National Library of Energy BETA

Sample records for vapor transport deposition

  1. Bifacial solar cell with SnS absorber by vapor transport deposition

    SciTech Connect (OSTI)

    Wangperawong, Artit; Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F.

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  2. Final Report- Vapor Transport Deposition for III-V Thin Film Photovoltaics

    Broader source: Energy.gov [DOE]

    Silicon, the dominant photovoltaic (PV) technology, is reaching its fundamental performance limits as a single absorber/junction technology. Higher efficiency devices are needed to reduce cost further because the balance of systems account for about two-thirds of the overall cost of the solar electricity. III-V semiconductors such as GaAs are used to make the highest-efficiency photovoltaic devices, but the costs of manufacture are much too high for non-concentrated terrestrial applications. The cost of III-V’s is driven by two factors: (1) metal-organic chemical vapor deposition (MOCVD), the dominant growth technology, employs expensive, toxic and pyrophoric gas-phase precursors, and (2) the growth substrates conventionally required for high-performance devices are monocrystalline III-V wafers.

  3. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  4. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  5. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  6. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  7. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  8. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  9. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  10. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  11. Apparatus and method for photochemical vapor deposition

    DOE Patents [OSTI]

    Jackson, Scott C.; Rocheleau, Richard E.

    1987-03-31

    A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

  12. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  13. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  14. Method and apparatus for conducting variable thickness vapor deposition

    DOE Patents [OSTI]

    Nesslage, G.V.

    1984-08-03

    A method of vapor depositing metal on a substrate in variable thickness comprises conducting the deposition continuously without interruption to avoid formation of grain boundaries. To achieve reduced deposition in specific regions a thin wire or ribbon blocking body is placed between source and substrate to partially block vapors from depositing in the region immediately below.

  15. Chemical vapor deposition of aluminum oxide

    DOE Patents [OSTI]

    Gordon, Roy; Kramer, Keith; Liu, Xinye

    2000-01-01

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  16. Vapor-deposited porous films for energy conversion

    DOE Patents [OSTI]

    Jankowski, Alan F.; Hayes, Jeffrey P.; Morse, Jeffrey D.

    2005-07-05

    Metallic films are grown with a "spongelike" morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous and open porosity on the submicron scale. The stabilization of the spongelike morphology is found over a limited range of the sputter deposition parameters, that is, of working gas pressure and substrate temperature. This spongelike morphology is an extension of the features as generally represented in the classic zone models of growth for physical vapor deposits. Nickel coatings were deposited with working gas pressures up 4 Pa and for substrate temperatures up to 1000 K. The morphology of the deposits is examined in plan and in cross section views with scanning electron microscopy (SEM). The parametric range of gas pressure and substrate temperature (relative to absolute melt point) under which the spongelike metal deposits are produced appear universal for other metals including gold, silver, and aluminum.

  17. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  18. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  19. Chemical vapor deposition of fluorine-doped zinc oxide

    DOE Patents [OSTI]

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  20. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  1. Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Nam, Youngwoo, E-mail: youngwoo.nam@chalmers.se [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Sun, Jie; Lindvall, Niclas; Yurgens, August [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Jae Yang, Seung; Rae Park, Chong [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Woo Park, Yung [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-01-13

    We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.

  2. Double-sided reel-to-reel metal-organic chemical vapor deposition...

    Office of Scientific and Technical Information (OSTI)

    chemical vapor deposition system of YBasub 2Cusub 3Osub 7- thin films Citation Details In-Document Search Title: Double-sided reel-to-reel metal-organic chemical vapor ...

  3. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  4. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S.; Pokhodnya, Kostyantyn I.

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  5. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    SciTech Connect (OSTI)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  6. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  7. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  8. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    SciTech Connect (OSTI)

    Murakami, Katsuhisa Hiyama, Takaki; Kuwajima, Tomoya; Fujita, Jun-ichi; Tanaka, Shunsuke; Hirukawa, Ayaka; Kano, Emi; Takeguchi, Masaki

    2015-03-02

    A single layer of graphene with dimensions of 20?mm??20?mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50?nm to 200?nm.

  9. Reactive multilayers fabricated by vapor deposition. A critical review

    SciTech Connect (OSTI)

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, with most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.

  10. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  11. CHEMICALLY VAPOR DEPOSITED YTTRIA-STABILIZED ZIRCONIA (YSZ) FOR THERMAL AND ENVIRONMENTAL BARRIER COATING

    SciTech Connect (OSTI)

    Varanasi, V.G.; Besmann, T.M.; Lothian, J.L.; Xu, W.; Starr, T.L.

    2003-04-22

    Yttria-stabilized zirconia (YSZ) is used as a thermal barrier coating (TBC) to protect super-alloy blades such as Mar-M247 or Rene-N5 during engine operation. The current method for YSZ fabrication for TBC applications is by air-plasma spraying (APS) or electron beam physical vapor deposition (EB-PVD) (Haynes 1997). APS gives reasonable deposition rates, but has a limited life and aging effects due to its porous and lamellar structure. The EB-PVD coatings are more stable and can accommodate thermomechanical stresses due to their characteristic strain-tolerant, columnar microstructure. EB-PVD, however, is primarily line-of-sight, which often leaves ''hidden areas'' uncoated, has low throughput, and has high capital cost. The process of metal-organic chemical vapor deposition (MOCVD) is investigated here as an economical alternative to EB-PVD and APS, with the potential for better overall coverage as well as the ability to produce thick (100-250 {micro}m), strain-tolerant, columnar coatings. MOCVD of YSZ involves the use of zirconium and yttrium organometallic precursors reacting with an oxygen source. Previous researchers have used diketonate or chloride precursors and oxygen (Wahl et al. 2001a, Wahl et al. 2001b, Yamane and Harai 1989). These precursors have low transport rates due to their low carrier solvent solubility (Varanasi et al. 2003). Solvated zirconium and yttrium butoxide precursors were investigated here due to their higher vapor pressures and high solvent solubility. This work uses predictive equilibrium modeling and experiments involving butoxide precursors for tetragonal YSZ fabrication.

  12. Growth of graphene underlayers by chemical vapor deposition

    SciTech Connect (OSTI)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu; Charlie Johnson, A. T.

    2013-11-15

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called inverted wedding cake stacking in multilayer graphene growth.

  13. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J. Roland; Tracy, C. Edwin; King, David E.; Stanley, James T.

    1994-01-01

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

  14. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  15. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOE Patents [OSTI]

    O'Brien, Kevin C.; Letts, Stephan A.; Spadaccini, Christopher M.; Morse, Jeffrey C.; Buckley, Steven R.; Fischer, Larry E.; Wilson, Keith B.

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  16. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOE Patents [OSTI]

    O'Brien, Kevin C.; Letts, Stephan A.; Spadaccini, Christopher M.; Morse, Jeffrey C.; Buckley, Steven R.; Fischer, Larry E.; Wilson, Keith B.

    2012-01-24

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  17. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  18. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  19. Low temperature junction growth using hot-wire chemical vapor deposition

    DOE Patents [OSTI]

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  20. Chemical vapor deposition of W-Si-N and W-B-N

    DOE Patents [OSTI]

    Fleming, James G.; Roherty-Osmun, Elizabeth Lynn; Smith, Paul M.; Custer, Jonathan S.; Jones, Ronald V.; Nicolet, Marc-A.; Madar, Roland; Bernard, Claude

    1999-01-01

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.

  1. Chemical vapor deposition of W-Si-N and W-B-N

    DOE Patents [OSTI]

    Fleming, J.G.; Roherty-Osmun, E.L.; Smith, P.M.; Custer, J.S.; Jones, R.V.; Nicolet, M.; Madar, R.; Bernard, C.

    1999-06-29

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF[sub 6], either silicon or boron, and nitrogen. The result is a W-Si-N or W-B-N thin film useful for diffusion barrier and micromachining applications. 10 figs.

  2. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    SciTech Connect (OSTI)

    Elliot, Alan J. E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z. E-mail: jwu@ku.edu; Yu, Haifeng; Zhao, Shiping

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ?1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  3. Characterization of selective tungsten films prepared by photo-chemical vapor deposition

    SciTech Connect (OSTI)

    Fang, Y.K.; Hwang, S.B.; Sun, C.Y. )

    1991-06-01

    This paper reports on selective photo-chemical vapor deposition (CVD) of tungsten films decomposed by direct photoexcitation of WF{sub 6}. Film deposition rate increased with increasing temperature but was only slightly dependent on WF{sub 6} gas concentration. The selectivity deteriorated with increasing deposition temperature, WF{sub 6} concentration, and deposition time. Typically, in order to achieve selectivity, the flow rate of WF{sub 6} must be lower than 35 sccm and the deposition temperature must be lower than 230{degrees}C. No encroachment and self-limited thickness problems were found as in the low-pressure chemical vapor deposition method. In general, tungsten films prepared by photo-CVD were amorphous as observed by x-ray diffraction analysis. After annealing, the tungsten had a polycrystalline structure with a resistivity of 18 {mu}{Omega}-cm.

  4. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOE Patents [OSTI]

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  5. System and Method for Sealing a Vapor Deposition Source - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    costs and minimizes system downtime for cleaning Applications and Industries Thin film solar Deposition of any thin film Patents and Patent Applications ID Number Title and...

  6. Improved process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOE Patents [OSTI]

    Lackey, W.J. Jr.; Caputo, A.J.

    1984-09-07

    A specially designed apparatus provides a steep thermal gradient across the thickness of fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  7. Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007

    SciTech Connect (OSTI)

    Atwater, H. A.

    2007-11-01

    This report investigated chemical and physical methods for Si surface passivation for application in crystalline Si and thin Si film photovoltaic devices. Overall, our efforts during the project were focused in three areas: i) synthesis of silicon nitride thin films with high hydrogen content by hot-wire chemical vapor deposition; ii) investigation of the role of hydrogen passivation of defects in crystalline Si and Si solar cells by out diffusion from hydrogenated silicon nitride films; iii) investigation of the growth kinetics and passivation of hydrogenated polycrystalline. Silicon nitride films were grown by hot-wire chemical vapor deposition and film properties have been characterized as a function of SiH4/NH3 flow ratio. It was demonstrated that hot-wire chemical vapor deposition leads to growth of SiNx films with controllable stoichiometry and hydrogen.

  8. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOE Patents [OSTI]

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  9. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect (OSTI)

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  10. Direct chemical vapor deposition of graphene on dielectric surfaces

    DOE Patents [OSTI]

    Zhang, Yuegang; Ismach, Ariel

    2014-04-29

    A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

  11. Mechanical properties of vapor-deposited thin metallic films: a status report

    SciTech Connect (OSTI)

    Adler, P.H.

    1982-12-17

    The mechanical properties of vapor-deposited thin metallic films are being studied in conjunction with the target fabrication group associated with the laser-fusion energy program. The purpose of the work is to gain an understanding as to which metals are structurally best suited to contain a glass microsphere filled with deuterium-tritium (D-T) gas at large internal pressures.

  12. Massively parallel computation of 3D flow and reactions in chemical vapor deposition reactors

    SciTech Connect (OSTI)

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Moffat, H.K.

    1997-12-01

    Computer modeling of Chemical Vapor Deposition (CVD) reactors can greatly aid in the understanding, design, and optimization of these complex systems. Modeling is particularly attractive in these systems since the costs of experimentally evaluating many design alternatives can be prohibitively expensive, time consuming, and even dangerous, when working with toxic chemicals like Arsine (AsH{sub 3}): until now, predictive modeling has not been possible for most systems since the behavior is three-dimensional and governed by complex reaction mechanisms. In addition, CVD reactors often exhibit large thermal gradients, large changes in physical properties over regions of the domain, and significant thermal diffusion for gas mixtures with widely varying molecular weights. As a result, significant simplifications in the models have been made which erode the accuracy of the models` predictions. In this paper, the authors will demonstrate how the vast computational resources of massively parallel computers can be exploited to make possible the analysis of models that include coupled fluid flow and detailed chemistry in three-dimensional domains. For the most part, models have either simplified the reaction mechanisms and concentrated on the fluid flow, or have simplified the fluid flow and concentrated on rigorous reactions. An important CVD research thrust has been in detailed modeling of fluid flow and heat transfer in the reactor vessel, treating transport and reaction of chemical species either very simply or as a totally decoupled problem. Using the analogy between heat transfer and mass transfer, and the fact that deposition is often diffusion limited, much can be learned from these calculations; however, the effects of thermal diffusion, the change in physical properties with composition, and the incorporation of surface reaction mechanisms are not included in this model, nor can transitions to three-dimensional flows be detected.

  13. Double-sided reel-to-reel metal-organic chemical vapor deposition system of

    Office of Scientific and Technical Information (OSTI)

    YBa{sub 2}Cu{sub 3}O{sub 7-δ} thin films (Journal Article) | SciTech Connect Double-sided reel-to-reel metal-organic chemical vapor deposition system of YBa{sub 2}Cu{sub 3}O{sub 7-δ} thin films Citation Details In-Document Search Title: Double-sided reel-to-reel metal-organic chemical vapor deposition system of YBa{sub 2}Cu{sub 3}O{sub 7-δ} thin films Two-micrometer thick YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) films have been successfully deposited on both sides of LaAlO{sub 3} single

  14. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    SciTech Connect (OSTI)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-05-15

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  15. Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulating surfaces

    SciTech Connect (OSTI)

    L, B.; Mnger, E. P.; Sarakinos, K.

    2015-04-07

    The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a larger palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaceswhich typically yields 3-dimensional growthby describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [L et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation.

  16. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Harris Kagan; K.K. Gan; Richard Kass

    2009-03-31

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  17. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOE Patents [OSTI]

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  18. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Rainer Wallny

    2012-10-15

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  19. Development of Nb{sub 3}Sn Cavity Vapor Diffusion Deposition System

    SciTech Connect (OSTI)

    Eremeev, Grigory V.; Macha, Kurt M.; Clemens, William A.; Park, HyeKyoung; Williams, R. Scott

    2014-02-01

    Nb{sub 3}Sn is a BCS superconductors with the superconducting critical temperature higher than that of niobium, so theoretically it surpasses the limitations of niobium in RF fields. The feasibility of technology has been demonstrated at 1.5 GHz with Nb{sub 3}Sn vapor deposition technique at Wuppertal University. The benefit at these frequencies is more pronounced at 4.2 K, where Nb{sub 3}Sn coated cavities show RF resistances an order of magnitude lower than that of niobium. At Jefferson Lab we started the development of Nb{sub 3}Sn vapor diffusion deposition system within an R\\&D development program towards compact light sources. Here we present the current progress of the system development.

  20. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOE Patents [OSTI]

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  1. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOE Patents [OSTI]

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  2. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    SciTech Connect (OSTI)

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi

    2014-12-08

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  3. Porous Vycor membranes modified by chemical vapor deposition of boron nitride for gas separation

    SciTech Connect (OSTI)

    Levy, R.A.; Ravindranath, C.; Krasnoperov, L.N.; Opyrchal, J.; Ramos, E.S.

    1997-01-01

    This study focuses on the characterization of porous Vycor membranes modified by chemical vapor deposition of boron nitride (B-N-C-H) for gas separation. The B-N-C-H films were deposited on mesoporous Vycor tubes using triethylamine borane complex and ammonia as precursors. The effects of deposition temperature and reactant flow geometry on permselectivity of membranes with respect to various permeant gases were investigated. High selectivities (up to 50,000) were achieved between small molecules (He, H{sub 2}) and large molecules (N{sub 2}, Ar, C{sub 6}H{sub 5}CH{sub 3}). The measured activation energies for the He and H{sub 2} permeability are 9.5 kcal/mol and 12 kcal/mol, respectively. The membranes synthesized at lower temperatures and lower ammonia flow rates showed good mechanical and chemical stability.

  4. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    SciTech Connect (OSTI)

    Woehrl, Nicolas, E-mail: nicolas.woehrl@uni-due.de; Schulz, Stephan [Faculty of Chemistry and CENIDE, University Duisburg-Essen, Carl-Benz-Strae 199, 47057 Duisburg (Germany)] [Faculty of Chemistry and CENIDE, University Duisburg-Essen, Carl-Benz-Strae 199, 47057 Duisburg (Germany); Ochedowski, Oliver; Gottlieb, Steven [Faculty of Physics and CENIDE, University Duisburg Essen, Lotharstrae 1, 47057 Duisburg (Germany)] [Faculty of Physics and CENIDE, University Duisburg Essen, Lotharstrae 1, 47057 Duisburg (Germany); Shibasaki, Kosuke [Institute of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)] [Institute of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-04-15

    A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO{sub 2} substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm{sup 2}. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  5. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H.; Siegal, M.P.; Provencio, P.N.

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  6. Tunneling characteristics in chemical vapor deposited graphenehexagonal boron nitridegraphene junctions

    SciTech Connect (OSTI)

    Roy, T.; Hesabi, Z. R.; Joiner, C. A.; Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Liu, L.; Gu, G. [Department of Electrical Engineering and Computer Science, University of Tennessee, 1520 Middle Drive, Knoxville, Tennessee 37996 (United States); Barrera, S. de la; Feenstra, R. M. [Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, B. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080 (United States)

    2014-03-24

    Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphenehexagonal boron nitridegraphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphenehexagonal boron nitridegraphene devices. Density-of-states features are observed in the tunneling characteristics of the devices, although without large resonant peaks that would arise from lateral momentum conservation. The lack of distinct resonant behavior is attributed to disorder in the devices, and a possible source of the disorder is discussed.

  7. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xia, Ming; Li, Bo; Yin, Kuibo; Capellini, Giovanni; Niu, Gang; Gong, Yongji; Zhou, Wu; Ajayan, Pulickel M.; Xie, Ya -Hong

    2015-11-04

    We discuss prominent resonance Raman and photoluminescence spectroscopic differences between AA'and AB stacked bilayer molybdenum disulfide (MoS2) grown by chemical vapor deposition are reported. Bilayer MoS2 islands consisting of the two stacking orders were obtained under identical growth conditions. Also, resonance Raman and photoluminescence spectra of AA' and AB stacked bilayer MoS2 were obtained on Au nanopyramid surfaces under strong plasmon resonance. Both resonance Raman and photoluminescence spectra show distinct features indicating clear differences in interlayer interaction between these two phases. The implication of these findings on device applications based on spin and valley degrees of freedom.

  8. Chemical vapor deposition techniques and related methods for manufacturing microminiature thermionic converters

    DOE Patents [OSTI]

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2002-06-25

    Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  9. Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition

    SciTech Connect (OSTI)

    Xia, Min; Guo, Hongyan; Ge, Changchun; Yan, Qingzhi Lang, Shaoting

    2014-05-14

    A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (?-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, ?-CNTs/amorphous tungsten carbide, ?-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.

  10. Method of making AlInSb by metal-organic chemical vapor deposition

    DOE Patents [OSTI]

    Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

    2000-01-01

    A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

  11. Controlled VLS Growth of Indium, Gallium and Tin Oxide Nanowiresvia Chemical Vapor Transport

    SciTech Connect (OSTI)

    Johnson, M.C.; Aloni, S.; McCready, D.E.; Bourret-Courchesne, E.D.

    2006-03-13

    We utilized a vapor-liquid-solid growth technique to synthesize indium oxide, gallium oxide, and tin oxide nanowires using chemical vapor transport with gold nanoparticles as the catalyst. Using identical growth parameters we were able to synthesize single crystal nanowires typically 40-100 nm diameter and more than 10-100 microns long. The products were characterized by means of XRD, SEM and HRTEM. All the wires were grown under the same growth conditions with growth rates inversely proportional to the source metal vapor pressure. Initial experiments show that different transparent oxide nanowires can be grown simultaneously on a single substrate with potential application for multi-component gas sensors.

  12. Thermodynamic and transport properties of sodium liquid and vapor...

    Office of Scientific and Technical Information (OSTI)

    Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed ...

  13. Selective charge doping of chemical vapor deposition-grown graphene by interface modification

    SciTech Connect (OSTI)

    Wang, Shengnan, E-mail: wang.shengnan@lab.ntt.co.jp; Suzuki, Satoru; Furukawa, Kazuaki; Orofeo, Carlo M.; Takamura, Makoto; Hibino, Hiroki [NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198 (Japan)] [NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198 (Japan)

    2013-12-16

    The doping and scattering effect of substrate on the electronic properties of chemical vapor deposition (CVD)-grown graphene are revealed. Wet etching the underlying SiO{sub 2} of graphene and depositing self-assembled monolayers (SAMs) of organosilane between graphene and SiO{sub 2} are used to modify various substrates for CVD graphene transistors. Comparing with the bare SiO{sub 2} substrate, the carrier mobility of CVD graphene on modified substrate is enhanced by almost 5-fold; consistently the residual carrier concentration is reduced down to 10{sup 11}?cm{sup ?2}. Moreover, scalable and reliable p- and n-type graphene and graphene p-n junction are achieved on various silane SAMs with different functional groups.

  14. Growth of Highly-Oriented Carbon Nanotubes by Plasma-Enhanced Hot Filament Chemical Vapor Deposition

    SciTech Connect (OSTI)

    Huang, Z.P.; Provencio, P.N.; Ren, Z.F.; Siegal, M.P.; Wang, J.H.; Xu, J.W.

    1998-10-11

    Highly-oriented, multi-walled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666"C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 pm in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. In summary, we synthesized large-area highly-oriented carbon nanotubes at temperatures below 666C by plasma-enhanced hot filament chemical vapor deposition. Acetylene gas is used to provide carbon for nanotube growth and ammonia gas is used for dilution and catalysis. Plasma intensity is critical in determining the nanotube aspect ratios (diameter and length), and range of both site and height distributions within a given film.

  15. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Kagan, Harris; Kass, Richard; Gan, K.K.

    2014-01-23

    With the LHC upgrades in 2013, and further LHC upgrades scheduled in 2018, most LHC experiments are planning for detector upgrades which require more radiation hard technologies than presently available. At present all LHC experiments now have some form of diamond detector. As a result Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of all LHC experiments. Moreover CVD diamond is now being discussed as an alternative sensor material for tracking very close to the interaction region of the HL-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications. Our accomplishments include: Developed a two U.S.companies to produce electronic grade diamond, Worked with companies and acquired large area diamond pieces, Performed radiation hardness tests using various proton energies: 70 MeV (Cyric, Japan), 800 MeV (Los Alamos), and 24 GeV (CERN).

  16. Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition

    SciTech Connect (OSTI)

    Ran Maofei; Sun Wenjing; Liu Yan; Chu Wei; Jiang Chengfa

    2013-01-15

    A simple and novel method, water-assisted chemical vapor deposition (CVD) was developed to functionalize multi-walled carbon nanotubes (MWCNTs) during the synthesis process. The functionalized MWCNTs were characterized using Raman spectroscopy, XPS, TGA, NH{sub 3}-TPD, SEM and HR-TEM. It was found that new defects are introduced and the amount of acidic groups is increased on the MWCNT surface during the water-assisted CVD process. The amount of C-OH and C-O group on the MWCNT surface is found to be increased from 21.1% to 42% with water vapor assistance. Density functional theory (DFT) was employed to study the chemical behavior of water vapor molecule on the catalyst particle surface of Ni(1 1 1) cluster. Based on the experimental and DFT simulation results, a mechanism for functionalization of MWCNTs by water-assisted CVD is proposed. - Graphical abstract: Water is adsorbed and activated on Ni surface, then dissociated into OH and O species, followed by part of OH and O species desorbed from the surface. Finally, the desorbed OH and O species oxidize the unsaturated carbon atoms of carbon nanotubes, form defects and oxygen-containing groups. Highlights: Black-Right-Pointing-Pointer MWCNTs were functionalized by water-assisted CVD method. Black-Right-Pointing-Pointer Defects and weak-medium acidic sites were created on the MWCNT sidewalls. Black-Right-Pointing-Pointer Oxygen-containing groups in functionalized MWCNT were increased from 21.1% to 42%. Black-Right-Pointing-Pointer A mechanism for the influence of water vapor on MWCNTs was proposed.

  17. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOE Patents [OSTI]

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  18. Highly ionized physical vapor deposition plasma source working at very low pressure

    SciTech Connect (OSTI)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-04-02

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti{sup +} and Ti{sup ++} peaks are observed in the mass scan spectra). This corresponds well with high plasma density n{sub e} {approx} 10{sup 18} m{sup -3}, measured during the HiPIMS pulse.

  19. Life cycle cost study for coated conductor manufacture by metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Chapman, J.N.

    1999-07-13

    The purpose of this report is to calculate the cost of producing high temperature superconducting wire by the Metal Organic Chemical Vapor Deposition (MOCVD) process. The technology status is reviewed from the literature and a plant conceptual design is assumed for the cost calculation. The critical issues discussed are the high cost of the metal organic precursors, the material utilization efficiency and the capability of the final product as measured by the critical current density achieved. Capital, operating and material costs are estimated and summed as the basis for calculating the cost per unit length of wire. Sensitivity analyses of key assumptions are examined to determine their effects on the final wire cost. Additionally, the cost of wire on the basis of cost per kiloampere per meter is calculated for operation at lower temperatures than the liquid nitrogen boiling temperature. It is concluded that this process should not be ruled out on the basis of high cost of precursors alone.

  20. Carbon impurities on graphene synthesized by chemical vapor deposition on platinum

    SciTech Connect (OSTI)

    Ping, Jinglei; Fuhrer, Michael S., E-mail: michael.fuhrer@monash.edu [Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742-4111, USA and School of Physics, Monash University, 3800 Victoria (Australia)

    2014-07-28

    We report nanocrystalline carbon impurities coexisting with graphene synthesized via chemical vapor deposition on platinum. For certain growth conditions, we observe micron-size island-like impurity layers which can be mistaken for second graphene layers in optical microscopy or scanning electron microscopy. The island orientation depends on the crystalline orientation of the Pt, as shown by electron backscatter diffraction, indicating growth of carbon at the platinum surface below graphene. Dark-field transmission electron microscopy indicates that in addition to uniform single-crystal graphene, our sample is decorated with nanocrystalline carbon impurities with a spatially inhomogeneous distribution. The impurity concentration can be reduced significantly by lowering the growth temperature. Raman spectra show a large D peak, however, electrical characterization shows high mobility (?8000?cm{sup 2}/Vs), indicating a limitation for Raman spectroscopy in characterizing the electronic quality of graphene.

  1. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Shukrullah, S. E-mail: noranimuti-mohamed@petronas.com.my Mohamed, N. M. E-mail: noranimuti-mohamed@petronas.com.my Shaharun, M. S. E-mail: noranimuti-mohamed@petronas.com.my; Yasar, M.

    2014-10-24

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  2. Improved carrier mobility of chemical vapor deposition-graphene by counter-doping with hydrazine hydrate

    SciTech Connect (OSTI)

    Chen, Zhiying; Zhang, Yanhui; Zhang, Haoran; Sui, Yanping; Zhang, Yaqian; Ge, Xiaoming; Yu, Guanghui Xie, Xiaoming; Li, Xiaoliang; Jin, Zhi; Liu, Xinyu

    2015-03-02

    We developed a counter-doping method to tune the electronic properties of chemical vapor deposition (CVD)-grown graphene by varying the concentration and time of graphene exposure to hydrazine hydrate (N{sub 2}H{sub 4}H{sub 2}O). The shift of G and 2D peaks of Raman spectroscopy is analyzed as a function of N{sub 2}H{sub 4}H{sub 2}O concentration. The result revealed that N{sub 2}H{sub 4}H{sub 2}O realized n-type doping on CVD grown graphene. X-ray photoelectron spectroscopy measurement proved the existence of nitrogen, which indicated the adsorption of N{sub 2}H{sub 4} on the surface of graphene. After counter-doping, carrier mobility, which was measured by Hall measurements, increased three fold.

  3. Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC

    SciTech Connect (OSTI)

    Ciuk, Tymoteusz [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Cakmakyapan, Semih; Ozbay, Ekmel [Department of Electrical and Electronics Engineering, Department of Physics, Nanotechnology Research Center, Bilkent University, 06800 Bilkent, Ankara (Turkey); Caban, Piotr; Grodecki, Kacper; Pasternak, Iwona; Strupinski, Wlodek, E-mail: wlodek.strupinski@itme.edu.pl [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Krajewska, Aleksandra [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Szmidt, Jan [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland)

    2014-09-28

    The transport properties of quasi-free-standing (QFS) bilayer graphene on SiC depend on a range of scattering mechanisms. Most of them are isotropic in nature. However, the SiC substrate morphology marked by a distinctive pattern of the terraces gives rise to an anisotropy in graphene's sheet resistance, which may be considered an additional scattering mechanism. At a technological level, the growth-preceding in situ etching of the SiC surface promotes step bunching which results in macro steps ~10 nm in height. In this report, we study the qualitative and quantitative effects of SiC steps edges on the resistance of epitaxial graphene grown by chemical vapor deposition. We experimentally determine the value of step edge resistivity in hydrogen-intercalated QFS-bilayer graphene to be ~190 ??m for step height hS = 10 nm and provide proof that it cannot originate from mechanical deformation of graphene but is likely to arise from lowered carrier concentration in the step area. Our results are confronted with the previously reported values of the step edge resistivity in monolayer graphene over SiC atomic steps. In our analysis, we focus on large-scale, statistical properties to foster the scalable technology of industrial graphene for electronics and sensor applications.

  4. R&D ERL: Photocathode Deposition and Transport System

    SciTech Connect (OSTI)

    Pate, D.; Ben-Zvi, I.; Rao, T.; Burrill, R.; Todd, R.; Smedley, J.; Holmes, D.

    2010-01-01

    The purpose of the photocathode deposition and transport system is to (1) produce a robust, high yield multialkali photocathode and (2) have a method of transporting the multialkali photocathode for insertion into a super conducting RF electron gun. This process is only successful if a sufficient quantum efficiency lifetime of the cathode, which is inserted in the SRF electron gun, is maintained. One important element in producing a multialkali photocathode is the strict vacuum requirements of 10{sup -11} torr to assure success in the production of longlived photocathodes that will not have their QE or lifetime depleted due to residual gas poisoning in a poor vacuum. A cutaway view of our third generation deposition system is shown in figure 1. There are certain design criteria and principles required. One must be able to install, remove, rejuvenate and replace a cathode without exposing the source or cathode to atmosphere. The system must allow one to deposit Cs, K, and Sb on a cathode tip surface at pressures in the 10{sup -10} to 10{sup -9} torr range. The cathode needs to be heated to as high as 850 C for cleaning and maintained at 130 C to 150 C during deposition. There should also be the capability for in-situ QE measurements. In addition the preparation of dispenser photocathodes must be accounted for, thus requiring an ion source for cathode cleaning. Finally the transport cart must be mobile and be able to negotiate the ERL facility labyrinth.

  5. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOE Patents [OSTI]

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  6. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOE Patents [OSTI]

    Chow, Robert; Loomis, Gary E.; Thomas, Ian M.

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  7. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    SciTech Connect (OSTI)

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.; Liu, Yuan

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL based RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.

  8. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  9. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  10. Cooperative Island Growth of Large Area Single-Crystal Graphene by Chemical Vapor Deposition on Cu

    SciTech Connect (OSTI)

    Regmi, Murari [Oak Ridge National Laboratory (ORNL); Rouleau, Christopher [Oak Ridge National Laboratory (ORNL); Puretzky, Alexander A [ORNL; Ivanov, Ilia N [ORNL; Geohegan, David B [ORNL; Chen, Jihua [ORNL; Eastman, Jeffrey [Argonne National Laboratory (ANL); Eres, Gyula [ORNL

    2014-01-01

    We describe a two-step approach for suppressing nucleation of graphene on Cu using chemical vapor deposition. In the first step, as received Cu foils are oxidized in air at temperatures up to 500 C to remove surface impurities and to induce the regrowth of Cu grains during subsequent annealing in H2 flow at 1040 C prior to graphene growth. In the second step, transient reactant cooling is performed by using a brief Ar pulse at the onset of growth to induce collisional deactivation of the carbon growth species. The combination of these two steps results in a three orders of magnitude reduction in the graphene nucleation density, enabling the growth of millimeter-size single crystal graphene grains. A kinetic model shows that suppressing nucleation promotes a cooperative island growth mode that favors the formation of large area single crystal graphene, and it is accompanied by a roughly 3 orders of magnitude increase in the reactive sticking probability of methane compared to that in random nucleation growth.

  11. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; Jacobs, Stephen D.; Lambropoulos, John C.

    2016-02-19

    In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less

  12. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Velisavljevic, Nenad

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  13. Nitrogen doping of chemical vapor deposition grown graphene on 4H-SiC (0001)

    SciTech Connect (OSTI)

    Urban, J. M.; Binder, J.; Wysmo?ek, A.; D?browski, P.; Strupi?ski, W.; Kopciuszy?ski, M.; Ja?ochowski, M.; Klusek, Z.

    2014-06-21

    We present optical, electrical, and structural properties of nitrogen-doped graphene grown on the Si face of 4H-SiC (0001) by chemical vapor deposition method using propane as the carbon precursor and N{sub 2} as the nitrogen source. The incorporation of nitrogen in the carbon lattice was confirmed by X-ray photoelectron spectroscopy. Angle-resolved photoemission spectroscopy shows carrier behavior characteristic for massless Dirac fermions and confirms the presence of a graphene monolayer in the investigated nitrogen-doped samples. The structural and electronic properties of the material were investigated by Raman spectroscopy. A systematical analysis of the graphene Raman spectra, including D, G, and 2D bands, was performed. In the case of nitrogen-doped samples, an electron concentration on the order of 510 10{sup 12}?cm{sup ?2} was estimated based upon Raman and Hall effect measurements and no clear dependence of the carrier concentration on nitrogen concentration used during growth was observed. This high electron concentration can be interpreted as both due to the presence of nitrogen in graphitic-like positions of the graphene lattice as well as to the interaction with the substrate. A greater intensity of the Raman D band and increased inhomogeneity, as well as decreased electron mobility, observed for nitrogen-doped samples, indicate the formation of defects and a modification of the growth process induced by nitrogen doping.

  14. Fabrication of layered self-standing diamond film by dc arc plasma jet chemical vapor deposition

    SciTech Connect (OSTI)

    Chen, G. C.; Dai, F. W.; Li, B.; Lan, H.; Askari, J.; Tang, W. Z.; Lu, F. X.

    2007-01-15

    Layered self-standing diamond films, consisting of an upper layer, buffer layer, and a lower layer, were fabricated by fluctuating the ratio of methane to hydrogen in high power dc arc plasma jet chemical vapor deposition. There were micrometer-sized columnar diamond crystalline grains in both upper layer and lower layer. The size of the columnar diamond crystalline grains was bigger in the upper layer than that in the lower layer. The orientation of the upper layer was (110), while it was (111) for the lower layer. Raman results showed that no sp{sup 3} peak shift was found in the upper layer, but it was found and blueshifted in the lower layer. This indicated that the internal stress within the film body could be tailored by this layered structure. The buffer layer with nanometer-sized diamond grains formed by secondary nucleation was necessary in order to form the layered film. Growth rate was over 10 {mu}m/h in layered self-standing diamond film fabrication.

  15. Commissioning results of Nb3Sn cavity vapor diffusion deposition system at Jlab

    SciTech Connect (OSTI)

    Eremeev, Grigory; Clemens, William A.; Macha, Kurt M.; Park, HyeKyoung; Williams, R.

    2015-09-01

    Nb3Sn as a BCS superconductor with a superconducting critical temperature higher than that of niobium offers potential benefit for SRF cavities via a lower-than-niobium surface resistance at the same temperature and frequency. A Nb3Sn vapor diffusion deposition system designed for coating of 1.5 and 1.3 GHz single-cell cavities was built and commissioned at JLab. As the part of the commissioning, RF performance at 2.0 K of a single-cell 1.5 GHz CEBAF-shaped cavity was measured before and after coating in the system. Before Nb3Sn coating the cavity had a Q0 of about 10E10 and was limited by the high field Q-slope at Eacc about 27 MV/m. Coated cavity exhibited the superconducting transition at about 17.9 K. The low-field quality factor was about 5 10E9 at 4.3 K and 7 10E9 at 2.0 K decreasing with field to about 1 10E9 at Eacc about 8 MV/m at both temperatures. The highest field was limited by the available RF power.

  16. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W.

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.

  17. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  18. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    SciTech Connect (OSTI)

    Weiss, Theodor; Nowak, Martin; Zielasek, Volkmar Bäumer, Marcus; Mundloch, Udo; Kohse-Höinghaus, Katharina

    2014-10-15

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

  19. MODELING TRITIUM TRANSPORT, DEPOSITION AND RE-EMISSION

    SciTech Connect (OSTI)

    Viner, B.

    2012-04-03

    The atmospheric release of tritium oxide (HTO) potentially impacts human health, typically through inhalation or absorption. Due to HTO's similarity to water, vegetation will absorb HTO by solution in the leaf water and then re-emit it, creating a number of secondary sources of HTO. Currently, models used for emergency response at Savannah River Site incorporate the transport and deposition of HTO but do not provide estimates for its potential re-emission from vegetation or soil surface though re-emission could result in prolonged exposure and greater than predicted dose for an individual downwind. A simple model of HTO transport, deposition and re-emission has been developed to examine the potential increase in exposure and dose. The model simulates an initial release of HTO that moves with a mean wind and expands through diffusion as a Gaussian puff. Deposition is modeled using previous estimates of deposition velocity for HTO and re-emission is modeled using a time constant that describes how quickly HTO is transferred between the surface and atmosphere. Additional puffs are created to simulate re-emission of HTO as well as horizontal diffusion across model grid cells. An evaluation of field data indicates that the use of a re-emission module tends to improve model predictions through improved prediction of peak concentration magnitude and location. When considering dose, nearly all of the released material is included in the dose calculation when re-emission is included. Although exposure to HTO through re-emission occurs over a few hours, the incremental increase in dose is relatively small because the atmospheric concentration of re-emitted HTO is much lower than the initial release.

  20. A simple method to deposit palladium doped SnO{sub 2} thin films using plasma enhanced chemical vapor deposition technique

    SciTech Connect (OSTI)

    Kim, Young Soon; Wahab, Rizwan; Shin, Hyung-Shik [School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Ansari, S. G.; Ansari, Z. A. [Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2010-11-15

    This work presents a simple method to deposit palladium doped tin oxide (SnO{sub 2}) thin films using modified plasma enhanced chemical vapor deposition as a function of deposition temperature at a radio frequency plasma power of 150 W. Stannic chloride (SnCl{sub 4}) was used as precursor and oxygen (O{sub 2}, 100 SCCM) (SCCM denotes cubic centimeter per minute at STP) as reactant gas. Palladium hexafluroacetyleacetonate (Pd(C{sub 5}HF{sub 6}O{sub 2}){sub 2}) was used as a precursor for palladium. Fine granular morphology was observed with tetragonal rutile structure. A peak related to Pd{sub 2}Sn is observed, whose intensity increases slightly with deposition temperature. Electrical resistivity value decreased from 8.6 to 0.9 m{Omega} cm as a function of deposition temperature from 400 to 600 deg. C. Photoelectron peaks related to Sn 3d, Sn 3p3, Sn 4d, O 1s, and C 1s were detected with varying intensities as a function of deposition temperature.

  1. Growth of selective tungsten films on self-aligned CoSi/sub 2/ by low pressure chemical vapor deposition

    SciTech Connect (OSTI)

    van der Putte, P.; Sadana, D.K.; Broadbent, E.K.; Morgan, A.E.

    1986-12-22

    The selective deposition of tungsten films onto CoSi/sub 2/ and onto Co by low pressure chemical vapor deposition and their material properties have been investigated with Auger electron spectroscopy, transmission electron microscopy, and Rutherford backscattering. When using WF/sub 6/ and H/sub 2/, uniformly thick tungsten films can be deposited onto CoSi/sub 2/ without substrate alteration. In patterned structures, however, void formation was found at the perimeters of CoSi/sub 2/ contacts to silicon, indicating encroachment of WF/sub 6/ down the edge of the silicide-Si interface. In WF/sub 6/ and Ar, the film thickness was limited to 10 nm and some Si was locally consumed from the upper part of the CoSi/sub 2/ film. Transmission electron diffraction showed evidence of Co/sub 2/Si formation in these areas.

  2. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Turner, John A. (Littleton, CO); Liu, Ping (Lakewood, CO)

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  3. Characteristics of ultra low-k nanoporous and fluorinated silica based films prepared by plasma enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Abbasi-Firouzjah, M.; Shokri, B.; Physics Department, Shahid Beheshti University G.C., Evin, Tehran

    2013-12-07

    Low dielectric constant (low-k) silica based films were deposited on p-type silicon and polycarbonate substrates by radio frequency (RF) plasma enhanced chemical vapor deposition method at low temperature. A mixture of tetraethoxysilane vapor, oxygen, and tetrafluoromethane (CF{sub 4}) was used for the deposition of the films in forms of two structures called as SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z}. Properties of the films were controlled by amount of porosity and fluorine content in the film matrix. The influence of RF power and CF{sub 4} flow on the elemental composition, deposition rate, surface roughness, leakage current, refractive index, and dielectric constant of the films were characterized. Moreover, optical emission spectroscopy was applied to monitor the plasma process at the different parameters. Electrical characteristics of SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z} films with metal-oxide-semiconductor structure were investigated using current-voltage analysis to measure the leakage current and breakdown field, as well as capacitance-voltage analysis to obtain the film's dielectric constant. The results revealed that SiO{sub x}C{sub y} films, which are deposited at lower RF power produce more leakage current, meanwhile the dielectric constant and refractive index of these films decreased mainly due to the more porosity in the film structure. By adding CF{sub 4} in the deposition process, fluorine, the most electronegative and the least polarized atom, doped into the silica film and led to decrease in the refractive index and the dielectric constant. In addition, no breakdown field was observed in the electrical characteristics of SiO{sub x}C{sub y}F{sub z} films and the leakage current of these films reduced by increment of the CF{sub 4} flow.

  4. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-09-01

    We report the use of a simple close-spaced vapor transport technique for the growth of high-quality epitaxial GaAs films using potentially inexpensive GaAs powders as precursors. The free carrier type and density (1016 to 1019 cm–3) of the films were adjusted by addition of Te or Zn powder to the GaAs source powder. We show using photoelectrochemical and electron beam-induced current analyses that the minority carrier diffusion lengths of the n- and p-GaAs films reached ~3 μm and ~8 μm, respectively. Hall mobilities approach those achieved for GaAs grown by metal–organic chemical vapor deposition, 1000–4200 cm2 V–1 s–1 for n-GaAsmore » and 50–240 cm V–1 s–1 for p-GaAs depending on doping level. We conclude that the electronic quality of GaAs grown by close-spaced vapor transport is similar to that of GaAs made using conventional techniques and is thus sufficient for high-performance photovoltaic applications.« less

  5. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable IIIV photovoltaics

    SciTech Connect (OSTI)

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-09-01

    We report the use of a simple close-spaced vapor transport technique for the growth of high-quality epitaxial GaAs films using potentially inexpensive GaAs powders as precursors. The free carrier type and density (1016 to 1019 cm3) of the films were adjusted by addition of Te or Zn powder to the GaAs source powder. We show using photoelectrochemical and electron beam-induced current analyses that the minority carrier diffusion lengths of the n- and p-GaAs films reached ~3 ?m and ~8 ?m, respectively. Hall mobilities approach those achieved for GaAs grown by metalorganic chemical vapor deposition, 10004200 cm2 V1 s1 for n-GaAs and 50240 cm V1 s1 for p-GaAs depending on doping level. We conclude that the electronic quality of GaAs grown by close-spaced vapor transport is similar to that of GaAs made using conventional techniques and is thus sufficient for high-performance photovoltaic applications.

  6. Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source

    SciTech Connect (OSTI)

    Boucher, Jason; Ritenour, Andrew; Boettcher, Shannon W.

    2013-04-29

    Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source GaAs is an attractive material for thin-film photovoltaic applications, but is not widely used for terrestrial power generation due to the high cost of metal-organic chemical vapor deposition (MOCVD) techniques typically used for growth. Close space vapor transport is an alternative that allows for rapid growth rates of III-V materials, and does not rely on the toxic and pyrophoric precursors used in MOCVD. We characterize CSVT films of GaAs using photoelectrochemical current-voltage and quantum efficiency measurements. Hole diffusion lengths which exceed 1.5 um are extracted from internal quantum efficiency measurements using the Gartner model. Device physics simulations suggest that solar cells based on these films could reach efficiencies exceeding 24 %. To reach this goal, a more complete understanding of the electrical properties and characterization of defects will be necessary, including measurements on complete solid-state devices. Doping of films is achieved by using source material containing the desired impurity (e.g., Te or Zn). We discuss strategies for growing III-V materials on inexpensive substrates that are not lattice-matched to GaAs.

  7. Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes

    DOE Patents [OSTI]

    Tsuo, Simon; Langford, Alison A.

    1989-01-01

    Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate.

  8. Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes

    DOE Patents [OSTI]

    Tsuo, S.; Langford, A.A.

    1989-03-28

    Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate. 3 figs.

  9. Hot-filament chemical vapor deposition chamber and process with multiple gas inlets

    DOE Patents [OSTI]

    Deng, Xunming; Povolny, Henry S.

    2004-06-29

    A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.

  10. Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: An in-situ field effect transistor study

    SciTech Connect (OSTI)

    Han, Cheng; Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 ; Lin, Jiadan; Xiang, Du; Wang, Chaocheng; Wang, Li; Chen, Wei; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 and Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542

    2013-12-23

    By using in situ field effect transistor characterization integrated with molecular beam epitaxy technique, we demonstrate the strong surface transfer p-type doping effect of single layer chemical vapor deposition (CVD) graphene, through the surface functionalization of molybdenum trioxide (MoO{sub 3}) layer. After doping, both the hole and electron mobility of CVD graphene are nearly retained, resulting in significant enhancement of graphene conductivity. With coating of 10 nm MoO{sub 3}, the conductivity of CVD graphene can be increased by about 7 times, showing promising application for graphene based electronics and transparent, conducting, and flexible electrodes.

  11. Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene

    SciTech Connect (OSTI)

    Kratzer, Markus Teichert, Christian; Bayer, Bernhard C.; Kidambi, Piran R.; Matkovi?, Aleksandar; Gaji?, Rado; Cabrero-Vilatela, Andrea; Weatherup, Robert S.; Hofmann, Stephan

    2015-03-09

    Scalably grown and transferred graphene is a highly promising material for organic electronic applications, but controlled interfacing of graphene thereby remains a key challenge. Here, we study the growth characteristics of the important organic semiconductor molecule para-hexaphenyl (6P) on chemical vapor deposited graphene that has been transferred with polymethylmethacrylate (PMMA) onto oxidized Si wafer supports. A particular focus is on the influence of PMMA residual contamination, which we systematically reduce by H{sub 2} annealing prior to 6P deposition. We find that 6P grows in a flat-lying needle-type morphology, surprisingly independent of the level of PMMA residue and of graphene defects. Wrinkles in the graphene typically act as preferential nucleation centers. Residual PMMA does however limit the length of the resulting 6P needles by restricting molecular diffusion/attachment. We discuss the implications for organic device fabrication, with particular regard to contamination and defect tolerance.

  12. Vapor-transport growth of high optical quality WSe{sub 2} monolayers

    SciTech Connect (OSTI)

    Clark, Genevieve [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Wu, Sanfeng; Rivera, Pasqual; Finney, Joseph; Nguyen, Paul; Cobden, David H. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Xu, Xiaodong, E-mail: xuxd@uw.edu [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

    2014-10-01

    Monolayer transition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe{sub 2} sheets of up to 30 ?m in edge length on insulating SiO{sub 2} substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayers grown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.

  13. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape

    SciTech Connect (OSTI)

    Cunha, T. H. R.; Ek-Weis, J.; Lacerda, R. G.; Ferlauto, A. S., E-mail: ferlauto@fisica.ufmg.br [Department of Physics, Federal University of Minas Gerais, Belo Horizonte 31270-901 (Brazil)

    2014-08-18

    The initial stages of graphene chemical vapor deposition at very low pressures (<10{sup ?5?}Torr) were investigated. The growth of large graphene domains (?up to 100??m) at very high rates (up to 3??m{sup 2} s{sup ?1}) has been achieved in a cold-wall reactor using a liquid carbon precursor. For high temperature growth (>900?C), graphene grain shape and symmetry were found to depend on the underlying symmetry of the Cu crystal, whereas for lower temperatures (<900?C), mostly rounded grains are observed. The temperature dependence of graphene nucleation density was determined, displaying two thermally activated regimes, with activation energy values of 6??1?eV for temperatures ranging from 900?C to 960?C and 9??1?eV for temperatures above 960?C. The comparison of such dependence with the temperature dependence of Cu surface self-diffusion suggests that graphene growth at high temperatures and low pressures is strongly influenced by copper surface rearrangement. We propose a model that incorporates Cu surface self-diffusion as an essential process to explain the orientation correlation between graphene and Cu crystals, and which can clarify the difference generally observed between graphene domain shapes in atmospheric-pressure and low-pressure chemical vapor deposition.

  14. Maskless deposition technique for the physical vapor deposition of thin film and multilayer coatings with subnanometer precision and accuracy

    DOE Patents [OSTI]

    Vernon, Stephen P.; Ceglio, Natale M.

    2000-01-01

    The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.

  15. Temperature cycling vapor deposition HgI.sub.2 crystal growth

    DOE Patents [OSTI]

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1977-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  16. Surface-texture evolution of different chemical-vapor-deposited zinc sulfide flats polished with various magnetorheological fluids

    SciTech Connect (OSTI)

    Salzman, S.; Romanofsky, H. J.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-08-19

    The macro-structure of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) substrates is characterizedby cone-like structures that start growing at the early stages of deposition. As deposition progresses,these cones grow larger and reach centimeter size in height and millimeter size in width. It is challengingto polish out these features from the top layer, particularly for the magnetorheological finishing (MRF)process. A conventional MR fluid tends to leave submillimeter surface artifacts on the finished surface,which is a direct result of the cone-like structure. Here we describe the MRF process of polishing four CVD ZnS substrates, manufactured by four differentvendors, with conventional MR fluid at pH 10 and zirconia-coated-CI (carbonyl iron) MR fluids at pH 4, 5,and 6. We report on the surface–texture evolution of the substrates as they were MRF polished with thedifferent fluids. We show that performances of the zirconia-coated-CI MR fluid at pH 4 are significantlyhigher than that of the same fluid at pH levels of 5 and 6 and moderately higher than that of a conventionalMR fluid at pH 10. An improvement in surface–texture variability from part to part was also observedwith the pH 4 MR fluid.

  17. Surface-texture evolution of different chemical-vapor-deposited zinc sulfide flats polished with various magnetorheological fluids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salzman, S.; Romanofsky, H. J.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-08-19

    The macro-structure of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) substrates is characterizedby cone-like structures that start growing at the early stages of deposition. As deposition progresses,these cones grow larger and reach centimeter size in height and millimeter size in width. It is challengingto polish out these features from the top layer, particularly for the magnetorheological finishing (MRF)process. A conventional MR fluid tends to leave submillimeter surface artifacts on the finished surface,which is a direct result of the cone-like structure. Here we describe the MRF process of polishing four CVD ZnS substrates, manufactured by four differentvendors, with conventional MR fluid at pHmore » 10 and zirconia-coated-CI (carbonyl iron) MR fluids at pH 4, 5,and 6. We report on the surface–texture evolution of the substrates as they were MRF polished with thedifferent fluids. We show that performances of the zirconia-coated-CI MR fluid at pH 4 are significantlyhigher than that of the same fluid at pH levels of 5 and 6 and moderately higher than that of a conventionalMR fluid at pH 10. An improvement in surface–texture variability from part to part was also observedwith the pH 4 MR fluid.« less

  18. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    SciTech Connect (OSTI)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555 (Japan)

    2014-09-29

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  19. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2

    SciTech Connect (OSTI)

    Xia, Ming; Li, Bo; Yin, Kuibo; Capellini, Giovanni; Niu, Gang; Gong, Yongji; Zhou, Wu; Ajayan, Pulickel M.; Xie, Ya -Hong

    2015-11-04

    We discuss prominent resonance Raman and photoluminescence spectroscopic differences between AA'and AB stacked bilayer molybdenum disulfide (MoS2) grown by chemical vapor deposition are reported. Bilayer MoS2 islands consisting of the two stacking orders were obtained under identical growth conditions. Also, resonance Raman and photoluminescence spectra of AA' and AB stacked bilayer MoS2 were obtained on Au nanopyramid surfaces under strong plasmon resonance. Both resonance Raman and photoluminescence spectra show distinct features indicating clear differences in interlayer interaction between these two phases. The implication of these findings on device applications based on spin and valley degrees of freedom.

  20. Metalorganic chemical vapor deposition and characterization of (Al,Si)O dielectrics for GaN–based devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan, Silvia; Mishra, Umesh K.; Tahhan, Maher; Liu, Xiang; Bisi, David; Gupta, Chirag; Koksaldi, Onur; Li, Haoran; Mates, Tom; DenBaars, Steven P.; et al

    2016-01-20

    In this study, we report on the growth and electrical characterization of (Al,Si)O dielectrics grown by metalorganic chemical vapor deposition (MOCVD) using trimethylaluminum, oxygen, and silane as precursors. The growth rates, refractive indices, and composition of (Al,Si)O films grown on Si(001) were determined from ellipsometry and XPS measurements. Crystallinity and electrical properties of (Al,Si)O films grown in situ on c-plane GaN were characterized using grazing incidence X-ray diffraction and capacitance–voltage with current–voltage measurements, respectively. Si concentration in the films was found to be tunable by varying the trimethylaluminum and/or oxygen precursor flows. The Si incorporation suppressed the formation of crystallinemore » domains, leading to amorphous films that resulted in reduced interfacial trap density, low gate leakage and ultra-low hysteresis in (Al,Si)O/n-GaN MOS-capacitors.« less

  1. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOE Patents [OSTI]

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  2. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOE Patents [OSTI]

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  3. Rapid low-temperature epitaxial growth using a hot-element assisted chemical vapor deposition process

    DOE Patents [OSTI]

    Iwancizko, Eugene; Jones, Kim M.; Crandall, Richard S.; Nelson, Brent P.; Mahan, Archie Harvin

    2001-01-01

    The invention provides a process for depositing an epitaxial layer on a crystalline substrate, comprising the steps of providing a chamber having an element capable of heating, introducing the substrate into the chamber, heating the element at a temperature sufficient to decompose a source gas, passing the source gas in contact with the element; and forming an epitaxial layer on the substrate.

  4. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  5. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect (OSTI)

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  6. Low-temperature growth and orientational control in RuO{sub 2} thin films by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Bai, G.R.; Wang, A.; Foster, C.M.; Vetrone, J.; Patel, J.; Wu, X.

    1996-08-01

    For growth temperatures in the range of 275 C to 425 C, highly conductive RuO{sub 2} thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO{sub 2}/Si(001) and Pt/Ti/SiO{sub 2}/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO{sub 2} films. In the upper part of this growth temperature range ({approximately} 350 C) and at a low growth rate (< 30 {angstrom}/min.), the RuO{sub 2} films favored a (110)-textured. In contrast, at the lower part of this growth temperature range ({approximately} 300 C) and at a high growth rate (> 30 {angstrom}/min.), the RuO{sub 2} films favored a (101)-textured. In contrast, a higher growth temperatures (> 425 C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50--80 nm and a rms. surface roughness of {approximately} 3--10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34--40 {micro}{Omega}-cm ({at} 25 C).

  7. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  8. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-06

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition ofmore » gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (−40 vs. −8% for anthropogenics, and −52 vs. −11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm−1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = H* (CH3COOH); H* = 105 M atm−1; H* = H* (HNO3)) still lead to an overestimation of 35%/25%/10% compared to our best estimate.« less

  9. Activity and Evolution of Vapor Deposited Pt-Pd Oxygen Reduction Catalysts for Solid Acid Fuel Cells

    SciTech Connect (OSTI)

    Papandrew, Alexander B; Chisholm, Calum R; Zecevic, strahinja; Veith, Gabriel M; Zawodzinski, Thomas A

    2013-01-01

    The performance of hydrogen fuel cells based on the crystalline solid proton conductor CsH2PO4 is circumscribed by the mass activity of platinum oxygen reduction catalysts in the cathode. Here we report on the first application of an alloy catalyst in a solid acid fuel cell, and demonstrate an activity 4.5 times greater than Pt at 0.8 V. These activity enhancements were obtained with platinum-palladium alloys that were vapor-deposited directly on CsH2PO4 at 210 C. Catalyst mass activity peaks at a composition of 84 at% Pd, though smaller activity enhancements are observed for catalyst compositions exceeding 50 at% Pd. Prior to fuel cell testing, Pd-rich catalysts display lattice parameter expansions of up to 2% due to the presence of interstitial carbon. After fuel cell testing, a Pt-Pd solid solution absent of lattice dilatation and depleted in carbon is recovered. The structural evolution of the catalysts is correlated with catalyst de-activation.

  10. Probing electronic lifetimes and phonon anharmonicities in high-quality chemical vapor deposited graphene by magneto-Raman spectroscopy

    SciTech Connect (OSTI)

    Neumann, Christoph Stampfer, Christoph; Halpaap, Donatus; Banszerus, Luca; Schmitz, Michael; Beschoten, Bernd; Reichardt, Sven; Watanabe, Kenji; Taniguchi, Takashi

    2015-12-07

    We present a magneto-Raman study on high-quality single-layer graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride by a dry transfer technique. By analyzing the Raman D, G, and 2D peaks, we find that the structural quality of the samples is comparable with state-of-the-art exfoliated graphene flakes. From B-field dependent Raman measurements, we extract the broadening and associated lifetime of the G peak due to anharmonic effects. Furthermore, we determine the decay width and lifetime of Landau level (LL) transitions from magneto-phonon resonances as a function of laser power. At low laser power, we find a minimal decay width of 140 cm{sup −1} highlighting the high electronic quality of the CVD-grown graphene. At higher laser power, we observe an increase of the LL decay width leading to a saturation, with the corresponding lifetime saturating at a minimal value of 18 fs.

  11. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    SciTech Connect (OSTI)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250C, the temperature may reach 1600C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  12. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub-micron filter assemblies. There was no aerosol generation for the case of all air, so the plateout, condensate and smoke were all zero. For the case of all steam, there was very little plateout in the superheated regions (several percent) and the rest of the aerosol was collected in the condensate from the condenser. There was no smoke discharge into the filters. For the experiments with intermediate air-steam fractions, there was some aerosol plateout, considerable aerosol in the condensate and aerosol smoke discharged from the condenser with the escaping air.

  13. Final Report - Vapor Transport Deposition for III-V Thin Film...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    III-V semiconductors such as GaAs are used to make the highest-efficiency photovoltaic devices, but the costs of manufacture are much too high for non-concentrated terrestrial ...

  14. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2014-05-26

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOC) in the gas-phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the regional chemistry transport model WRF-Chem, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48% and 63% respectively over the continental US Dry deposition of gas-phasemore » SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (−40% vs. −8% for anthropogenics, −52% vs. −11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas-phase (61% for anthropogenics, 76% for biogenics). A number of sensitivity studies shows that this is a robust feature of the modeling system. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = 105 M atm−1; H* = H* (HNO3)) still lead to an overestimation of 25% / 10% compared to our best estimate. A saturation effect is observed for Henry's law constants above 108 M atm−1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations.« less

  15. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    SciTech Connect (OSTI)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called Robofurnace. Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  16. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  17. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  18. Electrowetting on plasma-deposited fluorocarbon hydrophobic films for biofluid transport in microfluidics

    SciTech Connect (OSTI)

    Bayiati, P.; Tserepi, A.; Petrou, P. S.; Kakabakos, S. E.; Misiakos, K.; Gogolides, E. [Institute of Microelectronics-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece); Institute of Radioisotopes and Radiodiagnostic Products-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece); Institute of Microelectronics-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece)

    2007-05-15

    The present work focuses on the plasma deposition of fluorocarbon (FC) films on surfaces and the electrostatic control of their wettability (electrowetting). Such films can be employed for actuation of fluid transport in microfluidic devices, when deposited over patterned electrodes. Here, the deposition was performed using C{sub 4}F{sub 8} and the plasma parameters that permit the creation of films with optimized properties desirable for electrowetting were established. The wettability of the plasma-deposited surfaces was characterized by means of contact angle measurements (in the static and dynamic mode). The thickness of the deposited films was probed in situ by means of spectroscopic ellipsometry, while the surface roughness was provided by atomic force microscopy. These plasma-deposited FC films in combination with silicon nitride, a material of high dielectric constant, were used to create a dielectric structure that requires reduced voltages for successful electrowetting. Electrowetting experiments using protein solutions were conducted on such optimized dielectric structures and were compared with similar structures bearing commercial spin-coated Teflon registered amorphous fluoropolymer (AF) film as the hydrophobic top layer. Our results show that plasma-deposited FC films have desirable electrowetting behavior and minimal protein adsorption, a requirement for successful transport of biological solutions in 'digital' microfluidics.

  19. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R; Tenhaeff, Wyatt E; McCamy, James; Harris, Caroline; Narula, Chaitanya Kumar

    2013-01-01

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  20. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOE Patents [OSTI]

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  1. PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stable Perovskite Solar Cells via Chemical Vapor Deposition PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor Deposition Funding Opportunity: SuNLaMP SunShot ...

  2. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  3. Synthesis of SiO{sub 2}/?-SiC/graphite hybrid composite by low temperature hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Zhang, Zhikun; Bi, Kaifeng; Liu, Yanhong; Qin, Fuwen; Liu, Hongzhu; Bian, Jiming; Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 ; Zhang, Dong; Miao, Lihua; Department of Computer and Mathematical Basic Teaching, Shenyang Medical College, Shenyan 110034

    2013-11-18

    ?-SiC thin films were synthesized directly on graphite by hot filament chemical vapor deposition at low temperature. SiH{sub 4} diluted in hydrogen was employed as the silicon source, while graphite was functioned as both substrate and carbon source for the as-grown ?-SiC films. X-ray diffraction and Fourier transform infrared analysis indicate that SiO{sub 2}/?-SiC/graphite hybrid composite was formed after post annealing treatment, and its crystalline quality can be remarkably improved under optimized annealing conditions. The possible growth mechanism was proposed based on in situ etching of graphite by reactive hydrogen radicals at the atomic level.

  4. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P. Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  5. Argon–germane in situ plasma clean for reduced temperature Ge on Si epitaxy by high density plasma chemical vapor deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Douglas, Erica A.; Sheng, Josephine J.; Verley, Jason C.; Carroll, Malcolm S.

    2015-06-04

    We found that the demand for integration of near infrared optoelectronic functionality with silicon complementary metal oxide semiconductor (CMOS) technology has for many years motivated the investigation of low temperature germanium on silicon deposition processes. Our work describes the development of a high density plasma chemical vapor deposition process that uses a low temperature (<460 °C) in situ germane/argon plasma surface preparation step for epitaxial growth of germanium on silicon. It is shown that the germane/argon plasma treatment sufficiently removes SiOx and carbon at the surface to enable germanium epitaxy. Finally, the use of this surface preparation step demonstrates anmore » alternative way to produce germanium epitaxy at reduced temperatures, a key enabler for increased flexibility of integration with CMOS back-end-of-line fabrication.« less

  6. Characterization of hydrogenated amorphous germanium compounds obtained by x-ray chemical vapor deposition of germane: Effect of the irradiation dose on optical parameters and structural order

    SciTech Connect (OSTI)

    Arrais, Aldo; Benzi, Paola; Bottizzo, Elena; Demaria, Chiara

    2007-11-15

    Hydrogenated nonstoichiometric germanium materials have been produced by x-ray activated-chemical vapor deposition from germane. The reactions pattern leading to the solid products has been investigated. The dose effect on the composition, the local bonding configuration, and structural characteristics of the deposited solids has been studied using infrared absorption and Raman spectroscopy and has been discussed. Optical parameters have been also determined from ultraviolet-visible spectrophotometry data. The results show that the solids are formed by a random bound network of germanium and hydrogen atoms with a-Ge zones dispersed in the matrix. The Raman results and optical parameters indicate that the structural order, both short-range and intermediate-range, decreases with increasing irradiation time. This behavior suggests that the solid is involved in the reactions leading to the final product and indicates that the formation of amorphous germanium zones is stimulated by postdeposition irradiation, which induces compositional and structural modifications.

  7. Argon–germane in situ plasma clean for reduced temperature Ge on Si epitaxy by high density plasma chemical vapor deposition

    SciTech Connect (OSTI)

    Douglas, Erica A.; Sheng, Josephine J.; Verley, Jason C.; Carroll, Malcolm S.

    2015-06-04

    We found that the demand for integration of near infrared optoelectronic functionality with silicon complementary metal oxide semiconductor (CMOS) technology has for many years motivated the investigation of low temperature germanium on silicon deposition processes. Our work describes the development of a high density plasma chemical vapor deposition process that uses a low temperature (<460 °C) in situ germane/argon plasma surface preparation step for epitaxial growth of germanium on silicon. It is shown that the germane/argon plasma treatment sufficiently removes SiOx and carbon at the surface to enable germanium epitaxy. Finally, the use of this surface preparation step demonstrates an alternative way to produce germanium epitaxy at reduced temperatures, a key enabler for increased flexibility of integration with CMOS back-end-of-line fabrication.

  8. Sand transport and deposition in horizontal multiphase trunklines of subsea satellite developments

    SciTech Connect (OSTI)

    Oudeman, P. )

    1993-11-01

    Gravel packing is unattractive as a way to protect against the effects of sand production in subsea wells because it involves additional completion costs, loss of productivity, and difficulties in subsequent recompletion/well servicing operations. On the other hand, omitting gravel packs means that subsea developments must be designed and operated so that they can tolerate sand production. An experimental study was carried out on sand transport and deposition in multiphase flow in modeled subsea flowlines to address the problem and sand collection in horizontal trunklines, which could lead to reduced line throughput, pigging problems, enhanced pipe-bottom erosion, or even blockage. This study led to the definition of a new model for sand transport in multiphase flow, which was used to establish the risk of sand deposition in trunklines connecting a subsea development to nearby production platform.

  9. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    SciTech Connect (OSTI)

    Jin, C.; Potts, I.; Reeks, M. W.

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  10. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect (OSTI)

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200?C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.221.5 MV/m), Schottky emission (23.639.5 MV/m), Frenkel-Poole emission (63.8211.8 MV/m), trap-assisted tunneling (226280 MV/m), and Fowler-Nordheim tunneling (290447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  11. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition

    SciTech Connect (OSTI)

    Tiwari, Rajanish N.; Chang Li

    2010-05-15

    Diamond nucleation on unscratched Si surface is great importance for its growth, and detailed understanding of this process is therefore desired for many applications. The pretreatment of the substrate surface may influence the initial growth period. In this study, diamond films have been synthesized on adamantane-coated crystalline silicon {l_brace}100{r_brace} substrate by microwave plasma chemical vapor deposition from a gaseous mixture of methane and hydrogen gases without the application of a bias voltage to the substrates. Prior to adamantane coating, the Si substrates were not pretreated such as abraded/scratched. The substrate temperature was {approx}530 deg. C during diamond deposition. The deposited films are characterized by scanning electron microscopy, Raman spectrometry, x-ray diffraction, and x-ray photoelectron spectroscopy. These measurements provide definitive evidence for high-crystalline quality diamond film, which is synthesized on a SiC rather than clean Si substrate. Characterization through atomic force microscope allows establishing fine quality criteria of the film according to the grain size of nanodiamond along with SiC. The diamond films exhibit a low-threshold (55 V/{mu}m) and high current-density (1.6 mA/cm{sup 2}) field-emission (FE) display. The possible mechanism of formation of diamond films and their FE properties have been demonstrated.

  12. MELCOR 1.8.5 modeling aspects of fission product release, transport and deposition an assessment with recommendations.

    SciTech Connect (OSTI)

    Gauntt, Randall O.

    2010-04-01

    The Phebus and VERCORS data have played an important role in contemporary understanding and modeling of fission product release and transport from damaged light water reactor fuel. The data from these test programs have allowed improvement of MELCOR modeling of release and transport processes for both low enrichment uranium fuel as well as high burnup and mixed oxide (MOX) fuels. This paper discusses the synthesis of these findings in the MELCOR severe accident code. Based on recent assessments of MELCOR 1.8.5 fission product release modeling against the Phebus FPT-1 test and on observations from the ISP-46 exercise, modifications to the default MELCOR 1.8.5 release models are recommended. The assessments identified an alternative set of Booth diffusion parameters recommended by ORNL (ORNL-Booth), which produced significantly improved release predictions for cesium and other fission product groups. Some adjustments to the scaling factors in the ORNL-Booth model were made for selected fission product groups, including UO{sub 2}, Mo and Ru in order to obtain better comparisons with the FPT-1 data. The adjusted model, referred to as 'Modified ORNL-Booth,' was subsequently compared to original ORNL VI fission product release experiments and to more recently performed French VERCORS tests, and the comparisons was as favorable or better than the original CORSOR-M MELCOR default release model. These modified ORNL-Booth parameters, input to MELCOR 1.8.5 as 'sensitivity coefficients' (i.e. user input that over-rides the code defaults) are recommended for the interim period until improved release models can be implemented into MELCOR. For the case of ruthenium release in air-oxidizing conditions, some additional modifications to the Ru class vapor pressure are recommended based on estimates of the RuO{sub 2} vapor pressure over mildly hyperstoichiometric UO{sub 2}. The increased vapor pressure for this class significantly increases the net transport of Ru from the fuel to the gas stream. A formal model is needed. Deposition patterns in the Phebus FPT-1 circuit were also significantly improved by using the modified ORNL-Booth parameters, where retention of lower volatile Cs{sub 2}MoO{sub 4} is now predicted in the heated exit regions of the FPT-1 test, bringing down depositions in the FPT-1 steam generator tube to be in closer alignment with the experimental data. This improvement in 'RCS' deposition behavior preserves the overall correct release of cesium to the containment that was observed even with the default CORSOR-M model. Not correctly treated however is the release and transport of Ag to the FPT-1 containment. A model for Ag release from control rods is presently not available in MELCOR. Lack of this model is thought to be responsible for the underprediction by a factor of two of the total aerosol mass to the FPT-1 containment. It is suggested that this underprediction of airborne mass led to an underprediction of the aerosol agglomeration rate. Underprediction of the agglomeration rate leads to low predictions of the aerosol particle size in comparison to experimentally measured ones. Small particle size leads low predictions of the gravitational settling rate relative to the experimental data. This error, however, is a conservative one in that too-low settling rate would result in a larger source term to the environment. Implementation of an interim Ag release model is currently under study. In the course of this assessment, a review of MELCOR release models was performed and led to the identification of several areas for future improvements to MELCOR. These include upgrading the Booth release model to account for changes in local oxidizing/reducing conditions and including a fuel oxidation model to accommodate effects of fuel stoichiometry. Models such as implemented in the French ELSA code and described by Lewis are considered appropriate for MELCOR. A model for ruthenium release under air oxidizing conditions is also needed and should be included as part of a fuel oxidation model since fuel stoichiometry is a fundamen

  13. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  14. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  15. Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS{sub 2}/graphene hetero-structures by chemical vapor depositions

    SciTech Connect (OSTI)

    Lin, Meng-Yu [Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan (China); Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei, Taiwan (China); Chang, Chung-En [Department of Photonics, National Chiao-Tung University, Hsinchu, Taiwan (China); Wang, Cheng-Hung [Institute of Display, National Chiao-Tung University, Hsinchu, Taiwan (China); Su, Chen-Fung; Chen, Chi [Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei, Taiwan (China); Lee, Si-Chen [Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan (China); Lin, Shih-Yen, E-mail: shihyen@gate.sinica.edu.tw [Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan (China); Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei, Taiwan (China); Department of Photonics, National Chiao-Tung University, Hsinchu, Taiwan (China)

    2014-08-18

    Uniform large-size MoS{sub 2}/graphene hetero-structures fabricated directly on sapphire substrates are demonstrated with layer-number controllability by chemical vapor deposition (CVD). The cross-sectional high-resolution transmission electron microscopy (HRTEM) images provide the direct evidences of layer numbers of MoS{sub 2}/graphene hetero-structures. Photo-excited electron induced Fermi level shift of the graphene channel are observed on the single MoS{sub 2}/graphene hetero-structure transistors. Furthermore, double hetero-structures of graphene/MoS{sub 2}/graphene are achieved by CVD fabrication of graphene layers on top of the MoS{sub 2}, as confirmed by the cross-sectional HRTEM. These results have paved the possibility of epitaxially grown multi-hetero-structures for practical applications.

  16. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  17. Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition

    SciTech Connect (OSTI)

    Michon, A.; Vezian, S.; Portail, M.; Ouerghi, A.; Zielinski, M.; Chassagne, T.

    2010-10-25

    We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

  18. Raman Spectroscopy of the Reaction of Thin Films of Solid-State Benzene with Vapor-Deposited Ag, Mg, and Al

    SciTech Connect (OSTI)

    Schalnat, Matthew C.; Hawkridge, Adam M.; Pemberton, Jeanne E.

    2011-07-21

    Thin films of solid-state benzene at 30 K were reacted with small quantities of vapor-deposited Ag, Mg, and Al under ultrahigh vacuum, and products were monitored using surface Raman spectroscopy. Although Ag and Mg produce small amounts of metalbenzene adduct products, the resulting Raman spectra are dominated by surface enhancement of the normal benzene modes from metallic nanoparticles suggesting rapid Ag or Mg metallization of the film. In contrast, large quantities of Al adduct products are observed. Vibrational modes of the products in all three systems suggest adducts that are formed through a pathway initiated by an electron transfer reaction. The difference in reactivity between these metals is ascribed to differences in ionization potential of the metal atoms; ionization potential values for Ag and Mg are similar but larger than that for Al. These studies demonstrate the importance of atomic parameters, such as ionization potential, in solid-state metalorganic reaction chemistry.

  19. Fermi level control of compensating point defects during metalorganic chemical vapor deposition growth of Si-doped AlGaN

    SciTech Connect (OSTI)

    Bryan, Z; Bryan, I; Gaddy, BE; Reddy, P; Hussey, L; Bobea, M; Guo, W; Hoffmann, M; Kirste, R; Tweedie, J; Gerhold, M; Irving, DL; Sitar, Z; Collazo, R

    2014-12-01

    A Fermi-level control scheme for point defect management using above-bandgap UV illumination during growth is presented. We propose an extension to the analogy between the Fermi level and the electrochemical potential such that the electrochemical potential of a charged defect in a material with steady-state populations of free charge carriers may be expressed in terms of the quasi-Fermi levels. A series of highly Si-doped Al0.65Ga0.35N films grown by metalorganic chemical vapor deposition with and without UV illumination showed that samples grown under UV illumination had increased free carrier concentration, free carrier mobility, and reduced midgap photoluminescence all indicating a reduction in compensating point defects. (c) 2014 AIP Publishing LLC.

  20. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  1. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    SciTech Connect (OSTI)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  2. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect (OSTI)

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  3. Hole-transport material variation in fully vacuum deposited perovskite solar cells

    SciTech Connect (OSTI)

    Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl

    2014-08-01

    This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH{sub 3}NH{sub 3}PbI{sub x?3}Cl{sub x} perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

  4. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    SciTech Connect (OSTI)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-17

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.

  5. Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition

    SciTech Connect (OSTI)

    Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M.; Zielinski, M.; Chassagne, T.

    2013-05-28

    Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

  6. Reservoir compartmentalization caused by mass transport deposition Northwest Stevens pool, Elk Hills Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Milliken, M.D.; McJannet, G.S.; Shiflett, D.W.; Deutsch, H.A.

    1996-12-31

    The {open_quotes}A{close_quotes} sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the {open_quotes}N Point{close_quotes} stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.

  7. Reservoir compartmentalization caused by mass transport deposition Northwest Stevens pool, Elk Hills Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Milliken, M.D.; McJannet, G.S. ); Shiflett, D.W. ); Deutsch, H.A. )

    1996-01-01

    The [open quotes]A[close quotes] sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the [open quotes]N Point[close quotes] stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.

  8. SPIN (Version 3. 83): A Fortran program for modeling one-dimensional rotating-disk/stagnation-flow chemical vapor deposition reactors

    SciTech Connect (OSTI)

    Coltrin, M.E. ); Kee, R.J.; Evans, G.H.; Meeks, E.; Rupley, F.M.; Grcar, J.F. )

    1991-08-01

    In rotating-disk reactor a heated substrate spins (at typical speeds of 1000 rpm or more) in an enclosure through which the reactants flow. The rotating disk geometry has the important property that in certain operating regimes{sup 1} the species and temperature gradients normal to the disk are equal everywhere on the disk. Thus, such a configuration has great potential for highly uniform chemical vapor deposition (CVD),{sup 2--5} and indeed commercial rotating-disk CVD reactors are now available. In certain operating regimes, the equations describing the complex three-dimensional spiral fluid motion can be solved by a separation-of-variables transformation{sup 5,6} that reduces the equations to a system of ordinary differential equations. Strictly speaking, the transformation is only valid for an unconfined infinite-radius disk and buoyancy-free flow. Furthermore, only some boundary conditions are consistent with the transformation (e.g., temperature, gas-phase composition, and approach velocity all specified to be independent of radius at some distances above the disk). Fortunately, however, the transformed equations will provide a very good practical approximation to the flow in a finite-radius reactor over a large fraction of the disk (up to {approximately}90% of the disk radius) when the reactor operating parameters are properly chosen, i.e, high rotation rates. In the limit of zero rotation rate, the rotating disk flow reduces to a stagnation-point flow, for which a similar separation-of-variables transformation is also available. Such flow configurations ( pedestal reactors'') also find use in CVD reactors. In this report we describe a model formulation and mathematical analysis of rotating-disk and stagnation-point CVD reactors. Then we apply the analysis to a compute code called SPIN and describe its implementation and use. 31 refs., 4 figs.

  9. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    SciTech Connect (OSTI)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  10. Effect of band alignment on photoluminescence and carrier escape from InP surface quantum dots grown by metalorganic chemical vapor deposition on Si

    SciTech Connect (OSTI)

    Halder, Nripendra N.; Biswas, Pranab; Banerji, P.; Dhabal Das, Tushar; Das, Sanat Kr.; Chattopadhyay, S.; Biswas, D.

    2014-01-28

    A detailed analysis of photoluminescence (PL) from InP quantum dots (QDs) grown on Si has been carried out to understand the effect of substrate/host material in the luminescence and carrier escape process from the surface quantum dots. Such studies are required for the development of monolithically integrated next generation III-V QD based optoelectronics with fully developed Si microelectronics. The samples were grown by atmospheric pressure metalorganic chemical vapor deposition technique, and the PL measurements were made in the temperature range 1080?K. The distribution of the dot diameter as well as the dot height has been investigated from atomic force microscopy. The origin of the photoluminescence has been explained theoretically. The band alignment of InP/Si heterostructure has been determined, and it is found be type II in nature. The positions of the conduction band minimum of Si and the 1st excited state in the conduction band of InP QDs have been estimated to understand the carrier escape phenomenon. A blue shift with a temperature co-efficient of 0.19?meV/K of the PL emission peak has been found as a result of competitive effect of different physical processes like quantum confinement, strain, and surface states. The corresponding effect of blue shift by quantum confinement and strain as well as the red shift by the surface states in the PL peaks has been studied. The origin of the luminescence in this heterojunction is found to be due to the recombination of free excitons, bound excitons, and a transition from the 1st electron excited state in the conduction band (e{sub 1}) to the heavy hole band (hh{sub 1}). Monotonic decrease in the PL intensity due to increase of thermally escaped carriers with temperature has been observed. The change in barrier height by the photogenerated electric-field enhanced the capture of the carriers by the surface states rather than their accumulation in the QD excited state. From an analysis of the dependence of the PL intensity, peak position, and line width with temperature and excitation source, the existence of free and bound excitonic recombination together with e{sub 1} ? hh{sub 1} transitions in the QDs is established.

  11. Characterization of photoluminescent (Y{sub 1{minus}x}Eu{sub x}){sub 2}O{sub 3} thin-films prepared by metallorganic chemical vapor deposition

    SciTech Connect (OSTI)

    McKittrick, J.; Bacalski, C.F.; Hirata, G.A.; Hubbard, K.M.; Pattillo, S.G.; Salazar, K.V.; Trkula, M.

    1998-12-01

    Europium doped yttrium oxide, (Y{sub 1{minus}x}Eu{sub x}){sub 2}O{sub 3}, thin-films were deposited on silicon and sapphire substrates by metallorganic chemical vapor deposition (MOCVD). The films were grown in a MOCVD chamber reacting yttrium and europium tris(2,2,6,6-tetramethyl-3,5,-heptanedionates) precursors in an oxygen atmosphere at low pressures (5 Torr) and low substrate temperatures (500--700 C). The films deposited at 500 C were flat and composed of nanocrystalline regions of cubic Y{sub 2}O{sub 3}, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600 C developed from the flat, nanocrystalline morphology into a plate-like growth morphology oriented in the [111] with increasing deposition time. Monoclinic Y{sub 2}O{sub 3}:Eu{sup 3+} was observed in x-ray diffraction for deposition temperatures {ge}600 C on both (111) Si and (001) sapphire substrates. This was also confirmed by the photoluminescent emission spectra.

  12. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    SciTech Connect (OSTI)

    Wu, Chaoxing; Li, Fushan E-mail: gtl-fzu@hotmail.com; Wu, Wei; Chen, Wei; Guo, Tailiang E-mail: gtl-fzu@hotmail.com

    2014-12-15

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (?8 ?/?), high transmittance (?81% at 550?nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated.

  13. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    SciTech Connect (OSTI)

    Gao, Q. D.; Budny, R. V.

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  14. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Gallis, Michail A.

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  15. Vaporization of zinc from scrap

    SciTech Connect (OSTI)

    Ozturk, B.; Fruehan, R.J.

    1996-12-31

    The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

  16. Method and apparatus for maintaining condensable constituents of a gas in a vapor phase during sample transport

    DOE Patents [OSTI]

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-18

    A system for fluid transport at elevated temperatures having a conduit having a fluid inlet end and a fluid outlet end and at least one heating element disposed within the conduit providing direct heating of a fluid flowing through the conduit. The system is particularly suited for preventing condensable constituents of a high temperature fluid from condensing out of the fluid prior to analysis of the fluid. In addition, operation of the system so as to prevent the condensable constituents from condensing out of the fluid surprisingly does not alter the composition of the fluid.

  17. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect (OSTI)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  18. Filter vapor trap

    DOE Patents [OSTI]

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  19. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, Jerome J.; Halpern, Bret L.

    1994-01-01

    A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

  20. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    SciTech Connect (OSTI)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  1. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J. F.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2015-10-12

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  2. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mahowald, N.; Scanza, R.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2014-12-17

    Trace element deposition from desert dust has important impacts on ocean primary productivity. In this study, emission inventories for 8 elements, which are primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si were determined based on a global mineral dataset and a soils dataset. Datasets of elemental fractions were used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions was evident on a global scale, particularly for Ca. Simulations of global variations in the Camore » / Al ratio, which typically ranged from around 0.1 to 5.0 in soil sources, were consistent with observations, suggesting this ratio to be a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different that estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observational elemental aerosol concentration data from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions ranged from 0.7 to 1.6 except for 3.4 and 3.5 for Mg and Mn, respectivly. Using the soil data base improved the correspondence of the spatial hetereogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust associated element fluxes into different ocean basins and ice sheets regions have been estimated, based on the model results. Annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using mineral dataset were 0.28 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  3. Quantifying sources, transport, deposition and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Qian, Y.; Rasch, P. J.; Easter, R. C.; Ma, P. -L.; Singh, B.; Huang, J.; Fu, Q.

    2015-01-07

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fatemore » of BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation of the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on seasons and the locations in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in Himalayas and Central Tibetan Plateau, while East Asia FF and BB contribute the most to Northeast Plateau in all seasons and Southeast Plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching Northwest Plateau, especially in the summer. Although local emissions only contribute about 10% to BC in the HTP, this contribution is extremely sensitive to local emission changes. Lastly, we show that the annual mean radiative forcing (0.42 W m-2) due to BC in snow outweighs the BC dimming effect (-0.3 W m-2) at the surface over the HTP. We also find strong seasonal and spatial variation with a peak value of 5 W m-2 in the spring over Northwest Plateau. Such a large forcing of BC in snow is sufficient to cause earlier snow melting and potentially contribute to the acceleration of glacier retreat.« less

  4. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Qian, Y.; Rasch, P. J.; Easter, R. C.; Ma, P. -L.; Singh, B.; Huang, J.; Fu, Q.

    2015-06-08

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about 10% of BC in the HTP, this contribution is extremely sensitive to local emission changes. Lastly, we show that the annual mean radiative forcing (0.42 W m-2) due to BC in snow outweighs the BC dimming effect (-0.3 W m-2) at the surface over the HTP. We also find strong seasonal and spatial variation with a peak value of 5 W m-2 in the spring over the northwest plateau. Such a large forcing of BC in snow is sufficient to cause earlier snow melting and potentially contribute to the acceleration of glacier retreat.« less

  5. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    SciTech Connect (OSTI)

    Zhang, Rudong; Wang, Hailong; Qian, Yun; Rasch, Philip J.; Easter, Richard C.; Ma, Po-Lun; Singh, Balwinder; Huang, Jianping; Fu, Qiang

    2015-01-01

    Black carbon (BC)particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source-receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate of BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation of the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source- receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on seasons and the locations in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in Himalayas and Central Tibetan Plateau, while East Asia FF and BB contribute the most to Northeast Plateau in all seasons and Southeast Plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching Northwest Plateau, especially in the summer. Although the HTP local emissions only contribute about 10% of BC in the HTP, this contribution is extremely sensitive to changes in the local emissions. Lastly, we show that the annual mean radiative forcing (0.42 W m-2) due to BC in snow outweighs the BC dimming effect-0.3 W m-2)at the surface over the HTP, although the mean BC-in- snow forcing is likely overestimated. We find strong seasonal and sub -region variation with a peak value of 5W m-2 in the spring over Northwest Plateau. The annual mean dust-in-snow forcing is comparable to that of BC over the entire HTP but significantly larger than BC over the North east Plateau. Such a large forcing of BC in snow is sufficient to cause earlier snow melting and potentially contribute to the acceleration of glacier retreat

  6. Development of a polysilicon process based on chemical vapor deposition of dichlorosilane in an advanced Siemen's reactor. Final report, October 11, 1982-May 21, 1983

    SciTech Connect (OSTI)

    McCormick, J.R.; Arvidson, A.N.; Sawyer, D.H.; Muller, D.M.

    1983-07-14

    Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300/sup 0/C, when compared to Siemen's reactors previously used for DCS decomposition by Hemlock Semiconductor Corporation. Previous reactors had bell jar wall temperatures of approximately 750/sup 0/C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. The 2.8 gm/hr-cm deposition rate surpasses the goal of 2.0 gm/hr-cm. Power consumption and conversion should approach the program goals of 60 kWh/kg and 40%. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-1020 Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon. Single crystal growth could not be maintained in most zone refining evaluations. No material need be excluded from consideration for use in construction of decomposition reactor components for production of photovoltaic grade silicon; however, further evaluation and the use of the low carbon alloys is considered essential.

  7. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  8. Vapor purification with self-cleaning filter

    DOE Patents [OSTI]

    Josephson, Gary B.; Heath, William O.; Aardahl, Christopher L.

    2003-12-09

    A vapor filtration device including a first electrode, a second electrode, and a filter between the first and second electrodes is disclosed. The filter is formed of dielectric material and the device is operated by applying a first electric potential between the electrodes to polarize the dielectric material such that upon passing a vapor stream through the filter, particles from the vapor stream are deposited onto the filter. After depositing the particles a second higher voltage is applied between the electrodes to form a nonthermal plasma around the filter to vaporize the collected particles thereby cleaning the filter. The filter can be a packed bed or serpentine filter mat, and an optional upstream corona wire can be utilized to charge airborne particles prior to their deposition on the filter.

  9. Photopumped red-emitting InP/In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P self-assembled quantum dot heterostructure lasers grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Ryou, J. H.; Dupuis, R. D.; Walter, G.; Kellogg, D. A.; Holonyak, N.; Mathes, D. T.; Hull, R.; Reddy, C. V.; Narayanamurti, V.

    2001-06-25

    We report the 300 K operation of optically pumped red-emitting lasers fabricated from InP self-assembled quantum dots embedded in In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P layers on GaAs (100) substrates grown by metalorganic chemical vapor deposition. Quantum dots grown at 650{degree}C on In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P layers have a high density on the order of 10{sup 10} cm{sup {minus}2} and the dominant size of individual quantum dots ranges from {similar_to}5 to {similar_to}10 nm for 7.5 monolayer {open_quotes}equivalent growth.{close_quotes} These InP/In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P quantum dot heterostructures are characterized by atomic force microscopy, high-resolution transmission electron microscopy, and photoluminescence. Laser structures are prepared from wafers having two vertically stacked InP quantum dot active layers within a 100-nm-thick In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P waveguide and upper and lower 600 nm InAlP cladding layers. We observe lasing at {lambda}{similar_to}680 nm at room temperature in optically pumped samples. {copyright} 2001 American Institute of Physics.

  10. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    SciTech Connect (OSTI)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  11. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications View Larger Map Main Address 1 Cyclotron Rd‎ University of California Berkeley Berkeley, CA 94720 The Laboratory is in Berkeley on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Road, Berkeley CA 94720. To make the Lab easily accessible, the

  12. PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deposition | Department of Energy Stable Perovskite Solar Cells via Chemical Vapor Deposition PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor Deposition Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $125,000 This project is focused on novel approaches to remove risk related to the development of hybrid perovskite solar cells (HPSCs). Researchers will synthesize a new and

  13. InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition.

    SciTech Connect (OSTI)

    Crawford, Mary Hagerott; Olson, S. M.; Banas, M.; Park, Y. -B.; Ladous, C.; Russell, Michael J.; Thaler, Gerald; Zahler, J. M.; Pinnington, T.; Koleske, Daniel David; Atwater, Harry A.

    2008-06-01

    We report growth of InGaN/GaN multi-quantum well (MQW) and LED structures on a novel composite substrate designed to eliminate the coefficient of thermal expansion (CTE) mismatch problems which impact GaN growth on bulk sapphire. To form the composite substrate, a thin sapphire layer is wafer-bonded to a polycrystalline aluminum nitride (P-AlN) support substrate. The sapphire layer provides the epitaxial template for the growth; however, the thermo-mechanical properties of the composite substrate are determined by the P-AlN. Using these substrates, thermal stresses associated with temperature changes during growth should be reduced an order of magnitude compared to films grown on bulk sapphire, based on published CTE data. In order to test the suitability of the substrates for GaN LED growth, test structures were grown by metalorganic chemical vapor deposition (MOCVD) using standard process conditions for GaN growth on sapphire. Bulk sapphire substrates were included as control samples in all growth runs. In situ reflectance monitoring was used to compare the growth dynamics for the different substrates. The material quality of the films as judged by X-ray diffraction (XRD), photoluminescence and transmission electron microscopy (TEM) was similar for the composite substrate and the sapphire control samples. Electroluminescence was obtained from the LED structure grown on a P-AlN composite substrate, with a similar peak wavelength and peak width to the control samples. XRD and Raman spectroscopy results confirm that the residual strain in GaN films grown on the composite substrates is dramatically reduced compared to growth on bulk sapphire substrates.

  14. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  15. VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate system. The aerosol formed a fine white smoke of tungsten-oxide which was visible to the eye as it condensed in the laminar boundary layer of steam which flowed along the surface of the rod. The aerosol continued to flow as a smoke tube downstream of the rod, flowing coaxially along the centerline axis of the quartz glass tube and depositing by impaction along the outside of a bend and at sudden area contractions in the piping. The vaporization rate data from the 17 experiments which exceeded the vaporization threshold temperature are shown in Figure 5 in the form of vaporization rates (g/cm{sup 2} s) vs. inverse temperature (K{sup {minus}1}). Two correlations to the present data are presented and compared to a published correlation by Kilpatrick and Lott. The differences are discussed.

  16. Iodine transport analysis in the ESBWR.

    SciTech Connect (OSTI)

    Kalinich, Donald A.; Gauntt, Randall O.; Young, Michael Francis; Longmire, Pamela

    2009-03-01

    A simplified ESBWR MELCOR model was developed to track the transport of iodine released from damaged reactor fuel in a hypothesized core damage accident. To account for the effects of iodine pool chemistry, radiolysis of air and cable insulation, and surface coatings (i.e., paint) the iodine pool model in MELCOR was activated. Modifications were made to MELCOR to add sodium pentaborate as a buffer in the iodine pool chemistry model. An issue of specific interest was whether iodine vapor removed from the drywell vapor space by the PCCS heat exchangers would be sequestered in water pools or if it would be rereleased as vapor back into the drywell. As iodine vapor is not included in the deposition models for diffusiophoresis or thermophoresis in current version of MELCOR, a parametric study was conducted to evaluate the impact of a range of iodine removal coefficients in the PCCS heat exchangers. The study found that higher removal coefficients resulted in a lower mass of iodine vapor in the drywell vapor space.

  17. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  18. Effect of canopy structure and open-top chamber techniques on micrometeorological parameters and the gradients and transport of water vapor, carbon dioxide and ozone in the canopies of plum trees (`prunus salicina`) in the San Joaquin valley. Final report

    SciTech Connect (OSTI)

    Grantz, D.A.; Vaughn, D.L.; Metheny, P.A.; Malkus, P.; Wosnik, K.

    1995-03-15

    Plum trees (Prunus salicina cv. Casselman) were exposed to ozone in open-top chambers (OTC) or chamberless plots, and trace gas concentrations and microenvironmental conditions were monitored within tree canopies inside the outside the OTC. Concentrations of ozone, carbon dioxide and water vapor, leaf and air temperature, light intensity, and wind speed were measured at nine positions in the tree canopies. The objectives were to: (1) map the distribution of microenvironmental parameters within the canopies inside and outside the OTC; (2) determine transport parameters for gas exchange, and (3) calculate ozone flux. Significant vertical and horizontal gradients were observed; gradients were diminished and often inverted inside relative to outside the OTC due to air distribution at the bottom of the OCT. Ozone flux was readily modeled from measures of stomatal conductance, nonstomatal conductance and ozone concentration at the leaf surface.

  19. Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors based on metalorganic vapor-phase epitaxy-grown epilayers

    SciTech Connect (OSTI)

    Niraula, M.; Yasuda, K.; Wajima, Y.; Yamashita, H.; Tsukamoto, Y.; Suzuki, Y.; Matsumoto, M.; Takai, N.; Tsukamoto, Y.; Agata, Y.

    2013-10-28

    Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors, fabricated by growing p-and n-type CdTe epilayers on (211) n{sup +}-Si substrates using metalorganic vapor-phase epitaxy (MOVPE), were studied by analyzing current-voltage characteristics measured at various temperatures. The diode fabricated shows good rectification properties, however, both forward and reverse biased currents deviate from their ideal behavior. The forward current exhibits typical feature of multi-step tunneling at lower biases; however, becomes space charge limited type when the bias is increased. On the other hand, the reverse current exhibits thermally activated tunneling-type current. It was found that trapping centers at the p-CdTe/n-CdTe junction, which were formed due to the growth induced defects, determine the currents of this diode, and hence limit the performance of the nuclear radiation detectors developed.

  20. ARM Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Water Vapor IOP The SGP CART site will host the third ARM water vapor IOP on September 18-October 8, 2000. The CART site is home to a powerful array of instruments capable of measuring water vapor, making it a prime location for research of this type. The first water vapor IOP, conducted in September 1996, focused on using instruments to measure water vapor and determining the accuracy and calibration of each instrument. The second water vapor IOP, held in September and October of 1997,

  1. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect (OSTI)

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2} conversion, whereas the reverse C{sub 2}H{sub 2}->CH{sub 4} process only requires H atoms to drive the reactions; H atoms are not consumed by the overall conversion.

  2. Maskless deposition technique for the physical vapor deposition...

    Office of Scientific and Technical Information (OSTI)

    center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other ...

  3. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value...

    Office of Scientific and Technical Information (OSTI)

    G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product Citation Details In-Document Search Title: G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) ...

  4. ARM - Water Vapor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Water Vapor Water vapor is the most effective, fastest changing, and least understood of the greenhouse gases. Water vapor is a powerful greenhouse gas; as a matter of fact, it is the dominant greenhouse gas. But scientists don't

  5. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  6. Structure and transport in high pressure oxygen sputter-deposited BaSnO{sub 3−δ}

    SciTech Connect (OSTI)

    Ganguly, Koustav; Ambwani, Palak; Xu, Peng; Jeong, Jong Seok; Mkhoyan, K. Andre; Leighton, C. E-mail: leighton@umn.edu; Jalan, Bharat E-mail: leighton@umn.edu

    2015-06-01

    BaSnO{sub 3} has recently been identified as a high mobility wide gap semiconductor with significant potential for room temperature oxide electronics. Here, a detailed study of the high pressure oxygen sputter-deposition, microstructure, morphology, and stoichiometry of epitaxial BaSnO{sub 3} on SrTiO{sub 3}(001) and MgO(001) is reported, optimized conditions resulting in single-phase, relaxed, close to stoichiometric films. Most significantly, vacuum annealing is established as a facile route to n-doped BaSnO{sub 3−δ}, leading to electron densities above 10{sup 19} cm{sup −3}, 5 mΩ cm resistivities, and room temperature mobility of 20 cm{sup 2} V{sup −1} s{sup −1} in 300-Å-thick films on MgO(001). Mobility limiting factors, and the substantial scope for their improvement, are discussed.

  7. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Moisture Control » Vapor Barriers or Vapor Diffusion Retarders Vapor Barriers or Vapor Diffusion Retarders Vapor diffusion retarders installed in a crawlspace can be part of an overall moisture control strategy for your home. | Photo courtesy of Dennis Schroeder, NREL. Vapor diffusion retarders installed in a crawlspace can be part of an overall moisture control strategy for your home. | Photo courtesy of Dennis Schroeder, NREL. In most U.S. climates, vapor barriers, or -- more

  8. Stacked vapor fed amtec modules

    DOE Patents [OSTI]

    Sievers, Robert K.

    1989-01-01

    The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

  9. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  10. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J.; Halpern, B.L.

    1994-10-18

    A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

  11. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    SciTech Connect (OSTI)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Boomer, Kayle D.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modeling needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DSTs is given at the end of this report.

  12. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  13. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratorys monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  14. DEPOSITION OF METAL ON NONMETAL FILAMENT

    DOE Patents [OSTI]

    Magel, T.T.

    1959-02-10

    A method is described for purifying metallic uranium by passing a halogen vapor continuously over the impure uranium to form uranium halide vapor and immediately passing the halide vapor into contact with a nonmetallic refractory surface which is at a temperature above the melting point of uranium metal. The halide is decomposed at the heated surface depositing molten metal, which collects and falls into a receiver below.

  15. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  16. Vapor concentration monitor

    DOE Patents [OSTI]

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  17. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  18. Vapor Extraction Well Performance and Recommendations for Future Soil Vapor

    Office of Scientific and Technical Information (OSTI)

    Extraction Activities at the A-014 Outfall (Technical Report) | SciTech Connect Technical Report: Vapor Extraction Well Performance and Recommendations for Future Soil Vapor Extraction Activities at the A-014 Outfall Citation Details In-Document Search Title: Vapor Extraction Well Performance and Recommendations for Future Soil Vapor Extraction Activities at the A-014 Outfall No abstract provided. Authors: Jackson, D. [1] ; Hyde, W. [1] ; Walker, R. [1] ; Riha, B. [1] ; Ross, J. [1] ;

  19. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Mercury Vapor page? For detailed information on Mercury Vapor as...

  20. Vapor Retarder Classification - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vapor Retarder Classification - Building America Top Innovation Vapor Retarder Classification - Building America Top Innovation Photo of a vapor retarder classification. Air-tight ...

  1. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  2. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R.

    2016-05-03

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  3. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  4. Industrial applications of high-power copper vapor lasers

    SciTech Connect (OSTI)

    Warner, B.E.; Boley, C.D.; Chang, J.J.; Dragon, E.P.; Havstad, M.A.; Martinez, M.; McLean, W. II

    1995-08-01

    A growing appreciation has developed in the last several years for the copper vapor laser because of its utility in ablating difficult materials at high rates. Laser ablation at high rates shows promise for numerous industrial applications such as thin film deposition, precision hole drilling, and machining of ceramics and other refractories.

  5. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan; Hassani, Vahab

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  6. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    SciTech Connect (OSTI)

    Shimaoka, T. Kaneko, J. H.; Tsubota, M.; Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Isobe, M.; Sato, Y.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% 0.8% and 97.1% 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 0.4 10{sup 7} cm/s and 1.0 0.3 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.51 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  7. The vapor pressures of explosives

    SciTech Connect (OSTI)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 C.

  8. Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature

    DOE Patents [OSTI]

    Eckels, David E.; Hass, William J.

    1989-05-30

    A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

  9. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    called "structural" vapor diffusion retarders. Materials such as rigid foam insulation, reinforced plastics, aluminum, and stainless steel are relatively resistant to...

  10. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

    1997-09-02

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

  11. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  12. Fluidized bed deposition of diamond

    DOE Patents [OSTI]

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  13. Sequence stratigraphic analysis of individual depositional successions: Effects of marine/nonmarine sediment partitioning and longitudinal sediment transport, Mannville Group, Alberta Foreland Basin, Canada

    SciTech Connect (OSTI)

    Cant, D.J.

    1995-05-01

    In the Falher Member of the Mannville Group (Aptian-Albian) of western Canada, two shoreline successions contain the reservoir conglomerates for the giant Elmworth gas field. The Falher B succession has basal sheetlike shoreface unit of hummocky cross-stratified sandstone that thins seaward and terminates about 30km north (seaward) of the landward limit of the transgression. Another 25 km farther basinward, the succession shows a 20-30-m-thick sandstone, unattached to the prograding shoreface, and an overlying coarsening-upward shoreface succession with thin muds and coals, interpreted as back-barrier deposits. In the upper (Falher A) succession, immediately landward (south) of the barriers, fluvial valleys were incised into nonmarine mudstones and coals during the base-level fall. As relative sea level subsequently rose, in nonmarine areas the valleys were filled by estuarine and fluvial sands, then a widespread sheet of fine-grained nonmarine sediment was deposited. At the same time, the shoreline migrated back across the shelf. As it reached the original shorezone (structurally controlled), reworking of underlying deposits successively generated three gravelly barrier islands superimposed on the sandy shoreface succession. The conglomeratic reservoirs all rest above the unconformities, in the transgressive depositional system. Westward (alongshore) toward the thrust belt, no falling or lowstand sea level succession developed. Instead, a wide regressive shoreface sandstone with a transgressive cap occurs. Subsidence rates were higher in this area, and relative sea level appears always to have risen, but at varying rates. Any two-dimensional sequence stratigraphic model, therefore, is inadequate to describe the lateral variation of the sequence and distribution of shoreface sandstones, because the subsidence gradient was not parallel to the direction of shoreface progradation.

  14. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  15. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  16. THERMALLY OPERATED VAPOR VALVE

    DOE Patents [OSTI]

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  17. Hot-Wire Chemical Vapor Deposition (HWCVD) technologies - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thesis/Dissertation: Hot electron dynamics in graphene Citation Details In-Document Search Title: Hot electron dynamics in graphene Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during

  18. Atmospheric-Pressure Chemical Vapor Deposition of Iron Pyrite...

    Office of Scientific and Technical Information (OSTI)

    FeSsub 2) is a promising candidate absorber material for earth-abundant thin-film solar cells. In this report, single-phase, large-grain, and uniform polycrystalline pyrite...

  19. Plasma enhanced chemical vapor deposition (PECVD) method of forming...

    Office of Scientific and Technical Information (OSTI)

    This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected ...

  20. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, Auda K. (Albuquerque, NM)

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  1. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  2. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS...

    Office of Scientific and Technical Information (OSTI)

    is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. ...

  3. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect (OSTI)

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  4. Vapor etching of nuclear tracks in dielectric materials

    DOE Patents [OSTI]

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  5. Drying of pulverized material with heated condensible vapor

    DOE Patents [OSTI]

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  6. Drying of pulverized material with heated condensible vapor

    DOE Patents [OSTI]

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  7. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  8. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  9. Brazing titanium-vapor-coated zirconia

    SciTech Connect (OSTI)

    Santella, M.L. ); Pak, J.J. )

    1993-04-01

    Partially stabilized zirconia was vacuum furnace brazed to itself, to nodular cast iron, and to commercially pure titanium with a Ag-30Cu-10Sn wt% filler metal. Wetting was obtained by coating the ZrO[sub 2] surfaces with Ti prior to brazing by RF sputtering or electron beam evaporation. Braze joints made with Ti-sputter-coated ZrO[sub 2] contained high levels of porosity, but those made with Ti coatings deposited by evaporation, referred to as Ti-vapor-coated, contained little or no porosity. Brazing caused the ZrO[sub 2] within about 1 mm (0.04 in.) of the joint surfaces to turn black in color, and thermodynamic analysis indicated that the discoloration was likely due to oxygen diffusion out of the ZrO[sub 2] into the Ti vapor coating during brazing. Braze joint strength was determined by flexure testing in the four-point bend arrangement, and on a more limited basis, by shear testing. The latter method was used mainly as a screening test for ZrO[sub 2]-Fe and ZrO[sub 2]-Ti joints. Flexure testing of ZrO[sub 2]-ZrO[sub 2] and ZrO[sub 2]-Fe braze joints was done at 25, 200, 400, and 575 C (77, 392, 752 and 1,067 F) in air. For flexure testing, average strengths of joint specimens decreased with increasing test temperature. The lower average strengths of ZrO[sub 2]-Fe specimens compared to those from ZrO[sub 2]-ZrO[sub 2] joints was attributed to higher residual stresses in the ceramic-to-metal joints.

  10. Vapor generation methods for explosives detection research

    SciTech Connect (OSTI)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  11. Method of depositing a catalyst on a fuel cell electrode

    DOE Patents [OSTI]

    Dearnaley, Geoffrey; Arps, James H.

    2000-01-01

    Fuel cell electrodes comprising a minimal load of catalyst having maximum catalytic activity and a method of forming such fuel cell electrodes. The method comprises vaporizing a catalyst, preferably platinum, in a vacuum to form a catalyst vapor. A catalytically effective amount of the catalyst vapor is deposited onto a carbon catalyst support on the fuel cell electrode. The electrode preferably is carbon cloth. The method reduces the amount of catalyst needed for a high performance fuel cell electrode to about 0.3 mg/cm.sup.2 or less.

  12. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  13. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP ... Responses to Site Operations Questionnaires for Water Vapor IOP Instrument Name Instrument ...

  14. Vapor Retarder Classification - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vapor Retarder Classification - Building America Top Innovation Vapor Retarder Classification - Building America Top Innovation Photo of a vapor retarder classification. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. This Top Innovation profile describes Building America research that established vapor retarder classifications and appropriate applications that has been instrumental in the market

  15. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K.

    1991-01-01

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  16. Heat transport system

    DOE Patents [OSTI]

    Pierce, Bill L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.

  17. Source replenishment device for vacuum deposition

    DOE Patents [OSTI]

    Hill, Ronald A. (Albuquerque, NM)

    1988-01-01

    A material source replenishment device for use with a vacuum deposition apparatus. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  18. Source replenishment device for vacuum deposition

    DOE Patents [OSTI]

    Hill, R.A.

    1986-05-15

    A material source replenishment device for use with a vacuum deposition apparatus is described. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  19. Chemical deposition methods using supercritical fluid solutions

    DOE Patents [OSTI]

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  20. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    2008-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  1. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.

    1999-06-29

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.

  2. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    1999-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  3. Means and method for vapor generation

    DOE Patents [OSTI]

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  4. Means and method for vapor generation

    DOE Patents [OSTI]

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  5. Optimization of Xenon Difluoride Vapor Delivery

    SciTech Connect (OSTI)

    Sweeney, Joseph; Marganski, Paul; Kaim, Robert; Wodjenski, Mike; Gregg, John; Yedave, Sharad; Sergi, Steve; Bishop, Steve; Eldridge, David; Zou Peng [ATMI, Inc., Danbury, Connecticut 06810 (United States)

    2008-11-03

    Xenon difluoride (XeF{sub 2}) has been shown to provide many process benefits when used as a daily maintenance recipe for ion implant. Regularly flowing XeF{sub 2} into the ion source cleans the deposits generated by ion source operation. As a result, significant increases in productivity have been demonstrated. However, XeF{sub 2} is a toxic oxidizer that must be handled appropriately. Furthermore, it is a low vapor pressure solid under standard conditions ({approx}4.5 torr at 25 deg. C). These aspects present unique challenges for designing a package for delivering the chemistry to an ion implanter. To address these challenges, ATMI designed a high-performance, re-usable cylinder for dispensing XeF{sub 2} in an efficient and reliable manner. Data are presented showing specific attributes of the cylinder, such as the importance of internal heat transfer media and the cylinder valve size. The impact of mass flow controller (MFC) selection and ion source tube design on the flow rate of XeF{sub 2} are also discussed. Finally, cylinder release rate data are provided.

  6. Low-temperature electrical transport in B-doped ultrananocrystalline diamond film

    SciTech Connect (OSTI)

    Li, Lin; Zhao, Jing; Hu, Zhaosheng; Quan, Baogang; Li, Junjie Gu, Changzhi

    2014-05-05

    B-doped ultrananocrystalline diamond (UNCD) films are grown using hot-filament chemical vapor deposition method, and their electrical transport properties varying with temperature are investigated. When the B-doped concentration of UNCD film is low, a step-like increase feature of the resistance is observed with decreasing temperature, reflecting at least three temperature-modified electronic state densities at the Fermi level according to three-dimensional Mott's variable range hopping transport mechanism, which is very different from that of reported B-doped nanodiamond. With increasing B-doped concentration, a superconductive transformation occurs in the UNCD film and the highest transformation temperature of 5.3?K is observed, which is higher than that reported for superconducting nanodiamond films. In addition, the superconducting coherence length is about 0.63?nm, which breaks a reported theoretical and experimental prediction about ultra-nanoscale diamond's superconductivity.

  7. Growth of tapered silica nanowires with a shallow U-shaped vapor chamber: Growth mechanism and structural and optical properties

    SciTech Connect (OSTI)

    Zhang, Danqing; Zhang, Xi Wei, Jianglin; Gu, Gangxu; Xiang, Gang

    2015-04-28

    Traditional chemical vapor deposition method modified with a shallow U-shaped vapor chamber has been used to synthesize tapered bamboo shoot-like (BS-like) amorphous SiO{sub 2} nanowires (NWs) on Si (100) substrates without catalyst. The key innovation of this approach lies in a creation of swirling flow of the reactant vapors during the growth, which leads to a harvest of tapered silica NWs with lengths up to several microns. The unique structures and corresponding luminescence properties of the BS-like NWs were studied and their relationship with the evaporated active reactants was explored. A thermodynamic model that considers the critical role of the vapor flow during the growth is proposed to understand the structural and optical features. The shallow U-shaped vapor chamber-aided approach may provide a viable way to tailor novel structure of NWs for potential applications in nano-devices.

  8. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    SciTech Connect (OSTI)

    Ochoa-Landin, R.; Sastre-Hernandez, J.; Vigil-Galan, O.; Ramirez-Bon, R.

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  9. Process for recovering organic vapors from air

    DOE Patents [OSTI]

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  10. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  11. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, R.A.

    1994-04-05

    A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.

  12. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  13. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  14. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G.; Miller, John L.

    1993-01-01

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  15. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  16. Non-Vapor Compression HVAC Technologies Report

    Broader source: Energy.gov [DOE]

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. The Building Technologies Office is evaluating low-global warming potential (GWP) alternatives to vapor-compression technologies.

  17. Novel methods of copper vapor laser excitation

    SciTech Connect (OSTI)

    McColl, W.B.; Ching, H.; Bosch, R.; Brake, M.; Gilgenbach, R.

    1990-12-31

    Microwave and intense electron beam excitation of copper vapor are being investigated to be used in copper vapor lasers for isotope separation. Both methods use copper chloride vapor by heating copper chloride. Helium was used as the buffer gas at 2 to 100 torr. In the microwave system, intense copperlines at 510 nm and 578 nm were observed. Initial electron beam results indicate that light emission follows the beam current.

  18. Method of deposition of silicon carbide layers on substrates

    DOE Patents [OSTI]

    Angelini, P.; DeVore, C.E.; Lackey, W.J.; Blanco, R.E.; Stinton, D.P.

    1982-03-19

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at 800 to 1050/sup 0/C when the substrates have been confined within a suitable coating environment.

  19. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  20. Recirculating wedges for metal-vapor plasma tubes

    DOE Patents [OSTI]

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  1. Recirculating wedges for metal-vapor plasma tubes

    DOE Patents [OSTI]

    Hall, Jerome P. (Livermore, CA); Sawvel, Robert M. (Modesto, CA); Draggoo, Vaughn G. (Livermore, CA)

    1994-01-01

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  2. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect (OSTI)

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  3. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  4. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  5. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  6. High bandwidth vapor density diagnostic system

    DOE Patents [OSTI]

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  7. Tower Water-Vapor Mixing Ratio

    SciTech Connect (OSTI)

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  8. Quantitative organic vapor-particle sampler

    DOE Patents [OSTI]

    Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  9. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  10. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  11. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  12. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  13. Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal This paper reports ...

  14. Control of morphology and function of low band gap polymer bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing.

    SciTech Connect (OSTI)

    Chen, Huipeng; Hsiao, Yu-Che; Dadmun, Mark D

    2014-01-01

    Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.

  15. Control of morphology and function of low band gap polymer-bis-fullerene mixed heterojunctions in organic photovoltaics with selection solvent vapor annealing

    SciTech Connect (OSTI)

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin; Dadmun, Mark D

    2014-01-01

    Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.

  16. After More Than 20 Years Operating, Hanford's Soil Vapor Extraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wise, Juan Aguilar, Doug Rybarski, and Christina Agular. The soil vapor extraction trailer is shown near Hanfords Plutonium Finishing Plant. The soil vapor extraction...

  17. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to...

  18. Process for vaporizing a liquid hydrocarbon fuel

    DOE Patents [OSTI]

    Szydlowski, Donald F. (East Hartford, CT); Kuzminskas, Vaidotas (Glastonbury, CT); Bittner, Joseph E. (East Hartford, CT)

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  19. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  20. Deposition head for laser

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  1. Simulates the Forced-Flow Chemical Vapor Infiltration in Steady State

    Energy Science and Technology Software Center (OSTI)

    1997-12-12

    GTCVI is a finite volume model for steady-state simulation of forced-flow chemical vapor infiltration in either Cartesian or cylindrical coordinates. The model solves energy and momentum balances simultaneously over a given domain discretized into an array of finite volume elements. The species balances and deposition rates are determined after the energy and momentum balances converge. Density-dependent preform properties are included in the model. Transient average density, backpressure, temperature gradient, and average radial deposition rates canmore » be summarized. Optimal infiltration conditions can be found by varying temperature, flow, and reactant concentration.« less

  2. direct_deposit_111609

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby

  3. Current status, research needs, and opportunities in applications of surface processing to transportation and utilities technologies. Proceedings of a December 1991 workshop

    SciTech Connect (OSTI)

    Czanderna, A.W.; Landgrebe, A.R.

    1992-09-01

    Goal of surface processing is to develop innovative methods of surface modification and characterization for optimum performance and environmental protection for cost-effective operational lifetimes of systems, materials, and components used in transportation and utilities. These proceedings document the principal discussions and conclusions reached at the workshop; they document chapters about the current status of surface characterization with focus on composition, structure, bonding, and atomic-scale topography of surfaces. Also documented are chapters on the current status of surface modification techniques: electrochemical, plasma-aided, reactive and nonreactive physical vapor deposition, sol-gel coatings, high-energy ion implantation, ion-assisted deposition, organized molecular assemblies, solar energy. Brief chapters in the appendices document basic research in surface science by NSF, Air Force, and DOE. Participants at the workshop were invited to serve on 10 working groups. Separate abstracts were prepared for the data base where appropriate.

  4. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    SciTech Connect (OSTI)

    Cem Sarica; Michael Volk

    2004-06-01

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

  5. Probe for measurement of velocity and density of vapor in vapor plume

    DOE Patents [OSTI]

    Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.

    1997-01-01

    A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.

  6. Probe for measurement of velocity and density of vapor in vapor plume

    DOE Patents [OSTI]

    Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.

    1997-03-11

    A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.

  7. Moisture Durability of Vapor Permeable Insulating Sheathing ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drying (by virtue of its vapor permeability). However, it also allows inward-driven moisture to fow through the insulation and contact the water resisting barrier (WRB), which is ...

  8. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, R.N.; Senum, G.I.

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  9. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, Russell N.; Senum, Gunnar I.

    1981-01-01

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  10. Water vapor distribution in protoplanetary disks

    SciTech Connect (OSTI)

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  11. Ambipolar charge transport in microcrystalline silicon thin-film transistors

    SciTech Connect (OSTI)

    Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut

    2011-01-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

  12. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  13. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  14. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  15. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  16. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  17. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1+yTe1-xSex [How does annealing in chalcogen vapor induce superconductivity in Fe1+yTe-xSex?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1+yTe1-xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1+yTe1-xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥ 1) complexes. We show thatmore » the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.« less

  18. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  19. Inhomogeneity smoothing using density valley formed by ion beam deposition

    Office of Scientific and Technical Information (OSTI)

    in ICF fuel pellet (Journal Article) | SciTech Connect Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet We study the beam non-uniformity smoothing effect of the radiation transport in the density valley formed by an ion-beam deposition in an ion-beam inertial confinement fusion pellets by numerical simulation.

  20. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; et al

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  1. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  2. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  3. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  4. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, Terry (Tracy, CA)

    1988-01-01

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  5. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    on "Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 Program Managers: Kirankumar V. Alapaty Phone: 301-903-3175 Division: SC-23.3 and Wanda R. Ferrell Phone: 301-903-0043 Division: SC-23.3 PI: Edgeworth R. Westwater Award Register#: ER640150011106 Overview of Project The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric

  6. Method and Apparatus for Concentrating Vapors for Analysis

    DOE Patents [OSTI]

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2008-10-07

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  7. Vapor pressures of the polychlorinated naphthalenes

    SciTech Connect (OSTI)

    Lei, Y.D.; Shiu, W.Y.; Wania, F.

    1999-05-01

    The vapor pressures of the supercooled liquid P{sub L} for 17 polychlorinated naphthalene congeners were determined as a function of temperature with a gas chromatographic retention time technique. The method was calibrated with vapor pressure data for polychlorinated biphenyls (PCBs) which had been measured by other techniques. These data were employed to predict temperature-dependent vapor pressures for all polychlorinated naphthalenes (PCNs) from a regression with published retention time indices. Enthalpies of vaporization {Delta}{sub VAP}H and activity coefficients in 1-octanol were calculated for the PCNs and compared with those for polychlorinated biphenyls. Data analysis suggests that the dependence of P{sub L} and {Delta}{sub VAP}H on molecular size, as well as the partitioning behavior into 1-octanol of the PCNs, is very similar to that of coplanar PCBs, i.e., those congeners with no or only one chlorine substitution in the ortho positions. The affinity of these chemicals to 1-octanol increases with the degree of chlorination.

  8. Advancing Explosives Detection Capabilities: Vapor Detection

    SciTech Connect (OSTI)

    Atkinson, David

    2012-10-15

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  9. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  10. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect (OSTI)

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  11. Sealable stagnation flow geometries for the uniform deposition of materials and heat

    DOE Patents [OSTI]

    McCarty, Kevin F. (Livermore, CA); Kee, Robert J. (Livermore, CA); Lutz, Andrew E. (Alamo, CA); Meeks, Ellen (Livermore, CA)

    2001-01-01

    The present invention employs a constrained stagnation flow geometry apparatus to achieve the uniform deposition of materials or heat. The present invention maximizes uniform fluxes of reactant gases to flat surfaces while minimizing the use of reagents and finite dimension edge effects. This results, among other things, in large area continuous films that are uniform in thickness, composition and structure which is important in chemical vapor deposition processes such as would be used for the fabrication of semiconductors.

  12. Use Vapor Recompression to Recover Low-Pressure Waste Steam ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vapor Recompression to Recover Low-Pressure Waste Steam Use Vapor Recompression to Recover Low-Pressure Waste Steam This tip sheet on recovering low-pressure waste steam provides ...

  13. ARM: Microwave Water Radiometer (MWR): water liq. and vapor along...

    Office of Scientific and Technical Information (OSTI)

    Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) path Title: ARM: Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) ...

  14. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  15. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  16. Gasoline distribution cycle and vapor emissions in Mexico City metropolitan area

    SciTech Connect (OSTI)

    Molina, M.M.; Secora, I.S.; Gallegos, J.R.M.; Grapain, V.M.G.; Villegas, F.M.R.; Flores, L.A.M.

    1997-12-31

    Ozone in the main air pollutant in Mexico City Metropolitan Area (MCMA). This kind of pollution is induced by the emissions of nitrogen oxides and hydrocarbons. According to Official Statistics National Air Pollution Quality Standard is exceeded over 300 days a year. Volatile hydrocarbons are generated in the cycle of storage transport and distribution of fuel (Gasoline Distribution Cycle). Above 17 millions of liters are handled daily in MCMA. Evaporative emission control is a complex task involving: floating roof tanks and vapor recovery units installation at bulk terminals and implementation of Phase 1 and Phase 2 vapor recovery systems at service stations. Since 1990, IMP has been involved in researching vapor emissions associated to gasoline storage and distribution cycle. Besides, the authors evaluate several technologies for bulk terminals and service stations. In this job, the authors present the results of an evaluation according to Mexican Official Standard of 500 vehicles. The gasoline vapors are trapped during refueling of cars and they are conduced to an equipment that includes an activated charcoal canister in order to adsorb them. Another Activated charcoal canister adsorbs ambient air as a reference. Experimental results showed that refueling hydrocarbon emissions are between 0.4 and 1.2 grams per liter with averages of 0.79 and 0.88 grams per liter according with two different gasoline types. These results were applied to Mexico City Vehicular fleet for the gasoline distribution cycle in order to obtain a total volatile hydrocarbon emission in Mexico City Metropolitan Area.

  17. Air pollution EPA'S efforts to control gasoline vapors from motor vehicles

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This report examines ozone, often called smog, which is a respiratory irritant, and long-term exposure may cause permanent lung damage. Attempts by EPA to reduce gasoline vapors, a major contributor to ozone, by requiring refiners to lower the volatility (evaporation rate) of gasoline sold during the summer months when most high ozone levels occur and auto manufacturers to install vapor recovery equipment (onboard controls) on motor vehicles. Beginning in 1989 (Phase I), the maximum volatility of gasoline sold during the summer would fall to 10.5 pounds per square inch and beginning in 1992 (Phase II), the maximum volatility would fall to 9.0 pounds per square inch. EPA has not yet acted on Phase II reductions because it disagrees with the Department of Transportation on the dangers of adding onboard controls to vehicles. DOT believes the onboard controls may pose an increased risk of fire during crashes. In this report's view, the Stage II controls are a practical and feasible way to control refueling vapors and that onboard controls may well surpass the effectiveness of Phase II controls and therefore should not be abandoned as a way to reduce gasoline vapors.

  18. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1991-10-29

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  19. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1995-02-21

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.

  20. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L.; Giammarise, Anthony W.

    1995-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  1. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L.; Giammarise, Anthony W.

    1991-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  2. Radionuclide deposition control

    DOE Patents [OSTI]

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  3. Method of deposition of silicon carbide layers on substrates and product

    DOE Patents [OSTI]

    Angelini, Peter; DeVore, Charles E.; Lackey, Walter J.; Blanco, Raymond E.; Stinton, David P.

    1984-01-01

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at about 800.degree. C. to 1050.degree. C. when the substrates have been confined within a suitable coating environment.

  4. Hydrogenation effects on carrier transport in boron-doped

    Office of Scientific and Technical Information (OSTI)

    ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition (Journal Article) | SciTech Connect Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition Citation Details In-Document Search Title: Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition Boron-doped

  5. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  6. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOE Patents [OSTI]

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  7. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  8. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  9. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  10. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  11. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, Terry W.; Ault, Earl R.; Moses, Edward I.

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  12. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  13. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  14. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  15. Deposition of sodium sulfate from salt-seeded combustion gases of a high velocity burner rig

    SciTech Connect (OSTI)

    Santoro, G.J.; Goekoglu, S.A.; Kohl, F.J.; Stearns, C.A.; Rusner, D.E.

    1984-09-01

    This paper addresses the corrosion which is caused on vanes and blades by combustion products in the hot section of turbine engines. Such deposits cause an accelerated metal wastage called hot corrosion. The mechanism of sodium sulfate deposition was studied under controlled lab conditions. Deposition rates and dew point temperatures were determined. These tests, along with thermodynamic and transport calculations, were used in the interpretation of the deposition results.

  16. Perspectives on Deposition Velocity

    Office of Environmental Management (EM)

    Deposition Velocity ... Going down the rabbit hole to explain that sinking feeling Brian DiNunno, Ph.D. Project Enhancement Corporation June 6 th , 2012 Discussion Framework  Development of the HSS Deposition Velocity Safety Bulletin  Broader discussion of appropriate conservatism within dispersion modeling and DOE-STD-3009 DOE-STD-3009 Dose Comparison "General discussion is provided for source term calculation and dose estimation, as well as prescriptive guidance for the latter. The

  17. Microstructural characterization of LPCVD (low pressure chemical vapor deposition) tungsten interfaces

    SciTech Connect (OSTI)

    Paine, D.C.; Bravman, J.C.; Saraswat, K.C.

    1985-01-01

    Three important interfacial morphologies are observed in LPCVD tungsten on silicon: lateral encroachment, interface roughness, and wormhole structures. They have been shown to be, in part at least, a result of defect condition. Defects positively identified using XTEM include residual native oxide and dislocations from ion implantation. A third phase, possibly tungsten silicide, has been observed but not uniquely identified. Extensive lateral encroachment has been shown to be related to the presence of residual implant damage. Specifically, dislocation loops under oxide grown over arsenic-implanted silicon were implicated. Interface roughness appears to result from both residual native oxide patches on the silicon surface as well as to the formation of small protrusions of a third, probably silicide phase. The electron-microscopy techniques of microdiffraction and Moire analysis were used in an attempt to identify the third phase. The presence of a third phase has led to the proposal of a mechanism for formation of the wormhole structure. Additional work, currently underway, will establish the identity of both the interfacial phase and the wormhole particles.

  18. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; Goeke, Ronald S.; Kotula, Paul G.; Scharf, T. W.; Dugger, Michael Thomas; Prasad, Somuri V.

    2015-04-08

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilizedmore » grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 × 10-17 m2/s for Au-1 vol. % ZnO and Ea =12.7 kJ/mol and Ao = 3.1 × 10-18 m2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.« less

  19. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    SciTech Connect (OSTI)

    Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; Goeke, Ronald S.; Kotula, Paul G.; Scharf, T. W.; Dugger, Michael Thomas; Prasad, Somuri V.

    2015-04-08

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 ?m thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 1017 m2/s for Au-1 vol. % ZnO and Ea =12.7 kJ/mol and Ao = 3.1 1018 m2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.

  20. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOE Patents [OSTI]

    Wanlass, Mark

    1987-01-01

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  1. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOE Patents [OSTI]

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  2. Electronic and mechanical properties of graphene-germanium interfaces grown by chemical vapor deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kiraly, Brian T.; Jacobberger, Robert M.; Mannix, Andrew J.; Campbell, Gavin P.; Bedzyk, Michael J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.

    2015-10-27

    Epitaxially oriented wafer-scale graphene grown directly on semiconducting Ge substrates is of high interest for both fundamental science and electronic device applications. To date, however, this material system remains relatively unexplored structurally and electronically, particularly at the atomic scale. To further understand the nature of the interface between graphene and Ge, we utilize ultrahigh vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy to probe interfacial atomic structure and chemistry. STS reveals significant differences in electronic interactions between graphene and Ge(110)/Ge(111), which is consistent with a model of stronger interaction on Ge(110)more » leading to epitaxial growth. Raman spectra indicate that the graphene is considerably strained after growth, with more point-to-point variation on Ge(111). Furthermore, this native strain influences the atomic structure of the interface by inducing metastable and previously unobserved Ge surface reconstructions following annealing. These nonequilibrium reconstructions cover >90% of the surface and, in turn, modify both the electronic and mechanical properties of the graphene overlayer. Finally, graphene on Ge(001) represents the extreme strain case, where graphene drives the reorganization of the Ge surface into [107] facets. From this study, it is clear that the interaction between graphene and the underlying Ge is not only dependent on the substrate crystallographic orientation, but is also tunable and strongly related to the atomic reconfiguration of the graphene–Ge interface.« less

  3. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOE Patents [OSTI]

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  4. Simplified models of growth, defect formation, and thermal conductivity in diamond chemical vapor deposition

    SciTech Connect (OSTI)

    Coltrin, M.E.; Dandy, D.S.

    1996-04-01

    A simplified surface reaction mechanism is presented for the CVD of diamond thin films. The mechanism also accounts for formation of point defects in the diamond lattice, an alternate, undesirable reaction pathway. Both methyl radicals and atomic C are considered as growth precursors. While not rigorous in all details, the mechanism is useful in describing the CVD diamond process over a wide range of reaction conditions. It should find utility in reactor modeling studies, for example in optimizing diamond growth rate while minimizing defect formation. This report also presents a simple model relating the diamond point-defect density to the thermal conductivity of the material.

  5. Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition

    DOE Patents [OSTI]

    Han, Jung; Su, Jie

    2008-08-05

    Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

  6. Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces

    SciTech Connect (OSTI)

    Alami, J.; Persson, P.O.A.; Music, D.; Gudmundsson, J. T.; Bohlmark, J.; Helmersson, U.

    2005-03-01

    We have synthesized Ta thin films on Si substrates placed along a wall of a 2-cm-deep and 1-cm-wide trench, using both a mostly neutral Ta flux by conventional dc magnetron sputtering (dcMS) and a mostly ionized Ta flux by high-power pulsed magnetron sputtering (HPPMS). Structure of the grown films was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The Ta thin film grown by HPPMS has a smooth surface and a dense crystalline structure with grains oriented perpendicular to the substrate surface, whereas the film grown by dcMS exhibits a rough surface, pores between the grains, and an inclined columnar structure. The improved homogeneity achieved by HPPMS is a direct consequence of the high ion fraction of sputtered species.

  7. Oxide vapor distribution from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R.; Tassano, P.L.; Tsujimoto, N.

    1995-03-01

    Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.

  8. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  9. New Regenerative Cycle for Vapor Compression Refrigeration

    Office of Scientific and Technical Information (OSTI)

    SCIENTIFIC REPORT Title Page Project Title: New Regenerative Cycle for Vapor Compression Refrigeration DOE Award Number: DE-FG36-04GO14327 Document Title: Final Scientific Report Period Covered by Report: September 30, 2004 to September 30, 2005 Name and Address of Recipient Organization: Magnetic Development, Inc., 68 Winterhill Road, Madison, CT 06443, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Contact Information: Mark J. Bergander, Ph.D., P.E., Principal Investigator,

  10. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  11. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  12. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  13. Method and apparatus for concentrating vapors for analysis

    DOE Patents [OSTI]

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2012-06-05

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  14. Fundamental studies of the mechanisms of slag deposit formation: Final report

    SciTech Connect (OSTI)

    Austin, L.G.; Benson, S.; Rabinovich, A.; Tangsathitkulchai, M.; Schobert H.H.

    1987-07-01

    The kinetics of ash deposition on utility boilers have been studied. A heated tube furnace system was used in the study. Areas of consideration in the deposition mechanics were: close space knowledge of chemical composition and distribution of inorganic constituents in coal, transformations and reactions of the inorganic constituents in the flame, ash transport mechanisms, initial adhesion of ash particles to heat transfer surfaces and subsequently to each other to form a deposit, and further interactions of the deposited ash to grow a strong deposit. Interactions of deposited ash that cause changes in physical and chemical properties in an aged deposit are due to processes such as sintering, chemical reactions, and melting. The degree of these changes increases as the deposit grows from the heat transfer surfaces where it forms. All of these changes during the deposit formation process are coal-specific and are strongly dependent on the boiler configuration and operating conditions. 18 refs., 55 figs., 42 tabs.

  15. An optical water vapor sensor for unmanned aerial vehicles (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect An optical water vapor sensor for unmanned aerial vehicles Citation Details In-Document Search Title: An optical water vapor sensor for unmanned aerial vehicles The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in

  16. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  17. Propane-induced biodegradation of vapor phase trichloroethylene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Propane-induced biodegradation of vapor phase trichloroethylene Citation Details In-Document Search Title: Propane-induced biodegradation of vapor phase trichloroethylene Microbial degradation of trichloroethylene (TCE) has been demonstrated under aerobic conditions with propane. The primary objective of this research was to evaluate the feasibility of introducing a vapor phase form of TCE in the presence of propane to batch bioreactors containing a liquid phase

  18. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Investigation of odd-order nonlinear susceptibilities in atomic vapors Citation Details In-Document Search Title: Investigation of odd-order nonlinear susceptibilities in atomic vapors We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions

  19. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  20. Simulation of water transport in heated rock salt

    SciTech Connect (OSTI)

    Schlich, M.; Jockwer, N.

    1986-01-01

    This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

  1. Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Exploration Activity Details...

  2. Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location...

  3. Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  4. Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae...

  5. Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details...

  6. Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

  7. New Vapor-Particle Separator Improves Understanding of Aircraft...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    separate volatile particles from condensible vapors in aircraft engine emissions. ... of the combustion process of modern jet engines and the formation process of ...

  8. Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy...

    Open Energy Info (EERE)

    Medicine Lake Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration...

  9. Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Springs...

  10. Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...

    Open Energy Info (EERE)

    Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  11. Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration...

  12. Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...

    Open Energy Info (EERE)

    2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)...

  13. Numerical modeling of water injection into vapor-dominatedgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs Citation Details In-Document Search Title: Numerical modeling of water injection ...

  14. Numerical modeling of water injection into vapor-dominatedgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing ...

  15. The role of polymer formation during vapor phase lubrication...

    Office of Scientific and Technical Information (OSTI)

    The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. ... The parent alcohol molecule pentanol, has molecular weight of 88amu, suggesting that ...

  16. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beamtransport1 Simplified drawing of the beam...

  17. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy Robert Kolasinki Permalink Gallery Robert Kolasinski wins DOE Early Career Award Transportation Energy Robert Kolasinski wins DOE Early Career Award By Michael Padilla Robert Kolasinski (8366) has received a $2.5 million, five-year Early Career Research Program award from the Department of Energy's (DOE) Office of Science to support his work on how intense fusion plasmas interact with the interior surfaces of fusion reactors. Robert's research will develop the

  18. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect (OSTI)

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  19. Vapor and gas sampling of the single-shell tank 241-S-101 using the in situ vapor sampling system

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1997-08-05

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-101. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the June 6, 1996 sampling of SST 241-S-101. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media.

  20. Model for assessing bronchial mucus transport

    SciTech Connect (OSTI)

    Agnew, J.E.; Bateman, J.R.M.; Pavia, D.; Clarke, S.W.

    1984-02-01

    The authors propose a scheme for the assessment of regional mucus transport using inhaled Tc-99m aerosol particles and quantitative analysis of serial gamma-camera images. The model treats input to inner and intermediate lung regions as the total of initial deposition there plus subsequent transport into these regions from more peripheral airways. It allows for interregional differences in the proportion of particles deposited on the mucus-bearing conducting airways, and does not require a gamma image 24 hr after particle inhalation. Instead, distribution of particles reaching the respiratory bronchioles or alveoli is determined from a Kr-81m ventilation image, while the total amount of such deposition is obtained from 24-hr Tc-99m retention measured with a sensitive counter system. The model is applicable to transport by mucociliary action or by cough, and has been tested in ten normal and ten asthmatic subjects.

  1. Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-11-01

    This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

  2. Light absorption and electrical transport in Si:O alloys for photovoltaics

    SciTech Connect (OSTI)

    Mirabella, S.; Crupi, I.; Miritello, M.; Simone, F.; Di Martino, G.; Di Stefano, M. A.; Di Marco, S.; Priolo, F.

    2010-11-15

    Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 deg. C. Boron implantation (30 keV, 3-30x10{sup 14} B/cm{sup 2}) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 deg. C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell.

  3. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. May 3, 2016 NREL Convenes Gathering of U.S.-China Electric Vehicle Battery Experts On April 25-26, NREL and Argonne National Laboratory (ANL) hosted the 11th United States (U.S.)-China Electric Vehicle and Battery Technology Information Exchange to share insights on battery technology advancements and identify opportunities to collaborate on electric vehicle battery research. The meeting represents the 11th

  4. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  5. Kinetics of wet sodium vapor complex plasma

    SciTech Connect (OSTI)

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  6. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  7. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  8. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  9. Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates V. Mattioli and P. Basili Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction In recent years the Global

  10. Tower Water-Vapor Mixing Ratio (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Tower Water-Vapor Mixing Ratio Citation Details In-Document Search Title: Tower Water-Vapor Mixing Ratio The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added ...

  11. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  12. Apparatus for downward transport of heat

    DOE Patents [OSTI]

    Neeper, D.A.; Hedstrom, J.C.

    1985-08-05

    An apparatus for the downward transport of heat by vaporization of a working fluid, usually from a collector which can be powered by the sun to a condenser which drains the condensed working fluid to a lower reservoir, is controled by a control valve which is operationally dependent upon the level of working fluid in either the lower reservoir or an upper reservoir which feeds the collector. Condensed working fluid is driven from the lower to the upper reservoir by vaporized working fluid whose flow is controled by the controll valve. The upper reservoir is in constant communication with the condenser which prevents a buildup in temperature/pressure as the apparatus goes through successive pumping cycles.

  13. Industrial Application of Thin Films (TiAl)N Deposited on Thermo-Wells

    SciTech Connect (OSTI)

    Velez, G.; Jaramillo, S.; Arango, Y. C.; Devia, D.; Quintero, J.; Devia, A.

    2006-12-04

    The thermo-well is formed by two layers, one layer is a ceramic and the other layer is anviloy (comprised tungsten). They are used to coat the thermocouple in the control temperature system during the Aluminum-Silicon alloy melting process. After two weeks of continuous work at 750 deg. C of temperature (the alloy temperature), a high wear in this material is observed, affecting the ceramic. (TiAl)N thin films are deposited directly on the anviloy substrates by the PAPVD (Plasma Assisted Physics Vapor Deposition) in arc pulsed technique, using a TiAl target in a mono-vaporizer system, composed by a reactor and a power controlled system. Two opposite electrodes are placed into the reactor and discharge is produced by a controlled power system. The XRD (X-ray diffraction) patterns show the presence of the (TiAl)N thin film peaks. The morphological characteristics are studied by the scanning probe microscopy (SPM)

  14. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect (OSTI)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

  15. A Comparison of Water Vapor Quantities from Model Short-Range...

    Office of Scientific and Technical Information (OSTI)

    Water Vapor Quantities from Model Short-Range Forecasts and ARM Observations Citation Details In-Document Search Title: A Comparison of Water Vapor Quantities from Model ...

  16. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect (OSTI)

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  17. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  18. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  19. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  20. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect (OSTI)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  1. Effect of Water Vapor on the 1100oC Oxidation Behavior of Plasma-Sprayed TBCs with HVOF NiCoCrAlX Bond Coatings

    SciTech Connect (OSTI)

    Haynes, James A; Unocic, Kinga A; Pint, Bruce A

    2013-01-01

    With the goal of investigating the reported detrimental effect of water vapor on thermal barrier coating (TBC) performance, furnace cycle experiments were conducted in dry O2 and air with 10 and 50% water vapor at 1100 C. The TBC systems evaluated were air plasma-sprayed (APS), yttria-stabilized zirconia (YSZ) top coatings with high velocity oxy fuel (HVOF)-deposited NiCoCrAlY or NiCoCrAlYHfSi bond coating. Average TBC lifetime was reduced by ~30% in air with 10% water vapor compared to cycling in dry O2, using 1h cycle durations. Superalloy substrates with Y and La additions also were investigated but showed no statistical change in the average TBC lifetime compared to the base CMSX4 superalloy. In all cases, the bond coating with Hf and Si additions increased YSZ lifetime by 20% or more. Experiments that increased water vapor to 50% showed no further decrease in TBC lifetime. Increasing the cycle frequency to 100h resulted in a large increase in TBC lifetime, especially for the NiCoCrAlYHfSi bond coatings. Co-doping the NiCoCrAl bond coat with Y and Hf was beneficial to TBC lifetime, but did not mitigate the detrimental impact of water vapor.

  2. Catalytic Reactor For Oxidizing Mercury Vapor

    DOE Patents [OSTI]

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  3. The Atomic Vapor Laser Isotope Separation Program

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management`s position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

  4. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  5. Multi-chamber deposition system

    DOE Patents [OSTI]

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  6. Multi-chamber deposition system

    DOE Patents [OSTI]

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  7. Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth

    SciTech Connect (OSTI)

    Harmand, J.C.; Patriarche, G.; Pere-Laperne, N.; Merat-Combes, M-N.; Travers, L.; Glas, F.

    2005-11-14

    GaAs nanowires were grown by molecular-beam epitaxy on (111)B oriented surfaces, after the deposition of Au nanoparticles. Different growth durations and different growth terminations were tested. After the growth of the nanowires, the structure and the composition of the metallic particles were analyzed by transmission electron microscopy and energy dispersive x-ray spectroscopy. We identified three different metallic compounds: the hexagonal {beta}{sup '}Au{sub 7}Ga{sub 2} structure, the orthorhombic AuGa structure, and an almost pure Au face centered cubic structure. We explain how these different solid phases are related to the growth history of the samples. It is concluded that during the wire growth, the metallic particles are liquid, in agreement with the generally accepted vapor-liquid-solid mechanism. In addition, the analysis of the wire morphology indicates that Ga adatoms migrate along the wire sidewalls with a mean length of about 3 {mu}m.

  8. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-01-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  9. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-07-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  10. Deposition System Controller

    Energy Science and Technology Software Center (OSTI)

    2005-10-01

    This software is a complete thin film deposition controller. The software takes as its input a script file that dictates enablinig/disabling of sputtering power supplies, pause times, velocities and distances to move a substrate. An emulator has been created and built into the software package that can debug in advance any deposition script and decide if there is an overrun condition, accidental infinite look, and can estimate a time for completion. All necessary process variablesmore » are data logged and recorded for later inspection. This emulator currently interfaces to a Parker-Compumotor SX6 stepper moror indexer, but the software is written in such a way that it is easily modifiable for interface to othe brand and models of motor drivers. Other process I/O variables may be easily added. The software uses any multifunction DAQ card from National Instruments via their free NIDAQ API package, but again, the software is written such that othe brand DAQ cards may be used.« less

  11. Systems and methods for generation of hydrogen peroxide vapor

    DOE Patents [OSTI]

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  12. ARM - Field Campaign - Single Frequency GPS Water Vapor Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSingle Frequency GPS Water Vapor Network ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  13. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  14. Vaporization, dispersion, and radiant fluxes from LPG spills. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools 25, 100, 400, and 1600 ft/sup 2/ in area. A Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes; the maximum effective flux emitted at the flame surface was about 50,000 Btu/h-ft/sup 2/. A few tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  15. ARM - Field Campaign - ARM-FIRE Water Vapor Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were the airborne NASA LaRC LASE water vapor lidar and Diode Laser Hygrometer (DLH), the ground-based Vaisala RS-80H (after application of corrections for time-lag, temperature...

  16. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  17. Fermilab | Visit Fermilab | Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Transportation to and from Chicago O'Hare Airport or Midway Airport is available by limousine, taxi or car rental. Transportation to and from the Geneva local...

  18. Mechanistic aspects of vapor phase lubrication of silicon. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Mechanistic aspects of vapor phase lubrication of silicon. Citation Details In-Document Search Title: Mechanistic aspects of vapor phase lubrication of silicon. No abstract prepared. Authors: Dugger, Michael Thomas ; Dirk, Shawn M. ; Ohlhausen, James Anthony Publication Date: 2010-10-01 OSTI Identifier: 1028381 Report Number(s): SAND2010-7362C TRN: US201122%%249 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for

  19. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  20. Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition

    SciTech Connect (OSTI)

    Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Kim, Jiyoung; Hwang, Hyeon Jun; Ha, Min-Woo

    2015-03-23

    In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm{sup 2}/V·s and the lowest n-type carrier concentration of approximately 1.0 × 10{sup 18}/cm{sup 3} were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.

  1. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  2. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  3. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  4. Biocompatible Coating (Parylene) Deposition System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Containing Diamond-Like Carbon Deposition System Varshni Singh and Jost Goettert Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge, LA-70806 Summary CAMD/LSU received funds from the Board of Regents' Enhancement Program for modifying and upgrading of a diamond like carbon (DLC) deposition system. This included a magnetron with shield, DC power supply and pulsing unit, mass flow controllers and in-situ thin film deposition

  5. Momentum Deposition in Curvilinear Coordinates

    SciTech Connect (OSTI)

    Cleveland, Mathew Allen; Lowrie, Robert Byron; Rockefeller, Gabriel M.; Thompson, Kelly Glen; Wollaber, Allan Benton

    2015-08-03

    The momentum imparted into a material by thermal radiation deposition is an important physical process in astrophysics and inertial confinement fusion (ICF) simulations. In recent work we presented a new method of evaluating momentum deposition that relies on the combination of a time-averaged approximation and a numerical integration scheme. This approach robustly and efficiently evaluates the momentum deposition in spherical geometry. Future work will look to extend this approach to 2D cylindrical geometries.

  6. Carbonate Deposition | Open Energy Information

    Open Energy Info (EERE)

    Alteration Products Carbonate deposits come in many forms and sometimes develop into spectacular colorful terraces such as these at Mammoth Hot Springs in Yellowstone National...

  7. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment

    SheetsTransportation Fuel Supply content top

  8. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans

    2011-01-01

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCO wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.

  9. Supercritical fluid molecular spray film deposition and powder formation

    DOE Patents [OSTI]

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  10. Microenergetic shock initiation studies on deposited films of PETN.

    SciTech Connect (OSTI)

    Long, Gregory T.; Knepper, Robert; Jones, David Alexander; Brundage, Aaron L.; Trott, Wayne Merle; Wixom, Ryan R.; Tappan, Alexander Smith

    2009-07-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-{micro}m thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.

  11. Apparatus and process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L.; Giammarise, Anthony W.

    1994-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  12. Apparatus and process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1994-12-20

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  13. Deposited films with improved microstructures

    DOE Patents [OSTI]

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1984-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.

  14. Direct Real-Time Detection of Vapors from Explosive Compounds

    SciTech Connect (OSTI)

    Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.

    2013-10-03

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3- and NO3-HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.

  15. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    SciTech Connect (OSTI)

    Capece, Angela M. Shepherd, Joseph E.; Polk, James E.; Mikellides, Ioannis G.

    2014-04-21

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungsten species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25?mm diameter orifice operated at a discharge current of 15?A, a Xe flow rate of 3.7 sccm, and 100?ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.

  16. Removal of Sarin Aerosol and Vapor by Water Sprays

    SciTech Connect (OSTI)

    Brockmann, John E.

    1998-09-01

    Falling water drops can collect particles and soluble or reactive vapor from the gas through which they fall. Rain is known to remove particles and vapors by the process of rainout. Water sprays can be used to remove radioactive aerosol from the atmosphere of a nuclear reactor containment building. There is a potential for water sprays to be used as a mitigation technique to remove chemical or bio- logical agents from the air. This paper is a quick-look at water spray removal. It is not definitive but rather provides a reasonable basic model for particle and gas removal and presents an example calcu- lation of sarin removal from a BART station. This work ~ a starting point and the results indicate that further modeling and exploration of additional mechanisms for particle and vapor removal may prove beneficial.

  17. The NSLS-II Multilayer Laue Lens Deposition System

    SciTech Connect (OSTI)

    Conley, R.; Bouet, N.; Biancarosa, J.; Shen, Q.; Boas, L.; Feraca, J.; Rosenbaum, L.

    2009-08-02

    The NSLS-II[1] program has a requirement for an unprecedented level of x-ray nanofocusing and has selected the wedged multilayer Laue lens[2,3] (MLL) as the optic of choice to meet this goal. In order to fabricate the MLL a deposition system is required that is capable of depositing depth-graded and laterally-graded multilayers with precise thickness control over many thousands of layers, with total film growth in one run up to 100?m thick or greater. This machine design expounds on the positive features of a rotary deposition system[4] constructed previously for MLLs and will contain multiple stationary, horizontally-oriented magnetron sources where a transport will move a substrate back and forth in a linear fashion over shaped apertures at well-defined velocities to affect a multilayer coating.

  18. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect (OSTI)

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  19. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    SciTech Connect (OSTI)

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-10-20

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  20. Direct Deposit Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Deposit Form Direct Deposit Form PDF icon Direct Deposit Form More Documents & Publications Employee In-Processing Forms Agreement for Minority Financial Institutions Participation in the Bank Deposit Financial Assistance Program Agreement for Minority Financial Institutions Participation in the Bank Deposit Financial Assistance Program

  1. Effect of furnace operating conditions on alkali vaporization, batch

    Office of Scientific and Technical Information (OSTI)

    carryover, and the formation of SO2 and NO in an oxy-fuel fired container glass furnace. (Journal Article) | SciTech Connect furnace operating conditions on alkali vaporization, batch carryover, and the formation of SO2 and NO in an oxy-fuel fired container glass furnace. Citation Details In-Document Search Title: Effect of furnace operating conditions on alkali vaporization, batch carryover, and the formation of SO2 and NO in an oxy-fuel fired container glass furnace. No abstract prepared.

  2. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  3. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  4. The effects of heat conduction on the vaporization of liquid invading superheated permeable rock

    SciTech Connect (OSTI)

    Woods, Andrew, W.; Fitzgerald, Shaun D.

    1996-01-24

    We examine the role of conductive and convective heat transfer in the vaporization of liquid as it slowly invades a superheated permeable rock. For very slow migration, virtually all of the liquid vaporizes. As the liquid supply rate increases beyond the rate of heat transfer by thermal conduction, a decreasing fraction of the liquid can vaporize. Indeed, for sufficiently high flow rates, the fraction vaporizing depends solely on the superheat of the rock, and any heat transfer from the superheated region is negligible. These results complement earlier studies of vaporization under very high injection rates, in which case the dynamic vapour pressure reduces the mass fraction vaporizing to very small values.

  5. Effect of higher water vapor content on TBC performance

    SciTech Connect (OSTI)

    Pint, Bruce A; Haynes, James A

    2012-01-01

    Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the initial phase of experiments. Compared to dry O{sub 2}, the addition of 10% water vapor decreased the lifetime of MCrAlY by {approx}30% for the conventional CMSX4 substrates. Higher average lifetimes were observed with Hf in the bond coating, but a similar decrease in lifetime was observed when water vapor was added. The addition of Y and La to the superalloy substrate did not change the YSZ lifetime with 10% water vapor. However, increasing water vapor content from 10 to 50% did not further decrease the lifetime of either bond coating with the doped superalloy substrate. Thus, these results suggest that higher water vapor contents cannot explain the derating of syngas-fired turbines, and other factors such as sulfur and ash from imperfect syngas cleanup (or upset conditions) need to be explored. Researchers continue to study effects of water vapor on thermally grown alumina scale adhesion and growth rate, and are looking for bond coating compositions more resistant to oxidation in the presence of water vapor.

  6. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics and Thermal Management Thermal Management This is the March 2016 issue of the Transportation and Hydrogen Newsletter. March 31, 2016 Photo of a man seated before a microphone and speaking. NREL's Chris Gearhart provides congressional testimony on sustainable transportation. U.S. Senate Hears of Role National Labs Play in Sustainable Transportation Innovation On January 12, 2016, NREL's Chris Gearhart, director of the Transportation and Hydrogen Systems Center, provided

  7. The Atomic Vapor Laser Isotope Separation Program. [Atomic Vapor Laser Isotope Separation (AVLIS) Program

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

  8. MACCS2/Deposition Velocity Workshop

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Chief of Nuclear Safety hosted a MACCS2/Deposition Velocity Workshop on June 5-6, 2012, in Germantown, Maryland. Approximately 70 participants attended. The purpose of...

  9. Chemical enhancement of surface deposition

    DOE Patents [OSTI]

    Patch, Keith D.; Morgan, Dean T.

    1997-07-29

    A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.

  10. Chemical enhancement of surface deposition

    DOE Patents [OSTI]

    Patch, K.D.; Morgan, D.T.

    1997-07-29

    A method and apparatus are disclosed for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector. 16 figs.

  11. COMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A

    Office of Scientific and Technical Information (OSTI)

    COMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A T T E L L E M E M O R I A L I N S T I T U T E DISCLAIMER This report was prepared as an account of work sponsored by an ...

  12. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  13. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R. K.; Im, K. H.

    1996-01-01

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  14. Validation of TES Temperature and Water Vapor Retrievals with ARM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations Validation of TES Temperature and Water Vapor Retrievals with ARM Observations Cady-Pereira, Karen Atmospheric and Environmental Research, Inc. Shephard, Mark Atmospheric and Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Mlawer, Eli Atmospheric & Environmental Research, Inc. Turner, David University of Wisconsin-Madison Category: Atmospheric State and Surface The primary objective of the TES (Tropospheric Emission Spectrometer)

  15. Passivation layer on polyimide deposited by combined plasma immersion ion implantation and deposition and cathodic vacuum arc technique

    SciTech Connect (OSTI)

    Han, Z. J.; Tay, B. K.; Sze, J. Y.; Ha, P. C. T.

    2007-05-15

    A thin passivation layer of aluminum oxide was deposited on polyimide by using the combined plasma immersion ion implantation and deposition (PIII and D) and cathodic vacuum arc technique. X-ray photoelectron spectroscopy C 1s spectra showed that the carbonyl bond (C=O) and ether group (C-O-C and C-N-C) presented in pristine polyimide were damaged by implantation of aluminum ions and deposition of an aluminum oxide passivation layer. O 1s and Al 2p spectra confirmed the formation of a thin aluminum oxide passivation layer. This passivation layer can be implemented in aerospace engineering where polyimide may suffer degradation from fast atomic oxygen in the low-earth-orbit environment. To test the protection of this passivation layer to energetic oxygen ions, a plasma-enhanced chemical vapor deposition system was used to simulate the oxygen-ion irradiation, and the results showed that a higher weight occurred for passivated samples compared to pristine ones. X-ray diffraction showed that Al peaks were presented on the surface region, but no aluminum oxide peak was detected. The authors then concluded that Al clusters were formed in polyimide besides aluminum oxide, which was in an x-ray amorphous state. Furthermore, contact-angle measurements showed a reduced contact angle for passivated polyimide from a pristine value of 78 deg. to 20 deg. by using deionized water. Several discussions have been made on the surface chemical and structural property changes by using the combined PIII and D and cathodic vacuum arc technique.

  16. Deposition > Complex Oxides > Research > The Energy Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Nanoparticles Nanostructured Systems Deposition Deposition Veeco GEN10 MBE system dedicated to the growth of oxide heterostructures being installed in Duffield Lab at...

  17. Methods of electrophoretic deposition for functionally graded...

    Office of Scientific and Technical Information (OSTI)

    Methods of electrophoretic deposition for functionally graded porous nanostructures and ... and depositing the material onto surfaces of the particles of the impurity to form ...

  18. Pore Scale Modeling of the Reactive Transport of Chromium in the Cathode of a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.; Amon, Cristina

    2011-01-01

    We present a pore scale model of a solid oxide fuel cell (SOFC) cathode. Volatile chromium species are known to migrate from the current collector of the SOFC into the cathode where over time they decrease the voltage output of the fuel cell. A pore scale model is used to investigate the reactive transport of chromium species in the cathode and to study the driving forces of chromium poisoning. A multi-scale modeling approach is proposed which uses a cell level model of the cathode, air channel and current collector to determine the boundary conditions for a pore scale model of a section of the cathode. The pore scale model uses a discrete representation of the cathode to explicitly model the surface reactions of oxygen and chromium with a cathode material. The pore scale model is used to study the reaction mechanisms of chromium by considering the effects of reaction rates, diffusion coefficients, chromium vaporization, and oxygen consumption on chromiums deposition in the cathode. The study shows that chromium poisoning is most significantly affected by the chromium reaction rates in the cathode and that the reaction rates are a function of the local current density in the cathode.

  19. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  20. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum...

    Office of Scientific and Technical Information (OSTI)

    vapor pressures at the U.S. Strategic Petroleum Reserve. Citation Details In-Document Search Title: Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve. ...

  1. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum...

    Office of Scientific and Technical Information (OSTI)

    Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve. Citation Details In-Document Search Title: Analysis of crude oil vapor pressures at the U.S. ...

  2. Technology Solutions Case Study: Moisture Durability of Vapor Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  3. The role of polymer formation during vapor phase lubrication of silicon.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect The role of polymer formation during vapor phase lubrication of silicon. Citation Details In-Document Search Title: The role of polymer formation during vapor phase lubrication of silicon. The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. With a sufficient concentration of pentanol vapor present, sliding of a silica ball on an oxidized silicon wafer can proceed with no measurable wear. The initial results of time-of-flight

  4. Career Map: Transportation Worker

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Transportation Worker positions.

  5. RECOMMENDED TRITIUM OXIDE DEPOSITION VELOCITY FOR USE IN SAVANNAH RIVER SITE SAFETY ANALYSES

    SciTech Connect (OSTI)

    Lee, P.; Murphy, C.; Viner, B.; Hunter, C.; Jannik, T.

    2012-04-03

    The Defense Nuclear Facilities Safety Board (DNFSB) has recently questioned the appropriate value for tritium deposition velocity used in the MELCOR Accident Consequence Code System Ver. 2 (Chanin and Young 1998) code when estimating bounding dose (95th percentile) for safety analysis (DNFSB 2011). The purpose of this paper is to provide appropriate, defensible values of the tritium deposition velocity for use in Savannah River Site (SRS) safety analyses. To accomplish this, consideration must be given to the re-emission of tritium after deposition. Approximately 85% of the surface area of the SRS is forested. The majority of the forests are pine plantations, 68%. The remaining forest area is 6% mixed pine and hardwood and 26% swamp hardwood. Most of the path from potential release points to the site boundary is through forested land. A search of published studies indicate daylight, tritiated water (HTO) vapor deposition velocities in forest vegetation can range from 0.07 to 2.8 cm/s. Analysis of the results of studies done on an SRS pine plantation and climatological data from the SRS meteorological network indicate that the average deposition velocity during daylight periods is around 0.42 cm/s. The minimum deposition velocity was determined to be about 0.1 cm/s, which is the recommended bounding value. Deposition velocity and residence time (half-life) of HTO in vegetation are related by the leaf area and leaf water volume in the forest. For the characteristics of the pine plantation at SRS the residence time corresponding to the average, daylight deposition velocity is 0.4 hours. The residence time corresponding to the night-time deposition velocity of 0.1 cm/s is around 2 hours. A simple dispersion model which accounts for deposition and re-emission of HTO vapor was used to evaluate the impact on exposure to the maximally exposed offsite individual (MOI) at the SRS boundary (Viner 2012). Under conditions that produce the bounding, 95th percentile MOI exposure, i.e., low wind speed, weak turbulence, night, low deposition velocity, the effect of deposition and re-emission on MOI exposure was found to be very small. The exposure over the two hour period following arrival of the plume was found to be decreased by less than 0.05 %. Furthermore the sensitivity to deposition velocity was low. Increasing deposition velocity to 0.5 cm/s reduced exposure to 0.3 %. After a 24 hour period, an MOI would have been exposed to all of the released material. Based on the low sensitivity of MOI exposure to the value of deposition velocity when re-emission is considered, it is appropriately conservative to use a 0.0 cm/s effective deposition velocity for safety analysis in the MACCS2 code.

  6. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  7. NREL: Transportation Research - Transportation Deployment Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Deployment Support Photo of a car parked in front of a monument. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from Julie Sutor, NREL NREL's transportation deployment team works with vehicle fleets, fuel providers, and other transportation stakeholders to help deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce emissions and petroleum dependence. In

  8. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers March 2016 Issue Power Electronics and Thermal Management Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives.

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  10. NREL: Transportation Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and deployment (RD&D) activities, including work on vehicles and fuels. Hydrogen and Fuel Cells News Find news stories that highlight NREL's hydrogen RD&D activities, including work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and

  11. Numerical analysis of a mixture of Ar/NH{sub 3} microwave plasma chemical vapor deposition reactor

    SciTech Connect (OSTI)

    Li Zhi [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); Zhao Zhen [Chemistry Department, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Physical Science and Technical College, Dalian University, Dalian 116622 (China)

    2012-06-01

    A two-dimensional fluid model has been used to investigate the properties of plasma in Ar/NH{sub 3} microwave electron cyclotron resonance discharge at low pressure. The electromagnetic field model solved by the three-dimensional Simpson method is coupled to a fluid plasma model. The finite difference method was employed to discrete the governing equations. 40 species (neutrals, radicals, ions, and electrons) are consisted in the model. In total, 75 electron-neutral, 43 electron-ion, 167 neutral-neutral, 129 ion-neutral, 28 ion-ion, and 90 3-body reactions are used in the model. According to the simulation, the distribution of the densities of the considered plasma species has been showed and the mechanisms of their variations have been discussed. It is found that the main neutrals (Ar*, Ar**, NH{sub 3}{sup *}, NH, H{sub 2}, NH{sub 2}, H, and N{sub 2}) are present at high densities in Ar/NH{sub 3} microwave electron cyclotron resonance discharge when the mixing ratio of Ar/NH{sub 3} is 1:1 at 20 Pa. The density of NH is more than that of NH{sub 2} atom. And NH{sub 3}{sup +} are the most important ammonia ions. But the uniformity of the space distribution of NH{sub 3}{sup +} is lower than the other ammonia ions.

  12. Process Optimization for High Efficiency Heterojunction c-Si Solar Cells Fabrication Using Hot-Wire Chemical Vapor Deposition: Preprint

    SciTech Connect (OSTI)

    Ai, Y.; Yuan, H. C.; Page, M.; Nemeth, W.; Roybal, L.; Wang, Q.

    2012-06-01

    The researchers extensively studied the effects of annealing or thermal history of cell process on the minority carrier lifetimes of FZ n-type c-Si wafers with various i-layer thicknesses from 5 to 60 nm, substrate temperatures from 100 to 350 degrees C, doped layers both p- and n-types, and transparent conducting oxide (TCO).

  13. Heterogeneous nucleation of naphthalene vapor on water surface

    SciTech Connect (OSTI)

    Smolik, J.; Schwarz, J.

    1997-01-15

    Transfer processes between drops and gas play an important role in many natural and industrial processes, as absorption of gaseous pollutants by water drops in the atmosphere, combustion of fuel droplets, spray drying, synthesis of nanopowders, wet-dry desulfurization or extinguishing of hot combustion gases. The evaporation of a water drop into a ternary gaseous mixture of air, steam, and naphthalene vapor was investigated. The experimental results were compared with a theoretical prediction based on a numerical solution of coupled boundary layer equations for heat and mass transfer from a drop moving in ternary gas. In the experiments the naphthalene vapor condensed on the water drop as a supercooled liquid even at temperatures far below the melting point of naphthalene. The condensation on drop surface is discussed in terms of classical theory of heterogeneous nucleation on smooth surfaces.

  14. Piston pump and method of reducing vapor lock

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Harvey, Michael N.

    2001-01-30

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  15. Piston pump and method of reducing vapor lock

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Harvey, Michael N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  16. Electromagnetically induced transparency in paraffin-coated vapor cells

    SciTech Connect (OSTI)

    Klein, M.; Hohensee, M.; Walsworth, R. L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Phillips, D. F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)

    2011-01-15

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend ''bright'' and ''dark'' time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  17. Continuous production of nanostructured particles using spatial atomic layer deposition

    SciTech Connect (OSTI)

    Ommen, J. Ruud van Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis

    2015-03-15

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ?1?nm diameter are deposited onto titania (TiO{sub 2}) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.120.31?wt. % of Pt) at a rate of about 1?g min{sup ?1}. Tuning the precursor injection velocity (1040?m s{sup ?1}) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100?C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of coreshell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications.

  18. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOE Patents [OSTI]

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  19. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  20. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.