, Ion, Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); School of Physics and Optoelectronic Technology, Dalian 116024 (China); Wang, Yong-Xing [College of Electrical Engineering, Dalian 116024 (China); Xia, Guang-Qing [School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024 (China)

    2014-07-15T23:59:59.000Z

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  5. Characterization and fate of vapor-phase organic constituents from atmospheric pressure fluidized bed combustors (AFBC): East Stroudsburg University AFBC

    SciTech Connect (OSTI)

    Yeh, Hsu-Chi; Newton, G.J.; Henderson, T.R.; Hobbs, C.H.

    1987-08-01T23:59:59.000Z

    Very little research has been devoted to the characterization of vapor-phase organic compounds in gaseous streams. Because of the concerns that gaseous organic compounds from FBCs may include potentially toxic and/or mutagenic materials. We will measure vapor-phase hydrocarbon concentrations in the process streams of operating FBCs. This report describes our field sampling results on the atmospheric pressure fluidized bed combustor (AFBC) at the East Stroudsburg University during its normal operation for supplying heat and hot water to the campus. This AFBC has a bed size of 36 ft/sup 2/ and was burning anthracite culm. The culm consumption rates during the week of our sampling period were 1600 to 3000 lb/hr. Emphasis was placed on characterization of process stream effluents, including particles and vapor-phase organic constituents. Results indicated that the mass concentration (or loading) of particulate matter within the effluent stream was similar to other FBCs that have been studied. The particulate mass concentration measured after the baghouse location was 0.0048 g/m/sup 3/ (0.0047 lb/10/sup 6/ Btu). This was equivalent to a total of 35 g/hr of particulate emissions. The fraction of particulate material presented as organics (extractable fraction) was, on the average, less than 2% of total mass of particulate emissions. The vapor-phase organic contents indicated that the quantities of individual polycyclic aromatic hydrocarbons (PAHs) were low, being less than 2.5 ..mu..g/m/sup 3/ for any individual sample. Most of the PAHs detected were low boiling compounds such as naphthalene or phenanthrene, with trace amounts of pyrene. 22 refs., 13 figs., 11 tabs.

  6. Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to

    E-Print Network [OSTI]

    Antonovics, Janis

    Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and repro- duction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent

  7. The emissions of gases from abandoned mines: role of atmospheric pressure changes and air temperature on the surface

    E-Print Network [OSTI]

    Boyer, Edmond

    pressure were monitored. Gas flow can be influenced mainly by the temperature difference between external pressure influences gas flow in the coal mines, which can be considered as closed systems. Modelling has confirmed the differential pressure value measured that exceeds friction losses. Key words Mine gas emission

  8. 0-7803-XXXX-X/06/$20.00 2009 IEEE 25th IEEE SEMI-THERM Symposium Sub-Atmospheric Pressure Pool Boiling of Water on a Screen-Laminate Enhanced Surface

    E-Print Network [OSTI]

    Wirtz, Richard A.

    structures having wide ranging porosity and pore size. When deployed as a surface enhancement in a boiling pool-boiling experiments at one atmosphere and sub-atmospheric pressure assess the utility of fine factor of lamination [dimensionless] CHF = critical heat flux [W/cm2 ] Dh = pore hydraulic diameter [µm

  9. Electron density measurements of atmospheric-pressure non-thermal N{sub 2} plasma jet by Stark broadening and irradiance intensity methods

    SciTech Connect (OSTI)

    Xiao, Dezhi; Shen, Jie; Lan, Yan; Xie, Hongbing; Shu, Xingsheng; Meng, Yuedong; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei 230031 (China); Cheng, Cheng, E-mail: chengcheng@ipp.ac.cn, E-mail: paul.chu@cityu.edu.hk [Institute of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei 230031 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K., E-mail: chengcheng@ipp.ac.cn, E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-05-15T23:59:59.000Z

    An atmospheric-pressure non-thermal plasma jet excited by high frequency alternating current using nitrogen is developed and the electron density in the active region of this plasma jet is investigated by two different methods using optical emission spectroscopy, Stark broadening, and irradiance intensity method. The irradiance intensity method shows that the average electron density is about 10{sup 20}/m{sup 3} which is slightly smaller than that by the Stark broadening method. However, the trend of the change in the electron density with input power obtained by these two methods is consistent.

  10. Application of Wireless Sensor Network (WSN) Technologies in Optimal Static Pressure Reset in Variable Air Volume (VAV) System

    E-Print Network [OSTI]

    Zheng, K.; Li, H.; Yang, H.

    2007-01-01T23:59:59.000Z

    Optimization of the static pressure reset is always critical in the pursuit of maximum savings of fan power and thermal energy consumption in a VAV system. This paper theoretically investigated three static pressure reset methods, i.e. VAV terminal...

  11. CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. F. Gao, Y. Cai, K. K. Gath, Y. Wang, M. S. Chen, Q. L. Guo, and D. W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 1. Rhodium FVised Manuscript ReceiVed: NoVember 3, 2008 The CO oxidation reaction on Rh(111) was studied both at low pressures reactor at various gaseous reactant compositions. Surface CO and O coverages were determined using

  12. Kevin E. Trenberth John Fasullo Lesley Smith Trends and variability in column-integrated atmospheric water vapor

    E-Print Network [OSTI]

    Fasullo, John

    Kevin E. Trenberth Ã? John Fasullo Ã? Lesley Smith Trends and variability in column. E. Trenberth (&) Ã? J. Fasullo Ã? L. Smith National C

  13. Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature control wind power output and circulation cell size

    E-Print Network [OSTI]

    Makarieva, A M; Nefiodov, A V; Sheil, D; Nobre, A D; Shearman, P L; Li, B -L

    2015-01-01T23:59:59.000Z

    The gross spatial features of the atmospheric kinetic energy budget are analytically investigated. Kinetic energy generation is evaluated in a hydrostatic atmosphere where the axisymmetric circulation cells are represented by Carnot cycles. The condition that kinetic energy generation is positive in the lower atmosphere is shown to limit the poleward cell extension via a relationship between the meridional differences in surface pressure and temperature $\\Delta p_s$ and $\\Delta T_s$: an upper limit to cell size exists when $\\Delta p_s$ increases sublinearly with $\\Delta T_s$. This is the case for the Hadley cells as demonstrated here using data from MERRA re-analysis. The limited cell size necessitates the appearance of heat pumps -- circulation cells with negative work output where the low-level air moves towards colder areas. These cells consume the positive work output of heat engines -- cells where the low-level air moves towards the warmer areas -- and can in principle drive the global efficiency of atmo...

  14. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    SciTech Connect (OSTI)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina [Plasma Engineering Research Laboratory (PERL), College of Science and Engineering, Texas A and M University-Corpus Christi, Texas 78412 (United States)] [Plasma Engineering Research Laboratory (PERL), College of Science and Engineering, Texas A and M University-Corpus Christi, Texas 78412 (United States)

    2013-06-21T23:59:59.000Z

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A{sup 2}{Sigma}{sup +}({nu}=0,1){yields}X{sup 2}{Pi}({Delta}{nu}=0) at 308 nm and A{sup 2}{Sigma}{sup +}({nu}=0,1){yields}X{sup 2}{Pi}({Delta}{nu}=1) at 287 nm, O I transitions 3p{sup 5}P{yields}3s{sup 5}S{sup 0} at 777.41 nm, and 3p{sup 3}P{yields}3s{sup 3}S{sup 0} at 844.6 nm, N{sub 2}(C-B) second positive system with electronic transition C{sup 3}{Pi}{sub u}{sup {yields}}B{sup 3}{Pi}{sub g}'' in the range of 300-450 nm and N{sub 2}{sup +}(B-X) first negative system with electronic transition B{sup 2}{Sigma}{sub u}{sup +}{yields}X{sup 2}{Sigma}{sub g}{sup +}({Delta}{nu}=0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p{sup 3}P{sup 0}{yields}2s{sup 3}S at 388.8 nm, 3p{sup 1}P{sup 0}{yields} 2s{sup 1}S at 501.6 nm, 3d{sup 3}D{yields}2p{sup 3}P{sup 0} at 587.6 nm, 3d{sup 1}D{yields}2p{sup 1}P{sup 0} at 667.8 nm, 3s{sup 3}S{sup 1}{yields}2p{sup 3}P{sup 0} at 706.5 nm, 3s{sup 1}S{sup 0}{yields}2p{sup 1}P{sup 0} at 728.1 nm, and H{sub {alpha}} transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 {+-} 25 K and 340 {+-} 25 K and it increases to 320 {+-} 25 K and 360 {+-} 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture, respectively. Additionally, the vibrational temperatures range from 2200 {+-} 100 K and 2500 {+-} 100 K for pure helium and helium/oxygen (0.1%) mixture, respectively. The plasma jet was tested on heat sensitive polymer films used in biomedical applications such as polyethylene terephthalate and poly-L-lactide samples continuously for several minutes without causing any physical or thermal damage to the films. The plasma jet produces significant reactive species of interest while the gas temperatures remain very low demonstrating its potential for a range of biomedical applications.

  15. Simulations of Variable Bottomhole Pressure Regimes to Improve Production from the Double-Unit Mount Elbert, Milne Point Unit, North Slope Alaska Hydrate Deposit

    SciTech Connect (OSTI)

    Myshakin, Evgeniy; Anderson, Brian; Rose, Kelly; Boswell, Ray

    2011-01-01T23:59:59.000Z

    Gas production was predicted from a reservoir model based on the Mount Elbert gas hydrate accumulation located on the Alaska North slope at various simulator submodels and production scenarios. Log, core, and fluid measurements were used to provide a comprehensive reservoir description. These data were incorporated with experimentally derived saturations, porosities, permeability values, parameters for capillary pressure, and relative permeability functions. The modeled reservoir exposed to depressurization at a constant bottomhole pressure (2.7 MPa) has shown limited production potential due to its low temperature profile. To improve production the bottomhole pressure was allowed to vary from 2.7 (above the quadruple point) to 2.0 MPa over a 15-year period. The results indicate that gas production was nearly doubled in comparison with a constant-pressure regime. Extensive ice formation and hydrate reformation that could severely hinder gas production were avoided in the variable-pressure regime system. A use of permeability variation coupled with porosity change is shown to be crucial to predict those phenomena at a reservoir scale.

  16. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R [ORNL; Tenhaeff, Wyatt E [ORNL; McCamy, James [PPG; Harris, Caroline [PPG; Narula, Chaitanya Kumar [ORNL

    2013-01-01T23:59:59.000Z

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  17. A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures

    SciTech Connect (OSTI)

    Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A. [Department of Electrical and Computer Engineering, Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, Texas 79409-3102 (United States)

    2012-07-15T23:59:59.000Z

    A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N{sub 2}, air, or argon environment at pressures exceeding 50 Torr.

  18. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    SciTech Connect (OSTI)

    Shao Tao; Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor F.; Shut'ko, Yuliya V. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Zhang Cheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-05-15T23:59:59.000Z

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of {approx}15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  19. Submitted to Journal of Physical Oceanography Sea Surface Temperature Variability Along the Path of the Antarctic

    E-Print Network [OSTI]

    Czaja, Arnaud

    level pressure and air-sea heat fluxes. It is found that a significant fraction of SST variability) and remote forcing by ENSO. The physical mechanisms rely on the interplay between atmospheric variability the South Pa- cific, inducing surface heat fluxes (Fs) and Ekman heat advection (Fek) anomalies. A simple

  20. North Pacific atmosphere-ocean variability over the past millennium inferred from coastal glaciers and tree rings

    SciTech Connect (OSTI)

    Wiles, G. [Macalester College, St. Paul, MN (United States)

    1997-11-01T23:59:59.000Z

    Ocean-atmosphere system fluctuations from annual to centennial time scales in the North Pacific are recorded in histories of coastal glacier advances and in temperature records inferred from coastal tree-ring series. Calendar dates obtained by dating glacially overrun forests with tree rings, show two major intervals of ice expansion over the last millennium. The first occurred between AD 1250 and 1300 and the second between AD 1650 and 1750. This glacial record indicates the onset of the Little Ice Age by AD 1250 and the most widespread advance of the past millennium from the mid 17th to the mid 18th century. Moreover, temperature variations inferred from tree-ring records since AD 1600 show multiple decade-long changes in the climate system, suggesting that lower frequency variation can be derived from these records. Decade-long cool intervals are most frequent between AD 1650 and 1750, a time of general glacier expansion. The warmest decades occur in the 20th century, a time of glacier retreat. 16 refs., 4 figs.

  1. Simultaneous measurement of nitrogen and hydrogen dissociation from vacuum ultraviolet self-absorption spectroscopy in a developing low temperature plasma at atmospheric pressure

    SciTech Connect (OSTI)

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States)] [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Frank, Klaus [Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich-Alexander University at Erlangen - Nuernberg, 91058 Erlangen (Germany)] [Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich-Alexander University at Erlangen - Nuernberg, 91058 Erlangen (Germany)

    2013-05-06T23:59:59.000Z

    We demonstrate a method for determining the dissociation density of N and H atoms present in a developing low temperature plasma, based on the emission and self-absorption of vacuum ultraviolet radiation produced from the plasma. Spark plasmas are produced via pulsed discharge in N{sub 2}/H{sub 2} mixtures at atmospheric pressure, where information on the dissociated densities of the constituent gas molecules is desired without employing invasive diagnostic techniques. By analyzing the self-absorption line profile of 121.5 nm Lyman-{alpha} H radiation emitted within the first {approx}1.0 mm of plasma near the anode tip, a peak dissociated H atom concentration of 5.6 Multiplication-Sign 10{sup 17} cm{sup -3} was observed {approx}100 ns into spark formation, with an estimated electron density of 2.65 Multiplication-Sign 10{sup 18} cm{sup -3} determined from Stark broadening. Similarly, simultaneous line fitting of the N 120.0/124.3 nm emission profiles revealed a peak dissociated N atom concentration of 3.8 Multiplication-Sign 10{sup 17} cm{sup -3} during the same discharge period.

  2. Atmospheric Thermodynamics Composition

    E-Print Network [OSTI]

    Russell, Lynn

    1 Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 EnergyBalance Ch4 Water Ch Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http #12;2 Review from Ch. 1 · Thermodynamic quantities · Composition · Pressure · Density · Temperature

  3. Variation of corrosion behaviour of candidate heat exchanger alloys with local oxygen partial pressure in a 0. 6 meter diameter AFBC. [Atmospheric fluidized bed combustor

    SciTech Connect (OSTI)

    Rocazella, M.A.; Wright, I.G.

    1983-08-01T23:59:59.000Z

    The investigation reported in this article was aimed at characterising the types of corrosive environments encountered in AFBC by monitoring oxygen partial pressure at exposure locations, and correlating the corrosion behaviour of exposed alloys with the local oxygen partial pressure measurements.

  4. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO 2

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    C. Sutherland (1999), Net sea-air CO 2 flux over the globalvariability of regional CO 2 fluxes, 1988 – 2003, Globalvariations of atmospheric CO 2 and climate, Tellus, Ser. B,

  5. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    SciTech Connect (OSTI)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01T23:59:59.000Z

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  6. Pluto's Atmosphere Does Not Collapse

    E-Print Network [OSTI]

    Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

    2013-01-01T23:59:59.000Z

    Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

  7. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    SciTech Connect (OSTI)

    Ryuzaki, Sou, E-mail: ryuzaki.soh.341@m.kyushu-u.ac.jp; Meyer, Jakob A. S.; Petersen, Søren; Nørgaard, Kasper; Hassenkam, Tue; Laursen, Bo W. [Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetparken 5, 2100 Københaven Ø (Denmark)

    2014-09-01T23:59:59.000Z

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially increase due to 2D variable-range hopping conduction through small graphene domains in an RGO sheet containing defect regions of residual sp{sup 3} carbon clusters bonded to oxygen groups, whereas RGO sheets prepared in a closed container under moderate pressure showed linear I-V characteristics with a conductivity of 267.2?537.5?S/m. It was found that the chemical reduction under pressure results in larger graphene domains (sp{sup 2} networks) in the RGO sheets when compared to that prepared under atmospheric pressure, indicating that the present reduction of GO sheets under the pressure is one of the effective methods to make well-reduced GO sheets.

  8. atmospheric transparency studies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressures lower than 0.1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. At higher pressures, atmospheres become...

  9. asme pressure vessels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program & Sensors Hydrogen Delivery Composite Overwrapped Pressure Vessels (COPVs) Pipeline for Off-Board Hydrogen: L-C Atmosphere: 1500 psi H2, ambient pressure Air...

  10. asme pressure vessel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program & Sensors Hydrogen Delivery Composite Overwrapped Pressure Vessels (COPVs) Pipeline for Off-Board Hydrogen: L-C Atmosphere: 1500 psi H2, ambient pressure Air...

  11. alloy pressure vessels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program & Sensors Hydrogen Delivery Composite Overwrapped Pressure Vessels (COPVs) Pipeline for Off-Board Hydrogen: L-C Atmosphere: 1500 psi H2, ambient pressure Air...

  12. alloy pressure vessel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program & Sensors Hydrogen Delivery Composite Overwrapped Pressure Vessels (COPVs) Pipeline for Off-Board Hydrogen: L-C Atmosphere: 1500 psi H2, ambient pressure Air...

  13. aged pressure vessel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program & Sensors Hydrogen Delivery Composite Overwrapped Pressure Vessels (COPVs) Pipeline for Off-Board Hydrogen: L-C Atmosphere: 1500 psi H2, ambient pressure Air...

  14. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect (OSTI)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, HuaZhong University of Science and Technology (HUST), Wuhan 430074 (China)

    2014-01-14T23:59:59.000Z

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  15. Gas-phase synthesis of nitrogen-doped TiO{sub 2} nanorods by microwave plasma torch at atmospheric pressure

    SciTech Connect (OSTI)

    Hong, Yong Cheol; Kim, Jong Hun; Bang, Chan Uk; Uhm, Han Sup [Department of Molecular Science and Technology, Ajou University, San 5, Wonchon-Dong, Youngtong-Gu, Suwon 443-749 (Korea, Republic of)

    2005-11-15T23:59:59.000Z

    Nitrogen (N)-doped titanium dioxide (TiO{sub 2}) nanorods were directly synthesized via decomposition of gas-phase titanium tetrachloride (TiCl{sub 4}) by an atmospheric microwave plasma torch. X-ray diffraction, field-emission scanning electron microscope, field-emission transmission electron microscope, and electron-energy-loss spectroscopy (EELS) have been employed to investigate fraction of the anatase and rutile phases, diameter and length, and chemical composition of the nanorods, respectively. The diameters of the nanorods are approximately 30-80 nm and the length is several micrometers. EELS data show that incorporation of N into the O site of TiO{sub 2} nanorods was enhanced in N{sub 2} gas by the microwave plasma torch. Also, a growth model of the rods was proposed on the basis of vapor-liquid-solid mechanism.

  16. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  17. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  18. Constraining the Influence of Natural Variability to Improve Estimates of Global Aerosol Indirect Effects in a Nudged Version of the Community Atmosphere Model 5

    SciTech Connect (OSTI)

    Kooperman, G. J.; Pritchard, M. S.; Ghan, Steven J.; Wang, Minghuai; Somerville, Richard C.; Russell, Lynn

    2012-12-11T23:59:59.000Z

    Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e. multi-scale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of -1.54 ± 0.02 W/m2 and -1.63 ± 0.17 W/m2 for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world’s area in which a statistically significant aerosol indirect effect can be detected (68% and 25% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean aerosol indirect radiative forcing estimates of -0.80 W/m2 and -0.56 W/m2, respectively. The one-year nudged results compare well with previous estimates from three-year free-running simulations (-0.77 W/m2), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional parameterizations.

  19. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18T23:59:59.000Z

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  20. An Application of Chaos Theory for Estimation of Simultaneous Variability of RR-intervals in Heart and Systolic Blood Pressure in Humans

    E-Print Network [OSTI]

    Elio Conte; Antonio Federici; Joseph P. Zbilut

    2008-10-22T23:59:59.000Z

    We introduce a new method to estimate BaroReflex Sensitivity (BRS) . The methodology, based on the CZF formulation, recently published (see Conte et al 2008), enables to evaluate simultaneous variability of RR and SBP and to estimate the coupling strength. The technique is applied to subjects (female and men with age ranging from 21 to 28 years old) and it is compared with the results that may be obtained by using the standard Fourier spectral analysis technique. The comparison is also performed by using the technique of Lomb-Scargle periodogram, based on Fourier analysis.

  1. Design of a variable-conductance vacuum insulation

    SciTech Connect (OSTI)

    Benson, D K; Potter, T F; Tracy, C E

    1994-01-01T23:59:59.000Z

    This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

  2. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    DOE Patents [OSTI]

    Khan, M. Rashid (Morgantown, WV)

    1990-01-01T23:59:59.000Z

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  3. Ch.6 Atmospheric and Oceanic Circulations

    E-Print Network [OSTI]

    Pan, Feifei

    ;Learning Objective Four: Driving forces of wind #12;Driving Forces within the Atmosphere Gravity. #12;Pressure gradient determines wind speed #12; The Coriolis force is an effect of Earth's rotation direction due to the pressure gradient force alone #12;Geostrophic Wind Pressure gradient force + Coriolis

  4. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11T23:59:59.000Z

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  5. Atmospheric Pressure Deposition for Electrochromic Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLCEnergyEnergy Atlanta

  6. Free Floating Atmospheric Pressure Ball Plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy Forrestal GarageD.ChargeFranklinFree-Floating

  7. a533b pressure vessel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program & Sensors Hydrogen Delivery Composite Overwrapped Pressure Vessels (COPVs) Pipeline for Off-Board Hydrogen: L-C Atmosphere: 1500 psi H2, ambient pressure Air...

  8. Space Science: Atmosphere Thermal Structure

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

  9. atmospheric layers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  10. atmosphere boundary layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  11. atmospheric superficial layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  12. atmospheric boundary layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  13. atmospheric boundary layers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  14. Atmospheric perturbations of large-scale nuclear war

    SciTech Connect (OSTI)

    Malone, R.C.

    1985-01-01T23:59:59.000Z

    Computer simulation of the injection into the atmosphere of a large quantity of smoke following a nuclear war are described. The focus is on what might happen to the smoke after it enters the atmosphere and what changes, or perturbations, could be induced in the atmospheric structure and circulation by the pressure of a large quantity of smoke. 4 refs., 7 figs. (ACR)

  15. Atmospheric Aerosols Workshop | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosols Workshop Atmospheric Aerosols Workshop EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality. Baer DR, BJ...

  16. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

  17. Pressure-flow reducer for aerosol focusing devices

    DOE Patents [OSTI]

    Gard, Eric (San Francisco, CA); Riot, Vincent (Oakland, CA); Coffee, Keith (Diablo Grande, CA); Woods, Bruce (Livermore, CA); Tobias, Herbert (Kensington, CA); Birch, Jim (Albany, CA); Weisgraber, Todd (Brentwood, CA)

    2008-04-22T23:59:59.000Z

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  18. INTRODUCTIONTOTHE SOLAR ATMOSPHERE

    E-Print Network [OSTI]

    ? #12;WHAT ISTHE SOLAR ATMOSPHERE? #12;#12;1-D MODEL ATMOSPHERE · Averaged over space and time · GoodINTRODUCTIONTOTHE SOLAR ATMOSPHERE D. Shaun Bloomfield Trinity College Dublin #12;OUTLINE · What is the solar atmosphere? · How is the solar atmosphere observed? · What structures exist and how do they evolve

  19. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  20. atmospheric nitric oxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    glacial period Adrian Schilt,1,3 Matthias Stocker, Thomas 196 CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. F. Gao, Y. Cai, K. K. Gath, Y....

  1. Impacts of Static Pressure Reset on VAV System Air Leakage, Fan Power and Thermal Energy - Part I: Theoretical Model and Simulation

    E-Print Network [OSTI]

    Liu, M.; Feng, J.; Wang, Z.; Wu, L.; Zheng, K.; Pang, W.

    2007-01-01T23:59:59.000Z

    As for a variable air volume (VAV) system, the air duct static pressure is a typical control variable maintained by modulating supply fan speed. The static pressure equals to the summation of the duct pressure loss downstream of the sensor...

  2. High-efficiency solar cells fabricated from direct-current magnetron sputtered n-indium tin oxide onto p-InP grown by atmospheric pressure metalorganic vapor phase epitaxy

    SciTech Connect (OSTI)

    Li, X.; Wanlass, M.W.; Gessert, T.A.; Emery, K.A.; Coutts, T.J.

    1989-05-01T23:59:59.000Z

    Solar cells based on dc magnetron sputtered indium tin oxide onto epitaxially grown films of p-InP have been fabricated and analyzed. The best cells had a global efficiency of 18.4% and an air mass zero (AMO) efficiency of 16.0%. The principal fabrication variable considered was the constituency of the sputtering gas and both argon/hydrogen and argon/oxygen mixtures have been used. The former cells have the higher efficiencies, are apparently stable, and exhibit almost ideal junction characteristics. The latter cells are relatively unstable and exhibit much higher ideality factors and reverse saturation current densities. The temperature dependence of the reverse saturation current indicates totally different charge transfer mechanisms in the two cases.

  3. Study of the Martian upper atmosphere using radio tracking data

    E-Print Network [OSTI]

    Mazarico, Erwan Matías Alexandre, 1981-

    2008-01-01T23:59:59.000Z

    Since the first in situ observations of the Martian atmosphere were made by the twin Viking landers, we have learned considerably more about its composition, dynamics and variability. Not only did the new data on global ...

  4. Interannual variability of Caribbean rainfall, ENSO and the Atlantic Ocean

    E-Print Network [OSTI]

    Columbia University

    Interannual variability of Caribbean rainfall, ENSO and the Atlantic Ocean Alessandra Giannini the interannual variability of Caribbean­Central American rainfall are examined. The atmospheric circulation over) and sea surface temper­ ature (SST) variability associated with Caribbean rainfall, as selected

  5. Cataclysmic Variables

    E-Print Network [OSTI]

    Robert Connon Smith

    2007-01-23T23:59:59.000Z

    Cataclysmic variables are binary stars in which a relatively normal star is transferring mass to its compact companion. This interaction gives rise to a rich range of behaviour, of which the most noticeable are the outbursts that give the class its name. Novae belong to the class, as do the less well known dwarf novae and magnetic systems. Novae draw their energy from nuclear reactions, while dwarf novae rely on gravity to power their smaller eruptions. All the different classes of cataclysmic variable can be accommodated within a single framework and this article will describe the framework, review the properties of the main types of system and discuss models of the outbursts and of the long-term evolution.

  6. Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure Ivan Vlassiouk,*

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure Ivan Vlassiouk the effect of background pressure and synthesis temperature on the graphene crystal sizes in chemical vapor of the background pressure and provide the activation energy for graphene nucleation in atmospheric pressure CVD (9

  7. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03T23:59:59.000Z

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  8. How atmospheric ice forms | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric ice forms How atmospheric ice forms Released: September 08, 2014 New insights into atmospheric ice formation could improve climate models This study advances our...

  9. Pressure enhanced penetration with shaped charge perforators

    DOE Patents [OSTI]

    Glenn, Lewis A. (Danville, CA)

    2001-01-01T23:59:59.000Z

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  10. Climate Sciences: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

  11. Levitating atmospheres of Eddington-luminosity neutron stars I. Optically thin Thomson-scattering atmospheres

    E-Print Network [OSTI]

    Wielgus, M; S?dowski, A; Narayan, R; Abramowicz, M

    2015-01-01T23:59:59.000Z

    In general relativity static gaseous atmospheres may be in hydrostatic balance in the absence of a supporting stellar surface, provided that the luminosity is close to the Eddington value. We construct analytic models of optically thin, spherically symmetric shells supported by the radiation pressure of a luminous central body in the Schwarzschild metric.

  12. Levitating atmospheres of Eddington-luminosity neutron stars I. Optically thin Thomson-scattering atmospheres

    E-Print Network [OSTI]

    M. Wielgus; W. Klu?niak; A. S?dowski; R. Narayan; M. Abramowicz

    2015-05-22T23:59:59.000Z

    In general relativity static gaseous atmospheres may be in hydrostatic balance in the absence of a supporting stellar surface, provided that the luminosity is close to the Eddington value. We construct analytic models of optically thin, spherically symmetric shells supported by the radiation pressure of a luminous central body in the Schwarzschild metric.

  13. Electrochemical cell having improved pressure vent

    DOE Patents [OSTI]

    Dean, Kevin (Pontiac, MI); Holland, Arthur (Troy, MI); Fillmore, Donn (Waterford, MI)

    1993-01-01T23:59:59.000Z

    The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

  14. Terrestrial Planet Atmospheres. The Moon's Sodium Atmosphere

    E-Print Network [OSTI]

    Walter, Frederick M.

    ;Origins of Atmospheres · Outgassing ­ Volcanoes expel water, CO2, N2, H2S, SO2 removed by the Fme convecFon reaches deserts #12;Water and Ice Clouds #12;H2SO4

  15. Studies of climate variability in a simple coupled model

    E-Print Network [OSTI]

    Abiven, Claude

    2007-01-01T23:59:59.000Z

    The mechanisms of variability of a coupled atmosphere-ocean model are investigated through the study of two coupled configurations: an aquaplanet in which gyres are absent, and an aquaplanet in which a ridge extending from ...

  16. Surface texturing of superconductors by controlled oxygen pressure

    DOE Patents [OSTI]

    Chen, Nan (Downers Grove, IL); Goretta, Kenneth C. (Downers Grove, IL); Dorris, Stephen E. (La Grange Park, IL)

    1999-01-01T23:59:59.000Z

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

  17. Surface texturing of superconductors by controlled oxygen pressure

    DOE Patents [OSTI]

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05T23:59:59.000Z

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  18. Some new ideas for well log pore-pressure prediction

    SciTech Connect (OSTI)

    Hamouz, M.A.; Mueller, S.L.

    1984-09-01T23:59:59.000Z

    Predicting pore pressure from wireline logs is a common practice when designing wells. The accuracy of each prediction depends on the type of plot used and its associated assumptions. If these assumptions aren't adequately tested, then the results are often confusing and, possibly, dangerous. Accuracy is improved in all situations by plotting the correct wireline variables, checking the validity of the normal pressure trends with other pressure plots and regional data, and choosing the best techniques to estimate pressure.

  19. EMSL - Atmospheric Aerosol Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scienceatmospheric The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model...

  20. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  1. DISTRIBUTION OF CO{sub 2} IN SATURN'S ATMOSPHERE FROM CASSINI/CIRS INFRARED OBSERVATIONS

    SciTech Connect (OSTI)

    Abbas, M. M.; LeClair, A. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Woodard, E.; Young, M.; Stanbro, M. [University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Flasar, F. M.; Achterberg, R. K.; Bjoraker, G.; Brasunas, J.; Jennings, D. E. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kunde, V. G., E-mail: Mian.M.Abbas@nasa.gov, E-mail: Andre.C.LeClair@nasa.gov, E-mail: eaw0009@uah.edu, E-mail: mcs0001@uah.edu, E-mail: youngmm@uah.edu, E-mail: f.m.flasar@nasa.gov, E-mail: virgil.g.kunde@gsfc.nasa.gov [University of Maryland, College Park, MD 20742 (United States); Collaboration: and the Cassini/CIRS team

    2013-10-20T23:59:59.000Z

    This paper focuses on the CO{sub 2} distribution in Saturn's atmosphere based on analysis of infrared spectral observations of Saturn made by the Composite Infrared Spectrometer aboard the Cassini spacecraft. The Cassini spacecraft was launched in 1997 October, inserted in Saturn's orbit in 2004 July, and has been successfully making infrared observations of Saturn, its rings, Titan, and other icy satellites during well-planned orbital tours. The infrared observations, made with a dual Fourier transform spectrometer in both nadir- and limb-viewing modes, cover spectral regions of 10-1400 cm{sup –1}, with the option of variable apodized spectral resolutions from 0.53 to 15 cm{sup –1}. An analysis of the observed spectra with well-developed radiative transfer models and spectral inversion techniques has the potential to provide knowledge of Saturn's thermal structure and composition with global distributions of a series of gases. In this paper, we present an analysis of a large observational data set for retrieval of Saturn's CO{sub 2} distribution utilizing spectral features of CO{sub 2} in the Q-branch of the ?{sub 2} band, and discuss its possible relationship to the influx of interstellar dust grains. With limited spectral regions available for analysis, due to low densities of CO{sub 2} and interference from other gases, the retrieved CO{sub 2} profile is obtained as a function of a model photochemical profile, with the retrieved values at atmospheric pressures in the region of ?1-10 mbar levels. The retrieved CO{sub 2} profile is found to be in good agreement with the model profile based on Infrared Space Observatory measurements with mixing ratios of ?4.9 × 10{sup –10} at atmospheric pressures of ?1 mbar.

  2. atmospheric pressure fluctuations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instead it varies from 12 to 1 with the time window in which the download data were accumulated. The crossover behavior of fluctuation exponents can be qualitatively...

  3. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    E-Print Network [OSTI]

    Williams, Thomas Scott

    2013-01-01T23:59:59.000Z

    steel type 410, and aluminum alloy 2024. Helium and oxygensteel type 410, and aluminum alloy 2024 was demonstratedAdhesive Bonding of Aluminum Alloys, Metal Finishing, 13.

  4. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    E-Print Network [OSTI]

    Williams, Thomas Scott

    2013-01-01T23:59:59.000Z

    pre-treatment of aluminium alloys for durable adhesiveepoxy adhesive and aluminium alloy treated with phosphonatepretreatments for aluminium alloys. International Journal of

  5. atmospheric pressure microplasma: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    input and low plasma temperature. 2.1.2 Microplasmas An important new field in plasma research is the field of microplasmas. A microplasma is a plasma on a... Slavens, Stephen...

  6. atmospheric pressure gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    position and dimensions of flaws that produce AE. Time of Flight Diffraction (TOFD), ultrasonic examination is also commonly used for flaw sizing. 1.5 The values stated...

  7. atmospheric pressure discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 367 Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 185189 The electrodeless discharge lamp: a prospective tool for photochemistry Chemistry Websites...

  8. atmospheric pressure discharges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 367 Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 185189 The electrodeless discharge lamp: a prospective tool for photochemistry Chemistry Websites...

  9. atmospheric pressure dc: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of...

  10. atmospheric pressure interface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the hitherto unreported formation and dispersal into the water column of submicrometre oil droplets following bubble bursting at a compound airoilwater-with-surfactant...

  11. Behavior of alumina particles in atmospheric pressure plasma jets

    SciTech Connect (OSTI)

    Fincke, J.R.; Swank, W.D.

    1990-01-01T23:59:59.000Z

    The distribution of Al{sub 2}O{sub 3} particle size, velocity and temperature was mapped over the flow field of a 31.5 kW plasma torch. The effects of varying the powder loading were studied. The powder feed rate was varied between .45 and 2.05 kg/hr independent of the carrier gas flow rate. The particle flow field was non-symmetric due to the method of particle injection. The data indicate that powder feed rate does not significantly affect either the temperature or velocity of the particles, for typical plasma spray conditions, and that the assumption of a dilute particle flow field is valid. 1 ref., 7 figs.

  12. Atmospheric Pressure Deposition for Electrochromic Windows | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLCEnergyEnergy AtlantaEnergy

  13. Free Floating Atmospheric Pressure Ball Plasmas | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetFormsTrouble ShootingFred

  14. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography

    SciTech Connect (OSTI)

    Jin, Yusuke, E-mail: u-jin@aist.go.jp; Konno, Yoshihiro; Nagao, Jiro [Production Technology Team, Methane Hydrate Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517 (Japan)

    2014-09-01T23:59:59.000Z

    A pressurized subsampling system was developed for pressured gas hydrate (GH)-bearing sediments, which have been stored under pressure. The system subsamples small amounts of GH sediments from cores (approximately 50 mm in diameter and 300 mm in height) without pressure release to atmospheric conditions. The maximum size of the subsamples is 12.5 mm in diameter and 20 mm in height. Moreover, our system transfers the subsample into a pressure vessel, and seals the pressure vessel by screwing in a plug under hydraulic pressure conditions. In this study, we demonstrated pressurized subsampling from artificial xenon-hydrate sediments and nondestructive microscale imaging of the subsample, using a microfocus X-ray computed tomography (CT) system. In addition, we estimated porosity and hydrate saturation from two-dimensional X-ray CT images of the subsamples.

  15. Soot formation and temperature structure in small methane-oxygen diffusion flames at subcritical and supercritical pressures

    SciTech Connect (OSTI)

    Joo, Hyun I.; Guelder, Oemer L. [University of Toronto, Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ont. (Canada)

    2010-06-15T23:59:59.000Z

    An experimental study was conducted to examine the characteristics of laminar methane-oxygen diffusion flames up to 100 atmospheres. The influence of pressure on soot formation and on the structure of the temperature field was investigated over the pressure range of 10-90 atmospheres in a high-pressure combustion chamber using a non-intrusive, line-of-sight spectral soot emission diagnostic technique. Two distinct zones characterized the appearance of a methane and pure oxygen diffusion flame: an inner luminous zone similar to the methane-air diffusion flames, and an outer diffusion flame zone which is mostly blue. The flame height, marked by the visible soot radiation emission, was reduced by over 50% over the pressure range of 10-100 atmospheres. Between 10 and 40 atmospheres, the soot levels increased with increasing pressure; however, above 40 atmospheres the soot concentrations decreased with increasing pressure. (author)

  16. Effect of O3 on the atmospheric temperature structure of early Mars

    E-Print Network [OSTI]

    von Paris, P; Godolt, M; Grenfell, J L; Stracke, B; Rauer, H

    2015-01-01T23:59:59.000Z

    Ozone is an important radiative trace gas in the Earth's atmosphere. The presence of ozone can significantly influence the thermal structure of an atmosphere, and by this e.g. cloud formation. Photochemical studies suggest that ozone can form in carbon dioxide-rich atmospheres. We investigate the effect of ozone on the temperature structure of simulated early Martian atmospheres. With a 1D radiative-convective model, we calculate temperature-pressure profiles for a 1 bar carbon dioxide atmosphere. Ozone profiles are fixed, parameterized profiles. We vary the location of the ozone layer maximum and the concentration at this maximum. The maximum is placed at different pressure levels in the upper and middle atmosphere (1-10 mbar). Results suggest that the impact of ozone on surface temperatures is relatively small. However, the planetary albedo significantly decreases at large ozone concentrations. Throughout the middle and upper atmospheres, temperatures increase upon introducing ozone due to strong UV absorpt...

  17. Mechanisms of interdecadal climate variability and the role of oceanatmosphere coupling

    E-Print Network [OSTI]

    Vallis, Geoff

    . If the ocean is forced by imposed stochastic heat fluxes, instead of a fully interacting atmosphereMechanisms of interdecadal climate variability and the role of ocean­atmosphere coupling Riccardo are investigated with coupled and uncoupled integrations of a three- dimensional ocean­atmosphere­land­ice climate

  18. atmospheric variables correlacao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    loss of ozone column density exceeds that currently experienced due to effects such as accumulated chlorofluorocarbons. The intensity is less than a nearby supernova or galactic...

  19. Atmospheric Horizontal Resolution Affects Tropical Climate Variability in Coupled Models

    E-Print Network [OSTI]

    Guilyardi, Eric

    di Geofisica e Vulcanologia, Bologna, Italy S. BEHERA, J.-J. LUO, AND S. MASSON Frontier Research model, SINTEX-Frontier (SINTEX-F), developed jointly at Istituto Nazionale di Geofisica e Vulcanologia that the Corresponding author address: A. Navarra, Istituto Nazionale di Geofisica e Vulcanologia, Via Donato Creti 12

  20. On the role of internal atmospheric variability in ENSO dynamics

    E-Print Network [OSTI]

    Zhang, Li

    2006-10-30T23:59:59.000Z

    ~no is linked to a boreal spring phenomenon referred to as the Pacific Meridional Model (MM). The MM, character- ized by an anomalous north-south SST gradient and anomalous surface circulation in the northeasterly trade regime with maximum variance in boreal...

  1. Preliminary calculations on direct heating of a containment atmosphere by airborne core debris

    SciTech Connect (OSTI)

    Pilch, M.; Tarbell, W.W.

    1986-07-01T23:59:59.000Z

    Direct heating of the containment atmosphere by airborne core debris may be a significant source of containment pressurization in those accident sequences where the primary system is still at high pressure when the RPV fails. Vigorous blowdown of the primary system may result in nearly complete relocation of core debris out of the reactor cavity and possibly into the containment atmosphere where the liberation of thermal and chemical energy can directly heat the atmosphere. Rate independent and rate dependent models are developed and exercised parametrically to quantify the possible magnitude and rate of containment pressurization from direct heating. The possible mitigative effects of airborne water and subcompartment heating are also investigated.

  2. Atmospheric Dynamics II Instructor

    E-Print Network [OSTI]

    AT602 Atmospheric Dynamics II 2 credits Instructor: David W. J. Thompson davet: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press (recommended) · Marshall, J., and Plumb, R. A., 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press. · Vallis, G. K

  3. Solar activity and earth rotation variability R. Abarca del Rioa,

    E-Print Network [OSTI]

    Dai, Aiguo

    to secular times scales, meteorological and climatic data are correlated with solar variability (see reviews changes in solar output could be amplified in the Earth's atmosphere. In fact, at wavelengths not visibleSolar activity and earth rotation variability R. Abarca del Rioa, *, D. Gambisb , D. Salsteinc , P

  4. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect (OSTI)

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19T23:59:59.000Z

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  5. Barotropic and baroclinic annular variability in the Southern Hemisphere David. W. J. Thompson1 and Jonathan D. Woodworth

    E-Print Network [OSTI]

    Barotropic and baroclinic annular variability in the Southern Hemisphere David. W. J. Thompson1. Thompson, Department of Atmospheric Science, Colorado State University, Fort Collins, CO. USA 80523 E

  6. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, John K. (New Haven, CT)

    1989-01-01T23:59:59.000Z

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  7. ON THE STABILITY OF SUPER-EARTH ATMOSPHERES

    SciTech Connect (OSTI)

    Heng, Kevin [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093, Zuerich (Switzerland); Kopparla, Pushkar [ETH Zuerich, Institute for Atmospheric and Climate Science, Universitaetstrasse 16, CH-8092, Zuerich (Switzerland)

    2012-07-20T23:59:59.000Z

    We investigate the stability of super-Earth atmospheres around M stars using a seven-parameter, analytical framework. We construct stability diagrams in the parameter space of exoplanetary radius versus semimajor axis and elucidate the regions in which the atmospheres are stable against the condensation of their major constituents, out of the gas phase, on their permanent nightside hemispheres. We find that super-Earth atmospheres that are nitrogen-dominated (Earth-like) occupy a smaller region of allowed parameter space, compared to hydrogen-dominated atmospheres, because of the dual effects of diminished advection and enhanced radiative cooling. Furthermore, some super-Earths which reside within the habitable zones of M stars may not possess stable atmospheres, depending on the mean molecular weight and infrared photospheric pressure of their atmospheres. We apply our stability diagrams to GJ 436b and GJ 1214b, and demonstrate that atmospheric compositions with high mean molecular weights are disfavored if these exoplanets possess solid surfaces and shallow atmospheres. Finally, we construct stability diagrams tailored to the Kepler data set, for G and K stars, and predict that about half of the exoplanet candidates are expected to harbor stable atmospheres if Earth-like conditions are assumed. We include 55 Cancri e and CoRoT-7b in our stability diagram for G stars.

  8. A Vertical Grid Module for Baroclinic Models of the Atmosphere

    SciTech Connect (OSTI)

    Drake, John B [ORNL

    2008-04-01T23:59:59.000Z

    The vertical grid of an atmospheric model assigns dynamic and thermo- dynamic variables to grid locations. The vertical coordinate is typically not height but one of a class of meteorological variables that vary with atmo- spheric conditions. The grid system is chosen to further numerical approx- imations of the boundary conditions so that the system is terrain following at the surface. Lagrangian vertical coordinates are useful in reducing the numerical errors from advection processes. That the choices will effect the numercial properties and accuracy is explored in this report. A MATLAB class for Lorentz vertical grids is described and applied to the vertical struc- ture equation and baroclinic atmospheric circulation. A generalized meteo- rolgoical coordinate system is developed which can support ?, isentropic ? vertical coordinate, or Lagrangian vertical coordinates. The vertical atmo- spheric column is a MATLAB class that includes the kinematic and ther- modynamic variables along with methods for computing geopoentials and terms relevant to a 3D baroclinc atmospheric model.

  9. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

  10. Atmospheric Science: An introductory survey 1. Introduction to the atmosphere

    E-Print Network [OSTI]

    Folkins, Ian

    Sound Convergence Zone #12;Terrain effects #12;Von Karman vortex streets #12;Atmosphere in Earth system

  11. Carderock 2-ft Variable Pressure Cavitation Water Tunnel | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaneyNW1 8LHInformation

  12. Carderock 3-ft Variable Pressure Cavitation Water Tunnel | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaneyNW1

  13. High Altitude Unmanned Air System for Atmospheric Science Missions

    E-Print Network [OSTI]

    Sóbester, András

    designed to enable the construction of an emulator (surrogate model) of an atmospheric quantity across-launched dropsonde will record temperature, dewpoint, ambient pressure and GPS-derived wind speed. b) Pollution industry is that a safe level of ash density is around 2 Ã? 10-3 g/m3 (corresponding to an engine core

  14. Understanding Blood Pressure

    E-Print Network [OSTI]

    Understanding Blood Pressure · Monitorathomewithadigitalmonitor. · Useleftarmwithcorrectsizecuff. · Avoidcaffeine,alcohol,andtobacco. Steps to Follow FOR AN ACCURATE MEASUREMENT Blood pressure is the measurement of the force of blood on the walls of the arteries. Bottom number = Diastolic (force between heart beats) Top

  15. Atmospheric heat redistribution and collapse on tidally locked rocky planets

    E-Print Network [OSTI]

    Wordsworth, Robin

    2014-01-01T23:59:59.000Z

    Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

  16. A Variable Cell Model for Simulating Gas Condensate Reservoir Performance

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    maturation profiles, which ie exhibitpd when gas pressure. Between this region near tha wellbore, SPE-~~~ SPE 21428 A Variable Cell Model for Simulating Gas Condensate Reservoir Performance A of depletion performance of gas condensate reservoirs report the existence of a A variable cell model

  17. Microplasma Discharges in High Pressure Gases Scaling Towards the Sub-micron Regime

    E-Print Network [OSTI]

    Chitre, Aditya Rajeev

    2012-02-14T23:59:59.000Z

    Atmospheric pressure microplasmas are uniquely characterized by their very high energy densities and also by their small discharge sizes. These properties allow for unique applications in plasma processing technologies. We have investigated...

  18. 2015 Pearson Education, Inc. Chapter 3 Earth's Modern Atmosphere

    E-Print Network [OSTI]

    Pan, Feifei

    contact with high energy solar radiation · Thermopause is at 480km · High temperature, but not "hot--composition, temperature, and function. · List and describe the components of the modern atmosphere, giving their relative%), and others (1%). · Variable Gases: Water Vapor (H2O) (0 to 4%), CO2 (0.038%). · 4Less: Odorless, Colorless

  19. Sulfur accumulation and atmospherically deposited sulfate in the Lake states. Forest Service research paper

    SciTech Connect (OSTI)

    David, M.B.; Gertner, G.Z.; Grigal, D.F.; Ohmann, L.F.

    1989-01-01T23:59:59.000Z

    This report characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid-precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil-sulfur pools.

  20. Dynamics of Atmospheres

    E-Print Network [OSTI]

    Read, Peter L.

    transfer ­ Solar heating of surface, and atmosphere via dust absorption ­ Infrared CO2 band cooling (especially around 667 cm-1) ­ nonLTE near-infrared heating of CO2 and nonLTE cooling effects above ~60-80 km. Baroclinic waves, scales, heat and momentum transport, seasonal occurrence. Qualitative treatment

  1. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  2. Electron beam melting at high pressures with a vacuum separator/plasma lens

    SciTech Connect (OSTI)

    Hershcovitch, A.

    1995-12-31T23:59:59.000Z

    Plasmas can be used to provide a vacuum-atmosphere interface or separation between vacua regions as an alternative to differential pumping. Vacuum-atmosphere interface utilizing a cascade arc discharge was successfully demonstrated and a 175 keV electron beam was successfully propagated from vacuum through such a plasma interface and out into atmospheric pressure. This plasma device also functions as an effective plasma tens. Such a device can be adopted for use in electron beam melting.

  3. Electron beam melting at high pressures with a vacuum separator/plasma lens

    SciTech Connect (OSTI)

    Hershcovitch, A. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-31T23:59:59.000Z

    Plasmas can be used to provide a vacuum-atmosphere interface or separation between vacua regions as an alternative to differential pumping. Vacuum-atmosphere interface utilizing a cascade arc discharge was successfully propagated from vacuum through such a plasma interface and out into atmospheric pressure. This plasma device also functions as an effective plasma lens. Such a device can be adopted for use in electron beam melting.

  4. Effect of reactor pressure on the electrical and structural properties of InN epilayers grown by high-pressure chemical vapor deposition

    E-Print Network [OSTI]

    Nabben, Reinhard

    Effect of reactor pressure on the electrical and structural properties of InN epilayers grown://avspublications.org/jvsta/about/rights_and_permissions #12;Effect of reactor pressure on the electrical and structural properties of InN epilayers grown-atmospheric reactor pressures (2.5­18.5 bar) on the electrical and structural properties of InN epilayers deposited

  5. Aerosol source term in high pressure melt ejection

    SciTech Connect (OSTI)

    Brockmann, J.E.; Tarbell, W.W.

    1984-11-01T23:59:59.000Z

    Pressurized ejection of melt from a reactor pressure vessel has been identified as an important element of a severe reactor accident. Copious aerosol production is observed when thermitically generated melts pressurized with nitrogen or carbon dioxide to 1.3 to 17 MPa are ejected into an air atmosphere. Aerosol particle size distributions measured in the tests have modes of about 0.5, 5, and > 10 ..mu..m. Mechanisms leading to formation of these multimodal size distributions are suggested. This aerosol is a potentially important fission product source term that has not been considered in previous severe accident analyses.

  6. SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics Course Syllabus and Lecture Schedule Instructor: Lynn Russell, 343 NH, 534-4852, lmrussell@ucsd.edu Text: Thermodynamics of Atmospheres of Thermodynamics (Work, Heat, First Law, Second Law, Heat Capacity, Adiabatic Processes) 5-Oct F Hurricane Example

  7. Optically accessible high-pressure combustion apparatus Stephen D. Tsea)

    E-Print Network [OSTI]

    Tse, Stephen D.

    . DOI: 10.1063/1.1634358 I. INTRODUCTION Recognizing that combustion processes within internal combustion engines take place in elevated pressure environ- ments, that most fundamental information of atmospheres, and hence are representative of those in inter- nal combustion engines. Of particular interest

  8. Pressure cryocooling protein crystals

    DOE Patents [OSTI]

    Kim, Chae Un (Ithaca, NY); Gruner, Sol M. (Ithaca, NY)

    2011-10-04T23:59:59.000Z

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  9. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01T23:59:59.000Z

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  10. Pressure-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-04-09T23:59:59.000Z

    An apparatus and method are disclosed for sensing changes in pressure and for generating optical signals related to changes in pressure. Light from a fiber optic is directed to a movable surface which is coated with a light-responsive material, and which moves relative to the end of the fiber optic in response to changes in pressure. The same fiber optic collects a portion of the reflected or emitted light from the movable surface. Changes in pressure are determined by measuring changes in the amount of light collected. 5 figs.

  11. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  12. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  13. Dual shell pressure balanced vessel

    DOE Patents [OSTI]

    Fassbender, Alexander G. (West Richland, WA)

    1992-01-01T23:59:59.000Z

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  14. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOE Patents [OSTI]

    Isaksson, J.; Koskinen, J.

    1995-08-22T23:59:59.000Z

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  15. Evaluation of anticipatory signal to steam generator pressure control program for 700 MWe Indian pressurized heavy water reactor

    SciTech Connect (OSTI)

    Pahari, S.; Hajela, S.; Rammohan, H. P.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Limited, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai, PIN-400094 (India)

    2012-07-01T23:59:59.000Z

    700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG and PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)

  16. Ionization in atmospheres of Brown Dwarfs and extrasolar planets IV. The Effect of Cosmic Rays

    E-Print Network [OSTI]

    Rimmer, Paul

    2013-01-01T23:59:59.000Z

    Cosmic rays provide an important source for free electrons in the Earth's atmosphere and also in dense interstellar regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport model for particle energies of 1 MeV model for particle energies of 1 GeV model atmospheres of an example brown dwarf with effective temperature Teff = 1500 K, and two example giant gas planets (Teff = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced significantly by cosmic rays when the pressure pgas model atmosphere of the examp...

  17. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  18. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  19. Testing of a variable-stroke Stirling engine

    SciTech Connect (OSTI)

    Thieme, L.G.; Allen, D.J.

    1986-01-01T23:59:59.000Z

    Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hr total with both helium and hydrogen working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent in the variable-stroke concept but they do emphasize the need for careful design in the area of the crossheads where the failures occurred. This paper describes these failures and the efforts to resolve the associated problems, and presents test results that were obtained. 5 refs., 17 figs.

  20. Dynamics of planetary atmospheres

    E-Print Network [OSTI]

    Read, Peter L.

    705810Sound speed (m s-1) 3920Scale height (km) 300400Emission-space pressure (hPa) 95124Emission temperature (K) 1.81.7Emitted/absorbed power 26.73.1Orbital inclination(o) 6901310Mean density (kg m-3) 10) Science #12;Jovian Jets · - uyy winds

  1. ATMOSPHERIC SCIENCES Observations from

    E-Print Network [OSTI]

    Pierce, Stephen

    samples from the recovery cruise and Bob O'Malley for evaluation of the CTD sensors used on the deployment p. 8 b. Instrument Calibration p. 9 Ocean Temperature and Salinity Sensors p. 9 Met Sensors p. 10 Doppler Profiler Compass p. 10 ADCP/ADP Battery Capacity p. 11 Pressure Sensors p. 11 CTD Sensors p. 12 c

  2. PRESSURE ACTIVATED SEALANT TECHNOLOGY

    SciTech Connect (OSTI)

    Michael A. Romano

    2004-04-01T23:59:59.000Z

    The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

  3. High pressure melt ejection

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.

    1983-01-01T23:59:59.000Z

    Recent probabilistic risk assessments have identified the potential for reactor pressure vessel failure while the reactor coolant system is at elevated pressure. The analyses postulate that the blowdown of steam and hydrogen into the reactor cavity will cause the core material to be swept from the cavity region into the containment building. The High Pressure Melt Streaming (HIPS) program is an experimental study of the high pressure ejection of molten material and subsequent interactions within a concrete cavity. The program focuses on using prototypic system conditions and scaled models of reactor geometries to accurately simulate the ex-vessel processes during high-pressure accident sequences. Scaling analyses of the experiment show that the criteria established for core debris removal from the cavity are met or exceeded. Tests are performed at two scales, representing 1/10th and 1/20th linear reproductions of the Zion reactor plant. Results of the 1/20th scale tests are presented.

  4. Present and Future Modes of Low Frequency Climate Variability

    SciTech Connect (OSTI)

    Cane, Mark A.

    2014-02-20T23:59:59.000Z

    This project addressed area (1) of the FOA, “Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability”. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  5. New process to avoid emissions: Constant pressure in coke ovens

    SciTech Connect (OSTI)

    Giertz, J.; Huhn, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). Inst. for Cokemaking and Fuel Technology; Hofherr, K. [Thyssen Stahl AG, Duisburg (Germany)

    1995-12-01T23:59:59.000Z

    A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

  6. Extraction of Freshwater and Energy from Atmosphere

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-04-19T23:59:59.000Z

    Author offers and researches a new, cheap method for the extraction of freshwater from the Earth atmosphere. The suggected method is fundamentally dictinct from all existing methods that extract freshwater from air. All other industrial methods extract water from a saline water source (in most cases from seawater). This new method may be used at any point in the Earth except Polar Zones. It does not require long-distance freshwater transportation. If seawater is not utilized for increasing its productivity, this inexpensive new method is very environment-friendly. The author method has two working versions: (1) the first variant the warm (hot) atmospheric air is lifted by the inflatable tube in a high altitude and atmospheric steam is condenced into freswater: (2) in the second version, the warm air is pumped 20-30 meters under the sea-surface. In the first version, wind and solar heating of air are used for causing air flow. In version (2) wind and propeller are used for causing air movment. The first method does not need energy, the second needs a small amount. Moreover, in variant (1) the freshwater has a high pressure (>30 or more atm.) and can be used for production of energy such as electricity and in that way the freshwater cost is lower. For increasing the productivity the seawater is injected into air and solar air heater may be used. The solar air heater produces a huge amount of electricity as a very powerful electricity generation plant. The offered electricity installation in 100 - 200 times cheaper than any common electric plant of equivalent output. Key words: Extraction freshwater, method of getting freshwater, receiving energy from atmosphere, powerful renewal electric plant.

  7. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

    1994-01-01T23:59:59.000Z

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  8. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11T23:59:59.000Z

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  9. Atmospheric Model Ocean Model

    E-Print Network [OSTI]

    Marshall, Andrew

    -Seasonal Prediction of Remote Drivers of Australian Climate Variability using POAMA Andrew G Marshall, Debbie Hudson index at 140°°°°E for OBS and POAMA hindcasts > http://poama.bom.gov.au andrew.marshall@bom.gov.au #12;

  10. Avian embryonic development in a helium-oxygen atmosphere

    E-Print Network [OSTI]

    Miller, David Harrison

    1968-01-01T23:59:59.000Z

    -through of the helium-oxygen mixture or com- pressed breathing air, (Figure 1, 2, and 3). Although the chambers were tightly sealed and a slight pressure inside the chamber showed no leaks when tested with a soapy solution, the interior atmosphere (He-02), became... seal without the use of tape. A slight positive pressure wss maintained inside each chamber and a soapy solution or ~gnoo (manufactured by Nuclear Products Co. , Cleveland, Ohio) was used to test for leaks. The chamber with He-02 was flushed...

  11. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  12. Atmospheric PSF Interpolation

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasion andArticle)Atmospheric

  13. Inter-annual Variability of Wind Indices across Europe

    E-Print Network [OSTI]

    Pryor, Sara C.

    Energy, Risø National Laboratory, DK-4000 Roskilde, Denmark and Atmospheric Science Program, Department, including wind energy. However, relatively little research has been conducted to assess the historical variability of wind energy density across different spatial scales or the degree to which one can derive

  14. Pressure-induced Hydration in Zeolite Tetranatrolite

    SciTech Connect (OSTI)

    Lee,Y.; Hriljac, J.; Parise, J.; Vogt, T.

    2006-01-01T23:59:59.000Z

    The tetranatrolite-paranatrolite transformation has remained a key problem in understanding the paragenesis of zeolites in the natrolite family. It is accepted that when paranatrolite, approximate formula Na{sub 16-x}Ca{sub x}Al{sub 16+x}Si{sub 24-x}O{sub 80}{center_dot}24H{sub 2}O, is removed from an aqueous environment and exposed to the atmosphere, it loses water and transforms to tetranatrolite, Na{sub 16-x}Ca{sub x}Al{sub 16+x}Si{sub 24-x}O{sub 80}{center_dot}nH{sub 2}O (n {le} 24). Here we show that this transformation is not only reversible, but that tetranatrolite exhibits two sequential pressure-induced hydrations leading first to paranatrolite and then to a superhydrated tetranatrolite above 0.2 and 3.0 GPa, respectively. We have previously reported similar behavior for the corresponding system with an ordered Si/Al distribution, i.e., natrolite itself, however the ordered version of paranatrolite exists over a much smaller pressure range. The pressure-induced transformations of natrolite and tetranatrolite thus further supports the supposition that paranatrolite is a distinct mineral species, with a pressure-stability field dependent upon composition.

  15. REMOVAL OF H{sub 2}S AND SO{sub 2} BY CaCO{sub 3}-BASED SORBENTS AT HIGH PRESSURES

    SciTech Connect (OSTI)

    Prof. Stratis V. Sotirchos

    1999-08-01T23:59:59.000Z

    The effects of various operating and process parameters on the direct sulfidation of limestones, that is, their reaction with H{sub 2}S in the presence of CO{sub 2} at concentrations large enough to prevent the decomposition of CaCO{sub 3} to CaO. Two calcitic solids of high calcium carbonate content (over 97%) were employed in the experiments, and the reaction was studied in a thermogravimetric analysis system that can operate at pressures above atmospheric. Pressures in the 1-4 atm range were employed. The results showed that the pressure influenced the behavior of the process mainly through its effects on the concentration of H{sub 2}S, and the rate of the reaction was found to be of first order with respect to this variable. The behavior of the process could be described satisfactorily by a shrinking core model with a product layer diffusivity that depended only on the temperature and did not vary with the distance from the external surface of the particles. The results on the effects of particle size, temperature, limestone sample, and concentration of H{sub 2}S were in agreement with those in a past investigation of the direct sulfidation reaction of limestones in our laboratory at atmospheric pressure. For the next six-month period, we plan to conduct experiments on the effects of the effects of carbonation reaction on the sulfation of calcined limestones. As explained in the introductory section of this report, this situation may occur as calcined particles move into areas of the combustor where the concentration of CO{sub 2} is above the equilibrium value for the calcination reaction at the prevailing temperature.

  16. Ashtekar's variables without spin

    E-Print Network [OSTI]

    Thomas Schucker

    2009-06-26T23:59:59.000Z

    Ashtekar's variables are shown to arise naturally from a 3+1 split of general relativity in the Einstein-Cartan formulation. Thereby spinors are exorcised.

  17. atmospheres thin atmospheres: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  18. Capacitance pressure sensor

    DOE Patents [OSTI]

    Eaton, William P. (Tijeras, NM); Staple, Bevan D. (Albuquerque, NM); Smith, James H. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  19. High pressure counterflow CHF.

    E-Print Network [OSTI]

    Walkush, Joseph Patrick

    1975-01-01T23:59:59.000Z

    This is a report of the experimental results of a program in countercurrent flow critical heat flux. These experiments were performed with Freon 113 at 200 psia in order to model a high pressure water system. An internally ...

  20. NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES

    SciTech Connect (OSTI)

    Morley, Caroline V.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, Mark S. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Visscher, Channon [Southwest Research Institute, Boulder, CO 80302 (United States); Saumon, Didier [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Leggett, S. K., E-mail: cmorley@ucolick.org [Gemini Observatory, Northern Operations Center, Hilo, HI 96720 (United States)

    2012-09-10T23:59:59.000Z

    As brown dwarfs cool, a variety of species condense in their atmospheres, forming clouds. Iron and silicate clouds shape the emergent spectra of L dwarfs, but these clouds dissipate at the L/T transition. A variety of other condensates are expected to form in cooler T dwarf atmospheres. These include Cr, MnS, Na{sub 2}S, ZnS, and KCl, but the opacity of these optically thinner clouds has not been included in previous atmosphere models. Here, we examine their effect on model T and Y dwarf atmospheres. The cloud structures and opacities are calculated using the Ackerman and Marley cloud model, which is coupled to an atmosphere model to produce atmospheric pressure-temperature profiles in radiative-convective equilibrium. We generate a suite of models between T{sub eff} = 400 and 1300 K, log g = 4.0 and 5.5, and condensate sedimentation efficiencies from f{sub sed} = 2 to 5. Model spectra are compared to two red T dwarfs, Ross 458C and UGPS 0722-05; models that include clouds are found to match observed spectra significantly better than cloudless models. The emergence of sulfide clouds in cool atmospheres, particularly Na{sub 2}S, may be a more natural explanation for the 'cloudy' spectra of these objects, rather than the reemergence of silicate clouds that wane at the L-to-T transition. We find that sulfide clouds provide a mechanism to match the near- and mid-infrared colors of observed T dwarfs. Our results indicate that including the opacity of condensates in T dwarf atmospheres is necessary to accurately determine the physical characteristics of many of the observed objects.

  1. Sandia National Laboratories: atmospheric chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and atmospheric chemistry that is expected to benefit auto and engine manufacturers, oil and gas utilities, and other industries that employ combustion models. A paper...

  2. Pressurized reactor system and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, J.M.

    1996-06-18T23:59:59.000Z

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.

  3. ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC

    E-Print Network [OSTI]

    Moelders, Nicole

    ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

  4. ATMOSPHERIC ELSEVIER AtmosphericResearch 44 (1997) 231-241

    E-Print Network [OSTI]

    Reading, University of

    ATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch 44 (1997) 231-241 Error analysis of backscatter;accepted 14 February 1997 Abstract Ice sphere backscatter has been calculated using both Mie theory as a reasonable approximation for rv 1997 Elsevier Science B.V. 1. Introduction Cirrus clouds play

  5. Pressure suppression containment system

    DOE Patents [OSTI]

    Gluntz, D.M.; Townsend, H.E.

    1994-03-15T23:59:59.000Z

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.

  6. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, D.W.

    1994-09-06T23:59:59.000Z

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  7. Pressure suppression containment system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA); Townsend, Harold E. (San Jose, CA)

    1994-03-15T23:59:59.000Z

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.

  8. Space Science : Atmosphere Greenhouse Effect

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

  9. Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions

    SciTech Connect (OSTI)

    Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D

    2007-12-21T23:59:59.000Z

    This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.

  10. Plating under reduced pressure

    SciTech Connect (OSTI)

    Dini, J.W.; Beat, T.G.; Cowden, W.C. (Lawrence Livermore National Lab., CA (United States)); Ryan, L.E.; Hewitt, W.B. (TRW, Inc., Redondo Beach, CA (United States))

    1992-06-01T23:59:59.000Z

    Plating under reduced pressure was evaluated for both electroless nickel and electrodeposited copper systems. The objective was to reduce pitting of these coatings thereby further enhancing their usage for diamond turning applications. Cursory experiments with electroless nickel showed reduced porosity when deposition was done at around 500 torr. Detailed experiments with electrodeposited copper at around 100 torr provided similar results. Scanning tunneling microscopy was effectively used to show the improvement in the copper deposits plated under reduced pressure. Benefits included reduced surface roughness and finer and denser grain structure.

  11. Ch4. Atmosphere and Surface Energy Balances

    E-Print Network [OSTI]

    Pan, Feifei

    ;Energy Pathways #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Atmosphere or performing any work. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission or water. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission Atmosphere

  12. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert [VOCALS-REx PI, University of Washington; Bretherton, Christopher [GEWEX/GCSS Representative, University of Washington; Huebert, Barry [SOLAS Representative, University of Hawaii; Mechoso, Roberto C. [VOCALS Science Working Group Chair, UCLA; Weller, Robert [Woods Hole Oceanographic Institution

    VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international CLIVAR program the major goal of which is to develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. The principal program objectives are: 1) the improved understanding and regional/global model representation of aerosol indirect effects over the SEP; 2) the elimination of systematic errors in the region of coupled atmospheric-ocean general circulation models, and improved model simulations and predictions of the coupled climate in the SEP and global impacts of the system variability. VOCALS is organized into two tightly coordinated components: 1) a Regional Experiment (VOCALSREx), and 2) a Modeling Program (VOCALS-Mod). Extended observations (e.g. IMET buoy, satellites, EPIC/PACS cruises) will provide important additional contextual datasets that help to link the field and the modeling components. The coordination through VOCALS of observational and modeling efforts (Fig. 3) will accelerate the rate at which field data can be used to improve simulations and predictions of the tropical climate variability [Copied from the Vocals Program Summary of June 2007, available as a link from the VOCALS web at http://www.eol.ucar.edu/projects/vocals/]. The CLIVAR sponsored program to under which VOCALS falls is VAMOS, which stands for Variability of the American Monsoon Systems.

  13. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  14. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  15. Saltstone Osmotic Pressure

    SciTech Connect (OSTI)

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-09-23T23:59:59.000Z

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency <1 and as a result actual osmotic pressures are less than theoretical pressures. Observations from laboratory tests of simulated saltstone indicate that it may exhibit the behavior of a semi-permeable membrane. After several weeks of back pressure saturation in a flexible wall permeameter (FWP) the membrane containing a simulated saltstone sample appeared to have bubbles underneath it. Upon removal from the FWP the specimen was examined and it was determined that the bubbles were due to liquid that had accumulated between the membrane and the sample. One possible explanation for the accumulation of solution between the membrane and sample is the development of osmotic pressure within the sample. Osmotic pressure will affect fluid flow and contaminant transport and may result in the changes to the internal structure of the semi-permeable material. B?nard et al. 2008 reported swelling of wet cured Portland cement mortars containing salts of NaNO{sub 3}, KNO{sub 3}, Na{sub 3}PO{sub 4}x12H {sub 2}O, and K{sub 3}PO{sub 4} when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that groundwater will flow into the semi-permeable material resulting in hydrologic containment within the membrane. Additionally, hyperfiltration can occur within semi-permeable materials when water moves through a membrane into the more concentrated solution and dissolved constituents are retained in the lower concentration solution. Groundwater flow and transport equations that incorporate chemical gradients (osmosis) have been developed. These equations are referred to as coupled flow equations. Currently groundwater modeling to assess the performance of saltstone waste forms is conducted using the PORFLOW groundwater flow and transport model. PORFLOW does not include coupled flow from chemico-osmotic gradients and therefore numerical simulation of the effect of coupled flow on contaminant transport in and around saltstone cannot be assessed. Most natural semi-permeable membranes are non-ideal membranes and do not restrict all movement of solutes and as a result theoretical osmotic potential is not realized. Osmotic efficiency is a parameter in the coupled flow equation that accounts for the

  16. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, R.C.; Upton, H.A.

    1994-10-04T23:59:59.000Z

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

  17. Electro-hydraulic control system for a dual-pass continuously variable transmission

    SciTech Connect (OSTI)

    Algrain, M.C.; Anderson, S.R.; Smirl, R.L.

    1991-07-16T23:59:59.000Z

    This patent describes a control system for controlling the hydraulic pressure in a dual-pass continuously variable transmission system having a plurality of drive paths from a power input to a power output, and a continuously variable component including first and second variable pulleys disposed respectively on first and second intermediate shafts, the transmission system having first and second clutches engagable to effect transition from a first drive path in which the first variable pulley is the driver pulley to a second drive path in which the second variable pulley is the driver pulley, the transmission system being releasable to effect a transition from the second drive path to the first drive path. It comprises means to provide a primary hydraulic pressure to each of the first and second variable pulleys; means for providing a secondary hydraulic pressure to each of the first and second variable pulleys; means for electrically regulating the primary and secondary pressures responsive to engine conditions; and means for directing the primary and secondary hydraulic pressures to the first and second variable pulleys in response to change of drive path.

  18. Modeling Atmospheric Aerosols V. Rao Kotamarthi

    E-Print Network [OSTI]

    Modeling Atmospheric Aerosols V. Rao Kotamarthi and Yan Feng Climate Research Section Environmental Science Division Argonne National Laboratory #12;Outline Atmospheric Aerosols and gas phase heterogeneous reactions Regional Scales and Atmospheric Aerosols Regional Scale Aerosols: Ganges Valley Aerosol

  19. Development of models for series and parallel fan variable air volume terminal units

    E-Print Network [OSTI]

    Furr, James C., Jr

    2007-09-17T23:59:59.000Z

    Empirical models of airflow output and power consumption were developed for series and parallel fan powered variable air volume terminal units at typical design pressure conditions. A testing procedure and experimental setup were developed to test...

  20. Deconvolution of variable rate reservoir performance data using B-splines

    E-Print Network [OSTI]

    Ilk, Dilhan

    2007-04-25T23:59:59.000Z

    of permanent downhole gauges and large-scale processing/analysis of production data. Under these circumstances, our objective is to create a robust and practical tool which can tolerate reasonable variability and relatively large errors in rate and pressure...

  1. Variable Speed Drive (VSD) Applications in Dual-Duct Constant Volume Systems

    E-Print Network [OSTI]

    Joo, I.; Liu, M.; Conger, K.; Wang, G.

    2002-01-01T23:59:59.000Z

    Models have been developed for static pressure and potential supply fan energy savings by using variable speed drive (VSD) in dual-duct constant volume systems. Experiments have been performed using a full size dual-duct constant volume system...

  2. Fragmentation Energetics of Clusters Relevant to Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Clusters Relevant to Atmospheric New Particle Formation. Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation. Abstract: The exact mechanisms by...

  3. A flexible pressure monitoring system for pressure ulcer prevention

    E-Print Network [OSTI]

    Yip, Marcus

    Pressure ulcers are painful sores that arise from prolonged exposure to high pressure points, which restricts blood flow and leads to tissue necrosis. This is a common occurrence among patients with impaired mobility, ...

  4. Pressure suppression system

    DOE Patents [OSTI]

    Gluntz, D.M.

    1994-10-04T23:59:59.000Z

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein. 3 figs.

  5. Continuous pressure letdown system

    DOE Patents [OSTI]

    Sprouse, Kenneth M.; Matthews, David R.; Langowski, Terry

    2010-06-08T23:59:59.000Z

    A continuous pressure letdown system connected to a hopper decreases a pressure of a 2-phase (gas and solid) dusty gas stream flowing through the system. The system includes a discharge line for receiving the dusty gas from the hopper, a valve, a cascade nozzle assembly positioned downstream of the discharge line, a purge ring, an inert gas supply connected to the purge ring, an inert gas throttle, and a filter. The valve connects the hopper to the discharge line and controls introduction of the dusty gas stream into the discharge line. The purge ring is connected between the discharge line and the cascade nozzle assembly. The inert gas throttle controls a flow rate of an inert gas into the cascade nozzle assembly. The filter is connected downstream of the cascade nozzle assembly.

  6. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14T23:59:59.000Z

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  7. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1992-01-01T23:59:59.000Z

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  8. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14T23:59:59.000Z

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  9. Pressure suppression system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA)

    1994-01-01T23:59:59.000Z

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein.

  10. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1993-01-01T23:59:59.000Z

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  11. Environmental Chemistry II (Atmospheric Chemistry)

    E-Print Network [OSTI]

    Dibble, Theodore

    SYLLABUS FOR Environmental Chemistry II (Atmospheric Chemistry) FCH 511 Fall 2013 Theodore S/explaining the trends in J as a function of altitude and solar zenith angle. The second involves analyzing real

  12. THE MARTIAN ATMOSPHERIC BOUNDARY LAYER

    E-Print Network [OSTI]

    Spiga, Aymeric

    THE MARTIAN ATMOSPHERIC BOUNDARY LAYER A. Petrosyan,1 B. Galperin,2 S. E. Larsen,3 S. R. Lewis,4 A [Haberle et al., 1993a; Larsen et al., 2002; Hinson et al., 2008]. At night, convection is inhibited

  13. High pressure storage vessel

    DOE Patents [OSTI]

    Liu, Qiang

    2013-08-27T23:59:59.000Z

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  14. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D. (ed.)

    1984-07-01T23:59:59.000Z

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  15. Laser Atmospheric Studies with VERITAS

    E-Print Network [OSTI]

    C. M. Hui; for the VERITAS collaboration

    2007-09-25T23:59:59.000Z

    As a calibrated laser pulse propagates through the atmosphere, the amount of Rayleigh-scattered light arriving at the VERITAS telescopes can be calculated precisely. This technique was originally developed for the absolute calibration of ultra-high-energy cosmic-ray fluorescence telescopes but is also applicable to imaging atmospheric Cherenkov telescopes (IACTs). In this paper, we present two nights of laser data taken with the laser at various distances away from the VERITAS telescopes and compare it to Rayleigh scattering simulations.

  16. Economics of Steam Pressure Reduction

    E-Print Network [OSTI]

    Sylva, D. M.

    Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

  17. Variable nonlinear resistances

    E-Print Network [OSTI]

    Howard, James Edgar

    1955-01-01T23:59:59.000Z

    VARIETAL". NONLINEAR RESIS'IANCES A Thes1s JA'. 4ES EDGAR HOWARD as to style and content by Head Department January 1955 LIBRARY A 4 IS COLLEGE PF TEXAS VARIABLE NONLINEAR RESISTANCES A Thesis By JAMES EDGAR HOWARD Submitted...

  18. Nitrogen at very high pressure

    SciTech Connect (OSTI)

    Nellis, W.J.

    1987-07-01T23:59:59.000Z

    High-pressure results for nitrogen are reviewed and discussed in terms of phenomena that occur at extreme conditions.

  19. Pressure Data Within BOP- ODS

    Broader source: Energy.gov [DOE]

    This file describes the components within the BOP and the pressure readings taken during diagnostic operations on May 25.

  20. Pressure Data Within BOP- XLS

    Broader source: Energy.gov [DOE]

    This file describes the components within the BOP and the pressure readings taken during diagnostic operations on May 25.

  1. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect (OSTI)

    Ross, M.A.

    1980-06-16T23:59:59.000Z

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  2. Blood Pressure Medicine: Special Instructions

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Blood Pressure Medicine: Special Instructions: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and Blood Institute · What is my blood pressure reading in numbers? · What is my goal blood pressure? · Is there a healthy eating plan that I should follow to help

  3. MEAD: An interdisciplinary study of the marine effects of atmospheric deposition in the Kattegat

    E-Print Network [OSTI]

    Pryor, Sara C.

    in eutrophication processes in the Kattegat. Abstract This paper summarises the results of the EU funded MEAD to the overall eutrophication pressures in this region. However, we also conclude that it is unlikely: Nitrogen; Eutrophication; Atmospheric inputs; Kattegat 1. Introduction The coastal seas are amongst

  4. A study of capillary pressure in a partly saturated quartz powder

    E-Print Network [OSTI]

    Burke, Jack Willard, Jr

    1964-01-01T23:59:59.000Z

    3-2. Principle of the Direct Suction Method. of Measuring Soil Suction contents. Suctions greater than one atmosphere cannot be measured as the water in the measuring system will vaporize or cavitate. The direct suction method (Figure 3-2) covers.... This does not effect the capillary pressure, which is the difference between the air and water across the menisci formed in the disc and. sample, but it does relieve negative pressure in the measuring system water. Therefore the cavitation...

  5. Envera Variable Compression Ratio Engine

    SciTech Connect (OSTI)

    Charles Mendler

    2011-03-15T23:59:59.000Z

    Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new technologies are packaged together to provide the greatest gains at the least cost. Aggressive engine downsiz

  6. High-pressure neutron diffraction

    SciTech Connect (OSTI)

    Xu, Hongwu [Los Alamos National Laboratory

    2011-01-10T23:59:59.000Z

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  7. Summary Trees exposed to elevated CO2 partial pressure ([CO2]) generally show increased rates of photosynthesis and

    E-Print Network [OSTI]

    of photosynthesis and growth, but effects on leaf respiration are more variable. The causes of this variable), nighttime respiration, number of mitochondria. Introduction Terrestrial plant photosynthesis and respiration the atmosphere and terrestrial biosphere are large, because photosynthesis assimilates about 120 Pg C year­1

  8. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20T23:59:59.000Z

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  9. Variable Crop Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Sammons, Ray

    1980-01-01T23:59:59.000Z

    )OC lAL45.7 173 1. 1224 Texas Agricultural Extension Service The Texas A&M University System Daniel C. Pfannstiel,Director colleg e Station, Texas / f , ' '~ :';,; ,,: ''': ~ " k , -~. _Variable _Crop Share _Leases ... Marvin... Sartin and Ray Sammons* Renting or leasing farmland is part of many modern farming operations and increases average farm size in U. S. agriculture. Economies of size are vitally import ant to farm operations as they strive to cope with the continuous...

  10. Variable Frequency Pump Drives

    E-Print Network [OSTI]

    Karassik, I. J.; Petraccaro, L. L.; McGuire, J. T.

    . In a conventional pump and driver arrangement (for example, a centrifugal pump coupled to an AC induction motor'with no speed control provision), the motor runs at. a constant speed, which is determined by the incoming line frequency, and the pump... when it is needed. LONG RANGE DESIGN TRENDS The growing use of variable-frequency electric motor drives will permit the integration of 60 and 50 cycle pump lines. One important concern for future improvements is the growing possibility...

  11. Oscillations of solar atmosphere neutrinos

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Mirizzi; D. Montanino; P. D. Serpico

    2006-11-10T23:59:59.000Z

    The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ``vacuum'' oscillations, dominated by a single mixing parameter (the angle theta_23).

  12. Cumulant expansions for atmospheric flows

    E-Print Network [OSTI]

    Ait-Chaalal, Farid; Meyer, Bettina; Marston, J B

    2015-01-01T23:59:59.000Z

    The equations governing atmospheric flows are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifests itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. We review how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can successfully capture the growth of the convective boundary layer. Seco...

  13. Pressurized melt ejection into water pools

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M. (Sandia National Labs., Albuquerque, NM (USA)); Ross, J.W.; Oliver, M.S.; Gilbert, D.W.; Nichols, R.T. (Ktech Corp., Albuquerque, NM (USA))

    1991-03-01T23:59:59.000Z

    Direct Containment Heating is important because it is one of the postulated methods for early containment failure. If the reactor pressure vessel (RPV) should fail at an instrument tube penetration in the lower head, the resulting aperture would allow the molten core material to be discharged at high velocity into the cavity. Scaled experiments have demonstrated that the gas discharged during blowdown of the pressure system can entrain core debris and carry it out of the cavity region. Although these experiments were performed with the cavity initially devoid of water, other tests with the cavity partially filled with water exhibited similar results. The objective of the work described here is twofold: (1) to study the jet ejection and debris dispersal behavior when water is in contact with the lower head of the RPV and completely fills the cavity; and, (2) to compare the results of an experiment where the cavity is partially filled with water. These tests are of interest not only because they consider the dispersal of water and debris from the cavity but they also consider the potential consequences of codispersing water with core debris into the containment. Because the core debris may impart sufficient energy to the containment atmosphere to raise the pressure to potentially threatening levels, it is important to identify possible mitigating mechanisms. Analytical efforts have suggested that the codispersed water may act as a finely distributed heat sink that would have the beneficial effect of absorbing debris energy. This has not been confirmed experimentally, although the work presented here does attempt to identify the potential for water preexisting in the cavity to be dispersed as small droplets. 17 refs., 41 figs., 12 tabs.

  14. Theoretical collapse pressures for two pressurized torispherical heads

    SciTech Connect (OSTI)

    Kalnins, A.; Updike, D.P. [Lehigh Univ., Bethlehem, PA (United States); Rana, M.D. [Praxair, Inc., Tonawanda, NY (United States). Research and Development Dept.

    1995-12-01T23:59:59.000Z

    In order to determine the pressures at which real torispherical heads fail upon a single application of pressure, two heads were pressurized in recent Praxair tests, and displacements and strains were recorded at various locations. In this paper, theoretical results for the two test heads are presented in the form of curves of pressure versus crown deflections, using the available geometry and material parameters. From these curves, limit and collapse pressures are calculated, using procedures permitted by the ASME B and PV Code Section 8/Div.2. These pressures are shown to vary widely, depending on the method and model used to calculate them. The effect of no stress relief on the behavior of the Praxair test heads is also evaluated and found to be of no significance for neither the objectives of the tests nor the objectives of this paper. The results of this paper are submitted as an enhancement to the experimental results recorded during the Praxair tests.

  15. Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity

    E-Print Network [OSTI]

    Troch, Peter

    Total water storage dynamics in response to climate variability and extremes: Inference from long; published 27 April 2012. [1] Terrestrial water storage is a basic element of the hydrological cycle and a key state variable for land surface-atmosphere interaction. However, measuring water storage

  16. Cradle and pressure grippers

    DOE Patents [OSTI]

    Muniak, John E. (New York, NY)

    2001-01-01T23:59:59.000Z

    A gripper that is designed to incorporate the functions of gripping, supporting and pressure tongs into one device. The gripper has two opposing finger sections with interlocking fingers that incline and taper to form a wedge. The interlocking fingers are vertically off-set so that the opposing finger sections may close together allowing the inclined, tapered tips of the fingers to extend beyond the plane defined by the opposing finger section's engagement surface. The range of motion defined by the interlocking relationship of the finger sections allows the gripper to grab, lift and support objects of varying size and shape. The gripper has one stationary and one moveable finger section. Power is provided to the moveable finger section by an actuating device enabling the gripper to close around an object to be lifted. A lifting bail is attached to the gripper and is supported by a crane that provides vertical lift.

  17. Atmospheric circulation and cyclone frequency variations linked to the primary modes of Greenland snow accumulation

    E-Print Network [OSTI]

    Howat, Ian M.

    Atmospheric circulation and cyclone frequency variations linked to the primary modes of Greenland from 34 Greenland firn cores, extending from 1982 to 1996, are used to identify spatial accumulation component, representing west-central Greenland accumulation, is correlated to NAO variability, having

  18. Low pressure and atmospheric pressure plasma-jet systems and their application for deposition of thin films

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of thin films Z. Hubicka1 , M. Cada1 , O. Churpita1 , P. Virostko1,2 , P. Adámek3 , H. Síchová2 , M. Sícha. The target was to deposit such kind of thin films with crystalline structure at low temperature in order) perovskite thin films on kapton (polymer) foil with Pt electrode layer. The RF hollow cathode nozzle

  19. HEATING THE ATMOSPHERE ABOVE SUNSPOTS

    E-Print Network [OSTI]

    Rucklidge, Alastair

    become fragmented and twisted, and where they generate the necessary energy to heat the solar coronaHEATING THE ATMOSPHERE ABOVE SUNSPOTS David Alexander and Neal E. Hurlburt Lockheed Martin Solar, University of Cambridge, Cambridge, CB3 9EW, UK Abstract We present our results of a hybrid model of sunspots

  20. Technique to study corrosion in fluctuating gaseous atmospheres

    SciTech Connect (OSTI)

    Ficalora, P.J.; Godfrey, T.G.

    1983-07-01T23:59:59.000Z

    The hot metal surfaces in a combustion system operating with an imperfect air-to-fuel mix experience a variation of corrosion potential. For example, the corrosion conditions can vary from reducing to oxidizing as the combustion conditions vary from rich to lean. This variation of conditions is particularly important in combustion systems utilizing sulfur-containing fuels since small variations in the sulfur partial pressure can cause catastrophic corrosion conditions. In an atmospheric fluidized-bed combustor (AFBC), coal is burned in the presence of a sulfur sorber, CaO or MgO. The alkaline oxide reacts with sulfur dioxide, the combustion product of the sulfur in the coal, to form the corresponding sulfate. Hence, the oxygen and sulfur dioxide partial pressures are controlled by the input conditions (air-coal ratio) as well as the sorption process. Figure 1 shows the observed variation of the oxygen partial pressure in an AFBC as a function of time and bed position. Clearly, fluctuations occur in a time interval of seconds, and the oxygen partial pressure can vary over approximately ten orders of magnitude. Corrosion in these fluctuating gaseous environments is being studied by measuring the resistance change of a heated metal filament specimen while it reacts with alternating oxidizing and sulfidizing gas pulses.

  1. Steam Oxidation at High Pressure

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL; Carney, Casey [URS

    2013-07-19T23:59:59.000Z

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  2. Cosmological perturbations of a perfect fluid and noncommutative variables

    SciTech Connect (OSTI)

    De Felice, Antonio; Gerard, Jean-Marc; Suyama, Teruaki [Centre for Particle Physics and Phenomenology (CP3), Universite catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)

    2010-03-15T23:59:59.000Z

    We describe the linear cosmological perturbations of a perfect fluid at the level of an action, providing thus an alternative to the standard approach based only on the equations of motion. This action is suited not only to perfect fluids with a barotropic equation of state, but also to those for which the pressure depends on two thermodynamical variables. By quantizing the system we find that (1) some perturbation fields exhibit a noncommutativity quite analogous to the one observed for a charged particle moving in a strong magnetic field, (2) local curvature and pressure perturbations cannot be measured simultaneously, (3) ghosts appear if the null energy condition is violated.

  3. Energy Systems High Pressure Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

  4. Aerosol source term in high-pressure-melt ejection. [PWR; BWR

    SciTech Connect (OSTI)

    Brockmann, J.E.; Tarbell, W.W.

    1983-01-01T23:59:59.000Z

    Pressurized ejection of melt from a reactor pressure vessel has been identified as an important element of a severe reactor accident. Copious aerosol production is observed when thermitically generated melts pressurized with nitrogen or carbon dioxide to 1.3 to 17 MPa are ejected into an air atmosphere. Aerosol particle size distributions measured in the tests have modes of about 0.5, 5, and > 10..mu..m. Mechanisms leading to formation of these multimodal size distributions are suggested. This aerosol is a potentially important fission product source term which has not been considered in previous severe accident analyses.

  5. High Pressure Hydrogen Materials Compatibility of Piezoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

  6. Estimation of membrane lateral pressure in living cells by means of multidimensional confocal fluorescence microscopy

    E-Print Network [OSTI]

    Rosso, Lula

    -labeled phospholipids. We report an alternative strategy based on the intramolecular fluorescence energy transfer Kensington Campus, London SW7 2AZ, UK Considerable pressures (many tens of atmospheres) are generated within between the energy necessary to keep the hydrocarbon chains away from water and the energy generated

  7. Conceptual design of pressure relief systems for cryogenic application

    SciTech Connect (OSTI)

    Grohmann, S. [Institute for Technical Thermodynamics and Refrigeration, Karlsruhe Institute of Technology, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany and Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 E (Germany); Süßer, M. [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-01-29T23:59:59.000Z

    The conceptual design of pressure relief systems is an important aspect in the early phase of any cryogenic system design, because a prudent and responsible evaluation of relief systems involves much more than just relief devices. The conceptual design consists of various steps: At first, hazard scenarios must be considered and the worst-case scenario identified. Next, a staged interaction against pressure increase is to be defined. This is followed by the selection of the general type of pressure relief device for each stage, such as safety valve and rupture disc, respectively. Then, a decision concerning their locations, their capacities and specific features must be taken. Furthermore, it is mandatory to consider the inlet pressure drop and the back pressure in the exhaust line for sizing the safety devices. And last but not least, economic and environmental considerations must be made in case of releasing the medium to the atmosphere. The development of the system's safety concept calls for a risk management strategy based on identification and analysis of hazards, and consequent risk mitigation using a system-based approach in compliance with the standards.

  8. Optimization of Pressurized Oxy4Combustion with Flameless Reactor

    SciTech Connect (OSTI)

    Malavasi, Massimo; Landegger, Gregory

    2014-06-30T23:59:59.000Z

    Pressurized OxyECombustion is one of the most promising technologies for utilityEscale power generation plants. Benefits include the ability to burn low rank coal and capture C02. By increasing the flue gas pressure during this process, greater efficiencies are derived from increased quantity and quality of thermal energy recovery. UPA with modeling support from MIT and testing and data verification by Georgia Tech’s Research Center designed and built a 100kW system capable of demonstrating pressurized oxyEcombustion using a flameless combustor. Wyoming PRB coal was run at 15 and 32 bar. Additional tests were not completed but sampled data demonstrated the viability of the technology over a broader range of operating pressures, Modeling results illustrated a flat efficiency curve over 20 bar, with optimum efficiency achieved at 29 bar. This resulted in a 33% (HHV) efficiency, a 5 points increase in efficiency versus atmospheric oxyEcombustion, and a competitive cost of electricity plus greater C02 avoidance costs then prior study’s presented. UPA’s operation of the benchEscale system provided evidence that key performance targets were achieved: flue gas sampled at the combustor outlet had nonE detectable residual fly ashes, and low levels of SO3 and heavyEmetal. These results correspond to prior pressurized oxyEcombustion testing completed by IteaEEnel.

  9. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

    2005-08-01T23:59:59.000Z

    Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

  10. To estimate vapor pressure easily

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C. (Lamar Univ., Beaumont, TX (USA))

    1989-10-01T23:59:59.000Z

    Vapor pressures as functions of temperature for approximately 700 major organic chemical compounds are given. The tabulation also gives the temperature range for which the data are applicable. Minimum and maximum temperatures are denoted by TMIN and TMAX. The Antoine equation that correlates vapor pressure as a function of temperature is described. A representative comparison of calculated and actual data values for vapor pressure is shown for ethyl alcohol. The coefficient tabulation is based on both literature (experimental data) and estimated values.

  11. Pressure testing of torispherical heads

    SciTech Connect (OSTI)

    Rana, M.D. [Praxair, Inc., Tonawanda, NY (United States). Research and Development Dept.; Kalnins, A.; Updike, D.P. [Lehigh Univ., Bethlehem, PA (United States)

    1995-12-01T23:59:59.000Z

    Two vessels fabricated from SA516-70 steel with 6% knuckle radius torispherical heads were tested under internal pressure to failure. The D/t ratios of Vessel 1 and Vessel 2 were 238 and 185 respectively. The calculated maximum allowable working pressures of Vessel 1 and 2 heads using the ASME Section 8, Div. 1 rules and measured dimensions were 85 and 110 psi, respectively. Vessel 1 failed at a nozzle weld in the cylindrical shell at 700 psi pressure. Neither buckling nor any other objectionable deformation of the head was observed at a theoretical double-elastic-slope collapse pressure of 241 and a calculated buckling pressure of 270 psi. Buckles were observed developing slowly after 600 psi pressure, and a total of 22 buckles were observed after the test, having the maximum amplitude of 0.15 inch. Vessel 2 failed at the edge of the longitudinal weld of the cylindrical shell at 1,080 psi pressure. Neither buckling nor any other objectionable deformation of the head was observed up to the final pressure, which exceeded the theoretical double-elastic-slope collapse and calculated buckling pressures of 274 psi and 342 psi, respectively.

  12. Variable Valve Actuation

    SciTech Connect (OSTI)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31T23:59:59.000Z

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the mechanism it was determined that the single cam design did not have enough flexibility to satisfy three critical OEM requirements simultaneously, (maximum valve lift variation, intake valve opening timing and valve closing duration), and a new approach would be necessary. After numerous internal design reviews including several with the OEM a dual cam design was developed that had the flexibility to meet all motion requirements. The second cam added complexity to the mechanism however the cost was offset by the deletion of the electric motor required in the previous design. New patent applications including detailed drawings and potential valve motion profiles were generated and alternate two cam designs were proposed and evaluated for function, cost, reliability and durability. Hardware was designed and built and testing of sample hardware was successfully completed on an engine test stand. The mechanism developed during the course of this investigation can be applied by Original Equipment Manufacturers, (OEM), to their advanced diesel engines with the ultimate goal of reducing emissions and improving fuel economy. The objectives are: (1) Develop an optimal, cost effective, variable valve actuation (VVA) system for advanced low temperature diesel combustion processes. (2) Design and model alternative mechanical approaches and down-select for optimum design. (3) Build and demonstrate a mechanism capable of application on running engines.

  13. MID-INFRARED SPECTRAL VARIABILITY ATLAS OF YOUNG STELLAR OBJECTS

    SciTech Connect (OSTI)

    Kospal, A. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Abraham, P.; Kun, M.; Moor, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Acosta-Pulido, J. A. [Instituto de Astrofisica de Canarias, Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Dullemond, C. P. [Institut fuer Theoretische Astrophysik, Zentrum fuer Astronomie der Universitaet Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Henning, Th.; Leinert, Ch. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Turner, N. J., E-mail: akospal@rssd.esa.int [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-08-01T23:59:59.000Z

    Optical and near-infrared variability is a well-known property of young stellar objects. However, a growing number of recent studies claim that a considerable fraction of them also exhibit mid-infrared flux changes. With the aim of studying and interpreting variability on a decadal timescale, here we present a mid-infrared spectral atlas containing observations of 68 low- and intermediate-mass young stellar objects. The atlas consists of 2.5-11.6 {mu}m low-resolution spectra obtained with the ISOPHOT-S instrument on board the Infrared Space Observatory (ISO) between 1996 and 1998, as well as 5.2-14.5 {mu}m low-resolution spectra obtained with the Infrared Spectrograph instrument on board the Spitzer Space Telescope between 2004 and 2007. The observations were retrieved from the ISO and Spitzer archives and were post-processed interactively by our own routines. For those 47 objects where multi-epoch spectra were available, we analyze mid-infrared spectral variability on annual and/or decadal timescales. We identify 37 variable candidate sources. Many stars show wavelength-independent flux changes, possibly due to variable accretion rates. In several systems, all exhibiting 10 {mu}m silicate emission, the variability of the 6-8 {mu}m continuum, and the silicate feature exhibit different amplitudes. A possible explanation is variable shadowing of the silicate-emitting region by an inner disk structure of changing height or extra silicate emission from dust clouds in the disk atmosphere. Our results suggest that mid-infrared variability, in particular, the wavelength-dependent changes, is more ubiquitous than was known before. Interpreting this variability is a new possibility for exploring the structure of the disk and its dynamical processes.

  14. Sulfuryl fluoride in the global atmosphere

    E-Print Network [OSTI]

    Muhle, J.

    The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO[subscript 2]F[subscript 2]) have been made as part of the Advanced Global Atmospheric ...

  15. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012)

    E-Print Network [OSTI]

    Gerber, Edwin

    2012-01-01T23:59:59.000Z

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012) Published online in Wiley Online Library using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP) concentrations and sea- surface temperatures (SSTs). These integrations enable the relative role of ozone

  16. A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations

    E-Print Network [OSTI]

    Duarte, Max; Balakrishnan, Kaushik; Bell, John B; Romps, David M

    2013-01-01T23:59:59.000Z

    We investigate different numerical techniques for evolving moist atmospheric flows within a fully compressible framework. In the standard numerical approach, the choice of variables is motivated by those that remain invariant in dry adiabatic flow, phase transitions are treated as an external energy source, and the physically-irrelevant fast acoustic modes are decoupled during the numerical integration. For the purposes of this study, we consider the compressible Euler equations in terms of the primitive thermodynamic variables, namely density, momentum, and total energy of moist air, without any special numerical treatment of the fast acoustic dynamics. This allows us to incorporate consistent moist thermodynamic properties throughout the numerical solution, and to thoroughly investigate both the standard two-step splitting approach for moist atmospheric flows as well as a fully coupled technique based on the use of variables that are conserved in moist flows, i.e. total energy of moist air and total water c...

  17. Atmospheric transmission model for a solar beam propagating between a heliostat and a receiver

    SciTech Connect (OSTI)

    Pitman, C.L.; Vant-Hull, L.L.

    1982-01-01T23:59:59.000Z

    Formulae are presented that provide estimates of the transmittance for a solar beam propagating between a heliostat and a central receiver. These formulae are wavelength independent, functional fits to the tabulated data of Vittitoe and Biggs, which in turn are from numerical integrations of spectral transmittance data calculated with the aid of the computer code LOWTRAN 3. The formulae allow for interpolation and extrapolation, and they have a form characteristic of atmospheric transmission models. The transmittance model contains five explicit physical variables (the site elevation H, the atmospheric water vapor density rho, the scattering coefficient ..beta.., the tower height h, and the slant range R) and three implicit variables (the season of the year, the climatic region, and the site elevation H) because rho and ..beta.. are dependent on these three variables.

  18. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect (OSTI)

    Paul H. Wine

    1998-11-23T23:59:59.000Z

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  19. atmospheric nitrogen fluorescence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps heatCh4. Atmosphere and Surface Energy Balances...

  20. atmospheric energy redistribution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Ch4. Atmosphere and Surface Energy Balances Geosciences Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps...

  1. An in situ tensile test apparatus for polymers in high pressure hydrogen

    SciTech Connect (OSTI)

    Alvine, K. J., E-mail: kyle.alvine@pnnl.gov; Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2014-10-15T23:59:59.000Z

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  2. An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

    2014-10-10T23:59:59.000Z

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

  3. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01T23:59:59.000Z

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  4. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    SciTech Connect (OSTI)

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01T23:59:59.000Z

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  5. Atmospheric Dispersion Lecture Atmospheric Local-Scale Dispersion Modelling.

    E-Print Network [OSTI]

    heterogeneous temperature and pressure fields. Local heat flux depends on the position of the point to the sun-resting global circulation of air masses is the unequal distribution of solar heat flux to the earth surface). The temperature depends on the heat transfer and capacity characteristics of the surface (sea, soil, desert

  6. Identifying the Effects on Fish of Changes in Water Pressure during Turbine Passage

    SciTech Connect (OSTI)

    Becker, James M.; Abernethy, Cary S.; Dauble, Dennis D.

    2003-09-01T23:59:59.000Z

    Migratory and resident fish in the Columbia River are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage and dissolved gas supersaturation. We investigated the responses of fall Chinook salmon (Oncorhynchus tshawytscha), rainbow trout (Oncorhynchus mykiss), and bluegill sunfish (Lepomis macrochirus) to these two stresses, singly and in combination, in the laboratory. Fish were exposed to total dissolved gas levels of 100%, 120%, or 135% of saturation while being held at either surface or 30 ft of pressure. Some of these fish were then subjected to decreases in pressure simulating passage through a Kaplan turbine under “worst case” (to 0.1 atmospheres) or more “fish friendly” (to 0.5 atmospheres) scenarios. Surface- and depth-acclimated Chinook salmon and bluegill, with no exposure to dissolved gas above ambient levels, were subjected to decreases in pressure simulating passage through a bulb turbine under “worst case” (to 0.68 atmospheres) or more “fish friendly” (to 1.0 atmospheres) scenarios. Bluegill, the most pressure-sensitive among the three species, incurred injuries that ranged from mild (internal hemorrhaging) (bulb turbine) to death (Kaplan turbine). For each type of turbine passage, bluegill acclimated to 30 ft depth and subjected to the more severe pressure nadir were more susceptible to injury/death. However, even control bluegill (i.e., not subjected to simulated turbine passage) experienced mild to moderate injury from rapidly ascending from 30 ft of pressure to surface pressure. The dissolved gas level had only a small additive effect on the injury/death rate of bluegill subjected to simulated Kaplan turbine passage. Thus, while physoclistous fish, such as bluegill, appear to be susceptible to injury from any rapid pressure decrease, those that are most severe (e.g., Kaplan turbine passage) are likely to be most injurious. Chinook salmon and rainbow trout were much less susceptible than bluegill to death/injury from simulated Kaplan turbine passage, and Chinook salmon incurred no visible injuries from simulated bulb turbine passage under any scenario. Acclimation to 30 ft depth had little additional effect on the injury/death rate of Chinook salmon and rainbow trout subjected to Kaplan turbine passage. However, these species were much more susceptible to acute gas bubble trauma than bluegill, particularly those acclimated at surface pressure at 120% or 135% of saturation. Consequently, it would be advantageous to develop advanced turbines that operate efficiently under more “fish friendly” pressure regimes and to reduce the amount of gas supersaturation.

  7. Electrokinetically pumped high pressure sprays

    DOE Patents [OSTI]

    Schoeniger, Joseph S. (Oakland, CA); Paul, Phillip H. (Livermore, CA); Schoeniger, Luke (Pittsford, NY)

    2002-01-01T23:59:59.000Z

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  8. Possible Pressure Effect for Superconductors

    E-Print Network [OSTI]

    A. Kwang-Hua Chu

    2005-08-30T23:59:59.000Z

    We make an estimate of the possible range of $\\Delta T_c$ induced by high-pressure effects in post-metallic superconductors by using the theory of {\\it extended irreversible/reversible thermodynamics} and Pippard's length scale. The relationship between the increment of the superconducting temperature and the increase of the pressure is parabolic.

  9. Proof of the Atmospheric Greenhouse Effect

    E-Print Network [OSTI]

    Smith, Arthur P

    2008-01-01T23:59:59.000Z

    A recently advanced argument against the atmospheric greenhouse effect is refuted. A planet without an infrared absorbing atmosphere is mathematically constrained to have an average temperature less than or equal to the effective radiating temperature. Observed parameters for Earth prove that without infrared absorption by the atmosphere, the average temperature of Earth's surface would be at least 33 K lower than what is observed.

  10. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  11. ON THE EXISTENCE OF SHOCKS IN IRRADIATED EXOPLANETARY ATMOSPHERES

    SciTech Connect (OSTI)

    Heng, Kevin [Institute for Astronomy, ETH Zuerich, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

    2012-12-10T23:59:59.000Z

    Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.

  12. Balanced pressure gerotor fuel pump

    DOE Patents [OSTI]

    Raney, Michael Raymond; Maier, Eugen

    2004-08-03T23:59:59.000Z

    A gerotor pump for pressurizing gasoline fuel is capable of developing pressures up to 2.0 MPa with good mechanical and volumetric efficiency and satisfying the durability requirements for an automotive fuel pump. The pump has been designed with optimized clearances and by including features that promote the formation of lubricating films of pressurized fuel. Features of the improved pump include the use of a shadow port in the side plate opposite the outlet port to promote balancing of high fuel pressures on the opposite sides of the rotors. Inner and outer rotors have predetermined side clearances with the clearances of the outer rotor being greater than those of the inner rotor in order to promote fuel pressure balance on the sides of the outer rotor. Support of the inner rotor and a drive shaft on a single bushing with bearing sleeves maintains concentricity. Additional features are disclosed.

  13. Variability in the super-Earth 55 Cnc e

    E-Print Network [OSTI]

    Demory, Brice-Olivier; Madhusudhan, Nikku; Queloz, Didier

    2015-01-01T23:59:59.000Z

    Considerable progress has been made in recent years in observations of atmospheric signatures of giant exoplanets, but processes in rocky exoplanets remain largely unknown due to major challenges in observing small planets. Numerous efforts to observe spectra of super-Earths, exoplanets with masses of 1-10 Earth masses, have thus far revealed only featureless spectra. In this paper we report a 4-$\\sigma$ detection of variability in the dayside thermal emission from the transiting super-Earth 55 Cancri e. Dedicated space-based monitoring of the planet in the mid-infrared over eight eclipses revealed the thermal emission from its dayside atmosphere varying by a factor 3.7 between 2012 and 2013. The amplitude and trend of the variability are not explained by potential influence of star spots or by local thermal or compositional changes in the atmosphere over the short span of the observations. The possibility of large scale surface activity due to strong tidal interactions possibly similar to Io, or the presence...

  14. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Karnowsky, Maurice M. (Albuquerque, NM); Yost, Frederick G. (Ceder Crest, NM)

    1992-01-01T23:59:59.000Z

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  15. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16T23:59:59.000Z

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  16. Theoretical full power correction factors as related to changes in ambient temperature, pressure and absolute humidity for aircraft turbine engines

    E-Print Network [OSTI]

    Raphael, Michel Antoun

    1969-01-01T23:59:59.000Z

    IN AMBIENT TEMPERATURE, PRESSURF. AND ABSOLUTE HUMIDITY FOR AIRCRAFT TURBINE ENGINES (August 1969) Michael Antoun Raphael B. S. (Mechanical Engineering) Texas A&M University Directed by: Professor Stanley H, Lowy ABSTRACT Power losses in aircraft gas... rated at standard atmospheric conditions (i. e, ambient temperature 69 F 3'Fend atmospheric pressure 29. 92 in. Hg. dry) . Obviously this same turbine will not be exposed to such standard conditions; therefore we have a change in power directly...

  17. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    SciTech Connect (OSTI)

    Miller-Ricci Kempton, Eliza [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Rauscher, Emily, E-mail: ekempton@ucolick.org [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States)

    2012-06-01T23:59:59.000Z

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  18. Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability CAROLINE C. UMMENHOFER*

    E-Print Network [OSTI]

    Ummenhofer, Caroline C.

    Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability CAROLINE C is restricted to the Indian or Pacific Ocean only, support the interpretation of forcing mechanisms for large Indian Ocean atmospheric forcing versus remote influences from Pacific wind forcing: low events develop

  19. Assessing spatial variability of soil water content through Thermal Inertia and NDVI

    E-Print Network [OSTI]

    Poggi, Davide

    of Basilicata, Potenza, Italy ABSTRACT AVHRR (Advanced Very High Resolution Radiometer on board NOAA satellites based on a simplified soil-atmosphere energy balance. The techniques provide sufficiently detailed to their high spatial and temporal variability leave much space to remote sensing applications, characterized

  20. Pressure sensor for sealed containers

    DOE Patents [OSTI]

    Hodges, Franklin R. (Loudon, TN)

    2001-01-01T23:59:59.000Z

    A magnetic pressure sensor for sensing a pressure change inside a sealed container. The sensor includes a sealed deformable vessel having a first end attachable to an interior surface of the sealed container, and a second end. A magnet mounted to the vessel second end defining a distance away from the container surface provides an externally detectable magnetic field. A pressure change inside the sealed container causes deformation of the vessel changing the distance of the magnet away from the container surface, and thus the detectable intensity of the magnetic field.

  1. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

    2000-01-01T23:59:59.000Z

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  2. An Infrared Spectral Library for Atmospheric Environmental Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Infrared Spectral Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy...

  3. atmospheric research community: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Corporation for Atmospheric Research Geosciences Websites Summary: University Corporation for Atmospheric Research CIGNA DENTAL PREFERRED PROVIDER INSURANCE EFFECTIVE...

  4. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    SciTech Connect (OSTI)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15T23:59:59.000Z

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  5. Evaluation of pressure sensing concepts: A technology assessment

    SciTech Connect (OSTI)

    Shepard, R.L.; Thacker, L.H.

    1993-09-01T23:59:59.000Z

    Advanced distributed control systems for electric power plants will require more accurate and reliable pressure gauges than those now installed. Future developments in power plant control systems are expected to use digital/optical networks rather than the analog/electric data transmission used in existing plants. Many pressure transmitters now installed use oil filling to separate process fluids from the gauge mechanism and are subject to insidious failures when the oil leaks. Testing and maintenance of pressure channels occupy a disproportionately large amount of effort to restore their accuracy and verify their operability. These and similar concerns have prompted an assessment of a broad spectrum of sensor technologies to aid in selecting the most likely candidates for adaptation to power plant applications. Ten representative conventional and thirty innovational pressure sensors are described and compared. Particular emphasis is focused on two categories: Silicon-integrated pressure sensors and fiber-optic sensors, and both of these categories are discussed in detail. Additional attractive concepts include variable reluctance gauges and resonant structure gauges that may not require oil buffering from the process fluid.

  6. OVERBURDEN PRESSURE AFFECTS FRACTURE APERTURE

    E-Print Network [OSTI]

    Schechter, David S.

    OVERBURDEN PRESSURE AFFECTS FRACTURE APERTURE AND FRACTURE PERMEABILITY IN A FRACTURED RESERVOIR are in integrated reservoir study, reservoir charac- terization, naturally fractured reservoirs, waterflooding in Hydraulically and Naturally Fractured Reservoirs." His research areas include experimental analysis

  7. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03T23:59:59.000Z

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  8. Electrokinetic high pressure hydraulic system

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA); Arnold, Don W. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Schoeniger, Joseph S. (Oakland, CA); Neyer, David W. (Castro Valley, CA)

    2001-01-01T23:59:59.000Z

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  9. Pulse atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. During this reporting period, a total of eight shakedown and debugging coal combustion tests were performed in the AFBC. A start-up procedure was established, system improvements implemented, and preliminary material and heat balances made based on these tests. The pulse combustor for the AFBC system was fabricated and installed and a series of tests was conducted on the system. 17 figs., 5 tabs.

  10. Increase Your Boiler Pressure to Decrease Your Electric Bill: The True Cost of CHP 

    E-Print Network [OSTI]

    Downing, A.

    2011-01-01T23:59:59.000Z

    benefit of clean, low cost and reliable onsite power production. Introduction What if plant designers could create a payback on a replacement or new boiler? Operators still get the heat for the process, but now instead of a large capital investment... is not complicated and produces real savings. For our analysis, a company is examining the economic and operating variables inherit with replacing their current 65 psig low pressure boiler with a high pressure 400 psig boiler. They still only require 65 psig...

  11. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01T23:59:59.000Z

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535%C2%B0C. Currently available flow and pressure instrumentation for molten salt is limited to 535%C2%B0C and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice won't be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  12. Deposition of TiO2 thin films by atmospheric plasma post-discharge assisted injection MOCVD

    E-Print Network [OSTI]

    Boyer, Edmond

    -discharge is sent away from electrodes confinement [3]. In this work, we have combined these two systems working combines remote Atmospheric Pressure (AP) Plasma with Pulsed Injection Metallorganic Chemical Vapour developed Pulsed Injection MOCVD [1] method, based on a liquid delivery system controlled by a high speed

  13. Buffering blood pressure fluctuations by respiratory sinus arrhythmia may in fact enhance them: a theoretical analysis

    E-Print Network [OSTI]

    Teodor Buchner; Jan ?ebrowski; Grzegorz Gielerak

    2010-07-13T23:59:59.000Z

    Using a three-compartment model of blood pressure dynamics, we analyze theoretically the short term cardiovascular variability: how the respiratory-related blood pressure fluctuations are buffered by appropriate heart rate changes: i.e. the respiratory sinus arrhythmia. The buffering is shown to be crucially dependent on the time delay between the stimulus (such as e.g. the inspiration onset) and the application of the control (the moment in time when the efferent response is delivered to the heart). This theoretical analysis shows that the buffering mechanism is effective only in the upright position of the body. It explains a paradoxical effect of enhancement of the blood pressure fluctuations by an ineffective control. Such a phenomenon was observed experimentally. Using the basis of the model, we discuss the blood pressure variability and heart rate variability under such clinical conditions as the states of expressed adrenergic drive and the tilt-test during the parasympathetic blockade or fixed rate atrial pacing. From the results of the variability analysis we draw a conclusion that the control of blood pressure in the HF band does not directly obtain the arterial baroreceptor input. We also discuss methodological issues of baroreflex sensitivity and sympathovagal balance assessment.

  14. Reaction rates from pressure-gauge measurements in reacting explosives

    SciTech Connect (OSTI)

    Ginsberg, M.J.; Anderson, A.B.; Wackerle, J.

    1981-01-01T23:59:59.000Z

    The proper hydrodynamic data and an equation of state are sufficient to describe quantitatively the reaction rates of explosives during the shock-to-detonation transition. Manganin pressure gauges embedded in the reacting explosive have provided these data for the explosives PETN, PBX 9404, TATB, and TNT. Once a pressure-field history has been assembled from individual pressure histories at different depths in the explosive, the conservation equations can be applied in a Lagrangian analysis of the data. The combination of a reactant-product equation of state with this analysis then allows the calculation of the extent of reaction and reaction rate. Successful correlation of the calculated reaction rate values with other thermodynamic variables, such as pressure or temperature, allows formulation of a rate law and the prediction of initiation behavior under circumstances quite different from the experiments that led to the rate law. The best dynamic piezoresistive pressure gauge for most applications would have a substantial output voltage and present negligible disturbance to the flow. In explosives, however, requirements for survival in the extreme temperature and pressure environment encountered by the gauge dictate compromise. Low electrical resistance (approx. 20 m..cap omega..) helps to minimize shunt conductivity failures, but this drastically reduces output and demands that much attention be given to reducingnoise. Although relatively thick insulation perturbs the flow to some extent, survivability requirements dictate its use. Pressure measurements in reactive flow can now be made routinely with gauges that successfully produce data leading to a description of the flow and a powerful predictive capability.

  15. Spray bottle apparatus with pressure multiplying pistons

    DOE Patents [OSTI]

    Moss, Owen R. (Kennewick, WA); Gordon, Norman R. (Kennewick, WA); DeFord, Henry S. (Kennewick, WA)

    1990-01-01T23:59:59.000Z

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and a corresponding piston which is acted upon the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

  16. The Chilled Water and Hot Water Building Differential Pressure Setpoint Calculation - Chilled Water and Hot Water Pump Speed Control

    E-Print Network [OSTI]

    Turner, W. D.; Bruner, H., Jr.; Claridge, D.; Liu, C.; Deng, S.

    2002-01-01T23:59:59.000Z

    A&M University College Station, TX ABSTRACT More and more variable frequency devices (VFD) are being installed on the chilled water and hot water pumps on the TAMU campus. Those pump speeds are varied to maintain chilled water... and the rest 46 buildings are located on the west campus. More and more variable frequency devices (VFD) are installed on chilled water and hot water pumps. The variable speed pump has reduced the over-pressuring of water systems and reduced pump...

  17. Flexible Pressure Sensors: Modeling and Experimental Characterization

    E-Print Network [OSTI]

    Viana, J.C.

    Flexible capacitive pressure sensors fabricated with nanocomposites were experimentally characterized and results compared with simulations from analytical modeling. Unlike traditional diaphragm silicon pressure sensors, ...

  18. Documentation Requirements for Pressurized Experiment Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documentation Requirements for Pressurized Experiment Apparatus PSSC NOTE01 15-Jan-2013 When bringing a piece of apparatus to the APS for an experiment that will involve pressure,...

  19. Clathrate hydrates as a sink of noble gases in Titan's atmosphere

    E-Print Network [OSTI]

    Thomas, C; Ballenegger, V; Picaud, Sylvain

    2007-01-01T23:59:59.000Z

    We use a statistical thermodynamic approach to determine the composition of clathrate hydrates which may form from a multiple compound gas whose composition is similar to that of Titan's atmosphere. Assuming that noble gases are initially present in this gas phase, we calculate the ratios of xenon, krypton and argon to species trapped in clathrate hydrates. We find that these ratios calculated for xenon and krypton are several orders of magnitude higher than in the coexisting gas at temperature and pressure conditions close to those of Titan's present atmosphere at ground level. Furthermore we show that, by contrast, argon is poorly trapped in these ices. This trapping mechanism implies that the gas-phase is progressively depleted in xenon and krypton when the coexisting clathrate hydrates form whereas the initial abundance of argon remains almost constant. Our results are thus compatible with the deficiency of Titan's atmosphere in xenon and krypton measured by the {\\it Huygens} probe during its descent on J...

  20. An advanced open-path atmospheric pollution monitor for large areas

    SciTech Connect (OSTI)

    Taylor, L.

    1995-12-31T23:59:59.000Z

    Large amounts of toxic waste materials, generated in manufacturing fuel for nuclear reactors, are stored in tanks buried over large areas at DOE sites. Flammable and hazardous gases are continually generated by chemical reactions in the waste materials. To prevent explosive concentrations of these gases, the gases are automatically vented to the atmosphere when the pressure exceeds a preset value. Real-time monitoring of the atmosphere above the tanks with automatic alarming is needed to prevent exposing workers to unsafe conditions when venting occurs. This project is to design, develop, and test an atmospheric pollution monitor which can measure concentrations of DOE-specified and EPA-specified hazardous gases over ranges as long as 4km. A CO{sub 2} laser to measure absorption spectra and to determine the distance over which the measurements are made, is combined with an acousto-optic tunable filter (AOTF) to measure thermal emission spectra.

  1. Surface Nanostructuring of Polysulfone Membranes by Atmospheric Pressure Plasma-Induced Graft Polymerization (APPIGP)

    E-Print Network [OSTI]

    Kim, Soo Min

    2013-01-01T23:59:59.000Z

    irradiation. Membrane performance b,d Riboflavin filtration:L p (riboflavin) ? at pH (3-7) Dextran filtration: L p ?; J

  2. Simulation of a direct current microplasma discharge in helium at atmospheric pressure

    E-Print Network [OSTI]

    Economou, Demetre J.

    to be dissipated in gas heating. On the other hand, since microdischarges have a much larger surface-to- volume, Demetre J. Economou,a and Vincent M. Donnellyb Plasma Processing Laboratory, Department of Chemical to satisfy the "global" particle balance in the plasma. Gas heating was found to play an important role

  3. PPPL-3281, Preprint: January 1998, UC-426 Synthesis of Ozone at Atmospheric Pressure

    E-Print Network [OSTI]

    in industrial processes is increasing. Applications for ozone include treatment of waste water, water to ~250 ppm were produced using a thermal plasma reactor system based on an ICP torch operating at 2.5 MHz by rapid mixing of molecular oxygen with atomic oxygen produced by the torch. The ozone concentration

  4. Z .Thin Solid Films 392 2001 231 235 Atmospheric pressure chemical vapor deposition of

    E-Print Network [OSTI]

    of electrochromic tungsten oxide films Roy G. Gordona,U , Sean Barryb , Jeffrey T. Bartona , Randy N.R. Broomhall oxide, WO , is a coloring layer commonly used in electrochromic windows and displays. Successful: Chemical vapor deposition; Tungsten; Oxides; Electrochromism 1. Introduction Tungsten oxide is a key

  5. Method for atmospheric pressure reactive atom plasma processing for surface modification

    DOE Patents [OSTI]

    Carr, Jeffrey W. (Livermore, CA)

    2009-09-22T23:59:59.000Z

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  6. Modification of Glassy Carbon Surfaces by an Atmospheric Pressure Cold Plasma H. Mortensen 1

    E-Print Network [OSTI]

    at optimising the strength of carbon fibre reinforced composite materials. In order to form a strong and durable adhesive bond between any two objects, e.g., a fibre and the matrix in a composite material, pretreatment be used to increase the strength of fibre/matrix adhesion in carbon fibre composites. We have studied

  7. Dynamics of pulse phenomena in helium dielectric-barrier atmospheric-pressure glow discharges

    E-Print Network [OSTI]

    Raja, Laxminarayan L.

    modification,7 biosterilization,8 and the gen- eration of ozone.9 Synthesis of materials such as carbon stealth have also been proposed.11,12 The main technological barrier to generation of APG dis- charges

  8. Surface Nanostructuring of Polysulfone Membranes by Atmospheric Pressure Plasma-Induced Graft Polymerization (APPIGP)

    E-Print Network [OSTI]

    Kim, Soo Min

    2013-01-01T23:59:59.000Z

    from ethanol through polyimide composite membranes. Journalal. , Preparation of polyimide composite membranes grafted

  9. Atmospheric Pressure Deposition of Fluorinedoped SnO2 Thin Films from Organotin Fluorocarboxylate Precursors. 

    E-Print Network [OSTI]

    Mahon, Mary F; Molloy, Kieran C; Stanley, Joanne E; Rankin, David W H; Robertson, Heather E; Johnston, Blair F

    2005-01-01T23:59:59.000Z

    Nine organotin fluorocarboxylates RnSnO2CRf (n = 3, R = Bu, Rf = CF3, C2F5, C3F7, C7F15; R = Et, Rf = CF3, C2F5; R = Me, Rf = C2F5; n = 2, R =Me, Rf = CF3) have been synthesised; key examples have been used to deposit ...

  10. THE STRUCTURE SENSITIVITY OF CYCLOHEXANE DEHYDROGENATION AND HYDROGENOLYSIS CATALYZED BY PLATINUM SINGLE CRYSTALS AT ATMOSPHERIC PRESSURE

    E-Print Network [OSTI]

    Herz, R.K.

    2013-01-01T23:59:59.000Z

    bound in tion s irre~ hydrogeno lys ·j s ely as the resulthydro- over p ·1 at i num , hydrogeno l i ions sensi ve, 1was hydrogenolysis are of hydrogeno·lys·i s rates with t on

  11. E-Print Network 3.0 - atmospheric pressure dielectric Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Elissalde, S. Mornet and M. Maglione Summary: to process bulk composites having supercapacitor features with low dielectric losses and temperature... stability. The silica shell...

  12. Thermal and photochemical reactions of NO2 on chromium(iii) oxide surfaces at atmospheric pressure

    E-Print Network [OSTI]

    Nishino, Noriko; Finlayson-Pitts, Barbara J

    2012-01-01T23:59:59.000Z

    As discussed below, photocatalysis involving the Cr 2 O 3possibility is that photocatalysis involving the Cr 2 O 3substrate plays a role. Photocatalysis occurs when a

  13. Atmospheric neutrino flux at INO site

    SciTech Connect (OSTI)

    Honda, Morihiro [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan)

    2011-11-23T23:59:59.000Z

    To illustrate the calculation of the atmospheric neutrino flux, we briefly explain our calculation scheme and important components, such as primary cosmic ray spectra, interaction model, and geomagnetic model. Then, we calculate the atmospheric neutrino flux at INO site in our calculation scheme. We compare the calculated atmospheric neutrino fluxes predicted at INO with those at other major neutrino detector sites, especially that at SK site.

  14. THE PLASMA WINDOW: A WINDOWLESS HIGH PRESSURE VACUUM INTERFACE FOR VARIOUS ACCELERATOR APPLICATIONS.

    SciTech Connect (OSTI)

    HERSHCOVITCH,A.I.; JOHNSON,E.D.; LANZA,R.C.

    1999-03-29T23:59:59.000Z

    The Plasma Window is a stabilized plasma arc used as an interface between accelerator vacuum and pressurized targets. There is no solid material introduced into the beam and thus it is also capable of transmitting particle beams and electromagnetic radiation with low loss and of sustaining high beam currents without damage. Measurements on a prototype system with a 3 mm diameter opening have shown that pressure differences of more than 2.5 atmospheres can be sustained with an input pressure of {approx} 10{sup -6} Torr. The system is capable of scaling to higher-pressure differences and larger apertures. Various plasma window applications for synchrotron light sources, high power lasers, internal targets, high current accelerators such as the HAWK, ATW, APT, DARHT, spallation sources, as well as for a number of commercial applications, will be discussed.

  15. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    metals added from these aerosols to the bioassay incubationsreleased to seawater from the aerosol filters after Author4605 CHEMISTRY Atmospheric aerosol deposition CHEMISTRY

  16. Urban Atmospheres captures a unique, synergistic moment

    E-Print Network [OSTI]

    Paulos, Eric

    Urban Atmospheres captures a unique, synergistic moment ­ expanding urban populations, rapid EDITORS Eric Paulos Intel Research eric@paulos.net Tom Jenkins Royal College of Art thomas

  17. Characterizing orbit uncertainty due to atmospheric uncertainty

    E-Print Network [OSTI]

    Wilkins, Matthew Paul

    2000-01-01T23:59:59.000Z

    is implemented to model errors in the atmospheric density model. This study shows that the Kalman filter computes a believable and more realistic covariance....

  18. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improving our understanding of how clouds and atmospheric moisture interact with solar radiation and the effects of these interactions on climate. Photo courtesy Argonne National...

  19. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12T23:59:59.000Z

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  20. Super-Kamiokande atmospheric neutrino results

    E-Print Network [OSTI]

    Toshiyuki Toshito; the Super-Kamiokande collaboration

    2001-05-14T23:59:59.000Z

    We present atmospheric neutrino results from a 79 kiloton year (1289 days) exposure of the Super-Kamiokande detector. Our data are well explained by $\

  1. atmospheres: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  2. atmosphere: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  3. atmospherics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  4. High pressure neon arc lamp

    DOE Patents [OSTI]

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15T23:59:59.000Z

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  5. Variable rate CELP speech coding using widely variable parameter updates

    E-Print Network [OSTI]

    Moodie, Myron L.

    1995-01-01T23:59:59.000Z

    bit rates for a given quality level. This work develops new techniques, referred to as widely variable CELP parameter updates, which dynamically adapt the transmit frequency of the CELP spectral parameters to the characteristics of the input speech...

  6. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a ...

  7. Quantum information with modular variables

    E-Print Network [OSTI]

    A. Ketterer; S. P. Walborn; A. Keller; T. Coudreau; P. Milman

    2014-06-24T23:59:59.000Z

    We introduce a novel strategy, based on the use of modular variables, to encode and deterministically process quantum information using states described by continuous variables. Our formalism leads to a general recipe to adapt existing quantum information protocols, originally formulated for finite dimensional quantum systems, to infinite dimensional systems described by continuous variables. This is achieved by using non unitary and non-gaussian operators, obtained from the superposition of gaussian gates, together with adaptative manipulations in qubit systems defined in infinite dimensional Hilbert spaces. We describe in details the realization of single and two qubit gates and briefly discuss their implementation in a quantum optical set-up.

  8. Interannual Atmospheric Variability Affects Continental Ice Sheet Simulations on Millennial Time Scales

    E-Print Network [OSTI]

    Pritchard, Michael S; Bush, Andrew B. G; Marshall, Shawn J

    2008-01-01T23:59:59.000Z

    Wu, P. , and W. R. Peltier, 1982: Viscous gravitationalG. K. C. Clarke, and W. R. Peltier, 2000: Gla- ciologicalTech. Rep. 2, 17 pp. Peltier, W. R. , 1985: The LAGEOS

  9. Tropical Axisymmetric Mode of Variability in the Atmospheric Circulation: Dynamics as a Neutral Mode

    E-Print Network [OSTI]

    Watanabe, Masahiro

    of Ocean and Earth Science and Technology University of Hawaii at Manoa, Honolulu, HI 96822-2219, USA 2. Center for Climate System Research, University of Tokyo, 4 6 1 Komaba, Meguro ku, Tokyo 153 8904, Japan, de ned by the leading principal component of the ob- served 300 hPa stream function anomalies, shows

  10. Multiscale dynamics of atmospheric and oceanic variability in the climate system

    E-Print Network [OSTI]

    Subramanian, Aneesh C.

    2012-01-01T23:59:59.000Z

    applied to the Oceanic Mesoscale in the South Eastassimilation at the oceanic mesoscale: A review. JOURNAL-scale circulations and mesoscale convective activity in

  11. Report of the terawatt laser pressure vessel committee

    SciTech Connect (OSTI)

    Woodle, M.H.; Beauman, R.; Czajkowski, C.; Dickinson, T.; Lynch, D.; Pogorelsky, I.; Skjaritka, J.

    2000-09-25T23:59:59.000Z

    In 1995 the ATF project sent out an RFP for a CO2 Laser System having a TeraWatt output. Eight foreign and US firms responded. The Proposal Evaluation Panel on the second round selected Optoel, a Russian firm based in St. Petersburg, on the basis of the technical criteria and cost. Prior to the award, BNL representatives including the principal scientist, cognizant engineer and a QA representative visited the Optoel facilities to assess the company's capability to do the job. The contract required Optoel to provide a x-ray preionized high pressure amplifier that included: a high pressure cell, x-ray tube, internal optics and a HV pulse forming network for the main discharge and preionizer. The high-pressure cell consists of a stainless steel pressure vessel with various ports and windows that is filled with a gas mixture operating at 10 atmospheres. In accordance with BNL Standard ESH 1.4.1 ''Pressurized Systems For Experimental Use'', the pressure vessel design criteria is required to comply with the ASME Boiler and Pressure Vessel Code In 1996 a Preliminary Design Review was held at BNL. The vendor was requested to furnish drawings so that we could confirm that the design met the above criteria. The vendor furnished drawings did not have all dimensions necessary to completely analyze the cell. Never the less, we performed an analysis on as much of the vessel as we could with the available information. The calculations concluded that there were twelve areas of concern that had to be addressed to assure that the pressure vessel complied with the requirements of the ASME code. This information was forwarded to the vendor with the understanding that they would resolve these concerns as they continued with the vessel design and fabrication. The assembled amplifier pressure vessel was later hydro tested to 220 psi (15 Atm) as well as pneumatically to 181 psi (12.5 Atm) at the fabricator's Russian facility and was witnessed by a BNL engineer. The unit was shipped to the US and installed at the ATF. As part of the commissioning of the device the amplifier pressure vessel was disassembled several times at which time it became apparent that the vendor had not addressed 7 of the 12 issues previously identified. Closer examination of the vessel revealed some additional concerns including quality of workmanship. Although not required by the contract, the vendor furnished radiographs of a number of pressure vessel welds. A review of the Russian X-rays revealed radiographs of both poor and unreadable quality. However, a number of internal weld imperfections could be observed. All welds in question were excavated and then visually and dye penetrant inspected. These additional inspections confirmed that the weld techniques used to make some of these original welds were substandard. The applicable BNL standard, ESH 1.4.1, addresses the problem of pressure vessel non-compliance by having a committee appointed by the Department Chairman review the design and provide engineering solutions to assure equivalent safety. On January 24, 2000 Dr. M. Hart, the NSLS Chairman, appointed this committee with this charge. This report details the engineering investigations, deliberations, solutions and calculations which were developed by members of this committee to determine that with repairs, new components, appropriate NDE, and lowering the design pressure, the vessel can be considered safe to use.

  12. Parallization of Stellar Atmosphere Codes

    E-Print Network [OSTI]

    P. Hoeflich

    2002-09-19T23:59:59.000Z

    Parallel computing has turned out to be the enabling technology to solve complex physical systems. However, the transition from shared memory, vector computers to massively parallel, distributed memory systems and, recently, to hybrid systems poses new challenges to the scientist. We want to present a cook-book (with a very strong, personal bias) based on our experience with parallization of our existing codes. Some of the general tools and communication libraries are discussed. Our approach includes a mixture of algorithm, domain and physical module based parallization. The advantages, scalability and limitations of each are discussed at some examples. We want show that it becomes easier to write parallel code with increasing complexity of the physical problem making stellar atmosphere codes beyond the classical assumptions very suitable.

  13. Limits to the lunar atmosphere

    SciTech Connect (OSTI)

    Morgan, T.H. (National Aeronautics and Space Administration, Washington, D.C. (USA)); Shemansky, D.E. (Univ. of Arizona, Tucson (USA))

    1991-02-01T23:59:59.000Z

    The presence of sodium and potassium on the Moon implies that other more abundant species should be present. Volatile molecules like H{sub 2}O are significantly more abundant than sodium in any of the proposed external atmospheric sources. Source mechanisms which derive atoms from the surface should favor abundant elements in the regolith. It is therefore puzzling that the Apollo ultraviolet spectrometer experiment set limits on the density of oxygen of N{sub O} < 5 {times} 10{sup 2} cm{sup {minus}3}, and that the Apollo Lunar Atmospheric Composition Experiment data imply N{sub O} < 50 cm{sup {minus}3} above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occur ed during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the Moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stablized source of OH. On the basis of an assumed meteoroid impact source, the authors predict a possible emission brightness of {approximately} 50 R in the OH(A {minus} X)(0,0) band above the lunar bright limb. A very uncertain small comet source of H{sub 2}O could raise this value by more than two orders of magnitude.

  14. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne (Pittsburgh, PA)

    2010-08-24T23:59:59.000Z

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  15. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne

    2010-05-04T23:59:59.000Z

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  16. High pressure liquid level monitor

    DOE Patents [OSTI]

    Bean, Vern E. (Frederick, MD); Long, Frederick G. (Ijamsville, MD)

    1984-01-01T23:59:59.000Z

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  17. Level indicator for pressure vessels

    DOE Patents [OSTI]

    Not Available

    1982-04-28T23:59:59.000Z

    A liquid-level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic-field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal-processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  18. Agglomeration of sorbent and ash carry-over for use in atmospheric fluidized-bed combustors

    SciTech Connect (OSTI)

    Rohargi, N.D.T.

    1983-04-01T23:59:59.000Z

    Agglomeration of elutriated sorbent, ash and char from a fluidized-bed boiler, with spent bed overflow material and water, has been identified as a potentially attractive technique for reducing sorbent consumption in atmospheric fluidized-bed combustors. The agglomerated products are returned to the combustor to improve the calcium utilization of the sorbent and to complete the combustion of elutriated carbon material. In this experimental programme, agglomerates were collected during test runs on the 1.8 m x 1.8 m fluidized-bed combustor. Agglomerate characteristics, such as handling strength, sulfur capture activity carbon utilization and resistance to attrition, were determined as functions of agglomeration processing variables. These variables include feed composition, feed particle size, amount of water addition, curing time, and curing atmosphere or drying conditions. Ca/S feed ratio requirements for a commercial AFBC that uses the agglomeration process were projected on the basis of the Westinghouse model for fluidized-bed desulphurization.

  19. Influences of atmospheric conditions and air mass on the ratio of ultraviolet to total solar radiation

    SciTech Connect (OSTI)

    Riordan, C.J.; Hulstrom, R.L.; Myers, D.R.

    1990-08-01T23:59:59.000Z

    The technology to detoxify hazardous wastes using ultraviolet (UV) solar radiation is being investigated by the DOE/SERI Solar Thermal Technology Program. One of the elements of the technology evaluation is the assessment and characterization of UV solar radiation resources available for detoxification processes. This report describes the major atmospheric variables that determine the amount of UV solar radiation at the earth's surface, and how the ratio of UV-to-total solar radiation varies with atmospheric conditions. These ratios are calculated from broadband and spectral solar radiation measurements acquired at SERI, and obtained from the literature on modeled and measured UV solar radiation. The following sections discuss the atmospheric effects on UV solar radiation and provide UV-to-total solar radiation ratios from published studies, as well as measured values from SERI's data. A summary and conclusions are also given.

  20. Is the basinwide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming?

    E-Print Network [OSTI]

    Wang, Chunzai

    to atmospheric carbon dioxide and global warming? Chunzai Wang1 and Shenfu Dong1,2 Received 31 January 2010 is controversial. Some studies argued that the warming is due to global warming in association with the secular sea surface temperature. Here we show that both global warming and AMO variability make a contribution

  1. Clean coal reference plants: Atmospheric CFB. Topical report, Task 1

    SciTech Connect (OSTI)

    Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

    1992-06-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

  2. Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996

    SciTech Connect (OSTI)

    Atallah, S.; Janardhan, A.

    1996-02-01T23:59:59.000Z

    This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

  3. SUBNANOWATT MICROBUBBLE PRESSURE TRANSDUCER C. A. Gutierrez*

    E-Print Network [OSTI]

    Meng, Ellis

    pprrr g &&&& 421 2 3 2 (1) where r is the bubble radius (dots denote time-derivative), pg and p microchamber, for pressure sensing. Pressure-induced bubble size variation is detected by electrochemical pressure measurement applications. INTRODUCTION It is known that gas bubbles respond to external pressure

  4. Anyonic statistics with continuous variables

    E-Print Network [OSTI]

    Jing Zhang; Changde Xie; Kunchi Peng; Peter van Loock

    2008-10-30T23:59:59.000Z

    We describe a continuous-variable scheme for simulating the Kitaev lattice model and for detecting statistics of abelian anyons. The corresponding quantum optical implementation is solely based upon Gaussian resource states and Gaussian operations, hence allowing for a highly efficient creation, manipulation, and detection of anyons. This approach extends our understanding of the control and application of anyons and it leads to the possibility for experimental proof-of-principle demonstrations of anyonic statistics using continuous-variable systems.

  5. Doctoral Programs Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    University of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss Katherine E. White, Ann Arbor ©The Regents of the University of Michigan Research areas Atmospheric Science Atmospheric Dynamics Climate, Climate Modeling & Climate Change Clouds & Precipitation Paleoclimate, Ice

  6. Human effects on the global atmosphere

    SciTech Connect (OSTI)

    Johnston, H.S.

    1984-01-01T23:59:59.000Z

    This review considers whether human activities can significantly change important functions of the global atmosphere by altering the amount or distribution of certain trace species. It deals with three specific topics: stratopheric ozone, the role of species other than carbon dioxide on the greenhouse effect, and certain recently recognized atmospheric consequences of a large scale nuclear war. 64 references, 10 figures, 2 tables.

  7. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013)

    E-Print Network [OSTI]

    Lee, Sukyoung

    2013-01-01T23:59:59.000Z

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013) Published online in Wiley Online Library Sciences, Seoul National University, Seoul, South Korea *Correspondence to: C. Yoo, Center for Atmosphere). A number of studies have shown that the MJO plays an important role in modulating the extratropical cir

  8. ATOMIC IONIZATION AND OPACITIES IN PULSAR ATMOSPHERES

    E-Print Network [OSTI]

    ATOMIC IONIZATION AND OPACITIES IN PULSAR ATMOSPHERES Hydrogen Atmospheres J. VENTURA Physics.g. Pavlov et al., 1995; Zavlin et al., 1995, 1996; #12; 2 J. VENTURA ET AL. Rajagopal and Romani, 1996 the past three years. As is well known (Canuto and Ventura, 1977; Ruder et al., 1994), the external strong

  9. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    SciTech Connect (OSTI)

    Yang, Aijun; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-07-15T23:59:59.000Z

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  10. Variable metric conjugate gradient methods

    SciTech Connect (OSTI)

    Barth, T.; Manteuffel, T.

    1994-07-01T23:59:59.000Z

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  11. State of the art of pressurized fluidized bed combustion systems

    SciTech Connect (OSTI)

    Graves, R.L.

    1980-09-01T23:59:59.000Z

    This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

  12. Reducing uncertainty in geostatistical description with well testing pressure data

    SciTech Connect (OSTI)

    Reynolds, A.C.; He, Nanqun [Univ. of Tulsa, OK (United States); Oliver, D.S. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1997-08-01T23:59:59.000Z

    Geostatistics has proven to be an effective tool for generating realizations of reservoir properties conditioned to static data, e.g., core and log data and geologic knowledge. Due to the lack of closely spaced data in the lateral directions, there will be significant variability in reservoir descriptions generated by geostatistical simulation, i.e., significant uncertainty in the reservoir descriptions. In past work, we have presented procedures based on inverse problem theory for generating reservoir descriptions (rock property fields) conditioned to pressure data and geostatistical information represented as prior means for log-permeability and porosity and variograms. Although we have shown that the incorporation of pressure data reduces the uncertainty below the level contained in the geostatistical model based only on static information (the prior model), our previous results assumed did not explicitly account for uncertainties in the prior means and the parameters defining the variogram model. In this work, we investigate how pressure data can help detect errors in the prior means. If errors in the prior means are large and are not taken into account, realizations conditioned to pressure data represent incorrect samples of the a posteriori probability density function for the rock property fields, whereas, if the uncertainty in the prior mean is incorporated properly into the model, one obtains realistic realizations of the rock property fields.

  13. Behavior of core debris ejected from a pressurized vessel into scaled reactor cavities

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.

    1984-01-01T23:59:59.000Z

    Results from four recent 1:10 scale experiments are presented along with analyses of the possible consequences for plant geometries. The tests cover a range in initial system pressure from 4 to 12 MPa, with either dry or water-filled cavities. Nearly all of the core debris is dispersed from the cavity with less than five percent (5%) of the original mass found adhered to the exposed cavity surfaces. Those tests involving water in the cavity show the water being expelled as a slug ahead of the dispersed melt. Models for the interaction of the ejected core debris with the containment atmosphere show that both thermal and chemical energy is liberated from the debris. The calculated pressurization from direct heating of the containment atmosphere can threaten even the most robust containments. Models and experiments are currently being devised to study the possible mitigating effects of the above-cavity structures.

  14. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    E-Print Network [OSTI]

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01T23:59:59.000Z

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  15. Application of the HGSYSTEM/UF{sub 6} model to simulate atmospheric dispersion of UF{sub 6} releases from uranium enrichment plants

    SciTech Connect (OSTI)

    Goode, W.D. Jr.; Bloom, S.G.; Keith, K.D. Jr.

    1995-03-01T23:59:59.000Z

    Uranium hexafluoride is a dense, reactive gas used in Gaseous Diffusion Plants (GDPs) to make uranium enriched in the {sup 235}U isotope. Large quantities of UF{sub 6} exist at the GDPs in the form of in-process gas and as a solid in storage cylinders; smaller amounts exist as hot liquid during transfer operations. If liquid UF{sub 6} is released to the environment, it immediately flashes to a solid and a dense gas that reacts rapidly with water vapor in the air to form solid particles of uranyl fluoride and hydrogen fluoride gas. Preliminary analyses were done on various accidental release scenarios to determine which scenarios must be considered in the safety analyses for the GDPS. These scenarios included gas releases due to failure of process equipment and liquid/gas releases resulting from a breach of transfer piping from a cylinder. A major goal of the calculations was to estimate the response time for mitigating actions in order to limit potential off-site consequences of these postulated releases. The HGSYSTEM/UF{sub 6} code was used to assess the consequences of these release scenarios. Inputs were developed from release calculations which included two-phase, choked flow followed by expansion to atmospheric pressure. Adjustments were made to account for variable release rates and multiple release points. Superpositioning of outputs and adjustments for exposure time were required to evaluate consequences based on health effects due to exposures to uranium and HF at a specific location.

  16. Performance of the beam chamber vacuum system of K = 500 cyclotron at Variable Energy Cyclotron Centre Kolkata

    SciTech Connect (OSTI)

    Pal, Gautam, E-mail: gautam.pal@vecc.gov.in; DuttaGupta, Anjan; Chakrabarti, Alok [Variable Energy Cyclotron Centre, I/AF Bidhannagar, Kolkata 700064 (India)

    2014-07-15T23:59:59.000Z

    The beam chamber of Variable Energy Cyclotron Centre, Kolkata's K = 500 superconducting cyclotron is pumped by liquid helium cooled cryopanel with liquid nitrogen cooled radiation shield. Performance of the vacuum system was evaluated by cooling the cryopanel assembly with liquid nitrogen and liquid helium. Direct measurement of beam chamber pressure is quite difficult because of space restrictions and the presence of high magnetic field. Pressure gauges were placed away from the beam chamber. The beam chamber pressure was evaluated using a Monte Carlo simulation software for vacuum system and compared with measurements. The details of the vacuum system, measurements, and estimation of pressure of the beam chamber are described in this paper.

  17. Managed Pressure Drilling Candidate Selection

    E-Print Network [OSTI]

    Nauduri, Anantha S.

    2010-07-14T23:59:59.000Z

    Managed Pressure Drilling now at the pinnacle of the 'Oil Well Drilling' evolution tree, has itself been coined in 2003. It is an umbrella term for a few new drilling techniques and some preexisting drilling techniques, all of them aiming to solve...

  18. Gas Exchange, Partial Pressure Gradients,

    E-Print Network [OSTI]

    Riba Sagarra, Jaume

    Gas Exchange, Partial Pressure Gradients, and the Oxygen Window Johnny E. Brian, Jr., M of circulatory and gas transport physiology, and the best place to start is with normobaric physiology. LIFE affect the precise gas exchange occurring in individual areas of the lungs and body tissues. To make

  19. Enlarge Image Peer pressure. Magnetic

    E-Print Network [OSTI]

    Thywissen, Joseph

    to stick it to your refrigerator, but an ultra-cold gas magnetizes itself just as do metals such as ironEnlarge Image Peer pressure. Magnetic domains in steel (vertical bans) arise when neighboring electrons point their magnetic poles in the same direction. CREDIT: ZUREKS, CHRIS VARDON

  20. Enlarge Image Peer pressure. Magnetic

    E-Print Network [OSTI]

    Enlarge Image Peer pressure. Magnetic domains in steel (vertical bans) arise when neighboring electrons point their magnetic poles in the same direction. CREDIT: ZUREKS, CHRIS VARDON/WIKIMEDIA By Adrian Cho ScienceNOW Daily News 18 September 2009 It would be tough to stick it to your refrigerator