Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

2

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

3

Mike Ross | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ross About Us Mike Ross - Science Writer at SLAC National Accelerator Laboratory Mike Ross is a science writer at SLAC National Accelerator Laboratory. Most Recent Light Sources...

4

Clean Cities: Mike Scarpino  

NLE Websites -- All DOE Office Websites (Extended Search)

about Clean Cities: Mike Scarpino on Twitter Bookmark Clean Cities: Mike Scarpino on Google Bookmark Clean Cities: Mike Scarpino on Delicious Rank Clean Cities: Mike Scarpino on...

5

Mike Welcome  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael-Welcome.jpg Mike L. Welcome Storage Systems Group, National Energy Research Scientific Computing Center MLWelcome@lbl.gov Phone: (510) 486-5224 , Fax: (510) 486-4316...

6

MST: Organizations: Bio: Mike Kelly  

NLE Websites -- All DOE Office Websites (Extended Search)

Mike Kelly Mike is the manager of the Organic Materials Department in the Manufacturing Science and Technology Center at Sandia National Laboratories. This department provides...

7

Abstract for Mike Pichowsky  

NLE Websites -- All DOE Office Websites (Extended Search)

Mike Pichowsky Mike Pichowsky Transmarket Group LLC Financial Market Making: A physicist's guide to futures trading Three decades of explosive growth, empirical and theoretical discoveries have transformed finance into a sophisticated mathematical science. Our tour begins with the financial market landscape, its residents and fundamental principles of the "price of risk" and "arbitrage." The lack of arbitrage drives markets toward equilibria and provides exact prices for stock options and futures; modern finance uses the notion of "risk-neutral probability measures," but one may also employ quantum mechanical time evolution with non-Hermitian Hamiltonians or path integral methods to accomplish this. Practial applications of making markets for interest-rate futures using

8

Mike Carr | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mike Carr Mike Carr Mike Carr November 13, 2013 - 1:55pm Addthis Principal Deputy Assistant Secretary Photo of Mike Carr. In his role as Principal Deputy Assistant Secretary for the Office of EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy development to help ensure that EERE's activities align with national priorities and that policymakers have the best information possible about the opportunities presented by the EERE technology portfolio. Since 1996, Mike has advised on law and policy both inside and outside of government, with a particular specialization in environment and natural resources law. Prior to taking on the Principal Deputy position, from 2004 to June 2012 Mike served as Senior Counsel to the Senate Committee on

9

Multi-cathode metal vapor arc ion source  

DOE Patents (OSTI)

An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805)

1988-01-01T23:59:59.000Z

10

Mike Carr | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mike Carr Mike Carr About Us Mike Carr - Senior Advisor and EERE Principal Deputy Assistant Secretary Mike Carr Mike Carr is a Senior Advisor to the Director of Energy Policy and Systems Analysis and Principal Deputy Assistant Secretary for the Office of Energy Efficiency and Renewable Energy. Mr. Carr provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy development to help ensure that EERE does its best to inform federal policy-making and legislative activities related to renewable energy and energy efficiency technologies. Since 1996, Mr. Carr has advised on law and policy both inside and outside of government, with a particular specialization in environment and natural resources law. Prior to taking on the Principal Deputy position, Mike

11

456-Mike.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration Administration like: Annette Nichols Power System Dispatcher Springfield, MO Special thanks to: Marti Ayers Mike Deihl Ruben Garcia Darrell Gilliam William Hiller Doug Johnson Beth Nielsen Carlos Valencia Rutha Williams & Dennis Foss St. Louis District Corps of Engineers U P D AT E S O U T H W E S T E R N P O W E R A D M I N I S T R A T I O N A P R I L - J U N E 2 0 0 6 Equipped for Transformation When it comes to replacing capital equipment, Southwestern seeks the best value among the world's manufacturers. In the case of Norfork Substation's transformers, due to be replaced in August 2006, that search took the agency all the way across the Pacific Ocean for the second time in a year. Last April, Marty Smith, Working Foreman with the Springfield Maintenance Substation Crew, and Carlos Valencia, General

12

The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon  

Science Conference Proceedings (OSTI)

The possibility of using remote sensing retrievals to estimate apparent water vapor sinks and heat sources is explored. The apparent water vapor sinks and heat sources are estimated from a combination of remote sensing, specific humidity, and ...

Sun Wong; Eric J. Fetzer; Baijun Tian; Bjorn Lambrigtsen; Hengchun Ye

2011-08-01T23:59:59.000Z

13

MIKE TURNER ON SPOTTING YOUNG  

E-Print Network (OSTI)

BAE SYSTEMS MIKE TURNER ON SPOTTING YOUNG TALENT AND THE GROWTH OF HIS BUSINESS Success stories? Surely, it is about making lots of money, gaining power, status and prestige, and then using this wealth, the extinction of many animal and plant species, and global warming demonstrated that the raw materials

14

Renewable Energy & Sustainability Prof. Martin J. (Mike) Pasqualetti  

E-Print Network (OSTI)

Renewable Energy & Sustainability Prof. Martin J. (Mike) Pasqualetti Professor, School depletion for the next 1000 years (in 100,000 TWh/year) #12;We Have Many Renewable Energy Resources At Our Disposal Reality #4 #12;#12;Renewable Energy is Minor at Present Source: U.S. EIA http://www.eia.gov/cneaf/solar.renewables

Rhoads, James

15

Ian Foster, Ti Leggett, Mike Papka, Mike Wilde Win the Analytics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ti Leggett, Mike Papka, and Mike Wilde were part of the team that won the Analytics Challenge at SC07 for presenting a new approach for protecting cyberinfrastructure. The...

16

October 31, 1952: Mike Test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 1952: Mike Test October 31, 1952: Mike Test October 31, 1952: Mike Test October 31, 1952 The Atomic Energy Commission detonates the first thermonuclear device, code-named...

17

Observations on vapor pressure in SPR caverns : sources.  

DOE Green Energy (OSTI)

The oil of the Strategic Petroleum Reserve (SPR) represents a national response to any potential emergency or intentional restriction of crude oil supply to this country, and conforms to International Agreements to maintain such a reserve. As assurance this reserve oil will be available in a timely manner should a restriction in supply occur, the oil of the reserve must meet certain transportation criteria. The transportation criteria require that the oil does not evolve dangerous gas, either explosive or toxic, while in the process of transport to, or storage at, the destination facility. This requirement can be a challenge because the stored oil can acquire dissolved gases while in the SPR. There have been a series of reports analyzing in exceptional detail the reasons for the increases, or regains, in gas content; however, there remains some uncertainty in these explanations and an inability to predict why the regains occur. Where the regains are prohibitive and exceed the criteria, the oil must undergo degasification, where excess portions of the volatile gas are removed. There are only two known sources of gas regain, one is the salt dome formation itself which may contain gas inclusions from which gas can be released during oil processing or storage, and the second is increases of the gases release by the volatile components of the crude oil itself during storage, especially if the stored oil undergoes heating or is subject to biological generation processes. In this work, the earlier analyses are reexamined and significant alterations in conclusions are proposed. The alterations are based on how the fluid exchanges of brine and oil uptake gas released from domal salt during solutioning, and thereafter, during further exchanges of fluids. Transparency of the brine/oil interface and the transfer of gas across this interface remains an important unanswered question. The contribution from creep induced damage releasing gas from the salt surrounding the cavern is considered through computations using the Multimechanism Deformation Coupled Fracture (MDCF) model, suggesting a relative minor, but potentially significant, contribution to the regain process. Apparently, gains in gas content can be generated from the oil itself during storage because the salt dome has been heated by the geothermal gradient of the earth. The heated domal salt transfers heat to the oil stored in the caverns and thereby increases the gas released by the volatile components and raises the boiling point pressure of the oil. The process is essentially a variation on the fractionation of oil, where each of the discrete components of the oil have a discrete temperature range over which that component can be volatized and removed from the remaining components. The most volatile components are methane and ethane, the shortest chain hydrocarbons. Since this fractionation is a fundamental aspect of oil behavior, the volatile component can be removed by degassing, potentially prohibiting the evolution of gas at or below the temperature of the degas process. While this process is well understood, the ability to describe the results of degassing and subsequent regain is not. Trends are not well defined for original gas content, regain, and prescribed effects of degassing. As a result, prediction of cavern response is difficult. As a consequence of this current analysis, it is suggested that solutioning brine of the final fluid exchange of a just completed cavern, immediately prior to the first oil filling, should be analyzed for gas content using existing analysis techniques. This would add important information and clarification to the regain process. It is also proposed that the quantity of volatile components, such as methane, be determined before and after any degasification operation.

Munson, Darrell Eugene

2010-05-01T23:59:59.000Z

18

Mike Norman, Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Diary of a Nobel Guest - II Diary of a Nobel Guest - II Mike Norman, Argonne National Laboratory Having read David Mermin's entertaining account of his own adventures in Stockholm during the 1996 Nobel festivities, I could not help but offer my own observations during this year's (2003) events. This was made possible by Alex's gracious invitation to come and help him celebrate. Friday, December 5 Get to airport almost two hours in advance. Turns out to be a near mistake. O'Hare is a disaster that day, with one hour lines at both the counter and security checkpoint. But we (George Crabtree and I) make it (barely). My neighbor is a talkative doctor shuttling between Norway and Spain (European version of our Florida snowbirds). As a result, never check whether Alex (Alexei Abrikosov) and family are on the plane or not.

19

Instrumentation for interstellar exploration Mike Gruntman *  

E-Print Network (OSTI)

understanding of the nature of the local interstellar medium and explore the distant frontier of the solar for the interstellar study will concentrate on exploring the distant frontier of the solar system and the galacticInstrumentation for interstellar exploration Mike Gruntman * Department of Aerospace and Mechanical

Gruntman, Mike

20

2012 SG Peer Review - Energy Surety, Microgrids - Mike Hightower, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Support of Renewable and Distributed Support of Renewable and Distributed System Integration and Microgrids Mike Hightower Sandia National Laboratories June 7, 2012 December 2008 Support RDSI and Microgrids Objective Life-cycle Funding Summary ($K) FY 09 to FY 11 FY12, authorized FY13, requested Out-year(s) ~$2000K $870K $1000K $1000K Technical Scope To address current shortcomings of power reliability and security, Sandia is investigating advanced microgrid approaches to locate more secure and robust distributed energy generation and storage sources near loads as a way to better manage power generation and to improve overall power reliability and security. Microgrids are equally applicable to military, industrial, and utility distribution applications. Sandia's microgrid research utilizes smart grid

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source  

SciTech Connect

Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control {+-}10K around 1500 Degree-Sign C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T. [Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); National Institute of Radiological Science (NIRS), 4-9-1 Anagawa, Inage, Chiba, 263-8555 (Japan); Bio-Nano Electronics Research Centre, Toyo Univ., 2100 Kuzirai, Kawagoe, Saitama, 350-8585 (Japan); Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

2012-11-06T23:59:59.000Z

22

STATE OF ARKANSAS MIKE BEEBE GOVERNOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARKANSAS ARKANSAS MIKE BEEBE GOVERNOR March 23,2009 The Honorable Steven Chu SecretaryJ. S. Dspartment of Energy - 1 000 Independence Avenue, S.W. Washington, DC 20585 Re: State Energy Program Assurances Dear Mr. Secretary: As a condition of receiving Arkansas's share of the $3.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R. l)(ARRA), I am providing certain assurances found below. I have written to the Chairman of the Arkansas Public Sewice Commission and requested that the commissioners consider additional actions to promote energy efficiency consistent with the federal statutory language contained in H.R. 1 and with their obligations to maintain just and reasonable rates, while protecting the public. I have also written to the Speaker

23

Mike Butler, UETC Daren Gilbert, State of Nevada Ray English...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 22, 1998 10:30-11:30 a.m., EDT Rail Topic Group conference call Participants on the call included: Mike Butler, UETC Daren Gilbert, State of Nevada Ray English, DOE-NR William...

24

Kevin Blackwell, FRA Mike Butler, UETC Sandy Covi, UPRR Steve...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a.m. EDT Participants on the call included: Kevin Blackwell, FRA Mike Butler, UETC Sandy Covi, UPRR Steve Hamp, DOE-NTP The call began at approximately 10:30 a.m. EDT. Mr....

25

Solar Cells in 2009 and Beyond Mike McGehee  

E-Print Network (OSTI)

Solar Cells in 2009 and Beyond Mike McGehee Materials Science and Engineering These slidesTunesU and Youtube. #12;To provide the world with 10 TW of solar electricity by 2030 · We need to grow the industry parity cost depends on location #12;Conventional p-n junction photovoltaic (solar) cell #12;Efficiency

McGehee, Michael

26

An Overview of Solar Cell Technology Mike McGehee  

E-Print Network (OSTI)

An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global Climate;Primary Photovoltaic (PV) Markets Residential Rooftop Commercial Rooftop Ground mounted (Usually 2Watt and Evergreen Solar went bankrupt Jon Stewart, The Daily Show Solyndra, SpectraWatt and Evergreen Solar went

McGehee, Michael

27

Not Your Father's Weatherization: Q&A with Contractor Mike Richart |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Your Father's Weatherization: Q&A with Contractor Mike Not Your Father's Weatherization: Q&A with Contractor Mike Richart Not Your Father's Weatherization: Q&A with Contractor Mike Richart June 9, 2010 - 10:05am Addthis Mike Richart's company has witnessed a surge in weatherization business in the past year | Photo courtesy of Mike Richart Mike Richart's company has witnessed a surge in weatherization business in the past year | Photo courtesy of Mike Richart Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? This Vancouver-based small business -- Richart Family, Inc. -- has hired 25 new workers to meet the higher demand for weatherization work thanks to the Recovery Act. From improvements in technology to increased consumer demand on quality,

28

Vaporization of mercury from molten lead droplets doped with mercury: Pb/Hg source term experiment for the APT/SILC target  

SciTech Connect

Experiments were performed to measure the fraction of mercury inventory released when droplets of molten lead, doped with a known concentration of mercury, fall through a controlled environment. The temperature of molten droplets ranged from 335 C to 346 C, and the concentration of mercury in the droplets ranged from 0.2 mass % to 1.0 mass %. The environment consisted of an air stream, at a temperature nominally equal to the melt temperature, and moving vertically upwards at a velocity of 10 cm/s. Direct observations and chemical analysis showed that no mercury was released from the molten droplets. Based upon the experimental results, it is concluded that no mercury vapor is likely to be released from the potentially molten source rod material in the APT-SILC Neutron Source Array to the confinement atmosphere during a postulated Large Break Loss Of Coolant Accident scenario leading to the melting of a fraction of the source rods.

Tutu, N.K.; Greene, G.A.

1994-09-01T23:59:59.000Z

29

Science and Technology of Future Light Sources  

E-Print Network (OSTI)

DESY) Herman Winick (SLAC) Mike Zisman (LBNL) WHITE PAPER of Future Light Sources A White Paper Report prepared byheart of the all- 24  WHITE PAPER  Science and Technology of

Bergmann, Uwe

2009-01-01T23:59:59.000Z

30

Vapor Degreasing  

Science Conference Proceedings (OSTI)

Table 6   Applications of vapor degreasing by vapor-spray-vapor systems...hardware Brass 2270 5000 Buffing compound; rouge Lacquer spray Racked work on continuous monorail Acoustic ceiling tile Steel 2720 6000 Light oil (stamping lubricant) Painting Monorail conveyor Gas meters Terneplate 4540 10,000 Light oil Painting Monorail conveyor Continuous strip, 0.25â??4.1 mm...

31

Vapor Characterization  

Science Conference Proceedings (OSTI)

... thermodynamics (that is, vapor liquid equilibrium) as ... of solids and low volatility liquids is extraordinarily ... such situations is the gas saturation method ...

2013-12-10T23:59:59.000Z

32

Vapor Pressure Measurement of Supercooled Water  

Science Conference Proceedings (OSTI)

A new dewpoint hygrometer was developed for subfreezing temperature application. Vapor pressure of supercooled water was determined by measuring temperatures at the dew-forming surface and the vapor source ice under the flux density balance, and ...

N. Fukuta; C. M. Gramada

2003-08-01T23:59:59.000Z

33

Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction  

Science Conference Proceedings (OSTI)

An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impact of water and NAPL saturation distribution, NAPL type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at late time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.

Yoon, Hongkyu; Werth, Charlie; Valocchi, Albert J.; Oostrom, Martinus

2008-09-26T23:59:59.000Z

34

And the 2011 CHCO of the Year is...Mike Kane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And the 2011 CHCO of the Year is...Mike Kane And the 2011 CHCO of the Year is...Mike Kane And the 2011 CHCO of the Year is...Mike Kane December 9, 2011 - 2:39pm Addthis Above, Michael C. Kane speaks at the Energy Department's Feeds Family Sculpture Contest on August 30, 2011. In the fall of 2011, the Office of Personnel Management recognized Mr. Kane as the Chief Human Capital Officer of the Year. | DOE photo Above, Michael C. Kane speaks at the Energy Department's Feeds Family Sculpture Contest on August 30, 2011. In the fall of 2011, the Office of Personnel Management recognized Mr. Kane as the Chief Human Capital Officer of the Year. | DOE photo Rita Franklin Rita Franklin Deputy Chief Human Capital Officer Over the last year, the Energy Department has made great progress in improving the quality of its human resources (HR) services, and the

35

OSTIblog Posts by Mike Jennings | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Mike Jennings Mike Jennings Mike Jennings's picture IT Projects New Media / Marketing Technology My background is Information Technology spanning software application development, databases, networks and telecommunications, enterprise IT operations, contracts, and acquisitions. My current focus is user engagement architecture and strategy for outreach operations at OSTI. Aspirations for Connecting Researchers in New Media Published on Jul 07, 2009 For several years I've been responsible for organizing OSTI staff to capitalize the benefits of web and mobile web innovations. An important endeavor of mine aspires to help OSTI become a leader in connecting scientists in the second generation of the WorldWideWeb - Web 2.0. Read more... Transparency of Scientific Information

36

An assessment of recent extreme weather in Pakistan and Russia Mike Blackburn1  

E-Print Network (OSTI)

- 1 - An assessment of recent extreme weather in Pakistan and Russia Mike Blackburn1 , Andy Turner1 crossed the mountains over northern Pakistan, intensifying the monsoon rains there. This trough into northern Pakistan, beneath the trough(Fig.3) . It appears to be this conjunction of events that led

Dacre, Helen

37

Lidars in Wind Energy Jakob Mann, Ferhat Bingl, Torben Mikkelsen, Ioannis Antoniou, Mike  

E-Print Network (OSTI)

Lidars in Wind Energy Jakob Mann, Ferhat Bingöl, Torben Mikkelsen, Ioannis Antoniou, Mike Courtney, Gunner Larsen, Ebba Dellwik Juan Jose Trujillo* and Hans E. Jørgensen Wind Energy Department Risø of the presentation · Introduction to wind energy · Accurate profiles of the mean wind speed · Wakes behind turbines

38

Fuel vapor canister  

SciTech Connect

This paper discusses an improved fuel vapor storage canister for use in a vehicle emission system of the type utilizing an enclosure with an interior communicated with a source of fuel vapor. The improved canister comprises: the enclosure having a mixture including particles of activated charcoal and many pieces of foam rubber, the pieces of foam rubber in the mixture being randomly and substantially evenly dispersed whereby substantially all the charcoal particles are spaced relatively closely to at least one foam rubber piece; the mixture being packed into the enclosure under pressure so that the pieces of foam rubber are compressed enough to tightly secure the charcoal particles one against another to prevent a griding action therebetween.

Moskaitis, R.J.; Ciuffetelli, L.A.

1991-03-26T23:59:59.000Z

39

Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

SOURCES Microsoft Corporation. "Gasohol," Microsoft Encarta Online Encyclopedia 2001, http:encarta.msn.com. U.S. Department of Transportation, Federal Highway Administration, A...

40

Chemical vapor infiltration using microwave energy  

DOE Patents (OSTI)

This invention is comprised of a method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

Devlin, D.J.; Currier, R.P.; Laia, J.R.; Barbero, R.S.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Selective Chemical Vapor Deposition of Heavily Boron Doped Silicon-Germanium Films from Disilane, Germane and Chlorine for Source/ Drain Junctions of Nanoscale CMOS.  

E-Print Network (OSTI)

??As metal-oxide semiconductor field effect transistors (MOSFETs) are scaled for higher speed and reduced power, new challenges are imposed on the source/drain junctions and their… (more)

Pesovic, Nemanja

2002-01-01T23:59:59.000Z

42

Mike Stewart  

NLE Websites -- All DOE Office Websites (Extended Search)

we will describe the comparative performance of different compilers on several MPI benchmarks with different characteristics. For each compiler and benchmark, we will establish...

43

Mike Carroll  

Science Conference Proceedings (OSTI)

... Division Office Manager. ... manage and monitor Division's budget, financial activities ... pay, leave administration, performance management and work ...

2013-04-11T23:59:59.000Z

44

Mike Waters  

Science Conference Proceedings (OSTI)

... Nealson. 2009. “Early detection of oxidized surfaces using Shewanella oneidensis MR-1 as a tool.” Biofouling. 25: p. 163-172. ...

2012-10-01T23:59:59.000Z

45

Mercury Vapor Pressure Correlation  

Science Conference Proceedings (OSTI)

An apparent difference between the historical mercury vapor concentration equations used by the mercury atmospheric measurement community ...

2012-10-09T23:59:59.000Z

46

Soap: a Pointing Device that Works in Mid-Air Patrick Baudisch, Mike Sinclair, and Andrew Wilson  

E-Print Network (OSTI)

Soap: a Pointing Device that Works in Mid-Air Patrick Baudisch, Mike Sinclair, and Andrew Wilson,sinclair,awilson@.microsoft.com} ABSTRACT Soap is a pointing device based on hardware found in a mouse, yet works in mid-air. Soap consists. ACM Classification: H5.2 [Information interfaces and presentation]: User Interfaces. Input devices

Baudisch, Patrick

47

Microfabricated diffusion source  

DOE Patents (OSTI)

A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

Oborny, Michael C. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

2008-07-15T23:59:59.000Z

48

Kevin Blackwell, FRA Mike Butler, UETC Sandy Covi, UPRR Bob Fronczak, AAR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conference Call Friday, March 26, 1999 11:30 a.m- Conference Call Friday, March 26, 1999 11:30 a.m- 12:30 p.m. Participants on the call included: Kevin Blackwell, FRA Mike Butler, UETC Sandy Covi, UPRR Bob Fronczak, AAR Daren Gilbert, State of Nevada Swenam Lee, DOE-FETC William Naughton, ComEd The call consisted of summary discussion of version #2 of the topic group's "TEC/WG Transportation Safety Rail Comparison" and additional discussion of comments submitted by Dr. Swenam Lee (DOE-FETC) and Mr. Steve Hamp (NTP-Albuquerque). In general, group participants felt that the edited version of the paper did a good job of meeting the objectives agreed upon by the group. Mr. Butler asked that participants refrain from

49

Vapor spill monitoring method  

DOE Patents (OSTI)

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

50

Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Global Positioning System and Scanning Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates V. Mattioli and P. Basili Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction In recent years the Global Positioning System (GPS) has proved to be a reliable instrument for measuring precipitable water vapor (PWV) (Bevis et al. 1992), offering an independent source of information on water vapor when compared with microwave radiometers (MWRs), and/or radiosonde

51

atmospheric water vapor | OpenEI  

Open Energy Info (EERE)

atmospheric water vapor atmospheric water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor Carribean Islands Central America DNI GIS Mexico NREL GEF solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 247.8 KiB) text/csv icon Download Data (csv, 370.6 KiB) Quality Metrics Level of Review Some Review

52

atmoshperic water vapor | OpenEI  

Open Energy Info (EERE)

atmoshperic water vapor atmoshperic water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for China. Source NREL Date Released April 12th, 2005 (9 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmoshperic water vapor China GEF GIS NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 625.6 KiB) text/csv icon Download Data (csv, 704.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/1985 - 12/31/1991 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

53

Vapor scavenging by atmospheric aerosol particles  

Science Conference Proceedings (OSTI)

Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

Andrews, E.

1996-05-01T23:59:59.000Z

54

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

55

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

56

Vapor concentration monitor  

DOE Patents (OSTI)

An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

Bayly, John G. (Deep River, CA); Booth, Ronald J. (Deep River, CA)

1977-01-01T23:59:59.000Z

57

Worker Protection from Chemical Vapors: Hanford Tank Farms  

Science Conference Proceedings (OSTI)

Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank head-spaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns, risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits (OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors. (authors)

Anderson, T.J. [CH2M HILL Hanford Group, Inc. / Environmental Health, Richland, WA (United States)

2007-07-01T23:59:59.000Z

58

Definition: Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Jump to: navigation, search Dictionary.png Mercury Vapor Mercury is discharged as a highly volatile vapor during hydrothermal activity and high concentrations in...

59

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

60

Occupational Exposure Evaluation of Complex Vapor Mixtures at the Hanford Nuclear Waste Site, Washington Work-site Vapor Characterization  

SciTech Connect

Extensive sampling and analysis has been done over the years to characterize the radioactive and chemical properties of hazardous waste stored in 177 underground tanks at the Hanford site in eastern Washington State. The purpose of these analyses was to evaluate safety and environmental concerns related to tank stability. More recently, characterization studies have broadened to evaluate potential health hazards of chemical vapors at the ground surface, where workers perform maintenance and waste transfer activities. Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. The extensive sampling done during this campaign evaluated vapor concentrations of more than 100 different chemical at 70 sites in and around one section of the tank farms. Sampling identified only four vapors (ammonia, nitrous oxide, nitrosodimethylamine, and nitrosomethylethylamine) that were present above occupational exposure limits. These elevated concentrations were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors were measured above 10% of their OELs more than five feet from the source. This suggests that vapor controls can be focused on limited hazard zones around sources. (authors)

Anderson, T. J. [CH2M HILL Hanford Group, Inc. / Environmental Health, P.O. Box 1000, S7-70, Richland, WA 99352 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

62

Stratified vapor generator  

DOE Patents (OSTI)

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

63

VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS  

DOE Green Energy (OSTI)

This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

Eric M. Suuberg; Vahur Oja

1997-07-01T23:59:59.000Z

64

Photochemical studies of alkali halide vapors  

SciTech Connect

Thesis. An apparatus has been constructed for studying the photodissociation of alkali halides to produce excited alkali metal atoms. The key component is a low pressure H/sub 2/ arc continuum uv source. Radiation from this source, modulated by a chopping wheel and analyzed by a monochromator, enters a cell containing the alkali halide vapor. In the appropriate wavelength range, photodissociation occurs to produce the alkali atom in an excited /sup 2/p state, the flourescence from which is detected by a photomultiplier-lock-in amplifier combination. (auth)

Earl, B.L.

1973-08-01T23:59:59.000Z

65

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

DOE Green Energy (OSTI)

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

1998-12-01T23:59:59.000Z

66

Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road,  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostics with an X-ray Laser? Lessons from the First Diagnostics with an X-ray Laser? Lessons from the First Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA What does airborne particulate matter look like? How do we develop quantitative descriptors for particles of complex morphology? These challenges were highlighted in the NIST workshop report "Aerosol Metrology Needs for Climate Science" (Dec, 2011). Sure, we can capture aerosol particles on surfaces - removing them from their airborne state - and probe them with high resolution optical and chemical imaging tools, but what information do we lose about the airborne particles? How can we follow dynamics? In this talk we will explore these very basic questions and their importance to combustion

67

Vapor spill pipe monitor  

DOE Patents (OSTI)

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

68

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

69

Vapor adsorption process  

SciTech Connect

The removal of undesirable acid components from sour natural gas is often accomplished by a vapor adsorption process wherein a bed of solid adsorbent material is contacted with an inlet gas stream so that desired components contained in the gas stream are adsorbed on the bed, then regenerated by contact with a heated regeneration gas stream. Adsorbed components are desorbed from the bed and the bed is cooled preparatory to again being contacted with the inlet gas stream. By this process, the bed is contacted, during the regeneration cycle, with a selected adsorbable material. This material has the property of being displaced from the bed by the desired components and has a heat of desorption equal to or greater than the heat of adsorption of the desired components. When the bed is contacted with the inlet gas stream, the selected adsorbable material is displaced by the desired components resulting in the temperature of the bed remaining relatively constant, thereby allowing the utilization of the maximum bed adsorption capacity. (4 claims)

Snyder, C.F.; Casad, B.M.

1973-04-24T23:59:59.000Z

70

The Michigan/MIKE Fiber System Survey of Stellar Radial Velocities in Dwarf Spheroidal Galaxies: Acquisition and Reduction of Data  

E-Print Network (OSTI)

We introduce a stellar velocity survey of dwarf spheroidal galaxies, undertaken using the Michigan/MIKE Fiber System (MMFS) at the Magellan/Clay 6.5 m telescope at Las Campanas Observatory. As of 2006 November we have used MMFS to collect 6415 high-resolution (R= 20000-25000) spectra from 5180 stars in four dwarf spheroidal galaxies: Carina, Fornax, Sculptor and Sextans. Spectra sample the range 5140-5180 Angstroms, which includes the prominent magnesium triplet absorption feature. We measure radial velocity (RV) to a median precision of 2.0 km/s for stars as faint as V ~ 20.5. From the spectra we also are able to measure the strength of iron and magnesium absorption features using spectral indices that correlate with effective temperature, surface gravity and chemical abundance. Measurement of line strength allows us to identify interloping foreground stars independently of velocity, and to examine the metallicity distribution among dSph members. Here we present detailed descriptions of MMFS, our target selection and spectroscopic observations, the data reduction procedure, and error analysis. We compare our RV results to previously published measurements for individual stars. In some cases we find evidence for a mild, velocity-dependent offset between the RVs we measure using the magnesium triplet and previously published RV measurements derived from the infrared calcium triplet. In companion papers we will present the complete data sets and kinematic analyses of these new observations.

Matthew G. Walker; Mario Mateo; Edward W. Olszewski; Rebecca Bernstein; Bodhisattva Sen; Michael Woodroofe

2007-03-12T23:59:59.000Z

71

Atmospheric Water Vapor over China  

Science Conference Proceedings (OSTI)

Chinese radiosonde data from 1970 to 1990 are relatively homogeneous in time and are used to examine the climatology, trends, and variability of China’s atmospheric water vapor content. The climatological distribution of precipitable water (PW) ...

Panmao Zhai; Robert E. Eskridge

1997-10-01T23:59:59.000Z

72

Vapor deposition of hardened niobium  

DOE Patents (OSTI)

A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

1983-04-19T23:59:59.000Z

73

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

74

Dynamic modeling of plasma-vapor interactions during plasma disruptions  

SciTech Connect

Intense deposition of energy in short times on fusion reactor components during a plasma disruption may cause severe surface erosion due to ablation of these components. The exact amount of the eroded material is very important to the reactor design and its lifetime. During the plasma deposition, the vaporized wall material will interact with the incoming plasma particles and may shield the rest of the wall from damage. The vapor shielding may then prolong the lifetime of these components and increase the reactor duty cycle. To correctly evaluate the impact of vapor shielding effect a comprehensive model is developed. In this model the dynamic slowing down of the plasma particles, both ions and electrons, with the eroded wall material is established. Different interaction processes between the plasma particles and the ablated material is included. The generated photons radiation source and the transport of this radiation through the vapor to the wall is modeled. Recent experimental data on disruptions is analyzed and compared with model predictions. Vapor shielding may be effective in reducing the overall erosion rate for certain plasma disruption parameters and conditions.

Hassanein, A.; Ehst, D.A.

1992-05-01T23:59:59.000Z

75

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

Zhao, L; Xiao, Y; Yelin, S F

2007-01-01T23:59:59.000Z

76

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

2007-10-22T23:59:59.000Z

77

Cold source  

Science Conference Proceedings (OSTI)

... R-134a to simulate the flow of LH2 with the expected vapor flow rate and liquid-to-vapor density ratio.) A separate, 0.5 m3 ballast tank will be ...

78

Low temperature ion source for calutrons  

DOE Patents (OSTI)

A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

Veach, Allen M. (Oak Ridge, TN); Bell, Jr., William A. (Oak Ridge, TN); Howell, Jr., George D. (Clinton, TN)

1981-01-01T23:59:59.000Z

79

Low temperature ion source for calutrons  

DOE Patents (OSTI)

A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

Veach, A.M.; Bell, W.A. Jr.; Howell, G.D. Jr.

1979-10-10T23:59:59.000Z

80

Method for producing uranium atomic beam source  

DOE Patents (OSTI)

A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

Krikorian, Oscar H. (Danville, CA)

1976-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

82

Distribution of Tropical Tropospheric Water Vapor  

Science Conference Proceedings (OSTI)

Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence ...

De-Zheng Sun; Richard S. Lindzen

1993-06-01T23:59:59.000Z

83

Atmospheric Water Vapor Characteristics at 70°N  

Science Conference Proceedings (OSTI)

Using an extensive rawinsonde archive, characteristics of Arctic water vapor and its transports at 70°N are examined for the period 1974–1991. Monthly-mean profiles and vertically integrated values of specific humidity and meridional vapor fluxes ...

Mark C. Serreze; Roger G. Barry; John E. Walsh

1995-04-01T23:59:59.000Z

84

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

85

LOW PRESSURE CHEMICAL VAPOR DEPOSITION OF POLYSILICON  

E-Print Network (OSTI)

THEORY The mass transport processes in low pressure chemical vapor deposition (LPCVD) are similar to those occuring in catalytic reactors

Gieske, R.J.

2011-01-01T23:59:59.000Z

86

Vapor Pressures and Heats of Vaporization of Primary Coal Tars  

Office of Scientific and Technical Information (OSTI)

/ PC92544-18 / PC92544-18 VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS FINAL REPORT Grant Dates: August, 1992 - November, 1996 Principal Authors: Eric M. Suuberg (PI) and Vahur Oja Report Submitted: April, 1997 Revised: July, 1997 Grant Number: DE-FG22-92PC92544 Report Submitted by: ERIC M. SUUBERG DIVISION OF ENGINEERING BROWN UNIVERSITY PROVIDENCE, RI 02912 TEL. (401) 863-1420 Prepared For: U. S. DEPT. OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER P.O. BOX 10940 PITTSBURGH, PA 15236 DR. KAMALENDU DAS, FETC, MORGANTOWN , WV TECHNICAL PROJECT OFFICER "US/DOE Patent Clearance is not required prior to the publication of this document" ii United States Government Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

87

From: Mike Nelson To ...  

Science Conference Proceedings (OSTI)

... net> To: nnmi_comments Cc: Date: Fri ... research results to commercial operation would deter investment by traditional ...

2012-10-01T23:59:59.000Z

88

PRESS RELEASEContact Mike Benjamin  

NLE Websites -- All DOE Office Websites (Extended Search)

In attendance from NETL are left to right: Larry Headley, Associate Director; Evan Granite, Research Chemical Engineer and technology co-inventor; Henry Pennline, Research Team...

89

System for the removal of contaminant soil-gas vapors  

DOE Patents (OSTI)

A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

1997-12-16T23:59:59.000Z

90

Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part II: Assessing the ECMWF Humidity Analysis  

Science Conference Proceedings (OSTI)

In a recent publication (Part I), the authors introduced a data source—Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)—for monitoring and studying upper-tropospheric water vapor (UTWV) and analyzed 10 yr (1994–2004) of ...

Zhengzhao Luo; Dieter Kley; Richard H. Johnson; Herman Smit

2008-04-01T23:59:59.000Z

91

Enhanced Attenuation Technologies: Passive Soil Vapor Extraction  

SciTech Connect

Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

2010-03-15T23:59:59.000Z

92

Means and method for vapor generation  

DOE Patents (OSTI)

A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

Carlson, Larry W. (Oswego, IL)

1984-01-01T23:59:59.000Z

93

Sources of Sahel Precipitation for Simulated Drought and Rainy Seasons  

Science Conference Proceedings (OSTI)

The sources of sub-Saharan precipitation are studied using diagnostic procedures integrated into the code of the GISS climate model. Water vapor evaporating from defined source region is “tagged,” allowing the determination of the relative ...

Leonard M. Druyan; Randal D. Koster

1989-12-01T23:59:59.000Z

94

Reference Handbook for Site-Specific Assessment of Subsurface Vapor Intrusion to Indoor Air  

Science Conference Proceedings (OSTI)

Subsurface vapor intrusion is only one of several possible sources for volatile and semi-volatile chemicals in indoor air. This report provides guidance on the site-specific assessment of the significance of subsurface vapor intrusion into indoor air. Topics covered include theoretical considerations, sampling and analysis considerations, recommended strategies and procedures, interpretive tools, mitigation measures, and suggestions for future research. This document reflects a comprehensive understandin...

2005-03-28T23:59:59.000Z

95

Water Vapor Sources of the October 2000 Piedmont Flood  

Science Conference Proceedings (OSTI)

Very intense mesoscale or synoptic-scale rainfall events can occasionally be observed in the Mediterranean region without any deep cyclone developing over the areas affected by precipitation. In these perplexing cases the synoptic situation can ...

Barbara Turato; Oreste Reale; Franco Siccardi

2004-08-01T23:59:59.000Z

96

s I entered Mike Blayney's office on a brisk April morning, he was working on a training module entitled "Safety and Environment in the Arts". The program, which focuses on the risks and hazards inherent in craft  

E-Print Network (OSTI)

the College's Studio Art faculty, its students, and the Office of Environmental Health and Safety (EHS development, managed special projects for the Branch Chief, and provided assistance to a range of governments I entered Mike Blayney's office on a brisk April morning, he was working on a training module

Myers, Lawrence C.

97

High current ion source  

DOE Patents (OSTI)

An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

1990-01-01T23:59:59.000Z

98

Water Vapor Structure Displacements from Cloud-Free Meteosat Scenes and Their Interpretation for the Wind Field  

Science Conference Proceedings (OSTI)

The evaluation of water vapor (WV) images taken by satellite-borne radiometers has become an essential source of data in modern meteorology. The analysis of structure displacements within sections of WV images is an effective way to get ...

G. Büche; H. Karbstein; A. Kummer; H. Fischer

2006-04-01T23:59:59.000Z

99

From: Adams, Charlie To: Regulatory.Review Cc: Stern, Jim; Parker, Mike; Dana, Paul; Josh Greene; Frank Stanonik; Neil Rolph; Schuh, Darrell; Roy Smith; Dan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adams, Charlie To: Regulatory.Review Cc: Stern, Jim; Parker, Mike; Dana, Paul; Josh Greene; Frank Stanonik; Neil Rolph; Schuh, Darrell; Roy Smith; Dan Snyder; Berning, Dave Subject: EO 13563 Preliminary Plan comments from A.O. Smith Corporation Date: Monday, August 01, 2011 2:59:51 PM A.O. Smith Corporation Response to Preliminary Plan for Retrospective Analysis of Existing Rules A.O. Smith Corporation is the largest manufacturer of residential and commercial water heating equipment in the United States. We have the following comments in response to the July 11, 2011, Notice of Availability in the Federal Register, in which DOE sought comments regarding its EO 13563 Preliminary Plan: · In general, we commend DOE's approach to review significant rules on an on-going basis in order

100

Vapor phase heat transport systems  

DOE Green Energy (OSTI)

Vapor phase heat-transport systems are being tested in two of the passive test cells at Los Alamos. The systems consist of an active fin-and-tube solar collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by a pump or by a self-pumping scheme. In one of the test cells the liquid was self-pumped to the roof-mounted collector 17 ft above the condenser. A mechanical valve was designed and tested that showed that the system could operate in a completely passive mode. Performance comparisons have been made with a passive water wall test cell.

Hedstrom, J.C.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coupling apparatus for a metal vapor laser  

DOE Patents (OSTI)

Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

Ball, D.G.; Miller, J.L.

1993-02-23T23:59:59.000Z

102

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

103

Thermoplastic Composite with Vapor Grown Carbon Fiber.  

E-Print Network (OSTI)

??Vapor grown carbon fiber (VGCF) is a new class of highly graphitic carbon nanofiber and offers advantages of economy and simpler processing over continuous-fiber composites.… (more)

Lee, Jaewoo

2005-01-01T23:59:59.000Z

104

Moisture Durability of Vapor Permeable Insulating Sheathing ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes, Building Technologies Office (BTO) In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor...

105

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, B.K.

1991-12-17T23:59:59.000Z

106

Water Vapor Fields Deduced from METEOSAT-1 Water Vapor Channel Data  

Science Conference Proceedings (OSTI)

A quasi-operational process for the determination of water vapor fields from METEPSAT-1 water vapor channel data is described. Each count of the WV picture is replaced by the corresponding mean relative humidity value using both the calibration ...

M. M. Poc; M. Roulleau

1983-09-01T23:59:59.000Z

107

Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes  

E-Print Network (OSTI)

Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical process of dispersion of LNG release can be simply divided into two stages: source term and atmospheric dispersion. The former stage occurs immediately following the release where the behavior of fluids (LNG and its vapor) is mainly controlled by release conditions. After this initial stage, the atmosphere would increasingly dominate the vapor dispersion behavior until it completely dissipates. In this work, these two stages are modeled separately by a source term model and a dispersion model due to the different parameters used to describe the physical process at each stage. The principal focus of the source term study was on LNG underwater release, since there has been far less research conducted in developing and testing models for the source of LNG release underwater compared to that for LNG release onto land or water. An underwater LNG release test was carried out to understand the phenomena that occur when LNG is released underwater and to determine the characteristics of pool formation and the vapor cloud generated by the vaporization of LNG underwater. A mathematical model was used and validated against test data to calculate the temperature of the vapor emanating from the water surface. This work used the ANSYS CFX, a general-purpose computational fluid dynamics (CFD) package, to model LNG vapor dispersion in the atmosphere. The main advantages of CFD codes are that they have the capability of defining flow physics and allowing for the representation of complex geometry and its effects on vapor dispersion. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the mesh size and shape, atmospheric conditions, turbulence from the source term, ground surface roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate the impact of key parameters on the accuracy of simulation results. In addition, a series of medium-scale LNG spill tests have been performed at the Brayton Fire Training Field (BFTF), College Station, TX. The objectives of these tests were to study key parameters of modeling the physical process of LNG vapor dispersion and collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX described the physical behavior of LNG vapor dispersion well, and its prediction results of distances to the half lower flammable limit were in good agreement with the test data.

Qi, Ruifeng

2011-08-01T23:59:59.000Z

108

G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product  

SciTech Connect

The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

Koontz, A; Cadeddu, M

2012-12-05T23:59:59.000Z

109

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

110

Method of making AlInSb by metal-organic chemical vapor deposition  

DOE Patents (OSTI)

A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

111

Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report  

SciTech Connect

Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

1982-05-01T23:59:59.000Z

112

Light Sources Help Discover New Drug Against Melanoma | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Sources Help Discover New Drug Against Melanoma Light Sources Help Discover New Drug Against Melanoma Light Sources Help Discover New Drug Against Melanoma July 18, 2011 - 12:07pm Addthis The new anti-cancer drug, vemurafenib, is the green honeycomb structure at middle left. Four dotted red lines show where it attaches to a target area in the mutated enzyme, disabling it from promoting the growth of tumors. | Image courtesy of Plexxikon Inc. The new anti-cancer drug, vemurafenib, is the green honeycomb structure at middle left. Four dotted red lines show where it attaches to a target area in the mutated enzyme, disabling it from promoting the growth of tumors. | Image courtesy of Plexxikon Inc. Mike Ross Science Writer at SLAC National Accelerator Laboratory What does this mean for me? A new drug designed to fight melanoma was discovered thanks to the

113

Modeling of LNG Pool Spreading and Vaporization  

E-Print Network (OSTI)

In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due to preferential boiling within the mixture and the effect of boiling on conductive heat transfer. The heat, mass and momentum balance equations are derived for continuous and instantaneous spills and mixture thermodynamic effects are incorporated. A parameter sensitivity analysis was conducted to determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. The aim was to provide a better understanding of these governing phenomena and their relative importance throughout the pool lifetime. The spread model was validated against available experimental data for pool spreading on concrete and sea. The model is solved using Matlab for two continuous and instantaneous spill scenarios and is validated against experimental data on cryogenic pool spreading found in literature.

Basha, Omar 1988-

2012-12-01T23:59:59.000Z

114

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

115

A New Global Water Vapor Dataset  

Science Conference Proceedings (OSTI)

A comprehensive and accurate global water vapor dataset is critical to the adequate understanding of water vapor's role in the earth's climate system. To begin to satisfy this need, the authors have produced a blended dataset made up of global, 5-...

David L. Randel; Thomas J. Greenwald; Thomas H. Vonder Haar; Graeme L. Stephens; Mark A. Ringerud; Cynthia L. Combs

1996-06-01T23:59:59.000Z

116

LNG fire and vapor control system technologies  

SciTech Connect

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

117

Quantitative organic vapor-particle sampler  

DOE Patents (OSTI)

A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

1998-01-01T23:59:59.000Z

118

Stacked vapor fed amtec modules  

DOE Patents (OSTI)

The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

Sievers, Robert K. (North Huntingdon, PA)

1989-01-01T23:59:59.000Z

119

ARM - Field Campaign - Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWater Vapor IOP govCampaignsWater Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP 2000.09.18 - 2000.10.08 Lead Scientist : Henry Revercomb Data Availability Yes For data sets, see below. Description Scientific hypothesis: 1. Microwave radiometer (MWR) observations of the 22 GHz water vapor line can accurately constrain the total column amount of water vapor (assuming a calibration accuracy of 0.5 degC or better, which translates into 0.35 mm PWV). 2. Continuous profiling by Raman lidar provides a stable reference for handling sampling problems and observes a fixed column directly above the site only requiring a single height- independent calibration factor. 3. Agreement between the salt-bath calibrated in-situ probes, chilled

120

Method of and apparatus for measuring vapor density  

DOE Patents (OSTI)

Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

Nelson, L.D.; Cerni, T.A.

1989-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method of and apparatus for measuring vapor density  

DOE Patents (OSTI)

Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

1989-01-01T23:59:59.000Z

122

NPS: A Non-interfering Deployable Web Prefetching System Ravi Kokku Praveen Yalagandula Arun Venkataramani Mike Dahlin  

E-Print Network (OSTI)

) utilizes only spare re- sources to avoid interference between prefetch and de- mand requests at the server avoids the need to modify existing infrastructure by modifying HTML pages to include JavascriptTM code as the falling prices of disk stor- age [14] and network bandwidth [41] make it increas- ingly attractive

Dahlin, Michael D.

123

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area...

124

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

125

Abstract: Apparatus for Measuring Vapor-Liquid Equilibrium ...  

Science Conference Proceedings (OSTI)

... Measurements of the vapor pressures and saturated liquid densities of ethanol and the vapor pressure of an ethanol water mixture (ethanol=0.6743 ...

126

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Mercury Vapor Activity Date Usefulness not...

127

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

128

Water vapor retrieval over many surface types  

SciTech Connect

In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

Borel, C.C.; Clodius, W.C.; Johnson, J.

1996-04-01T23:59:59.000Z

129

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines.  

E-Print Network (OSTI)

??A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption… (more)

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

130

Analysis of binary vapor turbines  

DOE Green Energy (OSTI)

The effect the binary mixture has on the turbine is examined in terms of design and cost. Several flow theories for turbines and turbine blading are reviewed. The similarity method, which uses dimensionless parameters, is used in determining rotative speeds and diameters for a variety of inlet temperatures and exit pressures. It is shown that the ratio of exit to inlet specific volume for each component in the mixture is the same for each specie. The specific volume ratio constraints are combined with the temperature equalities, the condenser pressure, and the total inlet entropy to form the constraints necessary to determine the exit state uniquely in an isentropic expansion. The non-isentropic exit state is found in a similar manner. The expansion process is examined for several cases and compared with the expansion of a single component vapor. Finally, in order to maintain high efficiency and to meet the criteria which makes the similarity method valid at high inlet temperatures, turbine multistaging is examined and a sample case is given for a two stage turbine.

Bliss, R.W.; Boehm, R.F.; Jacobs, H.R.

1976-12-01T23:59:59.000Z

131

Numerical simulation of the mitigating effects of an LNG vapor fence  

SciTech Connect

FEM3A, a fully three-dimensional numerical model for simulating the atmospheric dispersion of heavy gases involving complex geometry, has been used to investigate the mitigating effects of a vapor fence for LNG storage areas. In this paper, a brief description of the numerical model used to perform such calculations is given, the problem being simulated is described, and an intercomparison among the results from numerical simulations (with and without the vapor fence) and field data (with vapor fence) is made. The numerical results indicate that, with the present fence configuration, the maximum concentration on the cloud centerline was reduced by a factor of two or more within 250 m behind the fence, and the downwind distance to the 2.5% concentration was reduced from 365 m to 230 m. However, a vapor fence could also cause the vapor cloud to linger considerably longer in the source area, thus increasing the potential for ignition and combustion within the vapor fence and the area nearby over time. 8 refs., 10 figs.

Chan, S.T.

1990-05-01T23:59:59.000Z

132

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles  

Science Conference Proceedings (OSTI)

The impact of water vapor on the production of kinetic energy in the atmosphere is discussed here by comparing two idealized heat engines: the Carnot cycle and the steam cycle. A steam cycle transports water from a warm moist source to a colder ...

Olivier Pauluis

2011-01-01T23:59:59.000Z

133

Water Vapor Cross-Sensitivity of Open Path H2O/CO2 Sensors  

Science Conference Proceedings (OSTI)

When measuring the flux of CO2 with an open-path infrared absorption sensor, cross-sensitivity by water vapor is a source of concern. This is particularly true if the flux is small, such as over the sea. In this paper some possible mechanisms for ...

W. Kohsiek

2000-03-01T23:59:59.000Z

134

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS  

E-Print Network (OSTI)

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS Center in the atmosphere is discussed here by comparing two idealized heat engines: the Carnot cycle and the steam cycle. A steam cycle transports water from a warm moist source to a colder dryer sink. It acts as a heat engine

Pauluis, Olivier M.

135

Chemical vapor deposition of W-Si-N and W-B-N  

DOE Patents (OSTI)

A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.

Fleming, James G. (Albuquerque, NM); Roherty-Osmun, Elizabeth Lynn (Albuquerque, NM); Smith, Paul M. (Albuquerque, NM); Custer, Jonathan S. (Albuquerque, NM); Jones, Ronald V. (Albuquerque, NM); Nicolet, Marc-A. (Pasadena, CA); Madar, Roland (Eybens, FR); Bernard, Claude (Brie et Angonnes, FR)

1999-01-01T23:59:59.000Z

136

Aerogel composites using chemical vapor infiltration  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerogel composites using chemical vapor infiltration Aerogel composites using chemical vapor infiltration Title Aerogel composites using chemical vapor infiltration Publication Type Journal Article Year of Publication 1995 Authors Hunt, Arlon J., Michael R. Ayers, and Wanqing Cao Journal Journal of Non-Crystalline Solids Volume 185 Pagination 227-232 Abstract A new method to produce novel composite materials based on the use of aerogels as a starting material is described. Using chemical vapor infiltration, a variety of solid materials were thermally deposited into the open pore structure of aerogel. The resulting materials possess new and unusual properties including photoluminescence, magnetism and altered optical properties. An important characteristic of this preparation process is the very small size of the deposits that gives rise to new behaviors. Silicon deposits exhibit photoluminescence, indicating quantum confinement. Two or more phases may be deposited simultaneously and one or both chemically or thermally reacted to produce new structures.

137

Perfluorocarbon vapor tagging of blasting cap detonators  

DOE Patents (OSTI)

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, Russell N. (Shoreham, NY); Senum, Gunnar I. (Patchogue, NY)

1981-01-01T23:59:59.000Z

138

Perfluorocarbon vapor tagging of blasting cap detonators  

SciTech Connect

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, R.N.; Senum, G.I.

1981-03-17T23:59:59.000Z

139

Chemical vapor deposition of antimicrobial polymer coatings  

E-Print Network (OSTI)

There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

Martin, Tyler Philip, 1977-

2007-01-01T23:59:59.000Z

140

Chemical vapor deposition of functionalized isobenzofuran polymers  

E-Print Network (OSTI)

This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

Olsson, Ylva Kristina

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tropospheric Water Vapor and Climate Sensitivity  

Science Conference Proceedings (OSTI)

Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO2), using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The ...

Edwin K. Schneider; Ben P. Kirtman; Richard S. Lindzen

1999-06-01T23:59:59.000Z

142

Chemical vapor depositing of metal fluorides  

Science Conference Proceedings (OSTI)

High Purity BeF2 and BeF2–AlF3glasses have been deposited by the chemical vapor deposition technique using beryllium and aluminum 1

A. Sarhangi; J. M. Power

1992-01-01T23:59:59.000Z

143

Multicomponent fuel vaporization at high pressures.  

DOE Green Energy (OSTI)

We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

Torres, D. J. (David J.); O'Rourke, P. J. (Peter J.)

2002-01-01T23:59:59.000Z

144

Urania vapor composition at very high temperatures  

SciTech Connect

Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

Pflieger, Rachel [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Marcoule Institute for Separation Chemistry (ICSM), UMR 5257, CEA-CNRS-UMII-ENSCM, Bagnols sur Ceze Cedex (France); Colle, Jean-Yves [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Iosilevskiy, Igor [Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, State University, 141700 Moscow (Russian Federation); Extreme Matter Institute (EMMI), 64291 Darmstadt (Germany); Sheindlin, Michael [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation)

2011-02-01T23:59:59.000Z

145

CORRELATIONS BETWEEN VAPOR SATURATION, FLUID COMPOSITION, AND WELL DECLINE IN LARDERELLO  

Science Conference Proceedings (OSTI)

A large body of field data from Larderello shows striking temporal correlations between decline of well flow-rate, produced gas/steam ratio, chloride concentration and produced vapor fraction. The latter is inferred from measured concentrations of non-condensible gases in samples of well fluid, using chemical phase equilibrium principles. Observed temporal changes in the vapor fractions can be interpreted in term of a ''multiple source'' model, as suggested by D'Amore and Truesdell (1979). This provides clues to the dynamics of reservoir depletion, and to the evaluation of well productivity and longevity.

D'Amore, F.; Pruess, K.

1985-01-22T23:59:59.000Z

146

Volatilized tritiated water vapor in the vicinity of exposed tritium contaminated groundwater  

SciTech Connect

Water vapor tritium concentrations in air above a known source of tritiated water can be estimated. Estimates should account for the mechanisms of evaporation and condensation at the water surface and water species exchange, and are typically applicable under a broad range of wind, temperature and humidity conditions. An estimate of volatilized tritium water vapor was made for a known outcropping of tritium contaminated groundwater at the Savannah River Site (SRS) old F-Area effluent stream. In order to validate this estimate and the associated dose calculation, sampling equipment was fabricated, tested, and installed at the effluent stream. The estimate and the dose calculation were confirmed using data from samples collected.

Dunn, D.L.; Carlton, B.; Hunter, C.; McAdams, T.

1994-06-01T23:59:59.000Z

147

Constricted glow discharge plasma source  

SciTech Connect

A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

2000-01-01T23:59:59.000Z

148

Energy Bill Literature Sources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the "PURPA Standards" in the of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Mike Murphy iii Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State University, and Mike Murphy, Graduate Research Associate at The Ohio State University. This manual was sponsored by the American Public Power Association (APPA), the Edison Electric Institute (EEI), the National Association of Regulatory Utility Commissioners (NARUC), and the National

149

Sensitivity of Spectroradiometric Calibrations in the Near Infrared to Variations in Atmospheric Water Vapor: Preprint  

DOE Green Energy (OSTI)

Spectra of natural sunlight and artificial sources are important in photovoltaic research. Calibration of the spectroradiometers used for these measurements is derived from the response to spectral irradiance standards from the National Institute of Standards and Technology (NIST). Some photovoltaic devices respond in the near infrared, or NIR, so spectral measurements and calibrations are needed in this region. Over the course of several calibrations, we identified variations> 5% in spectroradiometer NIR calibration data for a certain spectroradiometer. A detailed uncertainty analysis did not reflect the observed variation. Reviewing calibration procedures and historical data, we noted that the variations were seen in water vapor absorption bands. We used spectral transmission models to compute changes in atmospheric transmission (as a function of water vapor content) over path lengths occurring during calibration. The results indicate that the observed variations result from varying water vapor content. A correction algorithm for adjusting measured data was developed based on our analysis.

Myers, D. R.; Andreas, A. A.

2004-03-01T23:59:59.000Z

150

ARM - Field Campaign - Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWater Vapor IOP govCampaignsWater Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP 1996.09.10 - 1996.09.30 Lead Scientist : Henry Revercomb For data sets, see below. Summary SCHEDULE This IOP will be conducted from September 10 - 30, 1996 (coincident with the Fall ARM-UAV IOP). Instruments that do not require supervision will be operated continuously during this period. Instruments that do require supervision are presently planned to be operated for 8-hour periods each day. Because it is necessary to cover as broad a range of environmental conditions as possible, the daily 8-hour period will be shifted across the diurnal cycle as deemed appropriate during the IOP (but will be maintained as a contiguous 8-hour block).

151

Thermal electric vapor trap arrangement and method  

DOE Patents (OSTI)

A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

Alger, Terry (Tracy, CA)

1988-01-01T23:59:59.000Z

152

Adsorption of water vapor on reservoir rocks  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

153

Method and Apparatus for Concentrating Vapors for Analysis  

DOE Patents (OSTI)

An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

2008-10-07T23:59:59.000Z

154

Low Temperature Direct Growth of Graphene Films on Transparent Substrates by Chemical Vapor Deposition  

E-Print Network (OSTI)

and Few- Layer Graphene by Chemical Vapor Deposition",Liu, W. , et al. (2010). "Chemical vapor deposition of large5 1.3.3. Chemical Vapor

Antoine, Geoffrey Sandosh Jeffy

2013-01-01T23:59:59.000Z

155

Polynomial Fits to Saturation Vapor Pressure  

Science Conference Proceedings (OSTI)

The authors describe eighth- and sixth-order polynomial fits to Wexler's and Hyland-Wexler's saturation-vapor-pressure expressions. Fits are provided in both least-squares and relative-error norms. Error analysis is presented. The authors show ...

Piotr J. Flatau; Robert L. Walko; William R. Cotton

1992-12-01T23:59:59.000Z

156

Vaporization of synthetic fuels. Final report. [Thesis  

DOE Green Energy (OSTI)

The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

1983-01-01T23:59:59.000Z

157

Chemical vapor deposition of mullite coatings  

DOE Patents (OSTI)

This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

1998-01-01T23:59:59.000Z

158

A Water Vapor Index from Satellite Measurements  

Science Conference Proceedings (OSTI)

A method for deriving a water vapor index is presented. An important feature of the index is the fact that it does not rely on radiosondes. Thus, it is not influenced by problems associated with radiosondes and the extent to which the horizontal ...

Larry M. McMillin; David S. Crosby; Mitchell D. Goldberg

1995-07-01T23:59:59.000Z

159

Profiling Atmospheric Water Vapor by Microwave Radiometry  

Science Conference Proceedings (OSTI)

High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended Kaiman-Bucy filter ...

J. R. Wang; J. L. King; T. T. Wilheit; G. Szejwach; L. H. Gesell; R. A. Nieman; D. S. Niver; B. M. Krupp; J. A. Gagliano

1983-05-01T23:59:59.000Z

160

Chemical vapor deposition of hydrogenated amorphous silicon from disilane  

SciTech Connect

The authors describe hydrogenated amorphous silicon (a-Si:H) thin films deposited at growth rates of 1 to 30 A/s by chemical vapor deposition (CVD) from disilane source gas at 24 torr total pressure in a tubular reactor. The effects of substrate temperature and gas holding time (flow rate) on film growth rate and effluent gas composition were measured at temperatures ranging from 360{sup 0} to 485{sup 0}C and gas holding times from 3 to 62s. Effluent gases determined by gas chromatography included silane, disilane and other higher order silanes. A chemical reaction engineering model, based on a silylene (SiH/sub 2/) insertion gas phase reaction network and film growth from both SiH/sub 2/ and high molecular weight silicon species, Si/sub n/H/sub 2n/, was developed. The model predictions were in good agreement with experimentally determined growth rates and effluent gas compositions.

Bogaert, R.J.; Russell, T.W.F.; Klein, M.T. (Delaware Univ., Newark, DE (USA). Dept. of Chemical Engineering); Rocheleau, R.E.; Baron, B.N. (Delaware Univ., Newark, DE (USA). Inst. of Energy Conversion)

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improved Retrieval of Integrated Water Vapor from Water Vapor Radiometer Measurements Using Numerical Weather Prediction Models  

Science Conference Proceedings (OSTI)

Water vapor radiometer (WVR) retrieval algorithms require a priori information on atmospheric conditions along the line of sight of the radiometer in order to derive opacities from observed brightness temperatures. This paper's focus is the mean ...

Steven R. Chiswell; Steven Businger; Michael Bevis; Fredrick Solheim; Christian Rocken; Randolph Ware

1994-10-01T23:59:59.000Z

162

Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

Pruess, Karsten; O'Sullivan, Michael

1992-01-01T23:59:59.000Z

163

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)  

SciTech Connect

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

Not Available

2013-10-01T23:59:59.000Z

164

The Effect of vapor subcooling on film condensation of metals  

E-Print Network (OSTI)

This work presents an analysis of the interfacial "vapor-condensate" temperature distribution, which includes the effect of subcooling (supersaturation) in the vapor. Experimental data from previous investigators for ...

Fedorovich, Eugene D.

1968-01-01T23:59:59.000Z

165

Waste tank headspace gas and vapor characterization reference guide  

SciTech Connect

This document is to serve as a reference guide for gas and vapor sample results presented in tank characterization reports. It describes sampling equipment, devices, and protocols, and sample collection and analysis methods common to all vapor samples.

Huckaby, J.L.

1995-06-01T23:59:59.000Z

166

Microwave plasma chemical vapor deposition of nano-composite...  

NLE Websites -- All DOE Office Websites (Extended Search)

plasma chemical vapor deposition of nano-composite CPt thin-films Title Microwave plasma chemical vapor deposition of nano-composite CPt thin-films Publication Type Journal...

167

Microwave Plasma Chemical Vapor Depositon of Nano-Structured...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Chemical Vapor Depositon of Nano-Structured SnC Composite Thin-Film anodes for Li-ion Battteries Title Microwave Plasma Chemical Vapor Depositon of Nano-Structured SnC...

168

Estimating the Atmospheric Water Vapor Content from Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

The differential absorption technique for estimating columnar water vapor values from the analysis of sunphotometric measurements with wide- and narrowband interferential filters centered near 0.94 ?m is discussed and adapted. Water vapor line ...

Artemio Plana-Fattori; Michel Legrand; Didier Tanré; Claude Devaux; Anne Vermeulen; Philippe Dubuisson

1998-08-01T23:59:59.000Z

169

Atmospheric Solar Heating Rate in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

The total absorption of solar radiation by water vapor in clear atmosphere is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are ...

Ming-Dah Chou

1986-11-01T23:59:59.000Z

170

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

SciTech Connect

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O' Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

171

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines  

E-Print Network (OSTI)

A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

172

MST: Organizations: Bio: Mike Kelly  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul C. McKey Paul McKey Paul is the manager of the Meso Manufacturing & Systems Development organization at Sandia National Laboratories. His organization, and his sister...

173

Mike Reed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Efficiency and Renewable Energy. Most Recent Investments in Existing Hydropower Unlock More Clean Energy August 14 Top 10 Things You Didn't Know about Hydropower...

174

Mike Kass - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

since 1993, working in a variety of research areas including materials processing, shock analysis and mitigation, biofuels, combustion, emission controls and engine...

175

Manufacturing means jobs ? Mike Arms  

NLE Websites -- All DOE Office Websites (Extended Search)

investment in manufacturing since it was a sector generating not only high-paying direct jobs but also outstanding secondary jobs in supply-chain support and other related...

176

Thermal Stability and Substitutional Carbon Incorporation far above Solid-Solubility in Si1-xCx and Si1-x-yGexCy Layers Grown by Chemical Vapor Deposition  

E-Print Network (OSTI)

Cx and Si1-x-yGexCy Layers Grown by Chemical Vapor Deposition using Disilane M. S. Carroll*, J. C. Sturm on (100) silicon substrates by rapid thermal chemical vapor deposition (RTCVD) with disilane source gas and disilane is known to produce higher silicon epitaxial growth rates for similar partial

177

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Energy.gov (U.S. Department of Energy (DOE))

Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

178

An advanced vapor-compression desalination system  

E-Print Network (OSTI)

Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive. An innovative vapor-compression desalination system is developed in this study. A comprehensive mathematical model for the heat exchanger/evaporator is described. The literature indicates that extraordinarily high overall heat transfer coefficients for the evaporator are possible at selected operating conditions that employ dropwise condensation in the steam side and pool boiling in the liquid side. A smooth titanium surface is chosen to promote dropwise condensation and to resist corrosion. To maximize energy efficiency, a combined-cycle cogeneration scheme is employed composed of a gas turbine, a heat recovery boiler, and a steam turbine that drive a compressor. The combined-cycle power source is oversized relative to the needs of the compressor. The excess power is converted to electricity and sold to the open market. A three-effect evaporator is employed. It is fed with seawater, assumed to be 3.5% salt. Boiling brine (7% salt) is in the low pressure side of the heat exchanger and condensing steam is in the high-pressure side of the heat exchanger. The condensing steam flows at 1.52 m/s (5 ft/s), which maximizes the heat transfer coefficient. The plant is sized to produce 37,854 m3/d (10 mill gal/day) and is assumed to be financed with a 5%, 30-yr municipal bond. Two economic cases were emphasized: the United States and the Middle East. For the United States, the fuel costs $5/GJ ($5.27/mill Btu) with the latent heat exchanger at ( ) 1.11 K 2.00 F T � = ° . The required compressor energy is 14 MJ/m3 (14.7 kW h/thous gal). The capital cost for the U.S. is $884 d/m3 ($3,342/thous gal) and the delivered water selling price is $0.47/m3 ($1.79/thous/gal). For the Middle East, the fuel costs $0.5/GJ ($0.53/mill Btu) with the latent heat exchanger at K T 33 . 3 = � ( ) F 00 . 6 ° . The required compressor energy is 26 MJ/m3 (27.3 kW h/thous gal). ). The capital cost for the Middle East is $620 d/m3 ($2,344/thous gal), and the delivered water selling price is $0.25/m3 ($0.95/thous/gal). In all cases, the water selling price is attractive relative to competing technologies.

Lara Ruiz, Jorge Horacio Juan

2005-12-01T23:59:59.000Z

179

Vapor-pressure lowering in geothermal systems  

SciTech Connect

The water vapor-pressure lowering phenomenon in porous media was investigated for a range of temperatures by measuring vapor pressure vs. mass of water adsorbed in consolidated sandstone cores and unconsolidated silica sands. Experimental results showed that the mass of water adsorbed on the rock surface is much more than the amount of pore steam. Results also revealed that the water adsorption is caused mainly by micropores in the porous medium. Measurement of the mass of methane and ethane adsorbed on dry rocks showed that the amount of adsorption is not great in comparison with the pore gas. It was found that adsorption data for water/sandstone core studies could be normalized with respect to temperature. Although this appears not to have been reported previously, it does agree in principle with findings for solid powders with micropores. Another interesting result was that reanalysis of previous studies of capillarity in sandstones indicates that experimental data probably were influenced mostly by adsorption.

Hsieh, C.H.; Ramey, H.J. Jr.

1983-02-01T23:59:59.000Z

180

Hydrocarbon pool and vapor fire data analysis  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

182

OPERATIONAL TESTS OF EBWR VAPOR RECOVERY SYSTEM  

SciTech Connect

A description of the Experimental Boiling Water Reactor vapor-recovery system is given. The seal air operating pressures, temperatures, and moisture content were measured. Air flow through the seals was measured and seal wear was assessed. Assuming direct-cycle D/sub 2/ operation, the seals were evaluated relative to the amount of D/sub 2/ leakage that would be controlled (C.J.G.)

Gariboldi, R.J.; Jacobson, D.R.

1960-08-01T23:59:59.000Z

183

Transport properties of fission product vapors  

DOE Green Energy (OSTI)

Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

Im, K.H.; Ahluwalia, R.K.

1983-07-01T23:59:59.000Z

184

Copper vapor laser modular packaging assembly  

DOE Patents (OSTI)

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

185

Copper vapor laser modular packaging assembly  

DOE Patents (OSTI)

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

Alger, T.W.; Ault, E.R.; Moses, E.I.

1992-12-01T23:59:59.000Z

186

DuPont Chemical Vapor Technical Report  

Science Conference Proceedings (OSTI)

DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

MOORE, T.L.

2003-10-03T23:59:59.000Z

187

Apparatus and method for photochemical vapor deposition  

DOE Patents (OSTI)

A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

1987-03-31T23:59:59.000Z

188

Passive vapor transport solar heating systems  

DOE Green Energy (OSTI)

In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.

Hedstrom, J.C.; Neeper, D.A.

1985-01-01T23:59:59.000Z

189

A molecular view of vapor deposited glasses  

SciTech Connect

Recently, novel organic glassy materials that exhibit remarkable stability have been prepared by vapor deposition. The thermophysical properties of these new ''stable'' glasses are equivalent to those that common glasses would exhibit after aging over periods lasting thousands of years. The origin of such enhanced stability has been elusive; in the absence of detailed models, past studies have discussed the formation of new polyamorphs or that of nanocrystals to explain the observed behavior. In this work, an atomistic molecular model of trehalose, a disaccharide of glucose, is used to examine the properties of vapor-deposited stable glasses. Consistent with experiment, the model predicts the formation of stable glasses having a higher density, a lower enthalpy, and higher onset temperatures than those of the corresponding ''ordinary'' glass formed by quenching the bulk liquid. Simulations reveal that newly formed layers of the growing vapor-deposited film exhibit greater mobility than the remainder of the material, thereby enabling a reorganization of the film as it is grown. They also reveal that ''stable'' glasses exhibit a distinct layered structure in the direction normal to the substrate that is responsible for their unusual properties.

Singh, Sadanand; Pablo, Juan J. de [Department of Chemical and Biological Engineering, University of Wisconsin, Madison Wisconsin 53706 (United States)

2011-05-21T23:59:59.000Z

190

High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989  

SciTech Connect

One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.

Atallah, S.; Shah, J.N.; Peterlinz, M.E.

1990-05-01T23:59:59.000Z

191

SOURCE SELECTION INFORMATION -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2014) 10, 2014) The Honorable Harold Rogers The Honorable Barbara A. Mikulski Chairman, Committee on Appropriations Chairwoman, Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 The Honorable Mike Simpson The Honorable Dianne Feinstein Chairman, Subcommittee on Energy Chairman, Subcommittee on Energy and Water Development and Water Development Committee on Appropriations Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 Subject: Section 311 Notification of Pending Contract Action Dear Chairmen Rogers, Mikulski, Simpson and Feinstein: No earlier than three full business days from the date of this notification, the Department

192

Sources - CECM  

E-Print Network (OSTI)

help · annotate · Contents Next: References Up: RamanujanModular Equations, Previous: Ramanujan's sum. Sources. [Annotate] · [Shownotes]. References [7] ...

193

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

Hubbell, J.M.; Wylie, A.H.

1996-01-09T23:59:59.000Z

194

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

195

Copper vapor laser acoustic thermometry system  

DOE Patents (OSTI)

A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

Galkowski, J.J.

1986-08-27T23:59:59.000Z

196

ARM - Field Campaign - Fall 1997 Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor IOP Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Water Vapor IOP 1997.09.15 - 1997.10.05 Lead Scientist : Henry Revercomb For data sets, see below. Summary The Water Vapor IOP was conducted as a follow-up to a predecessor IOP on water vapor held in September 1996. This IOP relied heavily on both ground-based guest and CART instrumentation and in-situ aircraft and tethered sonde/kite measurements. Primary operational hours were from 6 p.m. Central until at least midnight, with aircraft support normally from about 9 p.m. until midnight when available. However, many daytime measurements were made to support this IOP. The first Water Vapor IOP primarily concentrated on the atmosphere's lowest

197

Method and apparatus for concentrating vapors for analysis  

DOE Patents (OSTI)

A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

2012-06-05T23:59:59.000Z

198

Analysis of the transient compressible vapor flow in heat pipe  

SciTech Connect

The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

Jang, J.H.; Faghri, A. [Wright State Univ., Dayton, OH (United States); Chang, W.S. [Wright Research and Development Center, Wright-Patterson, OH (United States)

1989-07-01T23:59:59.000Z

199

Mechanistic facility safety and source term analysis  

SciTech Connect

A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here.

PLYS, M.G.

1999-06-09T23:59:59.000Z

200

Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers  

E-Print Network (OSTI)

We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at the hotter portion of the interface and condensation at the colder one. The high vapor pressure drives the liquid away and the low one pulls it up. A set of equations describing the temporal evolution of the interface of the liquid-vapor layers is derived. This model neglects the effect of mass loss or gain at the interface and guarantees the mass conservation of the liquid layer. The result of linear stability analysis of the model shows that the presence of the pressure dependence of the local saturation temperature suppresses the growth of long-wave disturbances. We find the stability criterion, which suggests that only slight temperature gradients are sufficient to overcome the stabilizing gravitational effect for a water an...

Kanatani, Kentaro

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion  

E-Print Network (OSTI)

Ionic Liquid Ion Sources (ILIS) are a subset of electrospray capable of producing bipolar beams of pure ions from ionic liquids. Ionic liquids are room temperature molten salts, characterized by negligible vapor pressures, ...

Courtney, Daniel George

2011-01-01T23:59:59.000Z

202

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents (OSTI)

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

203

Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam  

E-Print Network (OSTI)

Liquefied Natural Gas (LNG) is flammable when it forms a 5 – 15 percent volumetric concentration mixture with air at atmospheric conditions. When the LNG vapor comes in contact with an ignition source, it may result in fire and/or explosion. Because of flammable characteristics and dense gas behaviors, expansion foam has been recommended as one of the safety provisions for mitigating accidental LNG releases. However, the effectiveness of foam in achieving this objective has not been sufficiently reported in outdoor field tests. Thus, this research focused on experimental determination of the effect of expansion foam application on LNG vapor dispersion and pool fire. Specifically, for evaluating the use of foam to control the vapor hazard from spilled LNG, this study aimed to obtain key parameters, such as the temperature changes of methane and foam and the extent reduction of vapor concentration. This study also focused on identifying the effectiveness of foam and thermal exclusion zone by investigating temperature changes of foam and fire, profiles of radiant heat flux, and fire height changes by foam. Additionally, a schematic model of LNG-foam system for theoretical modeling and better understanding of underlying mechanism of foam was developed. Results showed that expansion foam was effective in increasing the buoyancy of LNG vapor by raising the temperature of the vapor permeated through the foam layer and ultimately decreasing the methane concentrations in the downwind direction. It was also found that expansion foam has positive effects on reducing fire height and radiant heat fluxes by decreasing fire heat feedback to the LNG pool, thus resulting in reduction in the safe separation distance. Through the extensive data analysis, several key parameters, such as minimum effective foam depth and mass evaporation rate of LNG with foam, were identified. However, caution must be taken to ensure that foam application can result in initial adverse effects on vapor and fire control. Finally, based on these findings, several recommendations were made for improving foam delivery methods which can be used for controlling the hazard of spilled LNG.

Yun, Geun Woong

2010-08-01T23:59:59.000Z

204

Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Klusman & Landress, 1979) Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

205

A Combined Passive Water Vapor Exchanger and Exhaust Gas Diffusion Barrier for Fuel Cell Applications  

Science Conference Proceedings (OSTI)

Fuel cells operating on hydrocarbon fuels require water vapor injection into the fuel stream for fuel reforming and the prevention of carbon fouling. Compared to active water recovery systems, a passive approach would eliminate the need for a separate water source, pumps, and actuators, and thus reduce parasitic thermal losses. The passive approach developed in this paper employs a capillary pump that recovers the water vapor from the exhaust, while providing a diffusion barrier that prevents exhaust gases from entering the fuel stream. Benchtop proof tests have proven the feasibility of the passive fuel humidifier concept, and have provided a calibration factor for a computational design tool that can be used for industrial applications

Williford, Rick E. (BATTELLE (PACIFIC NW LAB)); Hatchell, Brian K. (BATTELLE (PACIFIC NW LAB)); Singh, Prabhakar (BATTELLE (PACIFIC NW LAB))

2002-11-14T23:59:59.000Z

206

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

207

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Jump to:...

208

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

209

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

210

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

211

Interaction of sodium vapor and graphite studied by ...  

Science Conference Proceedings (OSTI)

The kinetics of the reaction between graphite and sodium vapor is analyzed with support ... High temperature compression test to determine the anode paste ...

212

Optimal Control of Vapor Extraction of Heavy Oil.  

E-Print Network (OSTI)

??Vapor extraction (Vapex) process is an emerging technology for viscous oil recovery that has gained much attention in the oil industry. However, the oil production… (more)

Muhamad, Hameed

2012-01-01T23:59:59.000Z

213

ARM - Field Campaign - ARM-FIRE Water Vapor Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Order Data Browell, Edward LASE Order Data Gutman, Seth GPS Order Data Richardson, Scott Chilled Mirror Order Data Sachse, G. Water Vapor Order Data Schmidlin, Francis CM Sondes...

214

Measurements of Vapor Pressures and PVT Properties for n ...  

Science Conference Proceedings (OSTI)

Page 1. Measurements of Vapor Pressures and PVT Properties for n-Butane from 280 to 440 K at Pressures to 200 MPa ...

2006-07-20T23:59:59.000Z

215

Molecular restrictions for human eye irritation by chemical vapors  

E-Print Network (OSTI)

and reactive airborne chemicals. Pharmacol. Toxicol. 1998;WL. Chemesthesis: The Common Chemical Sense. In: Finger TE,MH. Quantification of chemical vapors in chemosensory

Cometto-Muniz, J. Enrique; Cain, William S.; Abraham, Michael H.

2005-01-01T23:59:59.000Z

216

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton,...

217

Cesium vapor cycle for an advanced LMFBR  

SciTech Connect

A review indicates that a cesium vapor topping cycle appears attractive for use in the intermediate fluid circuit of an advanced LMFBR designed for a reactor outlet temperature of 1250$sup 0$F or more and would have the following advantages: (1) it would increase the thermal efficiency by about 5 to 10 points (from approximately 40 percent to approximately 45 to 50 percent) thus reducing the amount of waste heat rejected to the environment by 15 to 30 percent. (2) the higher thermal efficiency should reduce the overall capital cost of the reactor plant in dollars per kilowatt. (3) the cesium can be distilled out of the intermediate fluid circuit to leave it bone-dry, thus greatly reducing the time and cost of maintenance work (particularly for the steam generator). (4) the large volume and low pressure of the cesium vapor region in the cesium condenser-steam generator greatly reduces the magnitude of pressure fluctuations that might occur in the event of a leak in a steam generator tube, and the characteristics inherent in a condenser make it easy to design for rapid concentration of any noncondensibles that may form as a consequence of a steam leak into the cesium region so that a steam leak can be detected easily in the very early stages of its development. (auth)

Fraas, A.P.

1975-01-01T23:59:59.000Z

218

Reactions of atmospheric vapors with lunar soil  

SciTech Connect

Detailed experimental data have been acquired for the hydration of the surfaces of lunar fines. Inert vapor adsorption has been employed to measure the surface properties (surface energy, surface area, porosity, etc.) and changes wrought in the hydration-dehydration processes. Plausible mechanisms have been considered and the predominant process involves hydration of the metamict metallosilicate surfaces to form a hydrated laminar structure akin to terrestrial clays. Additional credence for this interpretation is obtained by comparison to existing geochemical literature concerning terrestrial weathering of primary metallosilicates. The surface properties of the hydrated lunar fines are compared favorably to those of terrestrial clay minerals. In addition, experimental results are given to show that fresh disordered surfaces of volcanic sand react with water vapor in a manner virtually identical to the majority of the lunar fines. The results show that ion track etching and/or grain boundary attack are minor contributions in the weathering of lunar fines in the realm of our microgravimetric experimental conditions. 14 references. (auth)

Fuller, E.L. Jr.; Agron, P.A.

1976-03-01T23:59:59.000Z

219

Ethanol production by vapor compression distillation  

DOE Green Energy (OSTI)

The goal of this project is to develop and demonstrate a one gallon per hour vapor compression distillation unit for fuel ethanol production that can be profitably manufactured and economically operated by individual family units. Vapor compression distillation is already an industrially accepted process and this project's goal is to demonstrate that it can be done economically on a small scale. Theoretically, the process is independent of absolute pressure. It is only necessary that the condenser be at higher pressure than the evaporator. By reducing the entire process to a pressure of approximately 0.1 atmosphere, the evaporation and condensation can occur at near ambient temperature. Even though this approach requires a vacuum pump, and thus will not represent the final cost effective design, it does not require preheaters, high temperature materials, or as much insulation as if it were to operate a near ambient pressure. Therefore, the operation of the ambient temperature unit constitutes the first phase of this project. Presently, the ambient temperature unit is fully assembled and has begun testing. So far it has successfully separated ethanol from a nine to one diluted input solution. However the production rate has been very low.

Ellis, G.S.

1981-01-01T23:59:59.000Z

220

Ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System  

Science Conference Proceedings (OSTI)

This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

Caprio, G.S.

1995-11-01T23:59:59.000Z

222

Vapor and gas sampling of single-shell tank 241-SX-106 using the vapor sampling system  

SciTech Connect

This document presents sampling data resulting from the March 24, 1995, sampling of SST 241-SX-106 using the vapor sampling system.

Caprio, G.S.

1995-09-20T23:59:59.000Z

223

Baseline Design Compliance Matrix for the Type 4 In Situ Vapor Samplers and Supernate and Sludge and Soft Saltcake Grab Sampling  

SciTech Connect

The DOE has identified a need to sample vapor space, exhaust ducts, supernate, sludge, and soft saltcake in waste tanks that store radioactive waste. This document provides the Design Compliance Matrix (DCM) for the Type 4 In-Situ Vapor Sampling (ISVS) system and the Grab Sampling System that are used for completing this type of sampling function. The DCM identifies the design requirements and the source of the requirements for the Type 4 ISVS system and the Grab Sampling system. The DCM is a single-source compilation design requirements for sampling and sampling support equipment and supports the configuration management of these systems.

BOGER, R.M.

2000-09-28T23:59:59.000Z

224

Scientific Needs for Future X-ray Sources in the U.S. -- A White Paper  

E-Print Network (OSTI)

DESY) Herman Winick (SLAC) Mike Zisman (LBNL) WHITE PAPER33 WHITE PAPER i Contents E. Life Science and Soft Condensedimportant emerging properties. WHITE PAPER THREE Examples of

Falcone, Roger

2008-01-01T23:59:59.000Z

225

Scientific Needs for Future X-ray Sources in the U.S. -- A White Paper  

E-Print Network (OSTI)

LBNL) Eli Rotenberg (LBNL) Ronald Ruth (SLAC) Andy Sessler (LBNL) Sami Tantawi (SLAC) Hans Weise (DESY) Herman Winick (SLAC) Mike Zisman (LBNL) WHITE PAPER

Falcone, Roger

2008-01-01T23:59:59.000Z

226

FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS  

Office of Scientific and Technical Information (OSTI)

Bulletin 627 Bulletin 627 BUREAU o b MINES FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS By Michael G. Zabetakis DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

227

New Regenerative Cycle for Vapor Compression Refrigeration  

Office of Scientific and Technical Information (OSTI)

SCIENTIFIC REPORT SCIENTIFIC REPORT Title Page Project Title: New Regenerative Cycle for Vapor Compression Refrigeration DOE Award Number: DE-FG36-04GO14327 Document Title: Final Scientific Report Period Covered by Report: September 30, 2004 to September 30, 2005 Name and Address of Recipient Organization: Magnetic Development, Inc., 68 Winterhill Road, Madison, CT 06443, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Contact Information: Mark J. Bergander, Ph.D., P.E., Principal Investigator, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Project Objective (as stated in the proposal): The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient

228

How solvent vapors can improve steam floods  

Science Conference Proceedings (OSTI)

Thermal recovery methods depend for their success on the viscosity reduction of heavy crude oils at high temperatures. The viscosity of a heavy oil can also be reduced if it is diluted with a low-viscosity solvent, such as one of the lighter hydrocarbons. It is not surprising that there has been considerable interest in combining the two methods. The process of injecting vaporized solvent with the steam for a gravity drainage type recovery is described here along with a description of the particular phase behavior of steam/solvent mixtures which is beneficial to the process. And computer simulations which compare steam-only and steam/solvent floods under Athabasca-type conditions are overviewed.

Vogel, J. [Vogel, (Jack), Seabrook, TX (United States)

1996-11-01T23:59:59.000Z

229

Gas transport model for chemical vapor infiltration  

Science Conference Proceedings (OSTI)

A node-bond percolation model is presented for the gas permeability and pore surface area of the coarse porosity in woven fiber structures during densification by chemical vapor infiltration (CVI). Model parameters include the number of nodes per unit volume and their spatial distribution, and the node and bond radii and their variability. These parameters relate directly to structural features of the weave. Some uncertainty exists in the proper partition of the porosity between ``node`` and ``bond`` and between intra-tow and inter-tow, although the total is constrained by the known fiber loading in the structure. Applied to cloth layup preforms the model gives good agreement with the limited number of available measurements.

Starr, T.L. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

1995-09-01T23:59:59.000Z

230

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network (OSTI)

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

231

A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods  

Science Conference Proceedings (OSTI)

In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm{sup 3} regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Inoue, Toru [Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

2009-06-01T23:59:59.000Z

232

Competitive Sourcing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPETITIVE SOURCING COMPETITIVE SOURCING ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Report on Competitive Sourcing Results Fiscal Year 2006 May 2007 Executive Office of the President Office of Management and Budget TABLE OF CONTENTS Executive Summary ...................................................................................... 1 Introduction................................................................................................. 4 I. The big picture ......................................................................................... 4 II. How public-private competition was used in FY 2006 .................................... 6 A. Anticipated benefits from competition in FY 2006

233

Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System  

SciTech Connect

HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

None

2012-01-04T23:59:59.000Z

234

NEUTRON SOURCES  

DOE Patents (OSTI)

A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

Richmond, J.L.; Wells, C.E.

1963-01-15T23:59:59.000Z

235

The Effects of Water Vapor on the Oxidation of Nickel-Base ...  

Science Conference Proceedings (OSTI)

water vapor are compared at temperatures from 700°C to 1100°C. It is shown that water vapor affects the oxidation of such alloys in different ways. Water vapor ...

236

Water Vapor Flux Measurements from Ground-Based Vertically Pointed Water Vapor Differential Absorption and Doppler Lidars  

Science Conference Proceedings (OSTI)

For the first time, two lidar systems were used to measure the vertical water vapor flux in a convective boundary layer by means of eddy correlation. This was achieved by combining a water vapor differential absorption lidar and a heterodyne wind ...

Andreas Giez; Gerhard Ehret; Ronald L. Schwiesow; Kenneth J. Davis; Donald H. Lenschow

1999-02-01T23:59:59.000Z

237

Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma  

Science Conference Proceedings (OSTI)

During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

Ribic, B.; DebRoy, T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Burgardt, P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2011-04-15T23:59:59.000Z

238

Vapor cooled lead and stacks thermal performance and design analysis by finite difference techniques  

SciTech Connect

Investigation of the combined thermal performance of the stacks and vapor-cooled leads for the Mirror Fusion Test Facility-B (MFTF-B) demonstrates considerable interdependency. For instance, the heat transfer to the vapor-cooled lead (VCL) from warm bus heaters, environmental enclosure, and stack is a significant additional heat load to the joule heating in the leads, proportionately higher for the lower current leads that have fewer current-carrying, counter flow coolant copper tubes. Consequently, the specific coolant flow (G/sec-kA-lead pair) increases as the lead current decreases. The definition of this interdependency and the definition of necessary thermal management has required an integrated thermal model for the entire stack/VCL assemblies. Computer simulations based on finite difference thermal analyses computed all the heat interchanges of the six different stack/VCL configurations. These computer simulations verified that the heat load of the stacks beneficially alters the lead temperature profile to provide added stability against thermal runaway. Significant energy is transferred through low density foam filler in the stack from warm ambient sources to the vapor-cooled leads.

Peck, S.D.; O' Loughlin, J.M.; Christensen, E.H.

1984-09-01T23:59:59.000Z

239

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Mercury Vapor Activity Date Usefulness useful...

240

Does EIA report water vapor emissions data? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Does EIA report water vapor emissions data? No. Water vapor is the most abundant greenhouse gas, but most scientists believe that human activity has a very small ...

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EA-0881: Tank 241-c-103 Organic Vapor and Liquid Characterization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

881: Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington EA-0881: Tank 241-c-103 Organic Vapor and Liquid...

242

New Regenerative Cycle for Vapor Compression Refrigeration  

SciTech Connect

The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

Mark J. Bergander

2005-08-29T23:59:59.000Z

243

Desalination Using Vapor-Compression Distillation  

E-Print Network (OSTI)

The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO) and multi-stage flash (MSF) cost more than potable water produced from fresh water resources. As an alternative to RO and MSF, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas the outgoing salt concentration was 1.5% and 7%, respectively. Distillation was performed at 439 K (331oF) and 722 kPa (105 psia) for both brackish water feed and seawater feed. Water costs of the various conditions were calculated for brackish water and seawater feeds using optimum conditions considered as 25 and 20 stages, respectively. For brackish water at a temperature difference of 0.96 K (1.73oF), the energy requirement is 2.0 kWh/m3 (7.53 kWh/kgal). At this condition, the estimated water cost is $0.39/m3 ($1.48/kgal) achieved with 10,000,000 gal/day distillate, 30-year bond, 5% interest rate, and $0.05/kWh electricity. For seawater at a temperature difference of 0.44 K (0.80oF), the energy requirement is 3.97 kWh/m3 (15.0 kWh/kgal) and the estimated water cost is $0.61/m3 ($2.31/kgal). Greater efficiency of the vapor compression system is achieved by connecting multiple evaporators in series, rather than the traditional parallel arrangement. The efficiency results from the gradual increase of salinity in each stage of the series arrangement in comparison to parallel. Calculations using various temperature differences between boiling brine and condensing steam show the series arrangement has the greatest improvement at lower temperature differences. The following table shows the improvement of a series flow arrangement compared to parallel: ?T (K) Improvement (%)*1.111 2.222 3.333 15.21 10.80 8.37 * Incoming salt concentration: 3.5% Outgoing salt concentration: 7% Temperature: 450 K (350oF) Pressure: 928 kPa (120 psig) Stages: 4

Lubis, Mirna R.

2009-05-01T23:59:59.000Z

244

Competitive Sourcing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Sourcing Competitive Sourcing The Department of Energy's (DOE) Competitive Sourcing program is a management initiative aimed at improving DOE's performance and reducing the Department's operational costs. The program is governed by Office of Management and Budget (OMB) Circular A- 76, Performance of Commercial Activities, dated May 29, 2003. The commercial activities selected for review and competition include functions performed by government employees that are readily available in the private sector, and where the potential for efficiencies, regardless of the winning provider, are highly likely. The candidate functions are chosen from the Department's annual Federal Activities Inventory Reform (FAIR) Act Inventory and subjected to a feasibility review to determine if a prudent business case can be made to enter

245

Neutron source  

DOE Patents (OSTI)

A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

Cason, J.L. Jr.; Shaw, C.B.

1975-10-21T23:59:59.000Z

246

ION SOURCE  

DOE Patents (OSTI)

The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

Leland, W.T.

1960-01-01T23:59:59.000Z

247

Apparatus for coating a surface with a metal utilizing a plasma source  

DOE Patents (OSTI)

An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.

Brown, I.G.; MacGill, R.A.; Galvin, J.E.

1991-05-07T23:59:59.000Z

248

RADIATION SOURCES  

DOE Patents (OSTI)

A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

Brucer, M.H.

1958-04-15T23:59:59.000Z

249

NEUTRON SOURCE  

DOE Patents (OSTI)

A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

1959-01-13T23:59:59.000Z

250

Numerical simulation of water injection into vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

Pruess, K.

1995-01-01T23:59:59.000Z

251

Controlling the vapor pressure of a mercury lamp  

DOE Patents (OSTI)

The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

Grossman, M.W.; George, W.A.

1988-05-24T23:59:59.000Z

252

Controlling the vapor pressure of a mercury lamp  

DOE Patents (OSTI)

The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

253

Simple microwave field imaging technique using hot atomic vapor cells  

E-Print Network (OSTI)

We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a CCD camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 {\\mu}m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

Böhi, Pascal

2012-01-01T23:59:59.000Z

254

Simple microwave field imaging technique using hot atomic vapor cells  

E-Print Network (OSTI)

We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 {\\mu}m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

Pascal Böhi; Philipp Treutlein

2012-07-20T23:59:59.000Z

255

Preliminary assessment of halogenated alkanes as vapor-phase tracers  

DOE Green Energy (OSTI)

New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

1991-01-01T23:59:59.000Z

256

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

257

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents (OSTI)

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

258

Dynamics of nucleation in chemical vapor deposition  

Science Conference Proceedings (OSTI)

We study the evolution of layer morphology during the early stages of metal chemical vapor deposition (CVD) onto Si(100) via pyrolysis of Fe(CO){sub 5} below 250{degrees}C. Scanning tunneling microscopy (STM) shows that nuclei formation is limited by precursor dissociation which occurs on terraces, not at step sites. Also, the average size of clusters formed during CVD is larger than for Fe growth by evaporation (a random deposition process). Based on STM data and Monte Carlo simulations, we conclude that the CVD-growth morphology is affected by preferential dissociation of Fe(CO){sub 5} molecules at existing Fe clusters -- an autocatalytic effect. We demonstrate that nucleation kinetics can be used to control formation of metal nanostructures on chemically tailored surfaces. Reactive sites on Si (001) are first passivated by hydrogen. H atoms are locally removed by electron stimulated desorption using electrons emitted from the STM tip. Subsequent pyrolysis of Fe(CO){sub 5} leads to selective nucleation and growth of Fe films in the areas where H has been removed.

Mayer, T.M.; Adams, D.P.; Swartzentruber, B.S.; Chason, E.

1995-11-01T23:59:59.000Z

259

ARM - Field Campaign - Arctic Winter Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsArctic Winter Water Vapor IOP govCampaignsArctic Winter Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Winter Water Vapor IOP 2004.03.09 - 2004.04.09 Lead Scientist : Ed Westwater Data Availability http://www.etl.noaa.gov/programs/2004/wviop/data will contain quicklooks of all of the data. For data sets, see below. Summary During the IOP, the Ground-based Scanning Radiometer of NOAA/ETL, and the ARM MicroWave Radiometer and Microwave Profiler, yielded excellent data over a range of conditions. In all, angular-scanned and calibrated radiometric data from 22.345 to 380 GHz were taken. The Precipitable Water Vapor varied about an order of magnitude from 1 to 10 mm, and surface temperatures varied from about -10 to -40 deg. Celcius. Vaisala RS90

260

Overview of the ARM/FIRE Water Vapor Experiment (AFWEX)  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the ARM/FIRE Water Vapor Overview of the ARM/FIRE Water Vapor Experiment (AFWEX) D. C. Tobin, H. E. Revercomb, and D. D. Turner University of Wisconsin-Madison Madison, Wisconsin Introduction An overview of the ARM/FIRE Water Vapor Experiment (AFWEX) is given. This field experiment was conducted during November-December 2000 near the central ground-based Atmospheric Radiation Measurement (ARM) site in north central Oklahoma, and was sponsored jointly by the ARM, the National Aeronautics and Space Administration (NASA) First ISCCP Regional Experiment (FIRE), and the National Polar-orbiting Operational Environmental Satellite System (NPOESS) programs. Its primary goal was to collect accurate measurements of upper-level (~8 to 12 km) water vapor near the ground-based ARM site. These data are being used to determine the accuracy of measurements that are

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

262

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

263

Industrial Heat Pumps Using Solid/Vapor Working Fluids  

E-Print Network (OSTI)

Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes in the chemical, petroleum, paper, dairy, and many other industries. The cost development of fossil fuel and other prime energy require excellent efficiency/cost ratios and hardware designs adaptable to specific process needs, in order to compete with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to more cost effective heat recovery, which is due to simple hardware with no moving parts, extraordinary low maintenance effort, excellent temperature lifts avoiding the need of two-stage systems, and low first cost. This paper describes the advantages and disadvantages of solid/vapor working media.

Rockenfeller, U.

1986-06-01T23:59:59.000Z

264

Broadband Water Vapor Transmission Functions for Atmospheric IR Flux Computations  

Science Conference Proceedings (OSTI)

Transmission functions associated with water vapor molecular line and e-type absorption in the IR spectral regions are presented in the form of simple analytical functions and small tables, from which atmospheric IR fluxes and cooling rates can ...

Ming-Dah Chou

1984-05-01T23:59:59.000Z

265

Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers  

Science Conference Proceedings (OSTI)

Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range ...

Refaat Tamer F.; Halama Gary E.; DeYoung Russell J.

2000-07-01T23:59:59.000Z

266

Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions  

E-Print Network (OSTI)

Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynamically feasible systems have significant potential advantage over conventional technology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating characteristics. A waste heat driven heat pump (temperature amplifier) using liquid-vapor chemical reactions- can operate with higher coefficient of performance and smaller heat exchangers than an absorption temperature amplifying heat pump. Higher temperatures and larger temperature lifts should also be possible.

Kirol, L.

1987-09-01T23:59:59.000Z

267

Upper-Tropospheric Water Vapor from UARS MLS  

Science Conference Proceedings (OSTI)

Initial results of upper-tropospheric water vapor obtained from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) are presented. MLS is less affected by clouds than infrared or visible techniques, and the UARS ...

W. G. Read; J. W. Waters; D. A. Flower; L. Froidevaux; R. F. Jarnot; D. L. Hartmann; R. S. Harwood; R. B. Rood

1995-12-01T23:59:59.000Z

268

Intercomparison of Four Commercial Analyzers for Water Vapor Isotope Measurement  

Science Conference Proceedings (OSTI)

The ?18O and ?D of atmospheric water vapor are important tracers in hydrological and ecological studies. Isotope ratio infrared spectroscopy (IRIS) provides an in situ technology for measuring ?18O and ?D in ambient conditions. An intercomparison ...

Xue-Fa Wen; Xuhui Lee; Xiao-Min Sun; Jian-Lin Wang; Ya-Kun Tang; Sheng-Gong Li; Gui-Rui Yu

2012-02-01T23:59:59.000Z

269

Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection  

Science Conference Proceedings (OSTI)

The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of ...

Christopher E. Holloway; J. David Neelin

2009-06-01T23:59:59.000Z

270

Improved Magnus Form Approximation of Saturation Vapor Pressure  

Science Conference Proceedings (OSTI)

Algorithms, based on Magnus's form equations, are described that minimize the difference between several relationships between temperature and water vapor pressure at saturation that are commonly used in archiving data. The work was initiated in ...

Oleg A. Alduchov; Robert E. Eskridge

1996-04-01T23:59:59.000Z

271

Ice Growth from the Vapor at ?5°C  

Science Conference Proceedings (OSTI)

Results are summarized and illustrated from a long series of experiments on ice growth from the vapor, nearly all in a very small range of conditions: ?5°C, slightly below liquid water saturation, with minimal environmental gradients and no ...

Charles A. Knight

2012-06-01T23:59:59.000Z

272

Numerical analysis of vapor flow in a micro heat pipe  

E-Print Network (OSTI)

The vapor flow in a flat plate micro heat pipe with both uniform and linear heat flux boundary conditions has been numerically analyzed. For both types of boundary conditions, the Navier-Stokes equations with steady incompressible two-dimensional flow were solved using the SIMPLE method. The results indicate that the pressure, shear stress, and friction factor under linear heat flux boundary conditions are considerably smoother, and hence, more closely approximate the real situation. As the heat flux increases, the pressure drop increases, but the friction factor demonstrates only a slight change for different heat flux conditions. The size and shape of the micro heat pipe vapor space was shown to have a significant influence on the vapor flow behavior for micro heat pipes. When the vapor space area decreases, the pressure drop, shear stress, and friction factor all significantly increase.

Liu, Xiaoqin

1996-01-01T23:59:59.000Z

273

Heat transfer during film condensation of a liquid metal vapor  

E-Print Network (OSTI)

The object of this investigation is to resolve the discrepancy between theory and experiment for the case of heat transfer durirnfilm condensation of liquid metal vapors. Experiments by previous investigators have yielded ...

Sukhatme, S. P.

1964-01-01T23:59:59.000Z

274

Heat transfer during film condensation of potassium vapor  

E-Print Network (OSTI)

The object of this work is to investigate theoretically and experimentally the following two phases of heat transfer during condensation of potassium vapore, a. Heat transfer during film condensation of pure saturated ...

Kroger, Detlev Gustav

1966-01-01T23:59:59.000Z

275

Photoinitiated chemical vapor depostion [sic] : mechanism and applications  

E-Print Network (OSTI)

Photoinitiated chemical vapor deposition (piCVD) is developed as a simple, solventless, and rapid method for the deposition of swellable hydrogels and functional hydrogel copolymers. Mechanistic experiments show that piCVD ...

Baxamusa, Salmaan Husain

2009-01-01T23:59:59.000Z

276

Chemical vapor deposition of organosilicon and sacrificial polymer thin films  

E-Print Network (OSTI)

Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

Casserly, Thomas Bryan

2005-01-01T23:59:59.000Z

277

The Arm Program's Water Vapor Intensive Observation Periods  

Science Conference Proceedings (OSTI)

A series of water vapor intensive observation periods (WVIOPs) were conducted at the Atmospheric Radiation Measurement (ARM) site in Oklahoma between 1996 and 2000. The goals of these WVIOPs are to characterize the accuracy of the operational ...

H. E. Revercomb; D. D. Turner; D. C. Tobin; R. O. Knuteson; W. F. Feltz; J. Barnard; J. Bösenberg; S. Clough; D. Cook; R. Ferrare; J. Goldsmith; S. Gutman; R. Halthore; B. Lesht; J. Liljegren; H. Linné; J. Michalsky; V. Morris; W. Porch; S. Richardson; B. Schmid; M. Splitt; T. Van Hove; E. Westwater; D. Whiteman

2003-02-01T23:59:59.000Z

278

New Equations for Computing Vapor Pressure and Enhancement Factor  

Science Conference Proceedings (OSTI)

Equations are presented which relate saturation vapor pressure to temperature for moist air. The equations are designed to be easily implemented on a calculator or computer and can be used to convert in either direction. They are more accurate ...

Arden L. Buck

1981-12-01T23:59:59.000Z

279

Solar Radiation Absorption due to Water Vapor: Advanced Broadband Parameterizations  

Science Conference Proceedings (OSTI)

Accurate parameterizations for calculating solar radiation absorption in the atmospheric column due to water vapor lines and continuum are proposed for use in broadband shortwave radiative transfer codes. The error in the absorption values is ...

Tatiana A. Tarasova; Boris A. Fomin

2000-11-01T23:59:59.000Z

280

Water vapor and the dynamics of climate changes  

E-Print Network (OSTI)

Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus ...

Schneider, Tapio

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Column Water Vapor Content in Clear and Cloudy Skies  

Science Conference Proceedings (OSTI)

With radiosonde data from 15 Northern Hemisphere stations, surface-to-400-mb column water vapor is computed from daytime soundings for 1988–1990. On the basis of simultaneous surface visual cloud observations, the data are categorized according ...

Dian J. Gaffen; William P. Elliott

1993-12-01T23:59:59.000Z

282

Initiated chemical vapor deposition of functional polyacrylic thin films  

E-Print Network (OSTI)

Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

Mao, Yu, 1975-

2005-01-01T23:59:59.000Z

283

Raman Lidar Profiling of Tropospheric Water Vapor over Kangerlussuaq, Greenland  

Science Conference Proceedings (OSTI)

A new measurement capability has been implemented in the Arctic Lidar Technology (ARCLITE) system at the Sondrestrom upper-atmosphere research facility near Kangerlussuaq, Greenland (67.0°N, 50.9°W), enabling estimates of atmospheric water vapor ...

Ryan Reynolds Neely III; Jeffrey P. Thayer

2011-09-01T23:59:59.000Z

284

Lidar Monitoring of the Water Vapor Cycle in the Troposphere  

Science Conference Proceedings (OSTI)

The water vapor mixing ratio distribution in the lower and middle troposphere has been continuously monitored, using an active lidar system. The methodology of the differential absorption laser method used for these measurements is summarized and ...

C. Cahen; G. Megie; P. Flamant

1982-10-01T23:59:59.000Z

285

Metal film deposition by laser breakdown chemical vapor deposition  

Science Conference Proceedings (OSTI)

Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

Jervis, T.R.

1985-01-01T23:59:59.000Z

286

Injection locked oscillator system for pulsed metal vapor lasers  

SciTech Connect

An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

1988-01-01T23:59:59.000Z

287

Determination of the Vapor Pressure of Lanthanum Fluoride  

SciTech Connect

Preliminary experiments have been made to determine the vapor pressure of lanthanum fluoride between 0.001 and 0.1 millimeter of mercury by means of the Knudsen effusion method. A tantalum cell for this purpose is described. Only preliminary results were obtained and they were all in a relatively high pressure region. However, a plot of the vapor pressure against the reciprocal of absolute temperature approximates a straight line such as would be predicted from theoretical considerations.

Stone, B. D.

1954-04-07T23:59:59.000Z

288

Heat Recovery in Distillation by Mechanical Vapor Recompression  

E-Print Network (OSTI)

A significant reduction in distillation tower energy requirements can be achieved by mechanical vapor recompression. Three design approaches for heating a distillation tower reboiler by mechanical vapor recompression are presented. The advantages of using a screw compressor are discussed in detail. An example of a xylene extraction tower is sited, illustrating the economic attractiveness in which a simple payback period of less than two years is achievable.

Becker, F. E.; Zakak, A. I.

1986-06-01T23:59:59.000Z

289

COMPETITIVE SOURCING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPETITIVE SOURCING COMPETITIVE SOURCING EXECUTIVE STEERING GROUP MEETING PROCEEDINGS June 17, 2002 8:30 am - 11:00 am Room 5E-069 ATTENDEES John Gordon Robert Card Bruce Carnes Kathy Peery Brendan Danaher, AFGE Tony Lane Karen Evans Bill Sylvester Claudia Cross Brian Costlow Laurie Smith Helen Sherman Frank Bessera Rosalie Jordan Dennis O'Brien Mark Hively Robin Mudd Steven Apicella AGENDA 8:30 a.m. - 8:35 a.m. Opening Remarks 8:35a.m. - 8:55 a.m. Executive Steering Group roles and responsibilities, A-76 status, and talking points Team Briefings 8:55 a.m. - 9:20 a.m. Information Technology Study 9:20 a.m. - 9:45 a.m. Financial Services Study

290

ION SOURCE  

DOE Patents (OSTI)

An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

Blue, C.W.; Luce, J.S.

1960-07-19T23:59:59.000Z

291

Low temperature plasma enhanced chemical vapor deposition of silicon oxide films using disilane and nitrous oxide  

Science Conference Proceedings (OSTI)

Keywords: disilane, low temperature, nitrous oxide, plasma enhanced chemical vapor deposition, silicon oxide

Juho Song; G. S. Lee; P. K. Ajmera

1995-10-01T23:59:59.000Z

292

ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals  

DOE Data Explorer (OSTI)

Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

Maria Cadeddu

293

ION SOURCE FOR A CALUTRON  

DOE Patents (OSTI)

This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.

Backus, J.G.

1957-12-24T23:59:59.000Z

294

Explaining Sources of Discrepancy in SSM/I Water Vapor Algorithms  

Science Conference Proceedings (OSTI)

This study examines a mix of seven statistical and physical Special Sensor Microwave Imager (SSM/I) passive microwave algorithms that were designed for retrieval of over-ocean precipitable water (PW). The aim is to understand and explain why the ...

Byung-Ju Sohn; Eric A. Smith

2003-10-01T23:59:59.000Z

295

Bioremediation of explosives in vadose zone soil using vapor phase carbon source additions.  

E-Print Network (OSTI)

??Explosives contamination in vadose zone soil presents difficulties in remediation. Because vadose zone contamination can extend deep into the subsurface and underneath existing buildings and… (more)

Radtke, Corey William

2005-01-01T23:59:59.000Z

296

COMPETITIVE SOURCING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXECUTIVE STEERING GROUP Meeting Proceedings October 30, 2002 Room 6E-069, 10:30 - 12:00 Agenda Opening Remarks Bruce Carnes Competitive Sourcing Update Denny O'Brien Team Briefings Team Leads ESG Discussion/Wrap up Bruce Carnes Attendees Bruce Carnes, Acting Chair MaryAnn Shebek Robert Card Prentis Cook Ambassador Brooks Tony Lane Kyle McSlarrow Karen Evans Suzanne Brennan, NTEU Claudia Cross Brian Costlow Helen Sherman Frank Bessera Laurie Morman Denny O'Brien Travis McCrory Bill Pearce Jeff Dowl Mark Hively Steven Apicella Robin Mudd Bruce Carnes chaired the meeting and began with welcoming NTEU to the meeting. In regard to the OMB's Balanced Scorecard, the Department has achieved a Green on progress and we are close to achieving a yellow on status.

297

Vapor etching of nuclear tracks in dielectric materials  

DOE Patents (OSTI)

A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

Musket, Ronald G. (Danville, CA); Porter, John D. (Berkeley, CA); Yoshiyama, James M. (Fremont, CA); Contolini, Robert J. (Lake Oswego, OR)

2000-01-01T23:59:59.000Z

298

Drying of pulverized material with heated condensible vapor  

DOE Patents (OSTI)

Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

Carlson, L.W.

1984-08-16T23:59:59.000Z

299

Vaporization behavior of non-stoichiometric refractory carbide materials and direct observations of the vapor phase using laser diagnostics  

DOE Green Energy (OSTI)

Transition metal and actinide carbides, such as ZrC or NbC and UC or ThC, exhibit a wide range of stoichiometry, and therefore vaporize incongruently. At long times, steady state vaporization can be achieved where relative concentrations of atomic species on solid surface equals that in the gas phase. The surface composition under these steady state conditions is termed the congruently vaporizing composition, (CVC). Modeling the vaporization or corrosion behavior of this dynamic process is complex and requires an understanding of how the surface composition changes with time and a knowledge of CVC, which is both temperature and atmosphere dependent. This paper describes vaporization and corrosion behavior of non-stoichiometric refractory carbide materials and, as an example, describes a thermokinetic model that characterizes the vaporization behavior of the complex carbide U{sub x}Zr{sub 1-x}C{sub y} in hydrogen at 2500 to 3200 K. This model demonstrates that steady state corrosion of U{sub x}Zr{sub l-x}C{sub y} is rate limited by gaseous transport of Zr where partial pressure of Zr is determined by CVC. This paper also briefly describes efforts to image and characterize the vapor phase above the surface of ZrC in static and flowing gas environments using planar laser induced fluorescence. We have developed the method for monitoring and controlling the corrosion behavior of nuclear fuels in nuclear thermal rockets. However, the techniques described can be used, to image boundary layers, and could be used verifying corrosion models.

Butt, D.P.; Wantuck, P.J.; Rehse, S.J.; Wallace, T.C. Sr.

1993-09-01T23:59:59.000Z

300

Collision cross sections and equilibrium fractions of ions and atoms in metal-vapor targets. Project progress report, June 1, 1980-April 30, 1981  

DOE Green Energy (OSTI)

The objective of this program is to measure atomic collision cross sections and equilibrium fractions of ions and atoms in metal vapor targets. The goal is to obtain experimental information on atomic collision processes of importance to the Magnetic Fusion Energy Program. In particular, in connection with the development of negative ion sources, we have measured D/sup -/ formation cross sections in alkaline-earth metal vapor targets. During the period covered in this report we have completed electron transfer cross section measurements of D/sup +/ ions and D/sup 0/ atoms in collision with calcium and strontium vapor. We have also completed differential cross section measurements for H/sup -/ formation in H/sup +/ + Mg collisions. Finally, state-of-the-art computer instrumentation has been interfaced to the experiment.

Morgan, T.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Tunable wavelength soft photoionization of ionic liquid vapors  

E-Print Network (OSTI)

high order harmonic generation source producing ultrafasthigh order harmonic generation light source. The combined PEorder harmonic generation EUV source, photoelectrons are

Strasser, Daniel

2010-01-01T23:59:59.000Z

302

Low temperature photochemical vapor deposition of alloy and mixed metal oxide films  

DOE Patents (OSTI)

Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

Liu, David K. (San Pablo, CA)

1992-01-01T23:59:59.000Z

303

Validation of TES Temperature and Water Vapor Retrievals with ARM  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of TES Temperature and Water Vapor Retrievals with ARM Validation of TES Temperature and Water Vapor Retrievals with ARM Observations Cady-Pereira, Karen Atmospheric and Environmental Research, Inc. Shephard, Mark Atmospheric and Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Mlawer, Eli Atmospheric & Environmental Research, Inc. Turner, David University of Wisconsin-Madison Category: Atmospheric State and Surface The primary objective of the TES (Tropospheric Emission Spectrometer) instrument on the Aura spacecraft is the retrieval of trace gases, especially water vapor and ozone. The TES retrievals extremely useful for global monitoring of the atmospheric state, but they must be validated. The ARM sites are well instrumented and provide continuous measurements, which

304

High temperature vapor pressure and the critical point of potassium  

SciTech Connect

The vapor pressure of potassium was experimentally determined from 2100 deg F up to-its critical temperature. An empirical equation of the form ln P = A + B/T + C ln T + DT/sup 1.5/ was found to best fit the data. A critical pressure of 2378.2 plus or minus 4.0 psia (161.79 plus or minus 0.27 ata) was measured. The corresponding critical temperature, extrapolated from the pressure-- temperature curve, is 4105.4 plus or minus 5 deg R (2280.8 plus or minus 3 deg K). The technique employed was tae pressure tube method developed earlier in this laboratory and used for determining the vapor pressure of rubidium and cesium. This method measures tae critical pressure directly, as well as the vapor pressure st lower temperatures. (4 tables, 6 figures, 26 references) (auth)

Jerez, W.R.; Bhise, V.S.; Das Gupta, S.; Bonilla, C.F.

1973-01-01T23:59:59.000Z

305

Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor  

Science Conference Proceedings (OSTI)

Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

Schlaepfer, D.; Itten, K.I. [Univ. of Zuerich (Switzerland). Dept. of Geography] [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Inst., Villigen (Switzerland)] [Paul Scherrer Inst., Villigen (Switzerland)

1998-09-01T23:59:59.000Z

306

Interactions between Liquid-Wall Vapor and Edge Plasmas  

DOE Green Energy (OSTI)

The use of liquid walls for fusion reactors could help solve problems associated with material erosion from high plasma heat-loads and neutronic activation of structures. A key issue analyzed here is the influx of impurity ions to the core plasma from the vapor of liquid side-walls. Numerical 2D transport simulations are performed for a slab geometry which approximates the edge region of a reactor-size tokamak. Both lithium vapor (from Li or SnLi walls) and fluorine vapor (from Flibe walls) are considered for hydrogen edge-plasmas in the high- and low-recycling regimes. It is found that the minimum influx is from lithium with a low-recycling hydrogen plasma, and the maximum influx occurs for fluorine with a high-recycling hydrogen plasma.

Rognlien, T D; Rensink, M E

2000-05-25T23:59:59.000Z

307

Intermediate Vapor Expansion Distillation and Nested Enrichment Cascade Distillation  

E-Print Network (OSTI)

Although it is known that incorporating an intermediate reboiler or reflux condenser in a distillation column will improve column efficiency by 15 to 100%, there has been little use of this technique to date." Intermediate vapor compression heat pumping was recently introduced as one practical means of achieving this benefit. Introduced in this paper are two new means having added advantages over compression: intermediate vapor expansion heat pumping, and nested enrichment cascades. In both cases the efficiency advantage is obtained without requiring import of shaft work. With intermediate vapor expansion, the expander is more efficient and less costly than the compressor which achieves comparable improvement in distillation efficiency. With the "nested enrichment" technique, the increased efficiency is obtained without requiring either compressors or expanders.

Erickson, D. C.

1986-06-01T23:59:59.000Z

308

Liquid-phase compositions from vapor-phase analyses  

SciTech Connect

Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

Davis, W. Jr. (Oak Ridge Gaseous Diffusion Plant, TN (USA)); Cochran, H.D. (Oak Ridge National Lab., TN (USA))

1990-02-01T23:59:59.000Z

309

Radiation source  

DOE Patents (OSTI)

A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

310

Vapor sampling of the headspace of radioactive waste storage tanks  

DOE Green Energy (OSTI)

This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

Reynolds, D.A., Westinghouse Hanford

1996-05-22T23:59:59.000Z

311

Submillimeter Wave Astronomy Satellite mapping observations of water vapor around Sagittarius B2  

E-Print Network (OSTI)

Observations of the 1(10)-1(01) 556.936 GHz transition of ortho-water with the Submillimeter Wave Astronomy Satellite (SWAS) have revealed the presence of widespread emission and absorption by water vapor around the strong submillimeter continuum source Sagittarius B2. An incompletely-sampled spectral line map of a region of size 26 x 19 arcmin around Sgr B2 reveals three noteworthy features. First, absorption by foreground water vapor is detectable at local standard-of-rest (LSR) velocities in the range -100 to 0 km/s at almost every observed position. Second, spatially-extended emission by water is detectable at LSR velocities in the range 80 to 120 km/s at almost every observed position. This emission is attributable to the 180-pc molecular ring identified from previous observations of CO. The typical peak antenna temperature of 0.075 K for this component implies a typical water abundance of 1.2E-6 to 8E-6 relative to H2. Third, strong absorption by water is observed within 5 arcmin of Sgr B2 at LSR veloci...

Neufeld, D A; Melnick, G J; Goldsmith, P F; Neufeld, David A.; Bergin, Edwin A.; Melnick, Gary J.; Goldsmith, Paul F.

2003-01-01T23:59:59.000Z

312

Effect of higher water vapor content on TBC performance  

Science Conference Proceedings (OSTI)

Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the initial phase of experiments. Compared to dry O{sub 2}, the addition of 10% water vapor decreased the lifetime of MCrAlY by {approx}30% for the conventional CMSX4 substrates. Higher average lifetimes were observed with Hf in the bond coating, but a similar decrease in lifetime was observed when water vapor was added. The addition of Y and La to the superalloy substrate did not change the YSZ lifetime with 10% water vapor. However, increasing water vapor content from 10 to 50% did not further decrease the lifetime of either bond coating with the doped superalloy substrate. Thus, these results suggest that higher water vapor contents cannot explain the derating of syngas-fired turbines, and other factors such as sulfur and ash from imperfect syngas cleanup (or upset conditions) need to be explored. Researchers continue to study effects of water vapor on thermally grown alumina scale adhesion and growth rate, and are looking for bond coating compositions more resistant to oxidation in the presence of water vapor.

Pint, Bruce A [ORNL; Haynes, James A [ORNL

2012-01-01T23:59:59.000Z

313

The Atomic Vapor Laser Isotope Separation Program. [Atomic Vapor Laser Isotope Separation (AVLIS) Program  

SciTech Connect

This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

Not Available

1992-11-09T23:59:59.000Z

314

Computation of Infrared Cooling Rates in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the behavior in the far wings of absorption lines to scale transmission along an inhomogencous path to an equivalent ...

Ming Dah Chou; Albert Arking

1980-04-01T23:59:59.000Z

315

Probing Hurricanes with Stable Isotopes of Rain and Water Vapor  

Science Conference Proceedings (OSTI)

Rain and water vapor were collected during flights in Hurricanes Olivia (1994), Opal (1995), Marilyn (1995), and Hortense (1995) and analyzed for their stable isotopic concentrations, or ratios, H218O:H2O and HDO:H2O. The spatial patterns and ...

Stanley Gedzelman; James Lawrence; John Gamache; Michael Black; Edward Hindman; Robert Black; Jason Dunion; Hugh Willoughby; Xiaoping Zhang

2003-06-01T23:59:59.000Z

316

Vapor-Liquid Partitioning of Sulfuric Acid and Ammonium Sulfate  

Science Conference Proceedings (OSTI)

The quality of water and steam is central to ensuring power plant component availability and reliability. A key part of developing operating cycle chemistry guidelines is an understanding of the impurity distribution between water and steam. This study focused on the partitioning of sulfuric acid and ammonium bisulfate between the liquid and vapor phases.

1999-03-31T23:59:59.000Z

317

Finite-volume model for chemical vapor infiltration incorporating radiant heat transfer. Interim report  

SciTech Connect

Most finite-volume thermal models account for the diffusion and convection of heat and may include volume heating. However, for certain simulation geometries, a large percentage of heat flux is due to thermal radiation. In this paper a finite-volume computational procedure for the simulation of heat transfer by conduction, convection and radiation in three dimensional complex enclosures is developed. The radiant heat transfer is included as a source term in each volume element which is derived by Monte Carlo ray tracing from all possible radiating and absorbing faces. The importance of radiative heat transfer is illustrated in the modeling of chemical vapor infiltration (CVI) of tubes. The temperature profile through the tube preform matches experimental measurements only when radiation is included. An alternative, empirical approach using an {open_quotes}effective{close_quotes} thermal conductivity for the gas space can match the initial temperature profile but does not match temperature changes that occur during preform densification.

Smith, A.W.; Starr, T.L. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-05-01T23:59:59.000Z

318

Observation of Water Vapor Greenhouse Absorption over the Gulf of Mexico Using Aircraft and Satellite Data  

Science Conference Proceedings (OSTI)

Through its interaction with radiation, water vapor provides an important link between the ocean and atmosphere. One way this occurs is through the greenhouse effect; observations of water vapor greenhouse absorption in the Gulf of Mexico during ...

David Marsden; Francisco P. J. Valero

2004-03-01T23:59:59.000Z

319

Modes and Mechanisms of Global Water Vapor Variability over the Twentieth Century  

Science Conference Proceedings (OSTI)

The modes and mechanisms of the annual water vapor variations over the twentieth century are investigated based on a newly developed twentieth-century atmospheric reanalysis product. It is found that the leading modes of global water vapor ...

Liping Zhang; Lixin Wu; Bolan Gan

2013-08-01T23:59:59.000Z

320

Water Vapor Transport and the Production of Precipitation in the Eastern Fertile Crescent  

Science Conference Proceedings (OSTI)

The study presented here attempts to quantify the significance of southerly water vapor fluxes on precipitation occurring in the eastern Fertile Crescent region. The water vapor fluxes were investigated at high temporal and spatial resolution by ...

J. P. Evans; R. B. Smith

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Influence of a Tropical Island Mountain on Solar Radiation, Air Temperature and Vapor Pressure  

Science Conference Proceedings (OSTI)

Measured solar radiation, air temperature, and water vapor pressure at 17 stations on the northwest flank of Haleakala, Maui, Hawaii are compared with modeled clear day solar radiation and free atmosphere air temperature and water vapor pressure. ...

Dennis Nullet

1989-03-01T23:59:59.000Z

322

A Comparison of Water Vapor Measurements Made by Raman Lidar and Radiosondes  

Science Conference Proceedings (OSTI)

This paper examines the calibration characteristics of the NASA/GSFC Raman water vapor lidar during three field experiments that occurred between 1991 and 1993. The lidar water vapor profiles are calibrated using relative humidity profiles ...

R. A. Ferrare; S. H. Melfi; D. N. Whiteman; K. D. Evans; F. J. Schmidlin; D. O'C. Starr

1995-12-01T23:59:59.000Z

323

Investigation of Turbulent Processes in the Lower Troposphere with Water Vapor DIAL and Radar–RASS  

Science Conference Proceedings (OSTI)

High-resolution water vapor and wind measurements in the lower troposphere within the scope of the Baltic Sea Experiment (BALTEX) are presented. The measurements were performed during a field campaign with a new water vapor differential ...

V. Wulfmeyer

1999-04-01T23:59:59.000Z

324

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

1991-01-01T23:59:59.000Z

325

Heat transfer during film condensation of potassium vapor on a horizontal plate  

E-Print Network (OSTI)

The object of the investigation is to analyze the following two features of heat transfer during condensation of potassium vapor: a. Heat transfer during film condensation of a pure saturated potassium vapor on a horizontal ...

Meyrial, Paul M.

1968-01-01T23:59:59.000Z

326

Distributions of Liquid, Vapor, and Ice in an Orographic Cloud from Field Observations  

Science Conference Proceedings (OSTI)

The phase distribution of the water mass of a cold orographic cloud into vapor, liquid, and ice is calculated from measurements made from an instrumented aircraft. The vapor values are calculated from thermodynamic measurements, and the liquid is ...

Taneil Uttal; Robert M. Rauber; Lewis O. Grant

1988-04-01T23:59:59.000Z

327

Chemical vapor deposition thin films as biopassivation coatings and directly patternable dielectrics  

E-Print Network (OSTI)

Organosilicon thin films deposited by pulsed plasma-enhanced chemical vapor deposition (PPECVD) and hot-filament chemical vapor deposition (HFCVD) were investigated as potential biopassivation coatings for neural probes. ...

Pryce Lewis, Hilton G. (Hilton Gavin), 1973-

2001-01-01T23:59:59.000Z

328

Determination of concentration-dependent dispersion of propane in vapor extraction of heavy oil.  

E-Print Network (OSTI)

??Vapex (vapor extraction) is a solvent-based non-thermal in-situ heavy oil recovery process. In Vapex process, a vaporized hydrocarbon solvent is injected into an upper horizontal… (more)

Abukhalifeh, Hadil

2010-01-01T23:59:59.000Z

329

Measurements of the Vapor Pressure of Supercooled Water Using Infrared Spectroscopy  

Science Conference Proceedings (OSTI)

Measurements are presented of the vapor pressure of supercooled water utilizing infrared spectroscopy, which enables unambiguous verification that the authors’ data correspond to the vapor pressure of liquid water, not a mixture of liquid water ...

Will Cantrell; Eli Ochshorn; Alexander Kostinski; Keith Bozin

2008-09-01T23:59:59.000Z

330

Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar  

Science Conference Proceedings (OSTI)

Automated routines have been developed to derive water vapor mixing ratio, relative humidity, aerosol extinction and backscatter coefficient, and linear depolarization profiles, as well as total precipitable water vapor and aerosol optical ...

D. D. Turner; R. A. Ferrare; L. A. Heilman Brasseur; W. F. Feltz; T. P. Tooman

2002-01-01T23:59:59.000Z

331

Tropical Water Vapor and Cloud Feedbacks in Climate Models: A Further Assessment Using Coupled Simulations  

Science Conference Proceedings (OSTI)

By comparing the response of clouds and water vapor to ENSO forcing in nature with that in Atmospheric Model Intercomparison Project (AMIP) simulations by some leading climate models, an earlier evaluation of tropical cloud and water vapor ...

De-Zheng Sun; Yongqiang Yu; Tao Zhang

2009-03-01T23:59:59.000Z

332

Water injection as a means for reducing non-condensible andcorrosive gases in steam produced from vapor-dominated reservoirs  

Science Conference Proceedings (OSTI)

Large-scale water injection at The Geysers, California, hasgenerated substantial benefits in terms of sustaining reservoir pressuresand production rates, as well as improving steam composition by reducingthe content of non-condensible gases (NCGs). Two effects have beenrecognized and discussed in the literature as contributing to improvedsteam composition, (1) boiling of injectate provides a source of "clean"steam to production wells, and (2) pressurization effects induced byboiling of injected water reduce upflow of native steam with large NCGconcentrations from depth. In this paper we focus on a possibleadditional effect that could reduce NCGs in produced steam by dissolutionin a condensed aqueous phase.Boiling of injectate causes pressurizationeffects that will fairly rapidly migrate outward, away from the injectionpoint. Pressure increases will cause an increase in the saturation ofcondensed phase due to vapor adsorption on mineral surfaces, andcapillary condensation in small pores. NCGs will dissolve in theadditional condensed phase which, depending upon their solubility, mayreduce NCG concentrations in residual steam.We have analyzed thepartitioning of HCl between vapor and aqueous phases, and have performednumerical simulations of injection into superheated vapor zones. Oursimulations provide evidence that dissolution in the condensed phase canindeed reduce NCG concentrations in produced steam.

Pruess, Karsten; Spycher, Nicolas; Kneafsey, Timothy J.

2007-01-08T23:59:59.000Z

333

Source Selection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Selection Source Selection Source SelectionSource Selection Boards Source Evaluation Board (SEB) Monthly Status Reporting Requirement (pdf) Source Evaluation Board (SEB)...

334

High efficiency vapor-fed AMTEC system for direct conversion. Appendices for final report  

DOE Green Energy (OSTI)

This report consists of four appendices for the final report. They are: Appendix A: 700 C Vapor-Fed AMTEC Cell Calculations; Appendix B: 700 C Vapor-Fed AMTEC Cell Parts Drawings; Appendix C: 800 C Vapor-Fed AMTEC Cell Calculations; and Appendix D: 800 C Wick-Pumped AMTEC Cell System Design.

Anderson, W.G.; Bland, J.J.

1997-05-23T23:59:59.000Z

335

Mike Furey | Technology Commercialization and Partnerships  

Nonproliferation & National Security; Nuclear Science & Technology; Technology Commercialization & Partnerships; Sustainable Energy ...

336

By Mike Perricone, Office of Public Affairs  

NLE Websites -- All DOE Office Websites (Extended Search)

repairs take place. "We took (Fermilab's) very good data on temperature changes and environmental changes over a five-year period," said structural engineer Jim McCoy, who directed...

337

Dark Raptures: Mike Davis' L.A.  

E-Print Network (OSTI)

up the raunchiness by taking porn movies and drug problemsof the fall crossed with a porn-movie industry retelling of

Davis, Mike; Reid, David; Klein, Kerwin; Clark, T J

1997-01-01T23:59:59.000Z

338

News Release Media Contact: Mike Bradley  

E-Print Network (OSTI)

materials onto inexpensive metal templates coated with ceramic buffer layers will make high temperature agreement with SuperPower is a great example of ORNL working with industry and delivering the science

339

Mike Martin Vice President for Agriculture  

E-Print Network (OSTI)

the food supply. (Photo by Thomas Wright) #12;WINTER 2002 7 The citrus rust mite is another example of how of economic analysis, Department of Food and Resource Economics, Gainesville; Catharine Mannion, assistant

Watson, Craig A.

340

Dark Raptures: Mike Davis' L.A.  

E-Print Network (OSTI)

first world- wide wave of “UFO” sightings in 1896-97, sixin Dave Jacobs, The UFO Contro- versy in America (University

Davis, Mike; Reid, David; Klein, Kerwin; Clark, T J

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dr James Morison, Robert Matthews, Mike Perks,  

E-Print Network (OSTI)

and fluxes of carbon and the fluxes of other GHG in UK forests, and how they are affected by forest dynamics-1 ) SS 8 SS 12 SS 16 OK 4 C Stocks in trees - stems ·50% of dry weight of vegetation is C ·consider

342

Method for the generation of variable density metal vapors which bypasses the liquidus phase  

DOE Patents (OSTI)

The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

Kunnmann, Walter (Stony Brook, NY); Larese, John Z. (Rocky Point, NY)

2001-01-01T23:59:59.000Z

343

Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mokapu Penninsula Area (Thomas, 1986) Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

344

Catalytic hydrogenation process and apparatus with improved vapor liquid separation  

DOE Patents (OSTI)

A continuous hydrogenation process and apparatus wherein liquids are contacted with hydrogen in an ebullated catalyst reaction zone with the liquids and gas flowing vertically upwardly through that zone into a second zone substantially free of catalyst particles and wherein the liquid and gases are directed against an upwardly inclining surface through which vertical conduits are placed having inlet ends at different levels in the liquid and having outlet ends at different levels above the inclined surface, such that vapor-rich liquid is collected and discharged through conduits terminating at a higher level above the inclined surface than the vapor-poor liquid which is collected and discharged at a level lower than the inclined surface.

Chervenak, Michael C. (Pennington, NJ); Comolli, Alfred G. (Trenton, NJ)

1980-01-01T23:59:59.000Z

345

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

346

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

347

Enhanced frequency up-conversion in Rb vapor  

E-Print Network (OSTI)

We demonstrate highly efficient generation of coherent 420 nm light via up-conversion of near-infrared lasers in a hot rubidium vapor cell. By optimizing pump polarizations and frequencies we achieve a single-pass conversion efficiency of 260%/W, significantly higher than in previous experiments. A full 2D exploration of the coherent light generation and fluorescence as a function of the pump frequencies reveals that coherent blue light is generated at 85Rb two-photon resonances, as predicted by theory, but at high vapor pressure it is suppressed in spectral regions that don't support phase matching or exhibit single-photon Kerr refraction. Favorable scaling of our current 1 mW blue beam power with additional pump power is predicted. Infrared pump polarization could be used for future intensity switching experiments.

Vernier, A; Riis, E; Arnold, A S

2009-01-01T23:59:59.000Z

348

Hydrocarbon pool and vapor fire data analysis. Final report  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

349

High average power magnetic modulator for metal vapor lasers  

DOE Patents (OSTI)

A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

1994-01-01T23:59:59.000Z

350

Vaporizing Flow in Hot Fractures: Observations from Laboratory Experiments  

DOE Green Energy (OSTI)

Understanding water seepage in hot fractured rock is important in a number of fields including geothermal energy recovery and nuclear waste disposal. Heat-generating high-level nuclear waste packages which will be emplaced in the partially saturated fractured tuffs at the potential high-level nuclear waste repository at Yucca Mountain, Nevada, if it becomes a high-level nuclear waste repository, will cause significant impacts on moisture distribution and migration. Liquid water, which occupies anywhere from 30 to 100% of the porespace, will be vaporized as the temperature reaches the boiling temperature. Flowing primarily in fractures, the vapor will condense where it encounters cooler rock, generating mobile water. This water will flow under gravitational and capillary forces and may flow back to the vicinity of the emplaced waste where it may partially escape vaporization. Water flowing down (sub-) vertical fractures may migrate considerable distances through fractured rock that is at above-boiling temperatures; thus, flowing condensate may contact waste packages, and provide a pathway for the transport of water-soluble radionuclides downward to the saturated zone. Thermally-driven flow processes induced by repository heat may be as important or even more important for repository performance than natural infiltration. For a nominal thermal loading of 57 kW/acre, vaporization may generate an average equivalent percolation flux from condensate of 23.1 mm/yr over 1,000 years, and 5.2 mm/yr over 10,000 years. These numbers are comparable to or larger than current estimates of net infiltration at Yucca Mountain. This condensate, which is generated in the immediate vicinity (meters) of the waste packages, will likely have a larger impact on waste package and repository performance than a similar amount of water introduced at the land surface.

Kneafsey, T.; Pruess, K.

1998-12-01T23:59:59.000Z

351

M.D.?Lukin, “Storage of light in atomic vapor  

E-Print Network (OSTI)

We report an experiment in which a light pulse is decelerated and trapped in a vapor of Rb atoms, stored for a controlled period of time, and then released on demand. We accomplish this storage of light by dynamically reducing the group velocity of the light pulse to zero, so that the coherent excitation of the light is reversibly mapped into a collective Zeeman (spin) coherence of the Rb vapor. PACS numbers 03.67.-a, 42.50.-p, 42.50.Gy Typeset using REVTEX 1 Photons are the fastest and most robust carriers of information, but they are difficult to localize and store. The present Letter reports a proof-of-principle demonstration of a technique [1,2] to trap, store, and release excitations carried by light pulses. Specifically, a pulse of light which is several kilometers long in free space is compressed to a length of a few centimeters and then converted into collective spin excitations in a vapor of Rb atoms. After a controllable storage time, the process is reversed and the atomic coherence is converted

D. F. Phillips; A. Fleischhauer; A. Mair; R. L. Walsworth; M. D. Lukin

2001-01-01T23:59:59.000Z

352

Applications of Mechanical Vapor Recompression to Evaporation and Crystallization  

E-Print Network (OSTI)

Over the past 10-15 years, mechanical vapor recompression (MVR) has become the preferred system in many industrial evaporation and crystallization applications, because of its economy and simplicity of operation. In most instances, the need for steam to provide heat for the evaporation and cooling water for condensing the overhead vapors is virtually eliminated; and, at the same time, a wide range of turndown is available. An MVR is generally found to be the most economical choice when there is no boiler plant available or when electrical power is priced competitively in comparison to steam. Vapor recompression is accomplished using centrifugal, axial-flow, or positive displacement compressors and these compressors can be powered by electricity, steam turbine or a gas turbine. The use of an MVR Evaporator/Crystallizer provides a comparatively low cost means of expanding the production capability of an existing evaporation plant either by adding a "stand alone" unit or by reconfiguring a multiple-effect system into several single-effect MVR's.

Outland, J. S.

1995-04-01T23:59:59.000Z

353

Improved method for removing metal vapor from gas streams  

DOE Patents (OSTI)

This invention relates to a process for gas cleanup to remove one or more metallic contaminants present as vapor. More particularly, the invention relates to a gas cleanup process using mass transfer to control the saturation levels such that essentially no particulates are formed, and the vapor condenses on the gas passage surfaces. It addresses the need to cleanup an inert gas contaminated with cadmium which may escape from the electrochemical processing of Integral Fast Reactor (IFR) fuel in a hot cell. The IFR is a complete, self-contained, sodium-cooled, pool-type fast reactor fueled with a metallic alloy of uranium, plutonium and zirconium, and is equipped with a close-coupled fuel cycle. Tests with a model have shown that removal of cadmium from argon gas is in the order of 99.99%. The invention could also apply to the industrial cleanup of air or other gases contaminated with zinc, lead, or mercury. In addition, the invention has application in the cleanup of other gas systems contaminated with metal vapors which may be toxic or unhealthy.

Ahluwalia, R.K.; Im, K.H.

1994-09-19T23:59:59.000Z

354

Policy Flash 2013-57 New Strategic Sourcing Acquisition Guide Chapter 7.2  

Energy.gov (U.S. Department of Energy (DOE))

Questions concerning this policy flash should be directed to Mike Larson of the Office of Acquisition and Project Management, Strategic Programs Division at (202) 287-1426 or at Michael.Larson@hq...

355

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

Science Conference Proceedings (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

356

Tank 241-BY-110 Headspace Gas and Vapor Characterization Results for Samples Collected in November 1994. Revision 2  

Science Conference Proceedings (OSTI)

Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories.

Huckaby, J.L. [Pacific Northwest Lab., Washington, DC (United States); Bratzel, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1995-09-01T23:59:59.000Z

357

LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS  

Science Conference Proceedings (OSTI)

This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

BAKER, D.M.

2004-08-03T23:59:59.000Z

358

Tank Vapor Characterization Project -- Headspace vapor characterization of Hanford waste Tank 241-C-107: Results from samples collected on 01/17/96  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report were obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system with and without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane hydrocarbons (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1996-07-01T23:59:59.000Z

359

Calibrated Neutron Sources  

Science Conference Proceedings (OSTI)

... NIST designed a compliant source. ... needed for new purposes and as old sources decay ... The figure shows a reprentative energy spectrum from such ...

2013-07-30T23:59:59.000Z

360

Electrolytes for power sources  

DOE Patents (OSTI)

Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electrolytes for power sources  

DOE Patents (OSTI)

Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

Doddapaneni, N.; Ingersoll, D.

1995-01-03T23:59:59.000Z

362

SORPTION OF GASES BY VAPOR-DEPOSITED TITANIUM FILMS  

DOE Green Energy (OSTI)

Results are summarized for an investigation of the sorption rates of gases on vapor-deposited titanium films. The usefulness of such films for ultrahigh speed vacuum pumping is appraised. The sorption of hydrogen, deuterium, oxygen, nitrogen, carbon monoxide, carbon dioxide, water vapor, helium, argon, and methane onto titanium films was measured for a variety of circumstances using techniques and apparatus developed for this specific purpose. The information obtained and techniques evolved in this study have shown that large-scale getter pumping is feasible and can be a very effective means of pumping many gases. Sticking fractions larger than 0.8 were obtained for hydrogen, deuterium, oxygen, nitrogen, carbon monoxide, and carbon dioxide. The experiments have shown that the sticking fraction for gases on vapor-deposited films is a function of the deposition conditions. There is strong evidence to support the supposition that conditions which favor the formation of a porous, fine-grained film structure with a large surface-to-volume ratio produce films with the highest sorption rates. The technique for measuring sticking fractions is new and in many respects unique. It utilizes a very large sorption surface, thus minimizing the perturbing effect of the instrumentation and evaporation apparatus and reducing the hazard of film contamination due to small leaks in the system or outgassing of system components. The method gives especially good accuracy for measurements of sticking fractions approaching unity. The quantity of gas adsorbed, the gas flux onto the getter surface, and the gas flux leaving the getter surface are measured directly. Any two of these three independent measurements can be used to determine the sticking fraction, thereby providing a means of checking the data. The evaporation techniques, substrate surface, and substrate area were chosen to very nearly duplicate the conditions likely to be encountered in the practical application of large-scale getter pumping. (auth)

Clausing, R.E.

1964-03-01T23:59:59.000Z

363

Observed annual and interannual variations in tropospheric water vapor  

SciTech Connect

Radiosonde observations from a global network of 56 radiosonde stations for 1973-1990 are used to describe and quantify annual and interannual variations of tropospheric water vapor. Taking care to identify data inhomogeneities related to changes in instruments or observing practices, monthly mean and anomaly data sets are constructed for dew point, specific humidity, relative humidity, temperature and precipitable water from the surface to 500 mb. Local annual cycles of tropospheric humidity can be classified according to the amplitude and phase of humidity variations which define five humidity regimes. For two regimes, both in middle and high latitudes, relative humidity is fairly constant while the annual cycle of precipitable water is in phase with that of temperature. At some midlatitude stations with a monsoon-like climate, seasonal relative humidity variations are large. In the tropics, seasonal relative humidity variations, especially above the boundary layer, dominate the annual cycle of precipitable water, and precipitable water variations are not related to temperature variations. Correlations of temperature and specific humidity anomalies are generally positive outside the tropics, suggesting that atmospheric warming is associated with increases in water vapor content. However, correlations of temperature and relative humidity anomalies are sometimes not significant and are often negative (e.g., in mid- and high latitude continental regions). Thus relative humidity is not always insensitive to temperature changes. In the tropics, tropospheric water vapor and temperature variations are not well correlated. An empirical orthogonal function analysis of tropical specific humidity variations identified two important modes of variability. The first is a step-like increase in specific humidity that occurred in about 1976-1977, and the second is associated with the El Nino phenomenon.

Gaffen, D.J.

1992-01-01T23:59:59.000Z

364

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOE Patents (OSTI)

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

Vo-Dinh, Tuan (625 Gulfwood Rd., Knoxville, TN 37923)

1987-01-01T23:59:59.000Z

365

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOE Patents (OSTI)

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

Vo-Dinh, T.

1987-07-14T23:59:59.000Z

366

Recirculating wedges for metal-vapor plasma tubes  

DOE Patents (OSTI)

A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

1994-06-28T23:59:59.000Z

367

Recirculating wedges for metal-vapor plasma tubes  

DOE Patents (OSTI)

A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

Hall, Jerome P. (Livermore, CA); Sawvel, Robert M. (Modesto, CA); Draggoo, Vaughn G. (Livermore, CA)

1994-01-01T23:59:59.000Z

368

Nonlinear transmission through a tapered fiber in rubidium vapor  

E-Print Network (OSTI)

Sub-wavelength diameter tapered optical fibers surrounded by rubidium vapor can undergo a substantial decrease in transmission at high atomic densities due to the accumulation of rubidium atoms on the surface of the fiber. Here we demonstrate the ability to control these changes in transmission using light guided within the taper. We observe transmission through a tapered fiber that is a nonlinear function of the incident power. This effect can also allow a strong control beam to change the transmission of a weak probe beam.

S. M. Hendrickson; T. B. Pittman; J. D. Franson

2008-08-28T23:59:59.000Z

369

Method and apparatus for producing thermal vapor stream  

DOE Patents (OSTI)

Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

Cradeur, Robert R. (Spring, TX); Sperry, John S. (Houston, TX); Krajicek, Richard W. (Sugar Land, TX)

1979-01-01T23:59:59.000Z

370

Physical vapor deposition and patterning of calcium fluoride films  

Science Conference Proceedings (OSTI)

Physical vapor deposition of calcium fluoride (CaF{sub 2}) thin films was performed via electron beam evaporation, resistive/thermal evaporation, and nonreactive radio frequency sputtering. Patterning of the resultant ''usable'' thin films was then also attempted in several ways, including by shadow mask deposition, liftoff, and direct chemical etching. Resistive evaporation produced the most stable films, having polycrystalline morphology with a moderately strong preference to the 331 orientation. The cleanest patterning results were obtained via a polymer/metal liftoff. The results and implications of each of the various deposition and patterning techniques are discussed.

Pinol, L.; Rebello, K.; Caruso, K.; Francomacaro, A. S.; Coles, G. L. [Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723 (United States)

2011-03-15T23:59:59.000Z

371

Combustion chemical vapor deposited coatings for thermal barrier coating systems  

DOE Green Energy (OSTI)

The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-12-31T23:59:59.000Z

372

Chemical vapor deposition of amorphous semiconductor films. Final subcontract report  

DOE Green Energy (OSTI)

Chemical vapor deposition (CVD) from higher order silanes has been studied for fabricating amorphous hydrogenated silicon thin-film solar cells. Intrinsic and doped a-Si:H films were deposited in a reduced-pressure, tubular-flow reactor, using disilane feed-gas. Conditions for depositing intrinsic films at growth rates up to 10 A/s were identified. Electrical and optical properties, including dark conductivity, photoconductivity, activation energy, optical absorption, band-gap and sub-band-gap absorption properties of CVD intrinsic material were characterized. Parameter space for depositing intrinsic and doped films, suitable for device analysis, was identified.

Rocheleau, R.E.

1984-12-01T23:59:59.000Z

373

Passive space heating with a self-pumping vapor system  

DOE Green Energy (OSTI)

In this system, which should be useful for space or water heating, a refrigerant is evaporated in a solar collector and condensed within thermal storage located in the building below the collector. The vapor pressure generated in the collector periodically forces the condensed liquid upward to the location of the collector. This paper reports results of an operational test, in which this system provided passive space heating for an outdoor test cell during a winter season. The daily average energy yield and the elevation of collector temperature caused by self-pumping are reported, as well as observations on failure modes, system reliability, and suggestions for a practical configuration.

Hedstrom, J.C.; Neeper, D.A.

1986-01-01T23:59:59.000Z

374

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Mercury Vapor Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

375

MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN  

NLE Websites -- All DOE Office Websites (Extended Search)

MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN THE ARCTIC Cadeddu, Maria Argonne National Laboratory Category: Instruments A new G-band (183 GHz) vapor radiometer (GVR), developed and built by Prosensing Inc. (http://www.prosensing.com), was deployed in Barrow, Alaska, in April 2005. The radiometer was deployed as part of the ongoing Atmospheric Radiation Measurement (ARM) program's effort to improve water vapor retrievals in the cold, dry Arctic environment. The instrument measures brightness temperatures from four double sideband channels centered at 1, 3, 7, and 14 GHz from the 183.31-GHz water vapor line. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. The GVR will remain in Barrow

376

Source Selection Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Selection Guide Source Selection Guide Source Selection Guide More Documents & Publications Source Selection Guide Source Selection Guide Source Selection...

377

The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications  

DOE Green Energy (OSTI)

Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

2010-03-31T23:59:59.000Z

378

Comparative Global Warming Impacts of Electric Vapor-Compression and Direct-fired Absorption Equipment  

Science Conference Proceedings (OSTI)

This report compares the global warming impacts of electric vapor-compression and gas-fired absorption-cycle equipment for commercial cooling applications. Absorption chillers do not use ozone depleting refrigerants but substitution of alternative refrigerants in electrically driven vapor-compression cycle equipment also offers radically reduced or eliminated potential for stratospheric ozone depletion. Therefore, when comparing absorption-cycle and vapor-compression equipment, net global warming impacts...

1994-03-01T23:59:59.000Z

379

(Ti,Mg)N Thin Film Coatings Produced Via Physical Vapor Deposition  

Science Conference Proceedings (OSTI)

Magnesium (Mg) doped TiN was prepared via physical vapor deposition to ... Axial Compression of a Hollow Cylinder Filled with a Foam: A Porcupine Quill ...

380

Separation of heavy water by vapor-phase thermal diffusion coupled with distillation and condensation  

Science Conference Proceedings (OSTI)

A study on the enrichment of heavy water in a vapor-phase thermal-diffusion column has been conducted. With the combination of the effects of distillation, vapor-phase thermal diffusion, and partial condensation, considerable improvement in the degree of enrichment has been achieved in a vapor-phase column rather than in a liquid-phase column. It was also found that even the part of enrichment contributed only by vapor-phase thermal-diffusion effect is much higher than that obtained by liquid-phase thermal diffusion.

Yeh, H.M. [Tamkang Univ., Taiwan (China); Chang, S.M. [Cheng Kung Univ., Taiwan (China)

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Evaluation of Fire Dynamics Simulator for Liquefied Natural Gas Vapor Dispersion Hazards.  

E-Print Network (OSTI)

??The Federal Energy Regulatory Commission (FERC) and Pipeline and Hazardous Material Administration (PHMSA) require vapor dispersion modeling as part of a siting analysis for liquefied… (more)

Kohout, Andrew Joseph

2011-01-01T23:59:59.000Z

382

Evaluation of fire dynamics simulator for liquefied natural gas vapor dispersion hazards.  

E-Print Network (OSTI)

?? The Federal Energy Regulatory Commission (FERC) and Pipeline and Hazardous Material Administration (PHMSA) require vapor dispersion modeling as part of a siting analysis for… (more)

Kohout, Andrew Joseph

2012-01-01T23:59:59.000Z

383

SAT-TMMC: Liquid-Vapor coexistence properties - TraPPE ...  

Science Conference Proceedings (OSTI)

SAT-TMMC: Liquid-Vapor coexistence properties - TraPPE Carbon Dioxide. ... Fluid, Carbon Dioxide. Model, TraPPE [1]. V, 27000 Ĺ 3. TRUNCATION, ...

2013-10-21T23:59:59.000Z

384

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network (OSTI)

Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

Pruess, Karsten

2008-01-01T23:59:59.000Z

385

PRODUCTION AND DESTRUCTION OF D- BY CHARGE TRANSFER IN METAL VAPORS  

E-Print Network (OSTI)

alkali-vapor target of the heat- pipe type. The beam leavingthe incident beam. The heat-pipe target and the collimation

Schlachter, A.S.

2010-01-01T23:59:59.000Z

386

Method of physical vapor deposition of metal oxides on semiconductors  

DOE Patents (OSTI)

A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

Norton, David P. (Knoxville, TN)

2001-01-01T23:59:59.000Z

387

Imaging Spectrometry of Tropospheric Ozone and Water Vapor  

E-Print Network (OSTI)

Imaging spectrometry has the potential of remotely detecting atmospheric trace gases on the basis of their absorption of radiation. Ozone absorbs particulary in the ultraviolet and visible range of the spectrum, whereas water vapor has strong absorption features in the near infrared. Hence, spectrometry is expected to be a promising tool to extract these trace gas contents in a given air column by using the correlation between cumulative trace gas amount and absorption strength in the sensor channels located in the absorption bands. New mathematical methods of channel selection and method evaluation for measuring atmospheric trace gases are presented. Three already known and four new differential absorption techniques are evaluated by using MODTRAN2 simulations of the radiance spectrum at the sensor level and an analytical error propagation analysis. Finally, the best methods and channel combinations are selected and applied to AVIRIS data of Central Switzerland. The spatial ozone distribution could be estimated over water in a qualitative manner, whereas the total column water vapor content could be quantified over land with an accuracy of about 6%.

Daniel Schläpfer; Klaus I. Itten; Johannes Keller

1995-01-01T23:59:59.000Z

388

Energy Saving in Distillation Using Structured Packing and Vapor Recompression  

E-Print Network (OSTI)

"Distillation is a big consumer of energy in process plant operations. A first step to energy cost savings is the use of high efficiency structured packing in place of trays or dumped packings in conventionally operated distillation columns. Larger savings, as much as 80%, may be obtained by using a direct vapor recompression (VRC) heat pump instead of the conventional column operation with a steam heated reboiler. A main criterion of the suitability of a distillation for VRC is a low temperature difference across the column. VRC uses hot compressed overhead vapors, instead of steam, to heat the reboiler. Cost savings are highest when the pressure ratio for the compressor is low. The pressure ratio depends on the boiling point difference of top and bottom products, the reboiler-condenser driving force temperature and the column pressure drop. Structured packing has a low pressure drop; thus increasing the savings obtained with VRC - for retrofits or new columns - and increasing the range of applications where VRC is suitable for distillations. For low pressure distillation application, a column with a small pressure drop is especially important. An example of a vacuum distillation which is made suitable for VRC with use of structured packing is separation of styrene and ethyl benzene. "

Hill, J.H.

1987-09-01T23:59:59.000Z

389

Source Tree Composition  

E-Print Network (OSTI)

Dividing software systems in components improves software reusability as well as software maintainability. Components live at several levels, we concentrate on the implementation level where components are formed by source files, divided over directory structures. Such source code components are usually strongly coupled in the directory structure of a software system. Their compilation is usually controlled by a single global build process. This entangling of source trees and build processes often makes reuse of source code components in different software systems difficult. It also makes software systems inflexible because integration of additional source code components in source trees and build processes is difficult. This paper's subject is to increase software reuse by decreasing coupling of source code components. It is achieved by automized assembly of software systems from reusable source code components and involves integration of source trees, build processes, and configuration processes. Application domains include generative programming, product-line architectures, and commercial off-the-shelf (COTS) software engineering.

Merijn De Jonge

2001-01-01T23:59:59.000Z

390

Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 Water Vapor Intensive Observation Periods  

Science Conference Proceedings (OSTI)

Prior to the Atmospheric Radiation Measurement program’s first water vapor intensive observation period (WVIOP) at the Cloud and Radiation Testbed site near Lamont, Oklahoma, an automated 24-h Raman lidar was delivered to the site. This ...

D. D. Turner; J. E. M. Goldsmith

1999-08-01T23:59:59.000Z

391

Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles  

DOE Green Energy (OSTI)

Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt-based commercial alloys. The corrosion rates in these tests are reported and how they may or may not relate to the corrosion behavior in an operating thermochemical cycle is discussed.

Thomas M. Lillo; Karen M. Delezene-Briggs

2005-10-01T23:59:59.000Z

392

Next Generation Light Source  

•Next Generation Light Source – Super Thin Light Bulb, Energy Efficient, Long Life, Dimmable, and Uniform Illumination •High Entry Barrier – 71 ...

393

Sources of Thermodynamic Data  

Science Conference Proceedings (OSTI)

...The thermodynamic data summarized in Table 2 are collected from a variety of sources. The certainty with which

394

Electron beam physical vapor deposition of thin ruby films for remote temperature sensing  

SciTech Connect

Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al{sub 2}O{sub 3}, ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and {alpha}-Al{sub 2}O{sub 3} crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

Li Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G. [Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212 (United States)

2013-04-28T23:59:59.000Z

395

Numerical simulation of transient, incongruent vaporization induced by high power laser  

Science Conference Proceedings (OSTI)

A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.

Tsai, C.H.

1981-01-01T23:59:59.000Z

396

Low temperature metal-organic chemical vapor deposition growth processes for high-efficiency solar cells  

DOE Green Energy (OSTI)

This report describes the results of a program to develop a more complete understanding of the physical and chemical processes involved in low-temperature growth of III-V compounds by metal-organic chemical vapor deposition (MOCVD) and to develop a low-temperature process that is suitable for the growth of high-efficiency solar cells. The program was structured to develop a better understanding of the chemical reactions involved in MOCVD growth, to develop a model of the processes occurring in the gas phase, to understand the physical kinetics and reactions operative on the surface of the growing crystal, and to develop an understanding of the means by which these processes may be altered to reduce the temperature of growth and the utilization of toxic hydrides. The basic approach was to develop the required information about the chemical and physical kinetics operative in the gas phase and on the surface by the direct physical measurement of the processes whenever possible. The program included five tasks: (1) MOCVD growth process characterization, (2) photoenhanced MOCVD studies, (3) materials characterization, (4) device fabrication and characterization, and (5) photovoltaic training. Most of the goals of the program were met and significant progress was made in defining an approach that would allow both high throughput and high uniformity growth of compound semiconductors at low temperatures. The technical activity was focused on determining the rates of thermal decomposition of trimethyl gallium, exploring alternate arsenic sources for use MOCVD, and empirical studies of atomic layer epitaxy as an approach.

Dapkus, P.D. (University of Southern California, Los Angeles, CA (United States))

1993-02-01T23:59:59.000Z

397

LIGHT SCATTERING STUDIES OF SOLIDS AND ATOMIC VAPORS  

E-Print Network (OSTI)

as the pump source. A heat pipe oven produced the uniformand construction of the heat pipe oven have been des­ cribed

Chiang, Tai-Chang

2011-01-01T23:59:59.000Z

398

MicroBlower™ Soil Vapor Extraction License Agreement LLC, NC,  

alternative designed to run on renewable sources of energy such as solar and wind ... A growing trend in environmental remediation is the use of ...

399

Laser-induced micron size clustering in thiophenol vapor  

SciTech Connect

Positively charged micron sized clusters are efficiently produced following irradiation of thiophenol vapor at 248 nm by a single KrF laser pulse of 30 ns duration. The production mechanism has been studied by examining the effect of N[sub 2], Ar, and He as diffusion media in mixtures with thiophenol, and by varying the laser pulse energy and excitation wavelength. A qualitative summary of possible mechanisms that may be responsible for the experimental results is presented providing a framework for understanding the observed cluster growth. The measurements indicate an optimum set of parameters for growth of large clusters and also show that the cluster charge can be controlled by selection of the buffer gas mixture.

Zafiropulos, V.; Kollia, Z.; Fotakis, C. (FORTH-Institute for Electronic Structure and Laser, P.O. Box 1527, GR 71110 Heraklion, Crete (Greece)); Stockdale, J.A.D. (L-463, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

1993-03-15T23:59:59.000Z

400

Gas/vapor- and fire-resistant transformers. Final report  

Science Conference Proceedings (OSTI)

This project responds to the serious need for a fire and explosion-resistant power transformer that can be produced at an acceptable cost while eliminating or reducing environmental concern. The objectives were to build three transformers with size, performance, cost, and losses equivalent to their oil counterpart. After much development of materials and systems, a gas-insulated vapor cooled system was chosen for the 2500 kVA 95 BIL unit. An immersed system utilizing perchloroethylene (C/sub 2/Cl/sub 4/) with 25% transformer oil, was used for the 1000-kVA, 200-BIL network transformer and the 5000-kVA 200-BIL substation transformer. The materials and systems developed provide safer fire-resistant transformers at near the cost of oil-insulated units but with greatly reduced dependence on the petroleum industry.

Moore, C.L.; Dakin, T.W.; Stewart, W.A.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of aqueous cleaners as alternatives to vapor degreasing  

DOE Green Energy (OSTI)

As part of the preparation process during assembly of thermally activated batteries, the stainless steel piece parts are normally cleaned by vapor degreasing with trichloroethylene. Severe restrictions on the use of chlorinated and fluorinated hydrocarbons in recent years prompted the evaluation of a number of aqueous cleaners as a replacement technology for this application. A total of seven commercial aqueous degreasers was evaluated in this study at several dilution ratios and temperatures. One organic cleaner was also examined under ambient conditions. The effectiveness of the cleaner was determined by the use of x-ray photoelectron spectroscopy (XPS), which is a surface analytical technique that is very sensitive to low levels of surface contaminants. A quartz-crystal microbalance (QCM) that is immersed in the cleaning bath was evaluated as a tool for monitoring the bath cleanliness. The best overall cleaning results were obtained with Micro, Impro-Clean 3800, and Sonicor cleaners.

Guidotti, R.A.; Schneider, T.W.; Frye, G.C. [and others

1996-02-01T23:59:59.000Z

402

Evaluation of aqueous cleaners as alternatives to vapor degreasing  

DOE Green Energy (OSTI)

As part of the preparation process during assembly of thermally activated batteries, the stainless steel piece parts are normally cleaned by vapor degreasing with trichloroethylene. Severe restrictions on the use of chlorinated and fluorinated hydrocarbons in recent years prompted the evaluation of a number of aqueous cleaners as a replacement technology for this application. A total of seven commercial aqueous degreasers was evaluated in this study at several dilution ratios and temperatures. One organic cleaner was also examined under ambient conditions. The effectiveness of the cleaner was determined by the use of x-ray photoelectron spectroscopy (XPS), which is a surface analytical technique that is very sensitive to low levels of surface contaminants. A quartz-crystal microbalance (QCM) that is immersed in the cleaning bath was evaluated as a tool for monitoring the bath cleanliness. The best overall cleaning results were obtained with Micro, Impro-Clean 3800, and Sonicor cleaners.

Guidotti, R.A.; Schneider, T.W.; Frye, G.C. [and others

1996-05-01T23:59:59.000Z

403

Combustion chamber and thermal vapor stream producing apparatus and method  

DOE Patents (OSTI)

A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Sugar Land, TX); Cradeur, Robert R. (Spring, TX)

1978-01-01T23:59:59.000Z

404

FFT-LB modeling of thermal liquid-vapor systems  

E-Print Network (OSTI)

We further develop a thermal LB model for multiphase flows. In the improved model, we propose to use the FFT scheme to calculate both the convection term and external force term. The usage of FFT scheme is detailed and analyzed. By using the FFT algorithm spatiotemporal discretization errors are decreased dramatically and the conservation of total energy is much better preserved. A direct consequence of the improvement is that the unphysical spurious velocities at the interfacial regions can be damped to neglectable scale. Together with the better conservation of total energy, the more accurate flow velocities lead to the more accurate temperature field which determines the dynamical and final states of the system. With the new model, the phase diagram of the liquid-vapor system obtained from simulation is more consistent with that from theoretical calculation. Very sharp interfaces can be achieved. The accuracy of simulation results are also verified by the Laplace law. The FFT scheme can be easily applied t...

Gan, Yanbiao; Zhang, Guangcai; Li, Yingjun

2012-01-01T23:59:59.000Z

405

Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs  

SciTech Connect

Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing reservoir pressures,production well flow rates, and long-term sustainability of steamproduction, injection has also been shown to reduce concentrations ofnon-condensible gases (NCGs) in produced steam. The latter effectimproves energy conversion efficiency and reduces corrosion problems inwellbores and surface lines.This report reviews thermodynamic andhydrogeologic conditions and mechanisms that play an important role inreservoir response to water injection. An existing general-purposereservoir simulator has been enhanced to allow modeling of injectioneffects in heterogeneous fractured reservoirs in three dimensions,including effects of non-condensible gases of different solubility.Illustrative applications demonstrate fluid flow and heat transfermechanisms that are considered crucial for developing approaches to insitu abatement of NCGs.

Pruess, Karsten

2006-11-06T23:59:59.000Z

406

Nonlinear magneto-optic effects in optically dense Rb vapor  

E-Print Network (OSTI)

Nonlinear magneto-optical effects, originated from atomic coherence, are studied both theoretically and experimentally in thermal Rb vapor. The analytical description of the fundamental properties of coherent media are based on the simplified three- and four-level systems, and then verified using numerical simulations and experimental measurements. In particular, we analyze the modification of the long-lived atomic coherence due to various physical effects, such as reabsorption of spontaneous radiation, collisions with a buffer gas atoms, etc. We also discuss the importance of the high-order nonlinearities in the description of the polarization rotation for the elliptically polarized light. The effect of self-rotation of the elliptical polarization is also analyzed. Practical applications of nonlinear magneto-optical effects are considered in precision metrology and magnetometery, and for the generation of non-classical states of electromagnetic field.

Novikova, Irina Borisovna

2006-05-01T23:59:59.000Z

407

Storage and retrieval of thermal light in warm atomic vapor  

SciTech Connect

We report slowed propagation and storage and retrieval of thermal light in warm rubidium vapor using the effect of electromagnetically induced transparency (EIT). We first demonstrate slowed propagation of the probe thermal light beam through an EIT medium by measuring the second-order correlation function of the light field using the Hanbury-Brown-Twiss interferometer. We also report an experimental study on the effect of the EIT slow-light medium on the temporal coherence of thermal light. Finally, we demonstrate the storage and retrieval of the thermal light beam in the EIT medium. The direct measurement of the photon number statistics of the retrieved light field shows that the photon number statistics are preserved during the storage and retrieval processes.

Cho, Young-Wook; Kim, Yoon-Ho [Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

2010-09-15T23:59:59.000Z

408

Gas transport model for chemical vapor infiltration. Topical report  

Science Conference Proceedings (OSTI)

A node-bond percolation model is presented for the gas permeability and pore surface area of the coarse porosity in woven fiber structures during densification by chemical vapor infiltration (CVI). Model parameters include the number of nodes per unit volume and their spatial distribution, and the node and bond radii and their variability. These parameters relate directly to structural features of the weave. Some uncertainty exists in the proper partition of the porosity between {open_quotes}node{close_quotes} and{open_quote}bond{close_quotes} and between intra-tow and inter-tow, although the total is constrained by the known fiber loading in the structure. Applied to cloth layup preforms the model gives good agreement with the limited number of available measurements.

Starr, T.L. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-05-01T23:59:59.000Z

409

Measurement of gas transport properties for chemical vapor infiltration  

Science Conference Proceedings (OSTI)

In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

1996-12-01T23:59:59.000Z

410

Low Temperature Chemical Vapor Deposition Of Thin Film Magnets  

DOE Patents (OSTI)

A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

2003-12-09T23:59:59.000Z

411

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CMS to develop a membrane CMS to develop a membrane vapor processor that recovers fuel vapors from gasoline refueling with 99 percent efficiency. This membrane system enables gasoline stations to surpass environmental regulations while reducing fuel losses. Compact Membrane Systems, Inc. (CMS) was founded in 1993 in Wilmington, DE, with the acquisition of rights to certain DuPont polymer membrane patents. CMS focuses

412

Apparatus and method for removing mercury vapor from a gas stream  

DOE Patents (OSTI)

A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

Ganesan, Kumar (Butte, MT)

2008-01-01T23:59:59.000Z

413

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

Grossman, M.W.; Biblarz, O.

1991-10-15T23:59:59.000Z

414

Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition approach  

E-Print Network (OSTI)

Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition vapor deposition approach has been explored for the synthesis of lithium phosphorous oxynitride Lipon the ionic transport properties of these films. This enabled the synthesis of electrolyte films with lithium

Wadley, Haydn

415

The finite element analysis of water vapor diffusion in a brick with vertical holes  

Science Conference Proceedings (OSTI)

This paper presents a finite element analysis of water vapor diffusion in a brick with vertical holes. The isotherms, isodensity, isopressure and isohumidity surfaces considering the longitudinal and transverse direction diffusion of water vapor in a ... Keywords: brick wall, diffusion, finite element method (FEM), numerical simulation

Madalina Calbureanu; Mihai Talu; Carlos Manuel Travieso-González; Stefan Talu; Mihai Lungu; Raluca Malciu

2010-11-01T23:59:59.000Z

416

Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry  

DOE Patents (OSTI)

The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

Yeung, E.S.; Chang, Y.C.

1999-06-29T23:59:59.000Z

417

Integrated Water Vapor Field and Multiscale Variations over China from GPS Measurements  

Science Conference Proceedings (OSTI)

Water vapor plays a key role in the global hydrologic cycle and in climatic change. However, the distribution and variability of water vapor in the troposphere are not understood well—in particular, in China with the complex Tibetan Plateau and ...

Shuanggen Jin; Z. Li; J. Cho

2008-11-01T23:59:59.000Z

418

Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition  

E-Print Network (OSTI)

/IG of the Raman spectra (red line in Fig. 6a) taken from the graphene grown on high purity Cu (99.999%) is above 3Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition determining the growth of high-quality monolayer and bilayer graphene on Cu using chemical vapor deposition

419

Rapid tooling by electron-beam vapor deposition  

Science Conference Proceedings (OSTI)

Electron-beam physical vapor deposition (EBPVD) of tooling metal, onto a shaped substrate to produce a replica of the substrate surface, offers the potential for significant cost savings over present methods of injection mold manufacturing. These savings are realized by the high deposition rate and the corresponding short manufacturing times provided by the EBPVD process. However, on route to realizing these gains, there are process technical issues which need to be resolved. Mold surfaces typically contain relatively high aspect ratio details that must be replicated to dimensional tolerances within +/- 2 mils. The deposited mold material must also provide high surface hardness and high fracture toughness. Good quality grain structure can be obtained in deposited Al 10-wt% Cu mold material when the substrate and corresponding deposit are at high process temperature. However, the resulting mold is subject to distortion during cooldown due to differential temperatures and shrinkage rates. Thermally controlled cooldown and the use of crushable substrate materials reduce these distortions, but not to the required levels of tolerance. Deposition of the Al-Cu at lower temperature produces columnar, poorly joined grains which result in a brittle and weakened mold material. When Al 10-wt% Cu metal vapor is deposited across high aspect ratio step features on the substrate surface, a grain growth defect can form in the step-shadowed regions of the deposited material, alongside the step feature. The step coverage defect consists of entrained voids which persist at intermediate deposition temperatures and produce a weakened mold. This final 1997 LDRD report investigates causes of this step coverage defect and offers methods for their control and elimination.

Meier, T. C., LLNL

1998-02-25T23:59:59.000Z

420

EA-0881: Tank 241-c-103 Organic Vapor and Liquid Characterization and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Tank 241-c-103 Organic Vapor and Liquid Characterization 81: Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington EA-0881: Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts of a proposal to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the Hanford Site in Richland, Washington. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 10, 1992 EA-0881: Finding of No Significant Impact Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington August 10, 1992

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building America Top Innovations Hall of Fame Profile Â… Vapor Retarder Classification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2006 the IRC has permitted Class III 2006 the IRC has permitted Class III vapor retarders like latex paint (see list above) in all climate zones under certain conditions thanks to research by Building America teams. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. That's why Building America research establishing vapor retarder classifications and their appropriate applications has been instrumental in the market transformation to high-performance homes. As buildings have gotten tighter over the past several decades, questions about vapor retarders and vapor barriers have confounded builders and code developers. Vapor barriers have traditionally been installed on the warm in winter side of the wall assembly in an attempt to keep interior moisture from entering the wall cavity

422

U.S. Strategic Petroleum Reserve Vapor Pressure Committee 2009 annual report.  

SciTech Connect

This report comprises an annual summary of activities under the U.S. Strategic Petroleum Reserve (SPR) Vapor Pressure Committee in FY2009. The committee provides guidance to senior project management on the issues of crude oil vapor pressure monitoring nd mitigation. The principal objectives of the vapor pressure program are, in the event of an SPR drawdown, to minimize the impact on the environment and assure worker safety and public health from crude oil vapor emissions. The annual report reviews key program areas ncluding monitoring program status, mitigation program status, new developments in measurements and modeling, and path forward including specific recommendations on cavern sampling for the next year. The contents of this report were first presented to SPR senior anagement in December 2009, in a deliverable from the vapor pressure committee. The current SAND report is an adaptation for the Sandia technical audience.

Allen, Ray (Allen Energy Services, Inc., Longview, TX); Eldredge, Lisa (DynMcDermott Petroleum Operations, Harahan, LA); DeLuca, Charles (DynMcDermott Petroleum Operations, Harahan, LA); Mihalik, Patrick (DynMcDermott Petroleum Operations, Harahan, LA); Maldonado, Julio (U.S. Department of Energy, Harahan, LA); Lord, David L.; Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Berndsen, Gerard (U.S. Department of Energy, Harahan, LA)

2010-05-01T23:59:59.000Z

423

DC source assemblies  

SciTech Connect

Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

Campbell, Jeremy B; Newson, Steve

2013-02-26T23:59:59.000Z

424

Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach  

Science Conference Proceedings (OSTI)

Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

Zhang, Lei; Kong, Song-Charng [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011 (United States)

2010-11-15T23:59:59.000Z

425

Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.  

DOE Green Energy (OSTI)

Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

2005-08-01T23:59:59.000Z

426

Ion Sources - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A variety of metallic ion beams are routinely produced in our low temperature oven (up to 600°C) and our high temperature oven (up to 2100°C). Furthermore, the ability to produce "cocktails" (mixtures of beams) for the Berkeley Accelerator Space Effects (BASE) Facility adds tremendously to the flexibility of the 88-Inch Cyclotron.

427

Atomic-level investigation of the growth of Si/Ge by ultrahigh vacuum chemical vapor deposition  

SciTech Connect

Si and Ge films can be prepared under ultrahigh vacuum conditions by chemical vapor deposition using disilane and digermane as source gases. These gases offer a high sticking probability, and are suitable for atomic layer epitaxy. Using synchrotron radiation photoemission spectroscopy and scanning tunneling microscopy, we have examined the surface processes associated with the heteroepitaxial growth of Ge/Si. The measured surface-induced shifts and chemical shifts of the Si 2p and Ge 3d core levels allow us to identify the surface species and to determine the surface chemical composition, and this information is correlated with the atomic features observed by scanning tunneling microscopy. Issues related to precursor dissociation, attachment to dangling bonds, diffusion, surface segregation, growth morphology, and pyrolytic reaction pathways will be discussed. {copyright} {ital 1997 American Vacuum Society.}

Lin, D. [Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan, Republic of (China)] [Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan, Republic of (China); Miller, T.; Chiang, T. [Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)] [Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

1997-05-01T23:59:59.000Z

428

Three-Dimensional Evolution of Water Vapor Distributions in the Northern Hemisphere Stratosphere as Observed by the MLS  

Science Conference Proceedings (OSTI)

The three-dimensional evolution of stratospheric water vapor distributions observed by the Microwave Limb Sounder (MLS) during the period October 1991–July 1992 is documented. The transport features inferred from the MLS water vapor distributions ...

W. A. Lahoz; A. O'Neill; E. S. Carr; R. S. Harwood; L. Froidevaux; W. G. Read; J. W. Waters; J. B. Kumer; J. L. Mergenthaler; A. E. Roche; G. E. Peckham; R. Swinbank

1994-10-01T23:59:59.000Z

429

A Comparison of Columnar Water Vapor Retrievals Obtained with Near-IR Solar Radiometer and Microwave Radiometer Measurements  

Science Conference Proceedings (OSTI)

A simple two-channel solar radiometer and analysis technique have been developed for setting atmospheric water vapor via differential solar transmission measurements in and adjacent to the 940-nm water vapor absorption band. A prototype solar ...

J. Reagan; K. Thome; B. Herman; R. Stone; J. DeLuisi; J. Snider

1995-06-01T23:59:59.000Z

430

Developing an Operational, Surface-Based, GPS, Water Vapor Observing System for NOAA: Network Design and Results  

Science Conference Proceedings (OSTI)

The need for a reliable, low-cost observing system to measure water vapor in the atmosphere is incontrovertible. Experiments have shown the potential for using Global Positioning System (GPS) receivers to measure total precipitable water vapor ...

Daniel E. Wolfe; Seth I. Gutman

2000-04-01T23:59:59.000Z

431

A Steerable Dual-Channel Microwave Radiometer for Measurement of Water Vapor and Liquid in the Troposphere  

Science Conference Proceedings (OSTI)

An instrument that remotely senses the integrated amounts of water vapor and liquid on a path through the atmosphere is discussed. The vapor and liquid are measured simultaneously but independently by microwave radiometers. Comparison of the ...

D. C. Hogg; F. O. Guiraud; J. B. Snider; M. T. Decker; E. R. Westwater

1983-05-01T23:59:59.000Z

432

The Earth’s Clear-Sky Radiation Budget and Water Vapor Absorption in the Far Infrared  

Science Conference Proceedings (OSTI)

Detailed observational data are used to simulate the sensitivity of clear-sky outgoing longwave radiation (OLR) to water vapor perturbations in order to investigate the effect of uncertainties in water vapor measurements and spectroscopic ...

Ashok Sinha; John E. Harries

1997-07-01T23:59:59.000Z

433

Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere  

Science Conference Proceedings (OSTI)

Measurements of the isotope ratio of water vapor (expressed as the ? value) allow processes that control the humidity in the tropics to be identified. Isotopic information is useful because the change in ? relative to the water vapor mixing ratio (...

David Noone

2012-07-01T23:59:59.000Z

434

Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy  

DOE Patents (OSTI)

A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

Montcalm, Claude (Livermore, CA); Folta, James Allen (Livermore, CA); Tan, Swie-In (San Jose, CA); Reiss, Ira (New City, NY)

2002-07-30T23:59:59.000Z

435

Effect of gas feeding methods on optical properties of GaN grown by rapid thermal chemical vapor deposition reactor  

Science Conference Proceedings (OSTI)

Keywords: Ga vacancies, GaN growth, gas feeding method, optical property, rapid thermal chemical vapor deposition (RTCVD), yellow luminescence

Sun Jung Kim; Young Hun Seo; Kee Suk Nahm; Yun Bong Hahn; Hyun Wook Shim; Eun-Kyung Suh; Kee Young Lim; Hyung Jae Lee

1999-08-01T23:59:59.000Z

436

Broad-beam multi-ampere metal ion source  

SciTech Connect

An embodiment of the MEVVA (metal vapor vacuum arc) high current metal ion source has been developed in which the beam is formed from a 10-cm diameter set of extractor grids and which produces a peak beam current of up to several Amperes. The source, MEVVA V, operates in a pulsed mode with a pulse width at present 0.25 ms and a repetition rate of up to several tens of pulses per second (power supply limited). The multicathode feature that was developed for the prior source version, MEVVA IV, has been incorporated here also; one can switch between any of 18 separate cathodes and thus metallic beam species. Maximum beam extraction voltage is over 90 kV, and since the ion charge state typically from Q = 1 to 5, depending on the metal employed, the ion energy in the extracted beam can thus be up to several hundred keV. This source is a new addition to the MEVVA family of metal ion sources, and we are at present investigating the operational regimes and the limits to the source performance. In this paper we describe the source and present some preliminary results. 10 refs., 4 figs.

Brown, I.G.; Galvin, J.E.; MacGill, R.A.; Paoloni, F.J. (Lawrence Berkeley Lab., CA (USA); Wollongong Univ. (Australia). Dept. of Electrical Engineering)

1989-06-01T23:59:59.000Z

437

Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source Spallation Neutron Source Providing the most intense pulsed neutron beams in the world... Accumulator Ring Commissioning Latest Step for Spallation Neutron Source The Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. Brookhaven led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world. The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The figure on the right shows a schematic of the accumulator ring and transport beam lines that are being designed and built by Brookhaven

438

Source and replica calculations  

Science Conference Proceedings (OSTI)

The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.

Whalen, P.P.

1994-02-01T23:59:59.000Z

439

Dynamic radioactive particle source  

SciTech Connect

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

440

Locating Sources of Data  

Science Conference Proceedings (OSTI)

Table 4   Guides and directories to sources of materials data and information...1993 The CD-ROM Directory 1993, TFPL Publishing, Washington, DC, 1993.

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

AnthroSources  

Science Conference Proceedings (OSTI)

... placed into the HANIM format (www.hanim.org) and existing animation sequences are applied. The original source of the animations comes from ...

442

Sources of Corrosion Information  

Science Conference Proceedings (OSTI)

Table 3   Sources of corrosion information...Sci.chem.electrochem Newsgroup www.groups.google.com/groups?group=sci.chem..electrochem/...

443

Brochures | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) The Advanced Photon Source: Lighting the Way to a Better Tomorrow aps brochure The APS helps...

444

Publications | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

compendium of information on results from research at the APS. It is the official source for listing APS-related journal articles, conference proceedings and papers,...

445

Divisions | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart Argonne Research Divisions APS Research Divisions In May 2002, The Advanced Photon Source was reorganized into three divisions: the Accelerator Systems Division...

446

Improved ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

Leung, K.N.; Ehlers, K.W.

1982-05-04T23:59:59.000Z

447

Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle  

Science Conference Proceedings (OSTI)

Numerous studies suggest that local feedback of surface evaporation on precipitation, known recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view ...

Michael G. Bosilovich; Siegfried D. Schubert

2002-04-01T23:59:59.000Z

448

Tank 241-BY-107 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

Huckaby, J.L.

1995-05-05T23:59:59.000Z

449

Engineering Task Plan for Preparing the Type 4 In Situ Vapor Samplers (ISVS) for Use  

SciTech Connect

The DOE has identified a need to sample vapor space and exhaust ducts of several waste tanks The In-Situ Vapor Sampling (ISVS) Type IV vapor sampling cart has been identified as the appropriate monitoring tool. The ISVS carts have been out of service for a number of years. This ETP outlines the work to be performed to ready the type IV gas sampler for operation Characterization Engineering will evaluate the Type IV gas sampler carts to determine their state of readiness and will proceed to update procedures and equipment documentation to make the sampler operationally acceptable.

BOGER, R.M.

2000-01-06T23:59:59.000Z

450

Tank 241-S-102 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank 241-S-102 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-S-102 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution. {close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

451

GHz Rabi flopping to Rydberg states in hot atomic vapor cells  

E-Print Network (OSTI)

We report on the observation of Rabi oscillations to a Rydberg state on a timescale below one nanosecond in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ~ 4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor thus suggesting small vapor cells as a platform for room temperature quantum devices. Furthermore the result implies that previous coherent dynamics in single atom Rydberg gates can be accelerated by three orders of magnitude.

Huber, B; Schlagmüller, M; Kölle, A; Kübler, H; Löw, R; Pfau, T

2011-01-01T23:59:59.000Z

452

GHz Rabi flopping to Rydberg states in hot atomic vapor cells  

E-Print Network (OSTI)

We report on the observation of Rabi oscillations to a Rydberg state on a timescale below one nanosecond in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ~ 4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor thus suggesting small vapor cells as a platform for room temperature quantum devices. Furthermore the result implies that previous coherent dynamics in single atom Rydberg gates can be accelerated by three orders of magnitude.

B. Huber; T. Baluktsian; M. Schlagmüller; A. Kölle; H. Kübler; R. Löw; T. Pfau

2011-10-10T23:59:59.000Z

453

The Water Vapor Abundance in Orion KL Outflows  

E-Print Network (OSTI)

We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.

J. Cernicharo; J. R. Goicoechea; F. Daniel; M. R. Lerate; M. J. Barlow; B. M. Swinyard; E. van Dishoeck; T. L. Lim; S. Viti; J. Yates

2006-08-16T23:59:59.000Z

454

FFT-LB modeling of thermal liquid-vapor systems  

E-Print Network (OSTI)

We further develop a thermal LB model for multiphase flows. In the improved model, we propose to use the FFT scheme to calculate both the convection term and external force term. The usage of FFT scheme is detailed and analyzed. By using the FFT algorithm spatiotemporal discretization errors are decreased dramatically and the conservation of total energy is much better preserved. A direct consequence of the improvement is that the unphysical spurious velocities at the interfacial regions can be damped to neglectable scale. Together with the better conservation of total energy, the more accurate flow velocities lead to the more accurate temperature field which determines the dynamical and final states of the system. With the new model, the phase diagram of the liquid-vapor system obtained from simulation is more consistent with that from theoretical calculation. Very sharp interfaces can be achieved. The accuracy of simulation results are also verified by the Laplace law. The FFT scheme can be easily applied to other models for multiphase flows.

Yanbiao Gan; Aiguo Xu; Guangcai Zhang; Yingjun Li

2010-11-16T23:59:59.000Z

455

Chemical vapor deposition growth. Quarterly report No. 3  

DOE Green Energy (OSTI)

The purpose of the contract is to explore the chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials. The work is carried out at the Rockwell Electronics Research Division in Anaheim, and also involves some experimental solar cell fabrication and evaluation by the Photo-electronics Group of Optical Coating Laboratory, Inc. (OCLI), in City of Industry, California. The contract program is composed of six main technical tasks: (1) modification and test of an existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures (by OCLI), using standard and near-standard processing techniques. The progress achieved during the fourth quarter is described by task, followed by a summary of conclusions and recommendations and an outline of the work planned for the next three months. The manpower and funding expenditures to date are summarized in Appendix A, and the Updated Technical Program Plan is included as Appendix B.

Ruth, R.P.; Manasevit, H.M.; Johnson, R.D.; Moudy, L.A..; Simpson, W.I.; Yang, J.J.

1977-01-01T23:59:59.000Z

456

Chemical vapor deposition of amorphous silicon films from disilane  

SciTech Connect

Amorphous silicon films for fabrication of solar cells have been deposited by thermal chemical vapor deposition (CVD) from disilane (Si/sub 2/H/sub 6/) using a tubular flow reactor. A mathematical description for the CVD reactor was developed and solved by a numerical procedure. The proposed chemical reaction network for the model is based on silylene (SiH/sub 2/) insertion in the gas phase and film growth from SiH/sub 2/ and silicon polymers (Si/sub n/N/sub 2n/, n approx. 10). Estimates of the rate constants have been obtained for trisilane decomposition, silicon polymer formation, and polymer dehydrogenation. The silane unimolecular decomposition rate constants were corrected for pressure effects. The model behavior is compared to the experimental results over the range of conditions: reactor temperature (360 to 485/sup 0/C), pressures (2 to 48 torr), and gas holding time (1 to 70 s). Within the above range of conditions, film growth rate varies from 0.01 to 30 A/s. Results indicate that silicon polymers are the main film precursors for gas holding times greater than 3 s. Film growth by silylene only becomes important at short holding times, large inert gas dilution, and positions near the beginning of the reactor hot zone.

Bogaert, R.J.

1986-01-01T23:59:59.000Z

457

Decline curve analysis of vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Geothermal Program activities at the INEEL include a review of the transient and pseudosteady state behavior of production wells in vapor-dominated systems with a focus on The Geysers field. The complicated history of development, infill drilling, injection, and declining turbine inlet pressures makes this field an ideal study area to test new techniques. The production response of a well can be divided into two distinct periods: transient flow followed by pseudo-steady state (depletion). The transient period can be analyzed using analytic equations, while the pseudo-steady state period is analyzed using empirical relationships. Yet by reviewing both periods, a great deal of insight can be gained about the well and reservoir. An example is presented where this approach is used to determine the permeability thickness product, kh, injection and production interference, and estimate the empirical Arps decline parameter b. When the production data is reinitialized (as may be required by interference effects), the kh determined from the new transient period is repeatable. This information can be used for well diagnostics, quantification of injection benefits, and the empirical estimation of remaining steam reserves.

Faulder, D.D.

1997-05-01T23:59:59.000Z

458

Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective  

SciTech Connect

Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

Anders, Andre

2007-02-28T23:59:59.000Z

459

Fuzzy rule-based modeling of vapor cloud explosion probabilities  

SciTech Connect

Estimating the frequency of accidents in nonreactor nuclear facilities is difficult because quantitative reliability data are lacking for many critical items. Because data are often lacking, the risk analysis relies on [open quotes]expert judgment[close quotes] or [open quotes]engineering judgment.[close quotes] This paper presents an alternative to the ad hoc use of engineering judgment in risk analysis. This alternative is fuzzy rule-based modeling. The fundamental principle of fuzzy rule-based modeling is that qualitative knowledge, which is the basis of engineering judgment, is valid knowledge. The intent of fuzzy rule-based modeling is to make better, systematic use of qualitative knowledge. The method is related to expert system technology. The basic concepts of fuzzy rule-based modeling, as applied to consequence modeling, have been discussed previously. This paper examines the application of these methods to the problem of estimating probabilities. The study considers a particular application, determining the probability of a deflagration-to-detonation transition in a vapor cloud.

Kubic, W.L. Jr. (Los Alamos National Lab., NM (United States))

1993-01-01T23:59:59.000Z

460

Radiation Source Replacement Workshop  

Science Conference Proceedings (OSTI)

This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

PORTABLE SOURCE OF RADIOACTIVITY  

DOE Patents (OSTI)

A portable source for radiogiaphy or radiotherapy is described. It consists of a Tl/sup 170/ or Co/sup 60/ source mounted in a rotatable tungsten alloy plug. The plug rotates within a brass body to positions of safety or exposure. Provision is made for reloading and carrying the device safely. (T.R.H.)

Goertz, R.C.; Ferguson, K.R.; Rylander, E.W.; Safranski, L.M.

1959-06-16T23:59:59.000Z

462

Chemical Plume Source Localization  

Science Conference Proceedings (OSTI)

This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the ... Keywords: Autonomous vehicles, Bayesian inference methods, chemical plume tracing, online mapping, online planning, plume source localization

Shuo Pang; J. A. Farrell

2006-10-01T23:59:59.000Z

463

H{sup -} beam extraction from a cesium seeded field effect transistor based radio frequency negative hydrogen ion source  

SciTech Connect

H{sup -} beam was successfully extracted from a cesium seeded ion source operated using a field effect transistor inverter power supply as a radio frequency (RF) wave source. High density hydrogen plasma more than 10{sup 19} m{sup -3} was obtained using an external type antenna with RF frequency of lower than 0.5 MHz. The source was isolated by an isolation transformer and H{sup -} ion beam was extracted from a single aperture. Acceleration current and extraction current increased with the increase of extraction voltage. Addition of a small amount of cesium vapor into the source enhanced the currents.

Ando, A.; Matsuno, T.; Funaoi, T.; Tanaka, N. [School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Tsumori, K.; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan)

2012-02-15T23:59:59.000Z

464

source | OpenEI  

Open Energy Info (EERE)

source source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed Comment

465

Photonic crystal light source  

DOE Patents (OSTI)

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

466

Neutron sources and applications  

Science Conference Proceedings (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

467

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

468

GPS Water Vapor Projects Within the ARM Southern Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS Water Vapor Projects Within the ARM GPS Water Vapor Projects Within the ARM Southern Great Plains Region J. Braun, T. Van Hove, S. Y. Ha, and C. Rocken GPS Science and Technology Program University Corporation for Atmospheric Research Boulder, Colorado Abstract The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program has a need for an improved capability to measure and characterize the four-dimensional distribution of water vapor within the atmosphere. Applications for this type of data include their use in radiation transfer studies, cloud-resolving and single-column models, and for the establishment of an extended time series of water vapor observations. The University Corporation for Atmospheric Research's (UCAR) GPS Science and Technology (GST) Program is working with ARM to leverage the substantial investment in

469

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

470

Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Springs Vapor Caves Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado Coordinates 39.5505376°, -107.3247762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

471

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

472

Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI  

Science Conference Proceedings (OSTI)

The accuracy of the Global Positioning System (GPS) as an instrument for measuring the integrated water vapor content of the atmosphere has been evaluated by comparison with concurrent observations made over a 14-day period by radiosonde, ...

A. E. Niell; A. J. Coster; F. S. Solheim; V. B. Mendes; P. C. Toor; R. B. Langley; C. A. Upham

2001-06-01T23:59:59.000Z

473

Influence of GPS Precipitable Water Vapor Retrievals on Quantitative Precipitation Forecasting in Southern California  

Science Conference Proceedings (OSTI)

The effects of precipitable water vapor (PWV) retrievals from the Southern California Integrated GPS Network (SCIGN) on quantitative precipitation forecast (QPF) skill are examined over two flood-prone regions of Southern California: Santa ...

Steven Marcus; Jinwon Kim; Toshio Chin; David Danielson; Jayme Laber

2007-11-01T23:59:59.000Z

474

Distribution of Tropospheric Water Vapor in Clear and Cloudy Conditions from Microwave Radiometric Profiling  

Science Conference Proceedings (OSTI)

A dataset gathered over 369 days in various midlatitude sites with a 12-frequency microwave radiometric profiler is used to analyze the statistical distribution of tropospheric water vapor content (WVC) in clear and cloudy conditions. The WVC ...

Alia Iassamen; Henri Sauvageot; Nicolas Jeannin; Soltane Ameur

2009-03-01T23:59:59.000Z

475

Water Vapor Transfer over the Southwest Pacific: Mean Patterns and Variations during Wet and Dry Periods  

Science Conference Proceedings (OSTI)

The mean water vapor transfer of the Southwest Pacific, as determined from radiosonde records near the 170°E meridional transect, is computed for the 1960–73 period. Emphasis is placed on defining average patterns, then examining variations that ...

M. M. Khatep; B. B. Fitzharris; W. E. Bardsley

1984-10-01T23:59:59.000Z

476

Initiated chemical vapor deposition of polymeric thin films : mechanism and applications  

E-Print Network (OSTI)

Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

477

Single- and few-layer graphene by ambient pressure chemical vapor deposition on nickel  

E-Print Network (OSTI)

An ambient pressure chemical vapor deposition (APCVD) process is used to fabricate graphene based films consisting of one to several graphene layers across their area. Polycrystalline Ni thin films are used and the graphene ...

Reina Ceeco, Alfonso

2010-01-01T23:59:59.000Z

478

Temperature and Water Vapor Variance Scaling in Global Models: Comparisons to Satellite and Aircraft Data  

Science Conference Proceedings (OSTI)

Observations of the scale dependence of height-resolved temperature T and water vapor q variability are valuable for improved subgrid-scale climate model parameterizations and model evaluation. Variance spectral benchmarks for T and q obtained ...

B. H. Kahn; J. Teixeira; E. J. Fetzer; A. Gettelman; S. M. Hristova-Veleva; X. Huang; A. K. Kochanski; M. Köhler; S. K. Krueger; R. Wood; M. Zhao

2011-09-01T23:59:59.000Z

479

Analysis of Intense Poleward Water Vapor Transports into High Latitudes of Western North America  

Science Conference Proceedings (OSTI)

Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense ...

Alain Roberge; John R. Gyakum; Eyad H. Atallah

2009-12-01T23:59:59.000Z

480

A Modified Tracer Selection and Tracking Procedure to Derive Winds Using Water Vapor Imagers  

Science Conference Proceedings (OSTI)

The remotely sensed upper-tropospheric water vapor wind information has been of increasing interest for operational meteorology. A new tracer selection based on a local image anomaly and tracking procedure, itself based on Nash–Sutcliffe model ...

S. K. Deb; C. M. Kishtawal; P. K. Pal; P. C. Joshi

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapors source mike" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Development of a Scanning Raman Water Vapor Lidar for Boundary Layer and Tropospheric Observations  

Science Conference Proceedings (OSTI)

A scanning, ultraviolet, Raman water vapor lidar designed primarily for boundary layer measurements has been built and operated by the Los Alamos National Laboratory Ground-Based Earth Observing Network team. The system provides high temporal and ...

W. E. Eichinger; D. I. Cooper; P. R. Forman; J. Griegos; M. A. Osborn; D. Richter; L. L. Tellier; R. Thornton

1999-11-01T23:59:59.000Z

482

Intercalibrating Microwave Satellite Observations for Monitoring Long-Term Variations in Upper- and Midtropospheric Water Vapor  

Science Conference Proceedings (OSTI)

This paper analyzes the growing archive of 183-GHz water vapor absorption band measurements from the Advanced Microwave Sounding Unit B (AMSU-B) and Microwave Humidity Sounder (MHS) on board polar-orbiting satellites and document adjustments ...

Eui-Seok Chung; Brian J. Soden; Viju O. John

2013-10-01T23:59:59.000Z

483

Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry  

Science Conference Proceedings (OSTI)

Based on two years of measurements with a time resolution of 1 min, some climatological findings on precipitable water vapor (PWV) and cloud liquid water (CLW) in central Europe are given. A weak diurnal cycle is apparent. The mean overall ...

J. Güldner; D. Spänkuch

1999-07-01T23:59:59.000Z

484

Tropospheric Water Vapor Profiles Retrieved from Pressure-Broadened Emission Spectra at 22 GHz  

Science Conference Proceedings (OSTI)

The authors present the analysis and the evaluation of the retrieval of tropospheric water vapor profiles from pressure-broadened emission spectra at 22 GHz measured with a ground-based microwave spectroradiometer. The spectra have a bandwidth of ...

Alexander Haefele; Niklaus Kämpfer

2010-01-01T23:59:59.000Z

485

Optimization of multi-pressure himidification-dehumidification desalination using thermal vapor compression and hybridization  

E-Print Network (OSTI)

Humidification-dehumidification (HD or HDH) desalination, and specifically HD driven by a thermal vapor compressor (TVC), is a thermal desalination method that has the potential to produce potable water efficiently in order ...

Mistry, Karan Hemant

486

Desalination-of water by vapor-phase transport through hydrophobic nanopores  

E-Print Network (OSTI)

We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport ...

Lee, Jongho

487

Estimates of the Water Vapor Climate Feedback during El Nińo–Southern Oscillation  

Science Conference Proceedings (OSTI)

The strength of the water vapor feedback has been estimated by analyzing the changes in tropospheric specific humidity during El Nińo–Southern Oscillation (ENSO) cycles. This analysis is done in climate models driven by observed sea surface ...

A. E. Dessler; S. Wong

2009-12-01T23:59:59.000Z

488

Expansion of the laser ablation vapor plume into a background gas: Part A, Analysis  

E-Print Network (OSTI)

x ] = 1 y 2 y 4 dy The thermal energy stored in the vaporet + E ek (subscript t=thermal energy and k=kinetic energy)Also, the kinetic and thermal energies in the vapor plume

Wen, Sy-Bor; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

2006-01-01T23:59:59.000Z

489

Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures  

E-Print Network (OSTI)

The conductive polymer poly(3,4-ethylenedioxythiophene), (PEDOT), deposited via oxidative chemical vapor deposition (oCVD) has been investigated for use in organic electronic devices. The oCVD process as well as the ...

Howden, Rachel M. (Rachel Mary)

2013-01-01T23:59:59.000Z

490

Simultaneous Measurements of Atmospheric Water Vapor with MIR, Raman Lidar, and Rawinsondes  

Science Conference Proceedings (OSTI)

Simultaneous measurements of atmospheric water vapor were made by the Millimeter-wave Imaging Radiometer (MIR), Raman lidar, and rawinsondes. Two types of rawinsonde sensor packages (AIR and Vaisala) were carried by the same balloon. The measured ...

J. R. Wang; S. H. Melfi; P. Racette; D. N. Whitemen; L. A. Chang; R. A. Ferrare; K. D. Evans; F. J. Schmidlin

1995-07-01T23:59:59.000Z

491

Structure/processing relationships in vapor-liquid-solid nanowire epitaxy  

E-Print Network (OSTI)

The synthesis of Si and III-V nanowires using the vapor-liquid-solid (VLS) growth mechanism and low-cost Si substrates was investigated. The VLS mechanism allows fabrication of heterostructures which are not readily ...

Boles, Steven Tyler

2010-01-01T23:59:59.000Z

492

On the Relationship between Water Vapor over the Oceans and Sea Surface Temperature  

Science Conference Proceedings (OSTI)

Monthly mean precipitable water data obtained from passive microwave radiometry (SMMR) are correlated with NMC-blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can ...

Graeme L. Stephens

1990-06-01T23:59:59.000Z

493

Fault detection methods for vapor-compression air conditioners using electrical measurements  

E-Print Network (OSTI)

(cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

Laughman, Christopher Reed.

2008-01-01T23:59:59.000Z

494

Observed Increase of TTL Temperature and Water Vapor in Polluted Clouds over Asia  

Science Conference Proceedings (OSTI)

Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport ...

Hui Su; Jonathan H. Jiang; Xiaohong Liu; Joyce E. Penner; William G. Read; Steven Massie; Mark R. Schoeberl; Peter Colarco; Nathaniel J. Livesey; Michelle L. Santee

2011-06-01T23:59:59.000Z

495

A Lightning Prediction Index that Utilizes GPS Integrated Precipitable Water Vapor  

Science Conference Proceedings (OSTI)

The primary weather forecast challenge at the Cape Canaveral Air Station and Kennedy Space Center is lightning. This paper describes a statistical approach that combines integrated precipitable water vapor (IPWV) data from a global positioning ...

Robert A. Mazany; Steven Businger; Seth I. Gutman; William Roeder

2002-10-01T23:59:59.000Z

496

Dynamic Response of the Fine Wire Psychrometer for Direct Measurement of Water Vapor Flux  

Science Conference Proceedings (OSTI)

For the measurement of humidity fluctuation in the atmospheric boundary layer, a wet- and dry-bulb ther-mocouple psychrometer has been used traditionally. However, in the direct measurement of water vapor flux with the eddy correlation method, ...

Osamu Tsukamoto

1986-09-01T23:59:59.000Z

497

Derived Over-Ocean Water Vapor Transports from Satellite-Retrieved E ? P Datasets  

Science Conference Proceedings (OSTI)

A methodology is developed for deriving atmospheric water vapor transports over the World Oceans from satellite-retrieved precipitation (P) and evaporation (E) datasets. The motivation for developing the method is to understand climatically ...

Byung-Ju Sohn; Eric A. Smith; Franklin R. Robertson; Seong-Chan Park

2004-03-01T23:59:59.000Z

498

Tropical Cyclone Convection and Intensity Analysis Using Differenced Infrared and Water Vapor Imagery  

Science Conference Proceedings (OSTI)

A technique to identify and quantify intense convection in tropical cyclones (TCs) using bispectral, geostationary satellite imagery is explored. This technique involves differencing the water vapor (WV) and infrared window (IRW) channel ...

Timothy L. Olander; Christopher S. Velden

2009-12-01T23:59:59.000Z

499

Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign  

Science Conference Proceedings (OSTI)

Water vapor mixing ratio retrieval using the Howard University Raman lidar is presented with emphasis on three aspects: (i) comparison of the lidar with collocated radiosondes and Raman lidar, (ii) investigation of the relationship between ...

M. Adam; B. B. Demoz; D. D. Venable; E. Joseph; R. Connell; D. N. Whiteman; A. Gambacorta; J. Wei; M. W. Shephard; L. M. Miloshevich; C. D. Barnet; R. L. Herman; J. Fitzgibbon

2010-01-01T23:59:59.000Z

500

Global Observations of Upper-Tropospheric Water Vapor Derived from TOVS Radiance Data  

Science Conference Proceedings (OSTI)

This paper describes a physically based method for the retrieval of upper-tropospheric humidity (UTH) and upper-tropospheric column water vapor (UTCWV) based an the use of radiance data collected by the TIROS Operational Vertical Sounder (TOVS), ...

Graeme L. Stephens; Darren L. Jackson; Ian Wittmeyer

1996-02-01T23:59:59.000Z