National Library of Energy BETA

Sample records for vapor mixing ratio

  1. Tower Water-Vapor Mixing Ratio

    SciTech Connect (OSTI)

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  2. Tower Water-Vapor Mixing Ratio (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Tower Water-Vapor Mixing Ratio Citation Details In-Document Search Title: Tower Water-Vapor Mixing Ratio The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added ...

  3. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  4. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  5. CO (Carbon Monoxide Mixing Ratio System) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: CO (Carbon Monoxide Mixing Ratio System) Handbook Citation Details In-Document Search Title: CO (Carbon Monoxide Mixing Ratio System) Handbook The main function of ...

  6. CO (Carbon Monoxide Mixing Ratio System) Handbook

    SciTech Connect (OSTI)

    Biraud, S

    2011-02-23

    The main function of the CO instrument is to provide continuous accurate measurements of carbon monoxide mixing ratio at the ARM SGP Central Facility (CF) 60-meter tower (36.607 °N, 97.489 °W, 314 meters above sea level). The essential feature of the control and data acquisition system is to record signals from a Thermo Electron 48C and periodically calibrate out zero and span drifts in the instrument using the combination of a CO scrubber and two concentrations of span gas (100 and 300 ppb CO in air). The system was deployed on May 25, 2005.

  7. Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers

    SciTech Connect (OSTI)

    Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan

    2014-10-08

    The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program’s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.

  8. Vertical Variability of Aerosols and Water Vapor Over the Southern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains R. A. ... Abstract We use Raman lidar profiles of water vapor mixing ratio, relative humidity, ...

  9. Film condensation of saturated and superheated vapors along isothermal vertical surfaces in mixed convection

    SciTech Connect (OSTI)

    Winkler, C.M.; Chen, T.S.; Minkowycz, W.J.

    1999-09-01

    An analysis for condensation from an isothermal vertical flat plate in mixed convection is reported. The entire mixed convection regime is divided into two regions. One region covers the forced-convection-dominated regime, and the other covers the free-convection-dominated regime. The governing system of equations is first transformed into a dimensionless form by the nonsimilar transformation, separately for each regime, and then solved using the local nonsimilarity method along with a finite difference scheme. Two nonsimilarity parameters are introduced. The parameter {xi}{sub f} = Gr{sub x}/Re{sub x}{sup 2} characterizes the effect of buoyancy force on forced convection, while the parameter {xi}{sub n} = Re{sub x}/Gr{sub x}{sup 1/2} characterizes the effect of forced flow on free convection. Numerical results for pure steam and refrigerant R-134a are presented for both saturated and superheated cases. It is found that the buoyancy force significantly increases the wall shear stress and condensate mass flux. To a lesser degree, the buoyancy force also increases the wall heat flux. Superheating is found to have an insignificant effect on wall heat flux for a pure vapor.

  10. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect (OSTI)

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  11. DOE/SC-ARM/TR-128 Tower Water-Vapor Mixing Ratio Value-Added

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the U.S. Department of Energy, Office of Science, Office ... 11 8.0 VAP Specific Glossary and Acronyms......the Temperature, Humidity, Wind, and Pressure System ...

  12. O/M RATIO MEASUREMENT IN PURE AND MIXED OXIDE FULES - WHERE ARE WE NOW?

    SciTech Connect (OSTI)

    J. RUBIN; ET AL

    2000-12-01

    The oxygen-to-metal (O/M) ratio is one of the most critical parameters of nuclear fuel fabrication, and its measurement is closely monitored for manufacturing process control and to ensure the service behavior of the final product. Thermogravimetry is the most widely used method, the procedure for which has remained largely unchanged since its development some thirty years ago. It was not clear to us, however, that this method is still the optimum one in light of advances in instrumentation, and in the current regulatory environment, particularly with regard to waste management and disposal. As part of the MOX fuel fabrication program at Los Alamos, we conducted a comprehensive review of methods for O/M measurements in UO{sub 2}, PuO{sub 2} and mixed oxide fuels for thermal reactors. A concerted effort was made to access information not available in the open literature. We identified approximately thirty five experimental methods that (a) have been developed with the intent of measuring O/M, (b) provided O/M indirectly by suitable reduction of the measured data, or (c) could provide O/M data with suitable data reduction or when combined with other methods. We will discuss the relative strengths and weaknesses of these methods in their application to current routine and small-lot production environment.

  13. SEAMIST{trademark} in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration program: Final report

    SciTech Connect (OSTI)

    Williams, C.; Lowry, W.; Cremer, D.; Dunn, S.D.

    1995-09-01

    The Mixed Waste Landfill Integrated Demonstration was tasked with demonstrating innovative technologies for the cleanup of chemical and mixed waste landfills that are representive of sites occurring throughout the DOE complex and the nation. The SEAMIST{trademark} inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling, pressure measurement, permeability measurement, sensor integration demonstrations, and borehole lining. Several instruments were deployed inside the SEAMIST{trademark}-lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. Recent activities included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST{trademark} system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system that allows easy emplacement and removal. Standard SEAMIST{trademark} vapor sampling systems were also integrated with state-of-the-art volatile organic compound analysis technologies. The results and status of these demonstration tests are presented.

  14. The E2/M1 mixing ratio in the excitation of the {Delta} from polarized photo-reactions

    SciTech Connect (OSTI)

    The LEGS Collaboration

    1993-12-01

    In constituent quark models, a tensor interaction, mixing quark spins with their relative motion, is introduced to reproduce the observed baryon spectrum. This has a consequence completely analogous to the nuclear tensor force between the n and p in deuterium. A D state component is mixed into what would otherwise be a purely S-wave object. The D-wave component breaks spherical symmetry, resulting in a non-vanishing matrix element for the nucleon and a static quadrupole moment and deformation for its first excited state, the {Delta} resonance, at {approximately}325 MeV. The magnitude and sign of this D-state component are quite sensitive to the internal structure of the proton and have been of great interest in recent years. The intrinsic deformation of the spin 1/2 nucleon cannot be observed directly; it must be inferred from transition amplitudes such as N {yields} {Delta}. In a spherical bag model, the {Delta} is viewed as a pure quark-spin-flip transition proceeding only through M1 excitation. If there are D-state admixtures in the ground state of the nucleon and/or {Delta}, quadrupole excitation, in addition to spin-flip M1, is also allowed. The problem is to evaluate the relative magnitude of this E2 excitation in the presence of the dominant M1 transition. A variety of models predict this mixing ratio to be quite small, anywhere from {minus}0.9% to {minus}6%, so that a high degree of precision is demanded of experiment.

  15. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  16. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; et al

    2016-04-25

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotopemore » observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from –40.2 to –15.9 ‰ and δ2Hv ranged from –278.7 to –113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol–1) indicate that regional

  17. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  18. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  19. Control of morphology and function of low band gap polymer bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing.

    SciTech Connect (OSTI)

    Chen, Huipeng; Hsiao, Yu-Che; Dadmun, Mark D

    2014-01-01

    Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.

  20. Control of morphology and function of low band gap polymer-bis-fullerene mixed heterojunctions in organic photovoltaics with selection solvent vapor annealing

    SciTech Connect (OSTI)

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin; Dadmun, Mark D

    2014-01-01

    Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.

  1. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  2. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moisture Control Vapor Barriers or Vapor Diffusion Retarders Vapor Barriers or Vapor ... can be part of an overall moisture control strategy for your home. | Photo courtesy ...

  3. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS Citation Details In-Document Search Title: VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY ...

  4. High bandwidth vapor density diagnostic system

    DOE Patents [OSTI]

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  5. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Water Vapor Experiment Concludes The AIRS (atmospheric infrared sounder) Water Vapor Experiment - Ground (AWEX-G) intensive operations period (IOP) at the SGP central facility ...

  6. Process for recovering organic vapors from air

    DOE Patents [OSTI]

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  7. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  8. Thin films of mixed metal compounds

    SciTech Connect (OSTI)

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  9. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  10. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  11. ARM Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Water Vapor IOP The SGP CART site will host the third ARM water vapor IOP on September 18-October 8, 2000. The CART site is home to a powerful array of instruments capable of ...

  12. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value...

    Office of Scientific and Technical Information (OSTI)

    G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product Citation Details In-Document Search Title: G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) ...

  13. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS Citation Details In-Document Search Title: VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS You are ...

  14. LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS

    SciTech Connect (OSTI)

    BAKER, D.M.

    2004-08-03

    This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

  15. Combustion chamber and thermal vapor stream producing apparatus and method

    DOE Patents [OSTI]

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  16. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Moisture Control » Vapor Barriers or Vapor Diffusion Retarders Vapor Barriers or Vapor Diffusion Retarders Vapor diffusion retarders installed in a crawlspace can be part of an overall moisture control strategy for your home. | Photo courtesy of Dennis Schroeder, NREL. Vapor diffusion retarders installed in a crawlspace can be part of an overall moisture control strategy for your home. | Photo courtesy of Dennis Schroeder, NREL. In most U.S. climates, vapor barriers, or -- more

  17. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  18. ARM - Water Vapor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, ... FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Water ...

  19. Vapor Pressures and Heats of Vaporization of Primary Coal Tars

    Office of Scientific and Technical Information (OSTI)

    ... Therefore, future research could be directed at measuring the vapor pressures for the ... The results from the current work show that measuring the vapor pressures of complicated ...

  20. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  1. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOE Patents [OSTI]

    O'Brien, Kevin C.; Letts, Stephan A.; Spadaccini, Christopher M.; Morse, Jeffrey C.; Buckley, Steven R.; Fischer, Larry E.; Wilson, Keith B.

    2012-01-24

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  2. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOE Patents [OSTI]

    O'Brien, Kevin C.; Letts, Stephan A.; Spadaccini, Christopher M.; Morse, Jeffrey C.; Buckley, Steven R.; Fischer, Larry E.; Wilson, Keith B.

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  3. Thermodynamic analysis of cascade microcryocoolers with low pressure ratios

    SciTech Connect (OSTI)

    Radebaugh, Ray

    2014-01-29

    The vapor-compression cycle for refrigeration near ambient temperature achieves high efficiency because the isenthalpic expansion of the condensed liquid is a rather efficient process. However, temperatures are limited to about 200 K with a single-stage system. Temperatures down to 77 K are possible with many stages. In the case of microcryocoolers using microcompressors, pressure ratios are usually limited to about 6 or less. As a result, even more stages are required to reach 77 K. If the microcompressors can be fabricated with low-cost wafer-level techniques, then the use of many stages with separate compressors may become a viable option for achieving temperatures of 77 K with high efficiency. We analyze the ideal thermodynamic efficiency of a cascade Joule-Thomson system for various temperatures down to 77 K and with low pressure ratios. About nine stages are required for 77 K, but fewer stages are also analyzed for operation at higher temperatures. For 77 K, an ideal second-law efficiency of 83 % of Carnot is possible with perfect recuperative heat exchangers and 65 % of Carnot is possible with no recuperative heat exchangers. The results are compared with calculated efficiencies in mixed-refrigerant cryocoolers over the range of 77 K to 200 K. Refrigeration at intermediate temperatures is also available. The use of single-component fluids in each of the stages is expected to eliminate the problem of pulsating flow and temperature oscillations experienced in microcryocoolers using mixed refrigerants.

  4. Analysis of organic vapors with laser induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  5. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  6. Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion

    SciTech Connect (OSTI)

    Severinghaus, J.P.; Bender, M.L. [Univ. of Rhode Island, RI (United States)] [Univ. of Rhode Island, RI (United States); Keeling, R.F. [Scripps Institution of Oceanography, LaJolla, CA (United States)] [Scripps Institution of Oceanography, LaJolla, CA (United States); Broecker, W.S. [Lamont-Doherty Earth Observatory, Palisades, NY (United States)] [Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    1996-03-01

    Air sampled from the moist unsaturated zone in a sand dune exhibits depletion in the heavy isotopes of N{sub 2} and O{sub 2}. We propose that the depletion is caused by a diffusive flux of water vapor out of the dune, which sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N{sub 2} and O{sub 2} diffuse back more slowly, resulting in a steady-state depletion of the heavy isotopesin the dune interior. We predict the effect`s magnitude with molecular diffusion theory and reproduce it in a laboratory simulation, finding good agreement between field, theory, and lab. The magnitude of the effect is governed by the ratio of the binary diffusivities against water vapor of a pair of gases, and increases {approximately} linearly with the difference between the water vapor mole fraction of the site and the advectively mixed reservoir with which it is in diffusive contact (in most cases the atmosphere). 32 refs., 1 fig., 3 tabs.

  7. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  8. Vapor concentration monitor

    DOE Patents [OSTI]

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  9. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Vapor Permeable Insulating Sheathing PROJECT INFORMATION Construction: Existing homes with vapor open wall assemblies Type: Residential Climate Zones: All PERFORMANCE DATA Insulation Ratio The R-value ratio of exterior to interior insulation (e.g., R-15 exterior insulation on R-11 cavity insulation has a ratio of 0.58). This variable controls sheathing temperature. Vapor Permeable Insulation An insulation with vapor permeance greater than five U.S. perms (e.g., rigid mineral fiber

  10. Solvent vapor collector

    DOE Patents [OSTI]

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  11. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Mercury Vapor page? For detailed information on Mercury Vapor as...

  12. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  13. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R.

    2016-05-03

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  14. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    SciTech Connect (OSTI)

    Yan, Yaqi; Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049; Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 ; Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia; Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 ; Zhang, Yanpeng; Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  15. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan; Hassani, Vahab

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  16. Filter vapor trap

    DOE Patents [OSTI]

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  17. The vapor pressures of explosives

    SciTech Connect (OSTI)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 C.

  18. Transparent Metal-Organic Framework/Polymer Mixed Matrix Membranes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparent Metal-Organic FrameworkPolymer Mixed Matrix Membranes as Water Vapor Barriers Previous Next List Bae, Youn Jue; Cho, Eun Seon; Qu, Fen; Sun, Daniel T.; Williams, ...

  19. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  20. Vaporization of zinc from scrap

    SciTech Connect (OSTI)

    Ozturk, B.; Fruehan, R.J.

    1996-12-31

    The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

  1. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ?10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  2. THERMALLY OPERATED VAPOR VALVE

    DOE Patents [OSTI]

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  3. Mixing in polymeric microfluidic devices.

    SciTech Connect (OSTI)

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H. (University of Colorado at Boulder, Boulder, CO); Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  4. Vapor etching of nuclear tracks in dielectric materials

    DOE Patents [OSTI]

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  5. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique.

  6. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  7. ARM - VAP Product - 1twrmr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ( time ) Atmospheric moisture Water vapor mixing ratio at 25 m from SE elevator gkg mixingratio25mSE ( time ) Atmospheric moisture Water vapor mixing ratio at 25...

  8. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  9. Direct Simulation of Fully Resolved Vaporizing Droplets in a Turbulent Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Direct Simulation of Fully Resolved Vaporizing Droplets in a Turbulent Flow PI Name: Said Elghobashi PI Email: selghoba@uci.edu Institution: University of California, Irvine Allocation Program: INCITE Allocation Hours at ALCF: 20,000,000 Year: 2012 Research Domain: Engineering This project will enhance the understanding of liquid droplet vaporization and mixing processes in a turbulent flow. All liquid fuel combustion devices, mobile or stationary, use

  10. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  11. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  12. ARM - Measurement - Isotope ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric State, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  13. Vapor generation methods for explosives detection research

    SciTech Connect (OSTI)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  14. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  15. An optical water vapor sensor for unmanned aerial vehicles (Technical...

    Office of Scientific and Technical Information (OSTI)

    An optical water vapor sensor for unmanned aerial vehicles Citation Details In-Document Search Title: An optical water vapor sensor for unmanned aerial vehicles The water vapor ...

  16. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  17. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  18. Piston pump and method of reducing vapor lock

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Harvey, Michael N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  19. Piston pump and method of reducing vapor lock

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Harvey, Michael N.

    2001-01-30

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  20. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  1. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP ... Responses to Site Operations Questionnaires for Water Vapor IOP Instrument Name Instrument ...

  2. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K.

    1991-01-01

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  3. Vapor Retarder Classification - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vapor Retarder Classification - Building America Top Innovation Vapor Retarder Classification - Building America Top Innovation Photo of a vapor retarder classification. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. This Top Innovation profile describes Building America research that established vapor retarder classifications and appropriate applications that has been instrumental in the market

  4. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  5. Means and method for vapor generation

    DOE Patents [OSTI]

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  6. Means and method for vapor generation

    DOE Patents [OSTI]

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  7. Micellar compositions in mixed surfactant solutions

    SciTech Connect (OSTI)

    Zhi-Jian Yu ); Guo-Xi Zhao )

    1993-03-15

    Micellization of aqueous mixtures of alkyltriethylammonium bromide and sodium alkylsulfate in the presence of excess sodium bromide has been studied by surface tension measurements. The molecular ratio of the cationic surfactant to the anionic surfactant in the mixed micelles is deduced by applying the Gibbs-Duhem equation to the measured critical micelle concentrations. Approximately equimolar amounts of the surfactant components in the mixed micelles over a wide range of aqueous mixing ratio are found in the systems of components similar in chain lengths. Large deviations of the surfactant molecular ratio deduced by the regular solution approach (Rubingh's model) when compared with that deduced by this approach are discovered, which suggests a limitation in applying the regular solution approach to mixed systems of cationic/anionic surfactants.

  8. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  9. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  10. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  11. Non-Vapor Compression HVAC Technologies Report

    Broader source: Energy.gov [DOE]

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. The Building Technologies Office is evaluating low-global warming potential (GWP) alternatives to vapor-compression technologies.

  12. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  13. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G.; Miller, John L.

    1993-01-01

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  14. Novel methods of copper vapor laser excitation

    SciTech Connect (OSTI)

    McColl, W.B.; Ching, H.; Bosch, R.; Brake, M.; Gilgenbach, R.

    1990-12-31

    Microwave and intense electron beam excitation of copper vapor are being investigated to be used in copper vapor lasers for isotope separation. Both methods use copper chloride vapor by heating copper chloride. Helium was used as the buffer gas at 2 to 100 torr. In the microwave system, intense copperlines at 510 nm and 578 nm were observed. Initial electron beam results indicate that light emission follows the beam current.

  15. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsWater Vapor IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP 2000.09.18 - 2000.10.08 Lead Scientist : Henry Revercomb For data sets, see below. Abstract Scientific hypothesis: 1. Microwave radiometer (MWR) observations of the 22 GHz water vapor line can accurately constrain the total column amount of water vapor (assuming a calibration accuracy of 0.5 degC or better, which

  16. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  17. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    SciTech Connect (OSTI)

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  18. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; et al

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  19. Thermo-Physical Properties and Equilibrium Vapor-Composition of Lithium Fluoride-Beryllium Fluoride (2LiF/BeF{sub 2}) Molten Salt

    SciTech Connect (OSTI)

    Zaghloul, Mofreh R.; Sze, D.K.; Raffray, A. Rene

    2003-09-15

    An assessment of Flibe thermo-physical properties relevant to the prompt x-rays ablation of the liquid wall is presented with emphasis given to the equilibrium vapor composition and vapor pressure. The available data sets for Flibe thermo-physical properties, which cover a very narrow range of temperature have been extended and adjusted to cover the whole range of the liquid phase and to assure consistency with the estimated critical constants. Investigation of the equilibrium vapor composition showed a contradiction with previously published results regarding the stability of the mixed dimmer LiBeF{sub 3}. New results for the vapor composition and total vapor pressure of Flibe also have been presented, compared to previous results, and used to calculate the temperature-dependent latent heat of vaporization.

  20. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect (OSTI)

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  1. Sylgard Mixing Study

    SciTech Connect (OSTI)

    Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodwin, Lynne Alese [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-08-22

    Sylgard 184 and Sylgard 186 silicone elastomers form Dow Corning are used as potting agents across the Nuclear Weapons Complex. A standardized mixing procedure is required for filled versions of these products. The present study is a follow-up to a mixing study performed by MST-7 which established the best mixing procedure to use when adding filler to either 184 or 186 base resins. The most effective and consistent method of mixing resin and curing agent for three modified silicone elastomer recipes is outlined in this report. For each recipe, sample size, mixing type, and mixing time was varied over 10 separate runs. The results show that the THINKY Mixer gives reliable mixing over varying batch sizes and mixing times. Hand Mixing can give improved mixing, as indicated by reduced initial viscosity; however, this method is not consistent.

  2. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

    1989-01-01

    Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

  3. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, L.D.; Cerni, T.A.

    1989-10-17

    Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

  4. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  5. Stacked vapor fed amtec modules

    DOE Patents [OSTI]

    Sievers, Robert K.

    1989-01-01

    The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

  6. Quantitative organic vapor-particle sampler

    DOE Patents [OSTI]

    Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  7. An application of oil vaporization evaluation methods

    SciTech Connect (OSTI)

    Fleckenstein, W.W. ); Bouck, L.S.; Hudgens, D. ); Querin, M. ); Williams, L. )

    1992-01-01

    This paper describes and quantifies the benefits of residual oil vaporization in an enhanced recovery gas injection project. Vaporized oil is recovered as natural gas liquid (NGL) when the injected gas is produced. In the reservoir application studied, 20% of the liquid hydrocarbons produced were being recovered as NGL. (VC)

  8. An application of oil vaporization evaluation methods

    SciTech Connect (OSTI)

    Fleckenstein, W.W.; Bouck, L.S.; Hudgens, D.; Querin, M.; Williams, L.

    1992-02-01

    This paper describes and quantifies the benefits of residual oil vaporization in an enhanced recovery gas injection project. Vaporized oil is recovered as natural gas liquid (NGL) when the injected gas is produced. In the reservoir application studied, 20% of the liquid hydrocarbons produced were being recovered as NGL. (VC)

  9. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  10. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  11. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  12. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOE Patents [OSTI]

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  13. Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures

    SciTech Connect (OSTI)

    Choi, Bum Ho Lee, Jong Ho

    2014-08-04

    We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10{sup −6} g/(m{sup 2} day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are free from intermixed interface defects effectively block water vapor permeation into active layer.

  14. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to...

  15. Mechanistic aspects of vapor phase lubrication of silicon. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Mechanistic aspects of vapor phase lubrication of silicon. Citation Details In-Document Search Title: Mechanistic aspects of vapor phase lubrication of silicon. No abstract ...

  16. Monitoring of Precipitable Water Vapor and Cloud Liquid Path...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave ... used to measure atmospheric precipitable water vapor (PWV) and cloud liquid path (CLP). ...

  17. GPS Water Vapor Projects Within the ARM Southern Great Plains...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GPS Water Vapor Projects Within the ARM Southern Great Plains Region J. Braun, T. Van ... and characterize the four-dimensional distribution of water vapor within the atmosphere. ...

  18. Raman Lidar Measurements of Aerosols and Water Vapor During the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. ... Marina, California Abstract Raman lidar water vapor and aerosol extinction profiles ...

  19. Synthesis of platinum single-crystal nanoparticles in water vapor...

    Office of Scientific and Technical Information (OSTI)

    of platinum single-crystal nanoparticles in water vapor Citation Details In-Document Search Title: Synthesis of platinum single-crystal nanoparticles in water vapor Authors: ...

  20. After More Than 20 Years Operating, Hanford's Soil Vapor Extraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wise, Juan Aguilar, Doug Rybarski, and Christina Agular. The soil vapor extraction trailer is shown near Hanfords Plutonium Finishing Plant. The soil vapor extraction...

  1. Mixing in astrophysics

    SciTech Connect (OSTI)

    Fryer, Christopher Lee

    2011-01-07

    Turbulent mixing plays a vital role in many fields in astronomy. Here I review a few of these sites, discuss the importance of this turbulent mixing and the techniques used by astrophysicists to solve these problems.

  2. Process for vaporizing a liquid hydrocarbon fuel

    DOE Patents [OSTI]

    Szydlowski, Donald F. (East Hartford, CT); Kuzminskas, Vaidotas (Glastonbury, CT); Bittner, Joseph E. (East Hartford, CT)

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  3. Diffusion-flame burning of fuel-vapor pockets in air

    SciTech Connect (OSTI)

    Fendell, F.E.; Bush, W.B.; Mitchell, J.A.; Fink, S.F. IV . Center for Propulsion Technology and Fluid Mechanics)

    1994-08-01

    The authors examine analytically, with numerical assistance, the unsteady, diffusively limited burnup of initially unmixed fuel vapor and gaseous oxidizer. They study three simple spherical geometries: (1) an initially uniform sphere of fuel vapor immersed in an unbounded expanse of oxidizer; (2) a variant on case 1 in which only a finite concentric annulus of enveloping oxidizer is available for the burning of the initially uniform sphere of fuel vapor; and (3) an impervious sphere, consisting initially of one uniform hemisphere of fuel vapor and one uniform hemisphere of oxidizer. Of particular interest is the time interval for the exhaustion of the lean reactant, as a function of the fuel-to-oxidizer stoichiometry and the sphere radius. The motivation for these studies is to ascertain the fate of inhomogeneous blobs that arise as a consequence of imperfect fuel/air mixing, e.g., in the context of a supersonic combustor. In such a context, an inhomogeneous blob of gaseous mixture, idealized to have the geometry of a sphere, is examined as a Lagrangian element, as it is convected downstream, without slip, by the surrounding gaseous flow. The longest time for diffusional burnup, for the spherically enclosed geometries, arises for the case in which the fuel vapor and oxidizer are present in stoichiometric proportion.

  4. Probe for measurement of velocity and density of vapor in vapor plume

    DOE Patents [OSTI]

    Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.

    1997-01-01

    A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.

  5. Probe for measurement of velocity and density of vapor in vapor plume

    DOE Patents [OSTI]

    Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.

    1997-03-11

    A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.

  6. Vapor purification with self-cleaning filter

    DOE Patents [OSTI]

    Josephson, Gary B.; Heath, William O.; Aardahl, Christopher L.

    2003-12-09

    A vapor filtration device including a first electrode, a second electrode, and a filter between the first and second electrodes is disclosed. The filter is formed of dielectric material and the device is operated by applying a first electric potential between the electrodes to polarize the dielectric material such that upon passing a vapor stream through the filter, particles from the vapor stream are deposited onto the filter. After depositing the particles a second higher voltage is applied between the electrodes to form a nonthermal plasma around the filter to vaporize the collected particles thereby cleaning the filter. The filter can be a packed bed or serpentine filter mat, and an optional upstream corona wire can be utilized to charge airborne particles prior to their deposition on the filter.

  7. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, Russell N.; Senum, Gunnar I.

    1981-01-01

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  8. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  9. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, R.N.; Senum, G.I.

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  10. Water vapor distribution in protoplanetary disks

    SciTech Connect (OSTI)

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  11. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  12. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  13. Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007

    SciTech Connect (OSTI)

    Atwater, H. A.

    2007-11-01

    This report investigated chemical and physical methods for Si surface passivation for application in crystalline Si and thin Si film photovoltaic devices. Overall, our efforts during the project were focused in three areas: i) synthesis of silicon nitride thin films with high hydrogen content by hot-wire chemical vapor deposition; ii) investigation of the role of hydrogen passivation of defects in crystalline Si and Si solar cells by out diffusion from hydrogenated silicon nitride films; iii) investigation of the growth kinetics and passivation of hydrogenated polycrystalline. Silicon nitride films were grown by hot-wire chemical vapor deposition and film properties have been characterized as a function of SiH4/NH3 flow ratio. It was demonstrated that hot-wire chemical vapor deposition leads to growth of SiNx films with controllable stoichiometry and hydrogen.

  14. Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final...

    Office of Scientific and Technical Information (OSTI)

    troposphere leads to large uncertainty in "top-down" estimates of regional land-atmosphere carbon exchange (i.e., estimates based on measurements of atmospheric CO2 mixing ratios. ...

  15. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    In January 1999, the Colorado Public Utility Commission (PUC) adopted regulations requiring the state's utilities to disclose information regarding their fuel mix to retail customers. Utilities are...

  16. Mixed Solvent Electrolyte Model

    Broader source: Energy.gov [DOE]

    With assistance from AMO, OLI Systems, Inc., developed the mixed-solvent electrolyte model, a comprehensive physical property package that can predict the properties of electrolyte systems ranging...

  17. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  18. Evaluation of aqueous cleaners as alternatives to vapor degreasing

    SciTech Connect (OSTI)

    Guidotti, R.A.; Schneider, T.W.; Frye, G.C.

    1996-02-01

    As part of the preparation process during assembly of thermally activated batteries, the stainless steel piece parts are normally cleaned by vapor degreasing with trichloroethylene. Severe restrictions on the use of chlorinated and fluorinated hydrocarbons in recent years prompted the evaluation of a number of aqueous cleaners as a replacement technology for this application. A total of seven commercial aqueous degreasers was evaluated in this study at several dilution ratios and temperatures. One organic cleaner was also examined under ambient conditions. The effectiveness of the cleaner was determined by the use of x-ray photoelectron spectroscopy (XPS), which is a surface analytical technique that is very sensitive to low levels of surface contaminants. A quartz-crystal microbalance (QCM) that is immersed in the cleaning bath was evaluated as a tool for monitoring the bath cleanliness. The best overall cleaning results were obtained with Micro, Impro-Clean 3800, and Sonicor cleaners.

  19. Vaporized alcohol fuel boosts engine efficiency

    SciTech Connect (OSTI)

    Hardenburg, H.O.; Bergmann, H.K.; Metsch, H.I.; Schaefer, A.J.

    1983-02-01

    An effort is being made at Daimler-Benz AG to utilize the special characteristics of vaporized methanol and ethanol in an alcohol-gas spark-ignited engine. Describes laboratory testing which demonstrates that waste heat recovery and very lean air/fuel mixtures improve the efficiency and economy of a spark-ignition engine running on alcohol vapors. Presents graph comparing performance and torque of the alcohol-gas and diesel engines. Finds that the fuel consumption of the methanol-fueled version approaches that of a diesel engine, with other advantages including low engine noise, good acceleration, and favorable exhaust emissions.

  20. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  1. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  2. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, Terry (Tracy, CA)

    1988-01-01

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  3. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  4. Method and Apparatus for Concentrating Vapors for Analysis

    DOE Patents [OSTI]

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2008-10-07

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  5. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S.; Dimenna, R.; Tamburello, D.

    2011-02-14

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in

  6. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect (OSTI)

    Medeiros Varzielas, I. de [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Fakultaet fuer Physik, Technische Universitaet Dortmund D-44221 Dortmund (Germany); Gonzalez Felipe, R. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1959-007 Lisboa (Portugal); Serodio, H. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  7. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  8. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Ruiz, L. Hildebrandt; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ionmoreintensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMSvacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  9. Nearly discontinuous chaotic mixing

    SciTech Connect (OSTI)

    Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyun K [STONYBROOK UNIV.; Yu, Yan [STONYBROOK UNIV.; Glimm, James G [STONYBROOK UNIV.

    2009-01-01

    A new scientific approach is presented for a broad class of chaotic problems involving a high degree of mixing over rapid time scales. Rayleigh-Taylor and Richtmyer-Meshkov unstable flows are typical of such problems. Microscopic mixing properties such as chemical reaction rates for turbulent mixtures can be obtained with feasible grid resolution. The essential dependence of (some) fluid mixing observables on transport phenomena is observed. This dependence includes numerical as well as physical transport and it includes laminar as well as turbulent transport. A new approach to the mathematical theory for the underlying equations is suggested.

  10. Mixing method and apparatus

    DOE Patents [OSTI]

    Green, Norman W.

    1982-06-15

    Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.

  11. High ratio recirculating gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F.

    1989-01-01

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

  12. High ratio recirculating gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  13. Vapor pressures of the polychlorinated naphthalenes

    SciTech Connect (OSTI)

    Lei, Y.D.; Shiu, W.Y.; Wania, F.

    1999-05-01

    The vapor pressures of the supercooled liquid P{sub L} for 17 polychlorinated naphthalene congeners were determined as a function of temperature with a gas chromatographic retention time technique. The method was calibrated with vapor pressure data for polychlorinated biphenyls (PCBs) which had been measured by other techniques. These data were employed to predict temperature-dependent vapor pressures for all polychlorinated naphthalenes (PCNs) from a regression with published retention time indices. Enthalpies of vaporization {Delta}{sub VAP}H and activity coefficients in 1-octanol were calculated for the PCNs and compared with those for polychlorinated biphenyls. Data analysis suggests that the dependence of P{sub L} and {Delta}{sub VAP}H on molecular size, as well as the partitioning behavior into 1-octanol of the PCNs, is very similar to that of coplanar PCBs, i.e., those congeners with no or only one chlorine substitution in the ortho positions. The affinity of these chemicals to 1-octanol increases with the degree of chlorination.

  14. Advancing Explosives Detection Capabilities: Vapor Detection

    SciTech Connect (OSTI)

    Atkinson, David

    2012-10-15

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  15. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  16. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  17. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    California's retail electricity suppliers must disclose to all customers the fuel mix used in the generation of electricity. Utilities must use a standard label created by the California Energy...

  18. Vapor Pressure and Molecular Composition of Vapors of the RbF...

    Office of Scientific and Technical Information (OSTI)

    in the vapor phase of the respective systems. Farther work on the NaF-ZrFsub 4 system points to the existence of the gaseous complex NaZrsub 2Fsub 9 rather than NaZrFsub ...

  19. Energy Balance Bowen Ratio System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Energy Balance Bowen Ratio System Estimates of surface energy fluxes are a primary product of the data collection systems at the ARM SGP CART site. Surface fluxes tell ...

  20. Mastering the Metabolic Mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mastering the Metabolic Mix 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Mastering the Metabolic Mix Through the discovery of natural tricks and the invention of new tactics, scientists are harnessing the power of RNA to manipulate gene expression in bacteria. March 8, 2016 Cliff Unkefer, Karissa Sanbonmatsu, and Scott Hennelly Los Alamos scientists Cliff Unkefer, Karissa Sanbonmatsu, and Scott Hennelly lead a larger team that is

  1. Stable Boundary Layer Education Field Campaign Summary

    Office of Scientific and Technical Information (OSTI)

    ... (derived from the temperature) and water vapor mixing ratio retrieved from the AERI ... The other panels show time- height cross sections of potential temperature, water vapor ...

  2. IMPROVED MAGNUS' FORM OF SATURATION VAPOR PRESSURE Oleg A. Alduchov...

    Office of Scientific and Technical Information (OSTI)

    We will show that two of the new formulations of vapor pressure over water and ice are ... The most precise formulation of vapor pressure over a plane surface of water was given by ...

  3. ARM: Microwave Water Radiometer (MWR): water liq. and vapor along...

    Office of Scientific and Technical Information (OSTI)

    Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) path Title: ARM: Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) ...

  4. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  5. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  6. Challenge in Urea Mixing Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project reviews existing urea mixing technologies for automobile applications and discusses some critical issues in urea mixing design using bench test experience.

  7. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and

  8. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13

  9. Community D Mixed/Pine Hardwood D Bottomland Hardwood Mixed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Mixed/Pine Hardwood D Bottomland Hardwood _ Mixed Swamp Forest Soils 540 Soils Soil Series and Phase DCh .OrC .Sh .Ta o 540 1080 Meters N A sc Figure 7-2. Plant communities and soils associated with the Mixed Swamp Forest Set-Aside Area. 7-7 Set-Aside 7: Mixed Swamp Forest

  10. Chemical vapor deposition of fluorinated polymers

    SciTech Connect (OSTI)

    Moore, J.A.; Lang, C.I.; Lu, T.M.; You, L.

    1993-12-31

    An overview of the authors` work directed toward the deposition of fluorinated polymers by condensation of thermally or photochemically generated intermediates directly from the vapor state will be presented. Previously known materials such as Teflon AF{reg_sign} and Parylene AF{sub 4} have been successfully deposited and are being evaluated for microelectronic application as on-chip dielectrics. A novel, one-step route to Parylene AF{sub 4} will be described which obviates the necessity of multistep organic synthesis to prepare precursors. A new, partially fluorinated parylene obtained from tetrafluoro-p-xylene will be described. It has also been observed that ultraviolet irradiation of the vapor of dimethyl tetrafluorobenzocyclobutene causes the deposition of an insoluble film which contains fluorine.

  11. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  12. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  13. Apparatus and method for photochemical vapor deposition

    DOE Patents [OSTI]

    Jackson, Scott C.; Rocheleau, Richard E.

    1987-03-31

    A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

  14. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  15. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, Terry W.; Ault, Earl R.; Moses, Edward I.

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  16. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  17. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  18. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  19. MixDown

    Energy Science and Technology Software Center (OSTI)

    2010-01-01

    MixDown is a meta-build tool that orchestrates and manages the building of multiple 3rd party libraries. It can manage the downloading, uncompressing, unpacking, patching, configuration, build, and installation of 3rd party libraries using a variety of configuration and build tools. As a meta-build tool, it relies on 3rd party tools such as GNU Autotools, make, Cmake, scons, etc. to actually confugure and build libraries. MixDown includes an extensive database of settings to be used formore » general machines and specific leadership class computing resources.« less

  20. Turbulence and Interfacial Mixing

    SciTech Connect (OSTI)

    Glimm, James; Li, Xiaolin

    2005-03-15

    The authors study mix from analytical and numerical points of view. These investigations are linked. The analytical studies (in addition to laboratory experiments) provide bench marks for the direct simulation of mix. However, direct simulation is too detailed to be useful and to expensive to be practical. They also consider averaged equations. Here the major issue is the validation of the closure assumptions. They appeal to the direct simulation methods for this step. They have collaborated with several NNSA teams; moreover, Stony Brook alumni (former students, faculty and research collaborators) presently hold staff positions in NNSA laboratories.

  1. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  2. Mixing It Up

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – A 150-foot-tall crane turns an eight-foot-diameter auger performing deep-soil mixing at the Paducah Gaseous Diffusion Plant’s southwest groundwater plume. More than 260 borings are being made to a depth of about 60 feet to remove a source of trichloroethene groundwater contamination.

  3. CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS

    SciTech Connect (OSTI)

    Visscher, Channon; Fegley, Bruce Jr.

    2013-04-10

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O{sub 2} at lower temperatures (<3000 K) and SiO, O{sub 2}, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O{sub 2}, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f{sub O{sub 2}}) values (and hence H{sub 2}O/H{sub 2} and CO{sub 2}/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f{sub O{sub 2}} values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.

  4. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    SciTech Connect (OSTI)

    Ong, Alison J.

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  5. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    SciTech Connect (OSTI)

    Ong, Alison

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  6. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  7. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  8. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  9. Vaporization and gasification of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Davies, H.S.; Garstang, J.H.; Timmins, C.

    1983-08-23

    Heavy hydrocarbon feedstocks, e.g. gas oils, are vaporized and subsequently gasified at high temperatures without pyrolytic degradation by first admixing the hydrocarbon with a hot gaseous reactant, e.g. product gas or steam, to bring the temperature of the mixture above that of the dew point of the hydrocarbon and thereafter raising the temperature of the mixture to above that at which pyrolysis of the hydrocarbon begins to be significant by admixture with further quantities of the reactant which are superheated thereby to bring the temperature of the resultant mixture to that required for effecting a catalytic gasification reaction.

  10. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  11. Mixed Acid Oxidation

    SciTech Connect (OSTI)

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  12. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  13. Method and apparatus for concentrating vapors for analysis

    DOE Patents [OSTI]

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2012-06-05

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  14. Mixing liquid holding tanks for uniform concentration

    SciTech Connect (OSTI)

    Sprouse, K.M.

    1988-01-01

    Achieving uniform concentration within liquid holding tanks can often times be a difficult task for the nuclear chemical process industry. This is due to the fact that nuclear criticality concerns require these tanks to be designed with high internal aspect ratios such that the free movement of fluid is greatly inhibited. To determine the mixing times required to achieve uniform concentrations within these tanks, an experimental program was conducted utilizing pencil tanks, double-pencil tanks, and annular tanks of varying geometries filled with salt-water solutions (simulant for nitric acid actinide solutions). Mixing was accomplished by air sparging and/or pump recirculation. Detailed fluid mechanic mixing models were developed --from first principles--to analyze and interpret the test results. These nondimensional models show the functionality of the concentration inhomogeneity (defined as the relative standard deviation of the true concentration within the tank) in relationship to the characteristic mixing time--among other variables. The results can be readily used to scale tank geometries to sizes other than those studied here.

  15. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  16. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  17. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S.; Krajicek, Richard W.

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  18. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    SciTech Connect (OSTI)

    Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

    2011-02-15

    Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

  19. Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...

    Open Energy Info (EERE)

    2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)...

  20. The role of polymer formation during vapor phase lubrication...

    Office of Scientific and Technical Information (OSTI)

    The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. ... The parent alcohol molecule pentanol, has molecular weight of 88amu, suggesting that ...

  1. Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...

    Open Energy Info (EERE)

    Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  2. Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Springs...

  3. Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration...

  4. Numerical modeling of water injection into vapor-dominatedgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs Citation Details In-Document Search Title: Numerical modeling of water injection ...

  5. New Vapor-Particle Separator Improves Understanding of Aircraft...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    separate volatile particles from condensible vapors in aircraft engine emissions. ... of the combustion process of modern jet engines and the formation process of ...

  6. Overview of the ARM/FIRE Water Vapor Experiment (AFWEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Experiment (AFWEX) D. C. Tobin, H. E. Revercomb, and D. D. Turner University of Wisconsin-Madison Madison, Wisconsin Introduction An overview of the ARMFIRE Water ...

  7. Posters Toward an Operational Water Vapor Remote Sensing System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Toward an Operational Water Vapor Remote Sensing System Using the Global ... T. Van Hove and C. Rocken University Navstar Consortium Boulder, Colorado Background Water ...

  8. Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location...

  9. Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  10. Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae...

  11. Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details...

  12. Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

  13. Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy...

    Open Energy Info (EERE)

    Medicine Lake Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration...

  14. Validation of TES Temperature and Water Vapor Retrievals with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The primary objective of the TES (Tropospheric Emission Spectrometer) instrument on the Aura spacecraft is the retrieval of trace gases, especially water vapor and ozone. The TES...

  15. Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Exploration Activity Details...

  16. PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stable Perovskite Solar Cells via Chemical Vapor Deposition PROJECT PROFILE: Stable ... would be suitable for a photovoltaic absorber in a single or multi-junction cell. ...

  17. Vapor and gas sampling of single-shell tank 241-S-103 using the in situ vapor sampling system

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1997-08-05

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-103. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the June 12, 1996 sampling of SST 241-S-103. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media.

  18. Vapor and gas sampling of the single-shell tank 241-S-101 using the in situ vapor sampling system

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1997-08-05

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-101. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the June 6, 1996 sampling of SST 241-S-101. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media.

  19. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  20. Magnetically coupled system for mixing

    SciTech Connect (OSTI)

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  1. Variable ratio regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O.

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  2. Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-11-01

    This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

  3. Weather-Corrected Performance Ratio

    SciTech Connect (OSTI)

    Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

    2013-04-01

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

  4. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H.; Siegal, M.P.; Provencio, P.N.

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  5. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source

    SciTech Connect (OSTI)

    Jana, B.; Majumder, A.; Thakur, K. B.; Das, A. K.

    2013-10-15

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  6. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  7. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  8. Vapor pressure osmometry studies on buckminsterfullerene

    SciTech Connect (OSTI)

    Honeychuck, R.V.; Cruger, T.W.; Milliken, J.

    1993-12-31

    Vapor pressure osmometry has been employed in studies of solutions of buckminsterfullerene (C{sub 60}. Two aromatic solvents were selected in order to obtain solutions which would be as concentrated as possible. The number-average molecular weights M{sub n} of C{sub 60} determined by analysis of the data are 930 {+-} 5 g mol{sup {minus}1} in chlorobenzene and 700 {+-} 10 g mol{sup {minus}1} in toluene), so the M{sub n} obtained in chlorobenzene is unexpected. Both determinations were performed with the same batch of C{sub 60}, which was processed to yield material of very high purity. The amount of interstitial N{sub 2} was determined using an appropriate method. The role if interstitial molecules, solvents in the crystal lattice, solvent-fullerene complexes, C{sub 70}, and C{sub 60} dimers in these measurements will be discussed.

  9. Kinetics of wet sodium vapor complex plasma

    SciTech Connect (OSTI)

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  10. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  11. Inference of Mix from Experimental Data and Theoretical Mix Models

    SciTech Connect (OSTI)

    Welser-Sherrill, L.; Haynes, D. A.; Cooley, J. H.; Mancini, R. C.; Haan, S. W.; Golovkin, I. E.

    2007-08-02

    The mixing between fuel and shell materials in Inertial Confinement Fusion implosion cores is a topic of great interest. Mixing due to hydrodynamic instabilities can affect implosion dynamics and could also go so far as to prevent ignition. We have demonstrated that it is possible to extract information on mixing directly from experimental data using spectroscopic arguments. In order to compare this data-driven analysis to a theoretical framework, two independent mix models, Youngs' phenomenological model and the Haan saturation model, have been implemented in conjunction with a series of clean hydrodynamic simulations that model the experiments. The first tests of these methods were carried out based on a set of indirect drive implosions at the OMEGA laser. We now focus on direct drive experiments, and endeavor to approach the problem from another perspective. In the current work, we use Youngs' and Haan's mix models in conjunction with hydrodynamic simulations in order to design experimental platforms that exhibit measurably different levels of mix. Once the experiments are completed based on these designs, the results of a data-driven mix analysis will be compared to the levels of mix predicted by the simulations. In this way, we aim to increase our confidence in the methods used to extract mixing information from the experimental data, as well as to study sensitivities and the range of validity of the mix models.

  12. Brazing titanium-vapor-coated zirconia

    SciTech Connect (OSTI)

    Santella, M.L. ); Pak, J.J. )

    1993-04-01

    Partially stabilized zirconia was vacuum furnace brazed to itself, to nodular cast iron, and to commercially pure titanium with a Ag-30Cu-10Sn wt% filler metal. Wetting was obtained by coating the ZrO[sub 2] surfaces with Ti prior to brazing by RF sputtering or electron beam evaporation. Braze joints made with Ti-sputter-coated ZrO[sub 2] contained high levels of porosity, but those made with Ti coatings deposited by evaporation, referred to as Ti-vapor-coated, contained little or no porosity. Brazing caused the ZrO[sub 2] within about 1 mm (0.04 in.) of the joint surfaces to turn black in color, and thermodynamic analysis indicated that the discoloration was likely due to oxygen diffusion out of the ZrO[sub 2] into the Ti vapor coating during brazing. Braze joint strength was determined by flexure testing in the four-point bend arrangement, and on a more limited basis, by shear testing. The latter method was used mainly as a screening test for ZrO[sub 2]-Fe and ZrO[sub 2]-Ti joints. Flexure testing of ZrO[sub 2]-ZrO[sub 2] and ZrO[sub 2]-Fe braze joints was done at 25, 200, 400, and 575 C (77, 392, 752 and 1,067 F) in air. For flexure testing, average strengths of joint specimens decreased with increasing test temperature. The lower average strengths of ZrO[sub 2]-Fe specimens compared to those from ZrO[sub 2]-ZrO[sub 2] joints was attributed to higher residual stresses in the ceramic-to-metal joints.

  13. Method and apparatus for conducting variable thickness vapor deposition

    DOE Patents [OSTI]

    Nesslage, G.V.

    1984-08-03

    A method of vapor depositing metal on a substrate in variable thickness comprises conducting the deposition continuously without interruption to avoid formation of grain boundaries. To achieve reduced deposition in specific regions a thin wire or ribbon blocking body is placed between source and substrate to partially block vapors from depositing in the region immediately below.

  14. Building America Top Innovations 2012: Vapor Retarder Classification

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research in vapor retarders. Since 2006 the IRC has permitted Class III vapor retarders like latex paint (see list above) in all climate zones under certain conditions thanks to research by Building America teams.

  15. Operating a radio-frequency plasma source on water vapor

    SciTech Connect (OSTI)

    Nguyen, Sonca V. T.; Gallimore, Alec D.; Foster, John E.

    2009-08-15

    A magnetically enhanced radio-frequency (rf) plasma source operating on water vapor has an extensive list of potential applications. In this work, the use of a rf plasma source to dissociate water vapor for hydrogen production is investigated. This paper describes a rf plasma source operated on water vapor and characterizes its plasma properties using a Langmuir probe, a residual gas analyzer, and a spectrometer. The plasma source operated first on argon and then on water vapor at operating pressures just over 300 mtorr. Argon and water vapor plasma number densities differ significantly. In the electropositive argon plasma, quasineutrality requires n{sub i}{approx_equal}n{sub e}, where n{sub i} is the positive ion density. But in the electronegative water plasma, quasineutrality requires n{sub i+}=n{sub i-}+n{sub e}. The positive ion density and electron density of the water vapor plasma are approximately one and two orders of magnitude lower, respectively, than those of argon plasma. These results suggest that attachment and dissociative attachment are present in electronegative water vapor plasma. The electron temperature for this water vapor plasma source is between 1.5 and 4 eV. Without an applied axial magnetic field, hydrogen production increases linearly with rf power. With an axial magnetic field, hydrogen production jumps to a maximum value at 500 W and then saturates with rf power. The presence of the applied axial magnetic field is therefore shown to enhance hydrogen production.

  16. Robertsons Ready Mix | Open Energy Information

    Open Energy Info (EERE)

    Ready Mix Jump to: navigation, search Name Robertsons Ready Mix Facility Robertsons Ready Mix Sector Wind energy Facility Type Community Wind Facility Status In Service Owner...

  17. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  18. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  19. Deep soil mixing for reagent delivery and contaminant treatment

    SciTech Connect (OSTI)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-12-31

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy`s Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd{sup 3}), there are few alternatives for soils of this type.

  20. Role of shocks and mix caused by capsule defects

    SciTech Connect (OSTI)

    Bradley, P. A.; Cobble, J. A.; Tregillis, I. L.; Schmitt, M. J.; Obrey, K. D.; Batha, S. H.; Magelssen, G. R.; Fincke, J. R.; Hsu, S. C.; Krasheninnikova, N. S.; Murphy, T. J.; Wysocki, F. J.; Glebov, V.

    2012-09-15

    An Eulerian code with a turbulent mix model is used to model a set of plastic (CH) ablator capsules with and without equatorial grooves. The 'perfect' capsule results were used to calibrate simulations of capsules with equatorial grooves of different depths that provided information on increasingly perturbed implosions. Simulations with a turbulence model were able to calculate the same yield over mix (YOM) ratio (experiment/mix simulation) of 0.2 to 0.3 for thin (8-{mu}m thick) and thick shell (15-{mu}m thick) capsules with no grooves and thin capsules with shallow grooves. When the capsules have deep grooves, the YOM ratio increases to greater than unity, probably because the deformed shocks focus too strongly on the symmetry axis in our two-dimensional simulations. This is supported by a comparison of simulated and experimental x-ray images.

  1. Nonlinear oscillations and waves in an arbitrary mass ratio cold plasma

    SciTech Connect (OSTI)

    Verma, Prabal Singh

    2011-12-15

    It is well known that nonlinear standing oscillations in an arbitrary mass ratio cold plasma always phase mix away. However, there exist nonlinear electron-ion traveling wave solutions, which do not exhibit phase mixing because they have zero ponderomotive force. The existence of these waves has been demonstrated using a perturbation method. Moreover, it is shown that cold plasma BGK waves [Albritton et al., Nucl. Fusion 15, 1199 (1975)] phase mix away if ions are allowed to move and the scaling of phase mixing is found to be different from earlier work [Sengupta et al., Phys. Rev. Lett. 82, 1867 (1999)]. Phase mixing of these waves has been further verified in 1-D particle in cell simulation.

  2. Smoothing of mixed complementarity problems

    SciTech Connect (OSTI)

    Gabriel, S.A.; More, J.J.

    1995-09-01

    The authors introduce a smoothing approach to the mixed complementarity problem, and study the limiting behavior of a path defined by approximate minimizers of a nonlinear least squares problem. The main result guarantees that, under a mild regularity condition, limit points of the iterates are solutions to the mixed complementarity problem. The analysis is applicable to a wide variety of algorithms suitable for large-scale mixed complementarity problems.

  3. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect (OSTI)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  4. Growth of Highly-Oriented Carbon Nanotubes by Plasma-Enhanced Hot Filament Chemical Vapor Deposition

    SciTech Connect (OSTI)

    Huang, Z.P.; Provencio, P.N.; Ren, Z.F.; Siegal, M.P.; Wang, J.H.; Xu, J.W.

    1998-10-11

    Highly-oriented, multi-walled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666"C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 pm in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. In summary, we synthesized large-area highly-oriented carbon nanotubes at temperatures below 666C by plasma-enhanced hot filament chemical vapor deposition. Acetylene gas is used to provide carbon for nanotube growth and ammonia gas is used for dilution and catalysis. Plasma intensity is critical in determining the nanotube aspect ratios (diameter and length), and range of both site and height distributions within a given film.

  5. Structural properties of pure and Fe-doped Yb films prepared by vapor condensation

    SciTech Connect (OSTI)

    Rojas-Ayala, C.; Passamani, E.C.; Suguihiro, N.M.; Litterst, F.J.; Baggio Saitovitch, E.

    2014-10-15

    Ytterbium and iron-doped ytterbium films were prepared by vapor quenching on Kapton substrates at room temperature. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. The aim was to study the microstructure of pure and iron-doped films and thereby to understand the effects induced by iron incorporation. A coexistence of face centered cubic and hexagonal close packed-like structures was observed, the cubic-type structure being the dominant contribution. There is an apparent thickness dependence of the cubic/hexagonal relative ratios in the case of pure ytterbium. Iron-clusters induce a crystalline texture effect, but do not influence the cubic/hexagonal volume fraction. A schematic model is proposed for the microstructure of un-doped and iron-doped films including the cubic- and hexagonal-like structures, as well as the iron distribution in the ytterbium matrix. - Highlights: • Pure and Fe-doped Yb films have been prepared by vapor condensation. • Coexistence of fcc- and hcp-type structures was observed. • No oxide phases have been detected. • Fe-clustering does not affect the fcc/hcp ratio, but favors a crystalline texture. • A schematic model is proposed to describe microscopically the microstructure.

  6. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Electricity suppliers and electricity companies must also provide a fuel mix report to customers twice annually, within the June and December billing cycles. Emissions information must be disclos...

  7. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Fuel Disclosure: Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding...

  8. Mixed Oxide Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    0%2A en Mixed Oxide (MOX) Fuel Fabrication Facility http:nnsa.energy.govfieldofficessavannah-river-field-officemixed-oxide-mox-fuel-fabrication-facility

  9. A Comparison of Water Vapor Quantities from Model Short-Range...

    Office of Scientific and Technical Information (OSTI)

    Comparison of Water Vapor Quantities from Model Short-Range Forecasts and ARM Observations Citation Details In-Document Search Title: A Comparison of Water Vapor Quantities from ...

  10. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect (OSTI)

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  11. The Atomic Vapor Laser Isotope Separation Program

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management`s position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

  12. Optimization of Xenon Difluoride Vapor Delivery

    SciTech Connect (OSTI)

    Sweeney, Joseph; Marganski, Paul; Kaim, Robert; Wodjenski, Mike; Gregg, John; Yedave, Sharad; Sergi, Steve; Bishop, Steve; Eldridge, David; Zou Peng [ATMI, Inc., Danbury, Connecticut 06810 (United States)

    2008-11-03

    Xenon difluoride (XeF{sub 2}) has been shown to provide many process benefits when used as a daily maintenance recipe for ion implant. Regularly flowing XeF{sub 2} into the ion source cleans the deposits generated by ion source operation. As a result, significant increases in productivity have been demonstrated. However, XeF{sub 2} is a toxic oxidizer that must be handled appropriately. Furthermore, it is a low vapor pressure solid under standard conditions ({approx}4.5 torr at 25 deg. C). These aspects present unique challenges for designing a package for delivering the chemistry to an ion implanter. To address these challenges, ATMI designed a high-performance, re-usable cylinder for dispensing XeF{sub 2} in an efficient and reliable manner. Data are presented showing specific attributes of the cylinder, such as the importance of internal heat transfer media and the cylinder valve size. The impact of mass flow controller (MFC) selection and ion source tube design on the flow rate of XeF{sub 2} are also discussed. Finally, cylinder release rate data are provided.

  13. Catalytic Reactor For Oxidizing Mercury Vapor

    DOE Patents [OSTI]

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  14. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  15. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  16. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect (OSTI)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  17. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  18. Mixed oxide fuel development

    SciTech Connect (OSTI)

    Leggett, R.D.; Omberg, R.P.

    1987-05-08

    This paper describes the success of the ongoing mixed-oxide fuel development program in the United States aimed at qualifying an economical fuel system for liquid metal cooled reactors. This development has been the cornerstone of the US program for the past 20 years and has proceeded in a deliberate and highly disciplined fashion with high emphasis on fuel reliability and operational safety as major features of an economical fuel system. The program progresses from feature testing in EBR-II to qualifying full size components in FFTF under fully prototypic conditions to establish a basis for extending allowable lifetimes. The development program started with the one year (300 EFPD) core, which is the FFTF driver fuel, continued with the demonstration of a two year (600 EFPD) core and is presently evaluating a three year (900 EFPD) fuel system. All three of these systems, consistent with other LMR fuel programs around the world, use fuel pellets gas bonded to a cladding tube that is assembled into a bundle and fitted into a wrapper tube or duct for ease of insertion into a core. The materials of construction progressed from austenitic CW 316 SS to lower swelling austenitic D9 to non swelling ferritic/martensitic HT9. 6 figs., 2 tabs.

  19. Mixed semiconductor nanocrystal compositions

    DOE Patents [OSTI]

    Maskaly, Garry R.; Schaller, Richard D.; Klimov, Victor I.

    2011-02-15

    Composition comprising one or more energy donors and one or more energy acceptors, wherein energy is transferred from the energy donor to the energy acceptor and wherein: the energy acceptor is a colloidal nanocrystal having a lower band gap energy than the energy donor; the energy donor and the energy acceptor are separated by a distance of 40 nm or less; wherein the average peak absorption energy of the acceptor is at least 20 meV greater than the average peak emission energy of the energy donor; and wherein the ratio of the number of energy donors to the number of energy acceptors is from about 2:1 to about 1000:1.

  20. Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends

    SciTech Connect (OSTI)

    Szybist, James P; Youngquist, Adam D; Wagner, Robert M; Moore, Wayne; Foster, Matthew; Confer, Keith

    2010-01-01

    Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for

  1. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  2. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    SciTech Connect (OSTI)

    Murakami, Katsuhisa Hiyama, Takaki; Kuwajima, Tomoya; Fujita, Jun-ichi; Tanaka, Shunsuke; Hirukawa, Ayaka; Kano, Emi; Takeguchi, Masaki

    2015-03-02

    A single layer of graphene with dimensions of 20?mm??20?mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50?nm to 200?nm.

  3. Proposed Occupational Exposure Limits for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals

    SciTech Connect (OSTI)

    Poet, Torka S.; Timchalk, Chuck

    2006-03-24

    A large number of volatile chemicals have been identified in the headspaces of tanks used to store mixed chemical and radioactive waste at the U.S. Department of Energy (DOE) Hanford Site, and there is concern that vapor releases from the tanks may be hazardous to workers. Contractually established occupational exposure limits (OELs) established by the Occupational Safety and Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH) do not exist for all chemicals of interest. To address the need for worker exposure guidelines for those chemicals that lack OSHA or ACGIH OELs, a procedure for assigning Acceptable Occupational Exposure Limits (AOELs) for Hanford Site tank farm workers has been developed and applied to a selected group of 57 headspace chemicals.

  4. Biomass conversion to mixed alcohols

    SciTech Connect (OSTI)

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  5. Characterization of urania vaporization with transpiration coupled thermogravimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McMurray, J. W.

    2015-12-05

    Determining equilibrium vapor pressures of materials is made easier by transpiration measurements. However, the traditional technique involves condensing the volatiles entrained in a carrier gas outside of the hot measurement zone. One potential problem is deposition en route to a cooled collector. Thermogravimetric analysis (TGA) can be used to measure in situ mass loss due to vaporization and therefore obviate the need to analyze the entire gas train due to premature plating of vapor species. Therefore, a transpiration coupled TGA technique was used to determine equilibrium pressures of UO3 gas over fluorite structure UO2+x and U3O8 at T = (1573more » and 1773) K. Moreover, we compared to calculations from models and databases in the open literature. Our study gives clarity to the thermochemical data for UO3 gas and validates the mass loss transpiration method using thermogravimetry for determining equilibrium vapor pressures of non-stoichiometric oxides.« less

  6. Characterization of urania vaporization with transpiration coupled thermogravimetry

    SciTech Connect (OSTI)

    McMurray, J. W.

    2015-12-05

    Determining equilibrium vapor pressures of materials is made easier by transpiration measurements. However, the traditional technique involves condensing the volatiles entrained in a carrier gas outside of the hot measurement zone. One potential problem is deposition en route to a cooled collector. Thermogravimetric analysis (TGA) can be used to measure in situ mass loss due to vaporization and therefore obviate the need to analyze the entire gas train due to premature plating of vapor species. Therefore, a transpiration coupled TGA technique was used to determine equilibrium pressures of UO3 gas over fluorite structure UO2+x and U3O8 at T = (1573 and 1773) K. Moreover, we compared to calculations from models and databases in the open literature. Our study gives clarity to the thermochemical data for UO3 gas and validates the mass loss transpiration method using thermogravimetry for determining equilibrium vapor pressures of non-stoichiometric oxides.

  7. Use Vapor Recompression to Recover Low-Pressure Waste Steam,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Conduct a Pinch Analysis Based on the actual application, there may be other options to vapor recompres- sion. The industry best practice is to conduct a pinch analysis on the ...

  8. ARM - Field Campaign - Single Frequency GPS Water Vapor Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSingle Frequency GPS Water Vapor Network ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  9. Vaporization, dispersion, and radiant fluxes from LPG spills. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools 25, 100, 400, and 1600 ft/sup 2/ in area. A Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes; the maximum effective flux emitted at the flame surface was about 50,000 Btu/h-ft/sup 2/. A few tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  10. Systems and methods for generation of hydrogen peroxide vapor

    DOE Patents [OSTI]

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  11. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  12. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  13. PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor Deposition

    Broader source: Energy.gov [DOE]

    This project is focused on novel approaches to remove risk related to the development of hybrid perovskite solar cells (HPSCs). Researchers will synthesize a new and chemically stable hybrid organic-inorganic perovskite that eliminates decomposition of the absorber layer upon exposure to water vapor, which is a chief obstacle to widespread use of HPSC technology. They will also demonstrate a unique and industrially-scalable chemical vapor deposition method without halides or iodine, which are the main contributors to perovskite degradation.

  14. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  15. Study for radionuclide transfer ratio of aerosols generated during heat cutting

    SciTech Connect (OSTI)

    Iguchi, Yukihiro; Baba, Tsutomu; Kawakami, Hiroto; Kitahara, Takashi; Watanabe, Atsushi; Kodama, Mitsuhiro

    2007-07-01

    The metallic elements with a low melting point and high vapor pressure seemed to transfer in aerosols selectively at dismantling reactor internals using heat cutting. Therefore, the arc melting tests of neutron irradiated zirconium alloy were conducted to investigate the radionuclide transfer behavior of aerosols generated during the heat cutting of activated metals. The arc melting test was conducted using a tungsten inert gas welding machine in an inert gas or air atmosphere. The radioactive aerosols were collected by filter and charcoal filter. The test sample was obtained from Zry-2 fuel cladding irradiated in a Japanese boiling water reactor for five fuel cycles. The activity analysis, chemical composition measurement and scanning electron microscope observation of aerosols were carried out. Some radionuclides were enriched in the aerosols generated in an inert gas atmosphere and the radionuclide transfer ratio did not change remarkably by the presence of air. The transfer ratio of Sb-125 was almost the same as that of Co-60. It was expected that Sb-125 was enriched from other elements since Sb is an element with a low melting point and high vapor pressure compared with the base metal (Zr). In the viewpoint of the environmental impact assessment, it became clear that the influence if Sb-125 is comparable to Co-60. The transfer ratio of Mn-54 was one order higher compared with other radionuclides. The results were discussed on the basis of thermal properties and oxide formation energy of the metallic elements. (authors)

  16. Tank 241-T-111 headspace gas and vapor characterization results for samples collected in January 1995

    SciTech Connect (OSTI)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories.

  17. Tank 241-U-111 headspace gas and vapor characterization results for samples collected in February 1995

    SciTech Connect (OSTI)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories.

  18. Tank 241-S-111 headspace gas and vapor characterization results for samples collected in March 1995

    SciTech Connect (OSTI)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories.

  19. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  20. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  1. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    SciTech Connect (OSTI)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  2. Atomic mix in directly driven inertial confinement implosions

    SciTech Connect (OSTI)

    Wilson, D. C.; Ebey, P. S.; Sangster, T. C.; Shmayda, W. T.; Yu. Glebov, V.; Lerche, R. A.

    2011-11-15

    Directly driven implosions on the Omega laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have measured the presence of atomic mix using D+T neutron yield rates from plastic capsules with and without deuterated layers, and a nearly pure tritium fuel containing 0.7% deuterium. In 15, 19, and 24 {mu}m thick plastic shells, D+T neutron yields increased by factors of 86, 112, and 24 when the 1.2 {mu}m thick inner layer was deuterated. Based on adjusting a fully atomic mix modvfel to fit yield degradation in the un-deuterated capsule and applying it to the capsule with the deuterated layer, atomic mixing accounts for 40-75% of the yield degradation due to mix. For the first time, the time dependence of mixed mass was measured by the ratio of the yield rates from both types of capsules. As expected, the amount of mix grows throughout the D+T burn.

  3. Eccentric crank variable compression ratio mechanism

    DOE Patents [OSTI]

    Lawrence, Keith Edward; Moser, William Elliott; Roozenboom, Stephan Donald; Knox, Kevin Jay

    2008-05-13

    A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.

  4. Nuclear Target Ratios data release page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Target Ratios data release page "Measurement of ratios of muon neutrino charged-current cross sections on C, Fe, and Pb to CH at neutrino energies 2-20 GeV" Phys. Rev. Lett. 112 (2014) 231801, hep-ex/1403.2103. Data Anciliary files for this result can be found at http://arxiv.org/src/1403.2103v4/anc Anciliary Files include: Cross section ratios as a function of Bjorken x Cross Section ratio as a function of neutrino energy Target Masses used in the experiment Neutrino Flux used

  5. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  6. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  7. Is the tribimaximal mixing accidental?

    SciTech Connect (OSTI)

    Abbas, Mohammed; Smirnov, A. Yu.

    2010-07-01

    The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.

  8. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  9. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  10. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect (OSTI)

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  11. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect (OSTI)

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  12. Direct Real-Time Detection of Vapors from Explosive Compounds

    SciTech Connect (OSTI)

    Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.

    2013-10-03

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3- and NO3-HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.

  13. Drying of pulverized material with heated condensible vapor

    DOE Patents [OSTI]

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  14. Drying of pulverized material with heated condensible vapor

    DOE Patents [OSTI]

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  15. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  16. Removal of Sarin Aerosol and Vapor by Water Sprays

    SciTech Connect (OSTI)

    Brockmann, John E.

    1998-09-01

    Falling water drops can collect particles and soluble or reactive vapor from the gas through which they fall. Rain is known to remove particles and vapors by the process of rainout. Water sprays can be used to remove radioactive aerosol from the atmosphere of a nuclear reactor containment building. There is a potential for water sprays to be used as a mitigation technique to remove chemical or bio- logical agents from the air. This paper is a quick-look at water spray removal. It is not definitive but rather provides a reasonable basic model for particle and gas removal and presents an example calcu- lation of sarin removal from a BART station. This work ~ a starting point and the results indicate that further modeling and exploration of additional mechanisms for particle and vapor removal may prove beneficial.

  17. VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  18. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOE Patents [OSTI]

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  19. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect (OSTI)

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  20. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    SciTech Connect (OSTI)

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

    2015-01-15

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000 μm) and cavity height (e.g., 200–1000 nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25 000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al{sub 2}O{sub 3} and TiO{sub 2} processes from Me{sub 3}Al/H{sub 2}O and TiCl{sub 4}/H{sub 2}O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes.

  1. ARM - Field Campaign - ARM-FIRE Water Vapor Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM-FIRE Water Vapor Experiment ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM-FIRE Water Vapor Experiment 2000.11.01 - 2000.12.31 Lead Scientist : Henry Revercomb Data Availability Yes For data sets, see below. Summary This field mission experience indicated that it is possible for several sensors to be used in a coordinated fashion over a period of several weeks to achieve a mean water

  2. ARM - Field Campaign - Arctic Winter Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsArctic Winter Water Vapor IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Winter Water Vapor IOP 2004.03.09 - 2004.04.09 Lead Scientist : Ed Westwater Data Availability http://www.etl.noaa.gov/programs/2004/wviop/data will contain quicklooks of all of the data. For data sets, see below. Summary During the IOP, the Ground-based Scanning Radiometer of NOAA/ETL, and the ARM MicroWave

  3. Nonideal Rayleigh-Taylor mixing

    SciTech Connect (OSTI)

    Sharp, David Howland; Lin, Hyun K; Iwerks, Justin G; Gliman, James G

    2009-01-01

    Rayleigh-Taylor mixing is a classical hydrodynamic Instability, which occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical) which produce deviations from a pure Euler equation, scale Invariant formulation, and non Ideal (i.e. experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We Interpret mathematical theories of existence and non-uniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations, in other words indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as non unique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, In the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and PrandtJ numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength Initial conditions and long wavelength perturbations are observed to playa role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing In different proportions In these two different contexts.

  4. Bs Mixing at the Tevatron

    SciTech Connect (OSTI)

    Gomez-Ceballos, Guillelmo; /Cantabria Inst. of Phys.

    2006-04-01

    The Tevatron collider at Fermilab provides a very rich environment for the study of B{sub s} mesons. B{sub s} Mixing is the most important analysis within the B Physics program of both experiments. In this paper they summarize the most recent results on this topic from both D0 and CDF experiments. There were very important updates in both experiments after his last talk, hence the organizers warmly recommended me to include the latest available results on B{sub s} mixing, instead of what he presents there.

  5. Mixed ternary heterojunction solar cell

    SciTech Connect (OSTI)

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  6. The effects of heat conduction on the vaporization of liquid invading superheated permeable rock

    SciTech Connect (OSTI)

    Woods, Andrew, W.; Fitzgerald, Shaun D.

    1996-01-24

    We examine the role of conductive and convective heat transfer in the vaporization of liquid as it slowly invades a superheated permeable rock. For very slow migration, virtually all of the liquid vaporizes. As the liquid supply rate increases beyond the rate of heat transfer by thermal conduction, a decreasing fraction of the liquid can vaporize. Indeed, for sufficiently high flow rates, the fraction vaporizing depends solely on the superheat of the rock, and any heat transfer from the superheated region is negligible. These results complement earlier studies of vaporization under very high injection rates, in which case the dynamic vapour pressure reduces the mass fraction vaporizing to very small values.

  7. Effect of higher water vapor content on TBC performance

    SciTech Connect (OSTI)

    Pint, Bruce A; Haynes, James A

    2012-01-01

    Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the

  8. Water in protoplanetary disks: Deuteration and turbulent mixing

    SciTech Connect (OSTI)

    Furuya, Kenji; Aikawa, Yuri; Nomura, Hideko; Hersant, Franck; Wakelam, Valentine

    2013-12-10

    We investigate water and deuterated water chemistry in turbulent protoplanetary disks. Chemical rate equations are solved with the diffusion term, mimicking turbulent mixing in a vertical direction. Water near the midplane is transported to the disk atmosphere by turbulence and is destroyed by photoreactions to produce atomic oxygen, while the atomic oxygen is transported to the midplane and reforms water and/or other molecules. We find that this cycle significantly decreases column densities of water ice at r ? 30 AU, where dust temperatures are too high to reform water ice effectively. The radial extent of such region depends on the desorption energy of atomic hydrogen. Our model indicates that water ice could be deficient even outside the sublimation radius. Outside this radius, the cycle decreases the deuterium-to-hydrogen (D/H) ratio of water ice from ?2 10{sup 2}, which is set by the collapsing core model, to 10{sup 4}-10{sup 2} in 10{sup 6} yr, without significantly decreasing the water ice column density. The resultant D/H ratios depend on the strength of mixing and the radial distance from the central star. Our finding suggests that the D/H ratio of cometary water (?10{sup 4}) could be established (i.e., cometary water could be formed) in the solar nebula, even if the D/H ratio of water ice delivered to the disk was very high (?10{sup 2}).

  9. The Atomic Vapor Laser Isotope Separation Program. [Atomic Vapor Laser Isotope Separation (AVLIS) Program

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

  10. Combination downflow-upflow vapor-liquid separator

    DOE Patents [OSTI]

    Kidwell, John H.; Prueter, William P.; Eaton, Andrew M.

    1987-03-10

    An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.

  11. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R. K.; Im, K. H.

    1996-01-01

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  12. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  13. Industrial applications of high-power copper vapor lasers

    SciTech Connect (OSTI)

    Warner, B.E.; Boley, C.D.; Chang, J.J.; Dragon, E.P.; Havstad, M.A.; Martinez, M.; McLean, W. II

    1995-08-01

    A growing appreciation has developed in the last several years for the copper vapor laser because of its utility in ablating difficult materials at high rates. Laser ablation at high rates shows promise for numerous industrial applications such as thin film deposition, precision hole drilling, and machining of ceramics and other refractories.

  14. Chemical vapor deposition of fluorine-doped zinc oxide

    DOE Patents [OSTI]

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  15. Advances in compressible turbulent mixing

    SciTech Connect (OSTI)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  16. Reductant injection and mixing system

    DOE Patents [OSTI]

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  17. Analyzing ocean mixing reveals insight on climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing ocean mixing reveals insight on climate Analyzing ocean mixing reveals insight on climate LANL scientists have developed a computer model that clarifies the complex processes driving ocean mixing in the vast eddies that swirl across hundreds of miles of open ocean. June 24, 2015 A three-dimensional spatial structure of mixing in an idealized ocean simulation, computed using Lagrangian particle statistics. A three-dimensional spatial structure of mixing in an idealized ocean simulation,

  18. Effect of Compression Ratio and Piston Geometry on RCCI load...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression Ratio and Piston Geometry on RCCI load limit Effect of Compression Ratio and Piston Geometry on RCCI load limit Explores the effect of compression ratio and piston ...

  19. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  20. Variable Compression Ratio Engine | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Initial Agency Decision concerns a whistleblower complaint filed by Luis P. Silva, a former employee of the Scientific Ecology Group (SEG) and its successor firm, GTS Duratek (GTS).(1) SEG, and then GTS, were subcontractors to Sandia Corporation at the Radioactive and Mixed Waste Management Facility (RMWMF) where Silva worked before he was laid off by GTS in August 1997. Sandia is a subsidiary of Lockheed Martin Company, the management and operating contractor at DOE's Sandia National

  1. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  2. Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor in the NCAR CAM3 Climate Model with RRTMGMcICA using Modeled and Observed ... Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by ...

  3. Technology Solutions Case Study: Moisture Durability of Vapor Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  4. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum...

    Office of Scientific and Technical Information (OSTI)

    vapor pressures at the U.S. Strategic Petroleum Reserve. Citation Details In-Document Search Title: Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve. ...

  5. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum...

    Office of Scientific and Technical Information (OSTI)

    Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve. Citation Details In-Document Search Title: Analysis of crude oil vapor pressures at the U.S. ...

  6. A review of porous media enhanced vapor-phase diffusion mechanisms...

    Office of Scientific and Technical Information (OSTI)

    data: Does enhanced vapor-phase diffusion exist? Citation Details In-Document Search Title: A review of porous media enhanced vapor-phase diffusion mechanisms, models, and data: ...

  7. Radioactive anomaly discrimination from spectral ratios

    DOE Patents [OSTI]

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  8. The effect of mix on capsule yields as a function of shell thickness and gas fill

    SciTech Connect (OSTI)

    Bradley, P. A.

    2014-06-15

    An investigation of direct drive capsules with different shell thicknesses and gas fills was conducted to examine the amount of shock induced (Richtmyer-Meshkov) mix versus Rayleigh-Taylor mix from deceleration of the implosion. The RAGE (Eulerian) code with a turbulent mix model was used to model these capsules for neutron yields along with time-dependent mix amounts. The amount of Richtmyer-Meshkov induced mix from the shock breaking out of the shell is about 0.1 μg (0.15 μm of shell material), while the Rayleigh-Taylor mix is of order 1 μg and determines the mixed simulation yield. The simulations were able to calculate a yield over mix (YOM) ratio (experiment/mix simulation) between 0.5 and 1.0 for capsules with shell thicknesses ranging from 7.5 to 20 μm and with gas fills between 3.8 and 20 atm of D{sub 2} or DT. The simulated burn averaged T{sub ion} values typically lie with 0.5 keV of the data, which is within the measurement error. For capsules with shell thicknesses >25 μm, the YOM values drop to 0.10 ± 0.05, suggesting that some unmodeled effect needs to be accounted for in the thickest capsules.

  9. Heterogeneous Reburning By Mixed Fuels

    SciTech Connect (OSTI)

    Anderson Hall

    2009-03-31

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  10. On virial analysis at low aspect ratio

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bongard, Michael W.; Barr, Jayson L.; Fonck, Raymond J.; Reusch, Joshua A.; Thome, Kathreen E.

    2016-07-28

    The validity of virial analysis to infer global MHD equilibrium poloidal beta βp and internal inductance ℓi from external magnetics measurements is examined for low aspect ratio configurations with A < 2. Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high-A approximations to low-A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2–10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low-A. Highly paramagnetic configurations are found to be inadequately represented through themore » virial mean radius parameter RT. Alternate formulations for inferring βp and ℓi that are independent of RT to avoid this difficulty are presented for the static isotropic limit. Lastly, these formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.« less

  11. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  12. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect (OSTI)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  13. Electromagnetically induced transparency in paraffin-coated vapor cells

    SciTech Connect (OSTI)

    Klein, M.; Hohensee, M.; Walsworth, R. L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Phillips, D. F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)

    2011-01-15

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend ''bright'' and ''dark'' time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  14. Geodesic-dome tank roof cuts water contamination, vapor losses

    SciTech Connect (OSTI)

    Barrett, A.E. )

    1989-07-10

    Colonial Pipeline Co. has established an ongoing program for using geodesic-dome roofs on tanks in liquid petroleum-product service. As its standard, Colonial adopted geodesicodone roofs, in conjunction with internal floating decks, to replace worn external floating roofs on existing tanks used in gasoline service and for use on new tanks in all types of product service. Geodesic domes are clear-span structures requiring no internal-support columns. This feature allows the associated use of a floating deck that is as vapor tight as is possible to construct. Further, geodesic domes can practically eliminate rainwater contamination, eliminate wind-generated vapor losses, and greatly reduce filling losses associated with conventional external floating roofs.

  15. Heterogeneous nucleation of naphthalene vapor on water surface

    SciTech Connect (OSTI)

    Smolik, J.; Schwarz, J.

    1997-01-15

    Transfer processes between drops and gas play an important role in many natural and industrial processes, as absorption of gaseous pollutants by water drops in the atmosphere, combustion of fuel droplets, spray drying, synthesis of nanopowders, wet-dry desulfurization or extinguishing of hot combustion gases. The evaporation of a water drop into a ternary gaseous mixture of air, steam, and naphthalene vapor was investigated. The experimental results were compared with a theoretical prediction based on a numerical solution of coupled boundary layer equations for heat and mass transfer from a drop moving in ternary gas. In the experiments the naphthalene vapor condensed on the water drop as a supercooled liquid even at temperatures far below the melting point of naphthalene. The condensation on drop surface is discussed in terms of classical theory of heterogeneous nucleation on smooth surfaces.

  16. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOE Patents [OSTI]

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  17. Fixation of nitrogen in the presence of water vapor

    DOE Patents [OSTI]

    Harteck, Paul

    1984-01-01

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  18. High average power magnetic modulator for metal vapor lasers

    DOE Patents [OSTI]

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  19. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  20. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  1. Program plan for the resolution of tank vapor issues

    SciTech Connect (OSTI)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

  2. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  3. Method for nanomachining high aspect ratio structures

    DOE Patents [OSTI]

    Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.

    2004-11-09

    A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.

  4. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  5. Cold versus hot fusion deuterium branching ratios

    SciTech Connect (OSTI)

    Fox, H.; Bass, R.

    1995-12-31

    A major source of misunderstanding of the nature of cold nuclear fusion has been the expectation that the deuterium branching ratios occurring within a palladium lattice would be consistent with the gas-plasma branching ratios. This misunderstanding has led to the concept of the dead graduate student, the 1989`s feverish but fruitless search for neutron emissions from cold fusion reactors, and the follow-on condemnation of the new science of cold fusion. The experimental facts are that in a properly loaded palladium lattice, the deuterium fusion produces neutrons at little above background, a greatly less-than-expected production of tritium (the tritium desert), and substantially more helium-4 than is observed in hot plasma physics. The experimental evidence is now compelling (800 reports of success from 30 countries) that cold nuclear fusion is a reality, that the branching ratios are unexpected, and that a new science is struggling to be recognized. Commercialization of some types of cold fusion devices has already begun.

  6. ARM - Campaign Instrument - twrmr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixing Ratio (TWRMR) Instrument Categories Atmospheric Profiling Campaigns Fall 1997 Water Vapor IOP Download Data Southern Great Plains, 1997.09.15 - 1997.10.05 Water...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Energy Technology Engineering Center (ETEC), Canoga ... small variations in water vapor mixing ratio (qv) in ... observations, while the deep convective and stratiform ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Energy Technology Engineering Center (ETEC), Canoga ... small variations in water vapor mixing ratio (qv) in ... stratocumulus, and multilayer or deep frontal clouds. ...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Energy Technology Engineering Center (ETEC), Canoga ... number (1) cumulus (1) deep convection (1) Filter by ... small variations in water vapor mixing ratio (qv) in ...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Energy Technology Engineering Center (ETEC), Canoga ... is larger than 25 km for water vapor mixing ratios, even ... observations, while the deep convective and stratiform ...

  11. Thin film mixed potential sensors

    DOE Patents [OSTI]

    Garzon, Fernando H.; Brosha, Eric L.; Mukundan, Rangachary

    2007-09-04

    A mixed potential sensor for oxidizable or reducible gases and a method of making. A substrate is provided and two electrodes are formed on a first surface of the substrate, each electrode being formed of a different catalytic material selected to produce a differential voltage between the electrodes from electrochemical reactions of the gases catalyzed by the electrode materials. An electrolytic layer of an electrolyte is formed over the electrodes to cover a first portion of the electrodes from direct exposure to the gases with a second portion of the electrodes uncovered for direct exposure to the gases.

  12. Syngas Mixed Alcohol Cost Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techno-economic analysis (TEA) - Feedback to the research efforts Specific objective in 2012: Provide TEA and validate DOE BETO's goal to demonstrate technologies capable of producing cost competitive ethanol from biomass by the year 2012. 2 Quad Chart Overview 3 Start Date Oct 1, 2006 End Date Sept 30, 2012 % Complete 100% Timeline for Mixed Alcohols Year Total [Gasification/Pyrolysis] FY12 $860k [$700k/$160k] FY13 $1,000k [$250k/$750k] FY14 $1,050k [$350k/$700k] projected Years 10 (FY04 to

  13. Mixing stops at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Frugiuele, Claudia

    2014-01-01

    We study the phenomenology of a light stop NLSP in the presence of large mixing with either the first or the second generation. R-symmetric models provide a prime setting for this scenario, but our discussion also applies to the MSSM when a significant amount of mixing can be accommodated. In our framework the dominant stop decay is through the flavor violating mode into a light jet and the LSP in an extended region of parameter space. There are currently no limits from ATLAS and CMS in this region. We emulate shape-based hadronic SUSY searches for this topology, and find thatmore » they have potential sensitivity. If the extension of these analyses to this region is robust, we find that these searches can set strong exclusion limits on light stops. If not, then the flavor violating decay mode is challenging and may represent a blind spot in stop searches even at 13 TeV. Thus, an experimental investigation of this scenario is well motivated.« less

  14. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  15. Plasma enhanced chemical vapor deposition (PECVD) method of forming...

    Office of Scientific and Technical Information (OSTI)

    This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected ...

  16. Tank 241-BY-111 headspace gas and vapor characterization results for samples collected in May 1994 and November 1994

    SciTech Connect (OSTI)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-28

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  17. Tank 241-C-111 headspace gas and vapor characterization results for samples collected in August 1993 and September 1994

    SciTech Connect (OSTI)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories.

  18. Tank 241-BY-106 headspace gas and vapor characterization results for samples collected in May 1994 and July 1994

    SciTech Connect (OSTI)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories.

  19. Expandable mixing section gravel and cobble eductor

    DOE Patents [OSTI]

    Miller, Arthur L. (Kenyon, MN); Krawza, Kenneth I. (Lakeville, MN)

    1997-01-01

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  20. Energy Balance Bowen Ratio Station (EBBR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2011-02-23

    The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  1. Energy Balance Bowen Ratio (EBBR) Handbook

    SciTech Connect (OSTI)

    Cook, D. R.

    2016-01-01

    The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  2. High aspect ratio, remote controlled pumping assembly

    DOE Patents [OSTI]

    Brown, S.B.; Milanovich, F.P.

    1995-11-14

    A miniature dual syringe-type pump assembly is described which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor. 4 figs.

  3. High aspect ratio, remote controlled pumping assembly

    DOE Patents [OSTI]

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  4. Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS

    SciTech Connect (OSTI)

    Braun, John

    2006-02-06

    Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

  5. Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA

    SciTech Connect (OSTI)

    Turner, David D.

    2005-04-01

    A new approach to retrieve microphysical properties from mixed-phase Arctic clouds is presented. This mixed-phase cloud property retrieval algorithm (MIXCRA) retrieves cloud optical depth, ice fraction, and the effective radius of the water and ice particles from ground-based, high-resolution infrared radiance and lidar cloud boundary observations. The theoretical basis for this technique is that the absorption coefficient of ice is greater than that of liquid water from 10 to 13 ?m, whereas liquid water is more absorbing than ice from 16 to 25 ?m. MIXCRA retrievals are only valid for optically thin (?visible < 6) single-layer clouds when the precipitable water vapor is less than 1 cm. MIXCRA was applied to the Atmospheric Emitted Radiance Interferometer (AERI) data that were collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment from November 1997 to May 1998, where 63% of all of the cloudy scenes above the SHEBA site met this specification. The retrieval determined that approximately 48% of these clouds were mixed phase and that a significant number of clouds (during all 7 months) contained liquid water, even for cloud temperatures as low as 240 K. The retrieved distributions of effective radii for water and ice particles in single-phase clouds are shown to be different than the effective radii in mixed-phase clouds.

  6. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  7. Hydraulic system for a ratio change transmission

    DOE Patents [OSTI]

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  8. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  9. APPLICATIONS OF CFD METHOD TO GAS MIXING ANALYSIS IN A LARGE-SCALED TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-19

    The computational fluid dynamics (CFD) modeling technique was applied to the estimation of maximum benzene concentration for the vapor space inside a large-scaled and high-level radioactive waste tank at Savannah River site (SRS). The objective of the work was to perform the calculations for the benzene mixing behavior in the vapor space of Tank 48 and its impact on the local concentration of benzene. The calculations were used to evaluate the degree to which purge air mixes with benzene evolving from the liquid surface and its ability to prevent an unacceptable concentration of benzene from forming. The analysis was focused on changing the tank operating conditions to establish internal recirculation and changing the benzene evolution rate from the liquid surface. The model used a three-dimensional momentum coupled with multi-species transport. The calculations included potential operating conditions for air inlet and exhaust flows, recirculation flow rate, and benzene evolution rate with prototypic tank geometry. The flow conditions are assumed to be fully turbulent since Reynolds numbers for typical operating conditions are in the range of 20,000 to 70,000 based on the inlet conditions of the air purge system. A standard two-equation turbulence model was used. The modeling results for the typical gas mixing problems available in the literature were compared and verified through comparisons with the test results. The benchmarking results showed that the predictions are in good agreement with the analytical solutions and literature data. Additional sensitivity calculations included a reduced benzene evolution rate, reduced air inlet and exhaust flow, and forced internal recirculation. The modeling results showed that the vapor space was fairly well mixed and that benzene concentrations were relatively low when forced recirculation and 72 cfm ventilation air through the tank boundary were imposed. For the same 72 cfm air inlet flow but without forced recirculation

  10. Mixing in SRS Closure Business Unit Applications

    SciTech Connect (OSTI)

    POIRIER, MICHAELR.

    2004-06-23

    The following equipment is commonly used to mix fluids: mechanical agitators, jets (pumps), shrouded axial impeller mixers (Flygt mixers), spargers, pulsed jet mixers, boiling, static mixers, falling films, liquid sprays, and thermal convection. This discussion will focus on mechanical agitators, jets, shrouded axial impeller mixers, spargers, and pulsed jet mixers, as these devices are most likely to be employed in Savannah River Site (SRS) Closure Business applications. In addressing mixing problems in the SRS Tank Farm, one must distinguish between different mixing objectives. These objectives include sludge mixing (e.g., Extended Sludge Processing), sludge retrieval (e.g., sludge transfers between tanks), heel retrieval (e.g., Tanks 18F and 19F), chemical reactions (e.g., oxalic acid neutralization) and salt dissolution. For example, one should not apply sludge mixing guidelines to heel removal applications. Mixing effectiveness is a function of both the mixing device (e.g., slurry pump, agitator, air sparger) and the properties of the material to be mixed (e.g., yield stress, viscosity, density, and particle size). The objective of this document is to provide background mixing knowledge for the SRS Closure Business Unit personnel and to provide general recommendations for mixing in SRS applications.

  11. Uranium atomic vapor laser isotope separation (AVL1S)

    SciTech Connect (OSTI)

    Beeler, R.G.; Heestand, G.M.

    1992-12-01

    The high cost associated with gaseous diffusion technology has fostered world-wide competition in the uranium enrichment market. Enrichment costs based on AVLIS technology are projected to be a factor of about three to five times lower. Full scale AVLIS equipment has been built and its performance is being demonstrated now at LLNL. An overview of the AVLIS process will be discussed and key process paramenters will be identified. Application of AVLIS technologies to non-uranium systems will also be highlighted. Finally, the vaporization process along with some key parameters will be discussed.

  12. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect (OSTI)

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  13. Performance evaluation of a gasoline vapor sampling method

    SciTech Connect (OSTI)

    Russo, P.J.; Florky, G.R.; Agopsowicz, D.E.

    1987-06-01

    A study has been conducted to evaluate the performance of the method used by Exxon to monitor worker exposures to gasoline vapors. The study specifically addresses the effects of temperature and humidity on breakthrough volume as an indicator of performance limits. Results indicate that a 600 mg charcoal tube will yield excellent results if sample flow rate is adjusted properly with regard to absolute humidity. In order to aid the field hygienist in applying the study results, charts that relate sampling parameters to environmental conditions are presented.

  14. Optical excitation of paramagnetic nitrogen in chemical vapor deposited diamond

    SciTech Connect (OSTI)

    Graeff, C.F.; Rohrer, E.; Nebel, C.E.; Stutzmann, M.; Guettler, H.; Zachai, R.

    1996-11-01

    Investigations of polycrystalline chemical vapor deposited diamond films by electron-spin-resonance (ESR), light-induced (L)ESR, and the constant photoconductivity method have identified dispersed substitutional nitrogen (P1 center) as the main paramagnetic form of N incorporated in the CVD diamond. The density of N-related paramagnetic states is strongly affected by illumination and heat treatment. It is found that the P1 center in CVD diamond gives rise to a deep donor state about 1.5 eV below the conduction band. {copyright} {ital 1996 American Institute of Physics.}

  15. Multi-cathode metal vapor arc ion source

    DOE Patents [OSTI]

    Brown, Ian G.; MacGill, Robert A.

    1988-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  16. Method for controlling vapor emissions during loading of tankers

    SciTech Connect (OSTI)

    Perkins, T.K.

    1992-06-30

    This patent describes a method for loading crude oil into a tank of a tanker ship having a built-in crude oil loading manifold. It comprises generating and compressing foam at a point remote from the tank; supplying the foam through the crude oil loading manifold onto the bottom of the tank in an amount sufficient to form a layer of the foam having a thickness adequate to provide a barrier which will substantially prevent the passage of hydrocarbon vapors therethrough, the foam expanding while flowing through the manifold and into the tank; and supplying crude oil through the crude oil loading manifold into the tank beneath the layer of foam.

  17. Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph

    SciTech Connect (OSTI)

    McCloy, John S.; Tustison, Randal W.

    2013-04-22

    Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

  18. Recirculating wedges for metal-vapor plasma tubes

    DOE Patents [OSTI]

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  19. Recirculating wedges for metal-vapor plasma tubes

    DOE Patents [OSTI]

    Hall, Jerome P.; Sawvel, Robert M.; Draggoo, Vaughn G.

    1994-01-01

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  20. Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Nam, Youngwoo, E-mail: youngwoo.nam@chalmers.se [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Sun, Jie; Lindvall, Niclas; Yurgens, August [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Jae Yang, Seung; Rae Park, Chong [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Woo Park, Yung [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-01-13

    We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.

  1. Method and apparatus for producing thermal vapor stream

    DOE Patents [OSTI]

    Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.

    1979-01-01

    Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

  2. Josephson tunnel junctions with chemically vapor deposited polycrystalline germanium barriers

    SciTech Connect (OSTI)

    Kroger, H.; Jillie, D.W.; Smith, L.N.; Phaneuf, L.E.; Potter, C.N.; Shaw, D.M.; Cukauskas, E.J.; Nisenoff, M.

    1984-03-01

    High quality Josephson tunnel junctions have been fabricated whose tunneling barrier is polycrystalline germanium chemically vapor deposited on a NbN base electrode and covered by a Nb counterelectrode. These junctions have excellent characteristics for device applications: values of V/sub m/ (the product of the critical current and the subgap resistance measured at 2 mV and 4.2 K) ranging between 35--48 mV, ideal threshold curves, a steep current rise at the gap voltage, and Josephson current densities from 100 to 1100 A/cm/sup 2/.

  3. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  4. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  5. Table E7.1. Consumption Ratios of Fuel, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ...

  6. Table 6.2 Consumption Ratios of Fuel, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ...

  7. HCCI in a Variable Compression Ratio Engine: Effects of Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Variable Compression Ratio Engine: Effects of Engine Variables HCCI in a Variable Compression Ratio Engine: Effects of Engine Variables 2004 Diesel Engine Emissions Reduction ...

  8. Tunable infrared source employing Raman mixing

    DOE Patents [OSTI]

    Byer, Robert L.; Herbst, Richard L.

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  9. Mixing in thermally stratified nonlinear spin-up with uniform boundary fluxes

    SciTech Connect (OSTI)

    Baghdasarian, Meline; Pacheco-Vega, Arturo; Pacheco, J. Rafael; Verzicco, Roberto

    2014-09-15

    Studies of stratified spin-up experiments in enclosed cylinders have reported the presence of small pockets of well-mixed fluids but quantitative measurements of the mixedness of the fluid has been lacking. Previous numerical simulations have not addressed these measurements. Here we present numerical simulations that explain how the combined effect of spin-up and thermal boundary conditions enhances or hinders mixing of a fluid in a cylinder. The energy of the system is characterized by splitting the potential energy into diabatic and adiabatic components, and measurements of efficiency of mixing are based on both, the ratio of dissipation of available potential energy to forcing and variance of temperature. The numerical simulations of the NavierStokes equations for the problem with different sets of thermal boundary conditions at the horizontal walls helped shed some light on the physical mechanisms of mixing, for which a clear explanation was absent.

  10. Electronic branching ratio of the. tau. lepton

    SciTech Connect (OSTI)

    Ammar, R.; Baringer, P.; Coppage, D.; Davis, R.; Kelly, M.; Kwak, N.; Lam, H.; Ro, S.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Perticone, D.; Poling, R.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Nemati, B.; Romero, V.; Sun, C.R.; Wang, P.; Zoeller, M.M.; Crawford, G.; Fulton, R.; Gan, K.K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Morrow, F.; Sung, M.K.; Whitmore, J.; Wilson, P.; Butler, F.; Fu, X.; Kalbfleisch, G.; Lambrecht, M.; Skubic, P.; Snow, J.; Wang, P.; Bortoletto, D.; Brown, D.N.; Dominick, J.; McIlwain, R.L.; Miller, D.H.; Modesitt, M.; Shibata, E.I.; Schaffner, S.F.; Shipsey, I.P.J.; Battle, M.; Ernst, J.; Kroha, H.; Roberts, S.; Sparks, K.; Thorndike, E.H.; Wang, C.; Stroynowski, R.; Artuso, M.; Goldberg, M.; Haupt, T.; Horwitz, N.; Kennett, R.; Moneti, G.C.; Playfer, S.; Rozen, Y.; Rubin, P.; Skwarnicki, T.; Stone, S.; Thulasidas, M.; Yao, W.; Zhu, G.; Barnes, A.V.; Bartelt, J.; Csorna, S.E.; Jain, V.; Letson, T.; Mestayer, M.D.; Akerib, D.S.; Barish, B.; Chadha, M.

    1992-06-01

    Using data accumulated by the CLEO I detector operating at the Cornell Electron Storage Ring, we have measured the ratio {ital R}={Gamma}({tau}{r arrow}{ital e}{bar {nu}}{sub {ital e}}{nu}{sub {tau}})/{Gamma}{sub 1}, where {Gamma}{sub 1} is the {tau} decay rate to final states with one charged particle. We find {ital R}=0.2231{plus minus}0.0044{plus minus}0.0073 where the first error is statistical and the second is systematic. Together with the measured topological one-charged-particle branching fraction, this yields the branching fraction of the {tau} lepton to electrons, {ital B}{sub {ital e}}=0.192{plus minus}0.004{plus minus}0.006.

  11. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect (OSTI)

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  12. MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE ARCTIC MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN THE ARCTIC Cadeddu, Maria Argonne National Laboratory Category: Instruments A new G-band (183 GHz) vapor radiometer (GVR), developed and built by Prosensing Inc. (http://www.prosensing.com), was deployed in Barrow, Alaska, in April 2005. The radiometer was deployed as part of the ongoing Atmospheric Radiation Measurement (ARM) program's effort to improve water vapor retrievals in the cold, dry Arctic

  13. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect (OSTI)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  14. Vapor Synthesis and Thermal Modification of Supportless Platinum–Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    SciTech Connect (OSTI)

    Atkinson III, Robert W.; Unocic, Raymond R.; Unocic, Kinga A.; Veith, Gabriel M.; Zawodzinski, Jr., Thomas A.; Papandrew, Alexander B.

    2015-04-23

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relatively high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.

  15. Vapor Synthesis and Thermal Modification of Supportless Platinum-Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    SciTech Connect (OSTI)

    Atkinson III, Robert; Unocic, Raymond R; Unocic, Kinga A; Veith, Gabriel M; Papandrew, Alexander B; Zawodzinski, Thomas A

    2015-01-01

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relatively high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.

  16. Vapor Synthesis and Thermal Modification of Supportless Platinum–Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atkinson III, Robert W.; Unocic, Raymond R.; Unocic, Kinga A.; Veith, Gabriel M.; Zawodzinski, Jr., Thomas A.; Papandrew, Alexander B.

    2015-04-23

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relativelymore » high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.« less

  17. Quantifying uncertainty in stable isotope mixing models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods testedmore » are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  18. Quantifying uncertainty in stable isotope mixing models

    SciTech Connect (OSTI)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (?15N and ?18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the

  19. Quantifying uncertainty in stable isotope mixing models

    SciTech Connect (OSTI)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the

  20. Fabrication of layered self-standing diamond film by dc arc plasma jet chemical vapor deposition

    SciTech Connect (OSTI)

    Chen, G. C.; Dai, F. W.; Li, B.; Lan, H.; Askari, J.; Tang, W. Z.; Lu, F. X.

    2007-01-15

    Layered self-standing diamond films, consisting of an upper layer, buffer layer, and a lower layer, were fabricated by fluctuating the ratio of methane to hydrogen in high power dc arc plasma jet chemical vapor deposition. There were micrometer-sized columnar diamond crystalline grains in both upper layer and lower layer. The size of the columnar diamond crystalline grains was bigger in the upper layer than that in the lower layer. The orientation of the upper layer was (110), while it was (111) for the lower layer. Raman results showed that no sp{sup 3} peak shift was found in the upper layer, but it was found and blueshifted in the lower layer. This indicated that the internal stress within the film body could be tailored by this layered structure. The buffer layer with nanometer-sized diamond grains formed by secondary nucleation was necessary in order to form the layered film. Growth rate was over 10 {mu}m/h in layered self-standing diamond film fabrication.

  1. Microsecond Microfluidic Mixing for Investigation of Protein...

    Office of Scientific and Technical Information (OSTI)

    for Investigation of Protein Folding Kinetics Citation Details In-Document Search Title: Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics You ...

  2. Lanthanide doped strontium barium mixed halide scintillators

    DOE Patents [OSTI]

    Gundiah, Gautam; Bizarri, Gregory A.; Hanrahan, Stephen M.; Bourret-Courchesne, Edith D.; Derenzo, Stephen E.

    2016-03-15

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  3. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect (OSTI)

    Lee, S.

    2014-06-25

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  4. Fuel Mix Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers. Such information must be provided on customers' bills or as a bill insert once annually. The fuel mix is also published in annual reports. Source http:...

  5. Lanthanide doped strontium barium mixed halide scintillators

    DOE Patents [OSTI]

    Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

    2013-07-16

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  6. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  7. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    DOE Patents [OSTI]

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  8. Double-sided reel-to-reel metal-organic chemical vapor deposition...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BARIUM OXIDES; CHEMICAL VAPOR DEPOSITION; COPPER OXIDES; CRITICAL CURRENT; HIGH-TC SUPERCONDUCTORS; ...

  9. Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details...

  10. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    SciTech Connect (OSTI)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  11. Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling

    SciTech Connect (OSTI)

    Welser-Sherrill, L; Haynes, D A; Mancini, R C; Cooley, J H; Tommasini, R; Golovkin, I E; Sherrill, M E; Haan, S W

    2008-04-30

    The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.

  12. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect (OSTI)

    Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  13. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect (OSTI)

    Balantekin, A. B.

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  14. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  15. Hot-spot mix in ignition-scale implosions on the NIF

    SciTech Connect (OSTI)

    Regan, S. P.; Epstein, R.; McCrory, R. L.; Meyerhofer, D. D.; Sangster, T. C.; Hammel, B. A.; Suter, L. J.; Ralph, J.; Scott, H.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Farley, D. R.; Glenn, S.; Glenzer, S. H.; and others

    2012-05-15

    Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive [D. S. Clark et al., Phys. Plasmas 17, 052703 (2010)]. Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities seeded by high-mode () ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase [B. A. Hammel et al., Phys. Plasmas 18, 056310 (2011)]. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium-hydrogen-deuterium (THD) and deuterium-tritium (DT) cryogenic targets and gas-filled plastic-shell capsules, which replace the THD layer with a mass-equivalent CH layer, was examined. The inferred amount of hot-spot-mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code [J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2006)], is typically below the 75-ng allowance for hot-spot mix [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.

  16. Numerical Estimation of the Spent Fuel Ratio

    SciTech Connect (OSTI)

    Lindgren, Eric R.; Durbin, Samuel; Wilke, Jason; Margraf, J.; Dunn, T. A.

    2016-01-01

    Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO 2 ), have been conducted in the interim to more definitively determine the source term from these postulated events. However, the validity of these large- scale results remain in question due to the lack of a defensible spent fuel ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical surrogate. Previous attempts to define the SFR in the 1980's have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Because of the large uncertainty surrounding the SFR, estimates of releases from security-related events may be unnecessarily conservative. Credible arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and storage of spent nuclear fuel in dry cask systems. In the present work, the shock physics codes CTH and ALE3D were used to simulate spent nuclear fuel (SNF) and DUO 2 targets impacted by a high-velocity jet at an ambient temperature condition. These preliminary results are used to illustrate an approach to estimate the respirable release fraction for each type of material and ultimately, an estimate of the SFR. This page intentionally blank

  17. Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    deviations from expected ratios. One well was also found to have an abnormally high sulfate concentration. All three wells are located in the same general area and are sampling...

  18. Uranium accountancy in Atomic Vapor Laser Isotope Separation

    SciTech Connect (OSTI)

    Carver, R.D.

    1986-01-01

    The AVLIS program pioneers the large scale industrial application of lasers to produce low cost enriched uranium fuel for light water reactors. In the process developed at Lawrence Livermore National Laboratory, normal uranium is vaporized by an electron beam, and a precisely tuned laser beam selectively photo-ionizes the uranium-235 isotopes. These ions are moved in an electromagnetic field to be condensed on the product collector. All other uranium isotopes remain uncharged and pass through the collector section to condense as tails. Tracking the three types of uranium through the process presents special problems in accountancy. After demonstration runs, the uranium on the collector was analyzed for isotopic content by Battelle Pacific Northwest Laboratory. Their results were checked at LLNL by analysis of parallel samples. The differences in isotopic composition as reported by the two laboratories were not significant.

  19. Moisture Durability with Vapor-Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    Lepage, R.; Lstiburek, J.

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  20. Chemical vapor infiltration of TiB{sub 2} composites

    SciTech Connect (OSTI)

    Besmann, T.M.

    1995-05-01

    This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and test the materials in a static bath and lab-scale Hall cell.

  1. Vapor-deposited porous films for energy conversion

    DOE Patents [OSTI]

    Jankowski, Alan F.; Hayes, Jeffrey P.; Morse, Jeffrey D.

    2005-07-05

    Metallic films are grown with a "spongelike" morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous and open porosity on the submicron scale. The stabilization of the spongelike morphology is found over a limited range of the sputter deposition parameters, that is, of working gas pressure and substrate temperature. This spongelike morphology is an extension of the features as generally represented in the classic zone models of growth for physical vapor deposits. Nickel coatings were deposited with working gas pressures up 4 Pa and for substrate temperatures up to 1000 K. The morphology of the deposits is examined in plan and in cross section views with scanning electron microscopy (SEM). The parametric range of gas pressure and substrate temperature (relative to absolute melt point) under which the spongelike metal deposits are produced appear universal for other metals including gold, silver, and aluminum.

  2. Method and apparatus for detection of chemical vapors

    DOE Patents [OSTI]

    Mahurin, Shannon Mark; Dai, Sheng; Caja, Josip

    2007-05-15

    The present invention is a gas detector and method for using the gas detector for detecting and identifying volatile organic and/or volatile inorganic substances present in unknown vapors in an environment. The gas detector comprises a sensing means and a detecting means for detecting electrical capacitance variance of the sensing means and for further identifying the volatile organic and volatile inorganic substances. The sensing means comprises at least one sensing unit and a sensing material allocated therein the sensing unit. The sensing material is an ionic liquid which is exposed to the environment and is capable of dissolving a quantity of said volatile substance upon exposure thereto. The sensing means constitutes an electrochemical capacitor and the detecting means is in electrical communication with the sensing means.

  3. Design of Stirling-driven vapor-compression system

    SciTech Connect (OSTI)

    Kagawa, N.

    1998-07-01

    Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling and industrial usage because of their potential to save energy. Especially, there are many environmental merits of Stirling-driven vapor-compression (SDVC) systems. This paper introduces a design method for the SDVC based on reliable mathematical methods for Stirling and Rankine cycles with reliable thermophysical information for refrigerants. The model treats a kinematic Stirling engine and a scroll compressor coupled by a belt. Some experimental coefficients are used to formulate the SDVC items. The obtained results show the performance behavior of the SDVC in detail. The measured performance of the actual system agrees with the calculated results. Furthermore, the calculated results indicate attractive SDVC performance using alternative refrigerants.

  4. Technology alternatives to CFC/HCFC vapor compression

    SciTech Connect (OSTI)

    Fischer, S.

    1996-08-01

    Phaseouts of CFCs and HCFCs to protect the stratospheric ozone layer have caused many developments in replacement or alternative technologies for heat pumping. Some of this effort has been of an ``evolutionary`` nature where the designs of conventional vapor compression systems were adapted to use chlorine-free refrigerants. Other alternatives are more radical departures from conventional practice such as operating above the critical point of an alternative refrigerant. Revolutionary changes in technology based on cycles sor principles not commonly associated with refrigeration have also attracted interest. Many of these technologies are being touted because they are ``ozone-safe`` or because they do not use greenhouse gases as refrigerants. Basic principles and some advantages and disadvantages of each technology are discussed in this paper.

  5. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S.; Pokhodnya, Kostyantyn I.

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  6. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities

    SciTech Connect (OSTI)

    Mlambo, Mbuso; Mdluli, Phumlani S.; Shumbula, Poslet; Mpelane, Siyasanga; Moloto, Nosipho; Skepu, Amanda; Tshikhudo, Robert

    2013-10-15

    Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protected gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.

  7. Preparation of low oxygen-to-metal mixed oxide fuels for the advanced fast reactor

    SciTech Connect (OSTI)

    Kato, Masato; Nakamichi, Shinya; Takano, Tatsuo

    2007-07-01

    The preparation process for homogeneous mixed oxide pellets with a precise O/M ratio was established. The process was used to prepare pellets for heat treatments in two stages which consisted of the sintering process at high oxygen potential and the annealing process done in the atmosphere of controlled oxygen partial pressure. In the annealing process, it was found that abnormal growth of pores and occurrence of cracks were caused inside the pellet, and it was necessary for prevention of the microstructure change to control the oxygen potential of the atmosphere. Mixed oxide pellets with minor actinides were fabricated by the process and were provided to irradiation tests. (authors)

  8. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Sulfur Batteries - Joint Center for Energy Storage Research November 24, 2014, Research Highlights Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries a) Structures of the ionic liquid (IL) and sulfone b) ionic conductivity (σ) vs IL ratio c) CV of C-S cathode in IL/sulfone mixture d) cycling performance Scientific Achievement A strategy of mixing both an ionic liquid and sulfone is applied in Li-S batteries to give

  9. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  10. Formation of H/sup -/ by charge transfer in alkaline-earth vapors

    SciTech Connect (OSTI)

    Schlachter, A.S.; Morgan, T.J.

    1983-10-01

    Progress on the study of H/sup -/ formation by charge transfer in alkaline-earth vapors is reported. The H/sup -/ equilibrium yield in strontium vapor reaches a maximum of 50% at an energy of 250 eV/amu, which is the highest H/sup -/ yield reported to date.

  11. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  12. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  13. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  14. Apparatus and method for removing mercury vapor from a gas stream

    DOE Patents [OSTI]

    Ganesan, Kumar

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  15. U.S. Strategic Petroleum Reserve Vapor Pressure Committee 2009 annual report.

    SciTech Connect (OSTI)

    Allen, Ray; Eldredge, Lisa; DeLuca, Charles; Mihalik, Patrick; Maldonado, Julio; Lord, David L.; Rudeen, David Keith; Berndsen, Gerard

    2010-05-01

    This report comprises an annual summary of activities under the U.S. Strategic Petroleum Reserve (SPR) Vapor Pressure Committee in FY2009. The committee provides guidance to senior project management on the issues of crude oil vapor pressure monitoring nd mitigation. The principal objectives of the vapor pressure program are, in the event of an SPR drawdown, to minimize the impact on the environment and assure worker safety and public health from crude oil vapor emissions. The annual report reviews key program areas ncluding monitoring program status, mitigation program status, new developments in measurements and modeling, and path forward including specific recommendations on cavern sampling for the next year. The contents of this report were first presented to SPR senior anagement in December 2009, in a deliverable from the vapor pressure committee. The current SAND report is an adaptation for the Sandia technical audience.

  16. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    SciTech Connect (OSTI)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  17. Nonisothermal particle modeling of municipal solid waste combustion with heavy metal vaporization

    SciTech Connect (OSTI)

    Mazza, G.; Falcoz, Q.; Gauthier, D.; Flamant, G.; Soria, J.

    2010-12-15

    A particulate model was developed for municipal solid-waste incineration in a fluidized bed combining solid-waste-particle combustion and heavy metal vaporization from the burning particles. Based on a simpler, isothermal version presented previously, this model combines an asymptotic-combustion model for carbonaceous-solid combustion and a shrinking-core model to describe the heavy metal vaporization phenomenon, in which the particle is now considered nonisothermal. A parametric study is presented that shows the influence of temperature on the global metal-vaporization process. The simulation results are compared to experimental data obtained with a lab-scale fluid bed incinerator and to the results of the simpler isothermal model. It is shown that conduction in the particle strongly affects the variation of the vaporization rate with time and that the present version of the model well fits both the shape of the plots and the maximum heavy metal vaporization rates for all bed temperatures. (author)

  18. Effect of species and wood to bark ratio on pelleting of southern woods

    SciTech Connect (OSTI)

    Bradfield, J.; Levi, M.P.

    1984-01-01

    Six common southern hardwoods and loblolly pine were pelleted in a laboratory pellet mill. The pellet furnishes were blended to test the effect of different wood to bark ratios on pellet durability and production rate. Included was a ratio chosen to simulate the wood to bark ratio found in whole-tree chips. This furnish produced good quality pellets for all species tested. Pelleting of the pure wood of hardwoods was not successful; furnish routinely blocked the pellet mill dies. Pure pine wood, however, did produce acceptable pellets. It was noted that, as lignin and extractive content increased above a threshold level, the precentage of fines produced in a pellet durability test increased. Thus, all pine and tupelo wood/bark mixes produces high fines. This reduces the desirability of the pellets in the marketplace. Further research is necessary to confirm this relationship. This study suggests that both tree species and wood/bark ratio affect the durability of pellets and the rate with which they can be produced in a laboratory pellet mill. 9 references.

  19. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes

    SciTech Connect (OSTI)

    Yio, M.H.N. Phelan, J.C.; Wong, H.S.; Buenfeld, N.R.

    2014-02-15

    A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3 days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.

  20. Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach

    SciTech Connect (OSTI)

    Zhang, Lei; Kong, Song-Charng

    2010-11-15

    Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

  1. Transportable Vitrification System Demonstration on Mixed Waste

    SciTech Connect (OSTI)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    This paper describes preliminary results from the first demonstration of the Transportable Vitrification System (TVS) on actual mixed waste. The TVS is a fully integrated, transportable system for the treatment of mixed and low-level radioactive wastes. The demonstration was conducted at Oak Ridge`s East Tennessee Technology Park (ETTP), formerly known as the K-25 site. The purpose of the demonstration was to show that mixed wastes could be vitrified safely on a `field` scale using joule-heated melter technology and obtain information on system performance, waste form durability, air emissions, and costs.

  2. Mixed Waste Focus Area program management plan

    SciTech Connect (OSTI)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  3. B mixing and flavor tagging at CDF

    SciTech Connect (OSTI)

    Russ, James S.; /Carnegie Mellon U.

    2004-12-01

    The CDF Collaboration has made a preliminary measurement of B{sub d} mixing as a first step toward measuring mixing in the B{sub s} system. Flavor tagging using opposite-side jets and muons as well as same-side tagging schemes have been applied. Results agree well with precise results from the B-factories. They use these results to estimate CDF's B{sub s} mixing range using the present data set ({approx} 250 pb{sup -1}) and extrapolate to the potential from larger data sets in future running.

  4. Building America Technology Solutions for New and Existing Homes: Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  5. Poisson's ratio and porosity at Coso geothermal area, California...

    Open Energy Info (EERE)

    of the model, are estimated by a jackknife method. We use perturbations of r V p V s ratio and Psi V p .V s product to derive distributions of Poisson's ratio, sigma , and...

  6. California bearing ratio behavior of soil-stabilized class F fly ash systems

    SciTech Connect (OSTI)

    Leelavathamma, B.; Mini, K.M.; Pandian, N.S.

    2005-11-01

    Fly ash is a finely divided mineral residue resulting from the combustion of coal in power plants that occupies large extents of land and also causes environmental problems. Hence, concerted attempts are being made to effectively use fly ash in an environmentally friendly way instead of dumping. Several studies have been carried out for its bulk utilization, such as its addition to improve the California bearing ratio (CBR) of soil in roads and embankments. But a thorough mixing of fly ash with soil may not be possible in the field. Hence a study has been carried out on the CBR behavior of black cotton soil and Raichur fly ash (which is class F) in layers and compared with the same in mixes. The results show that the CBR values of soil-fly ash mixes are better than layers, as expected. To improve the strength of layers, cement is used as an additive to fly ash. The results show that black cotton soil can be improved with stabilized fly ash, solving its strength problem as well as the disposal problem of fly ash.

  7. Check Burner Air to Fuel Ratios | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burner Air to Fuel Ratios Check Burner Air to Fuel Ratios This tip sheet discusses when to check and reset burner air to fuel ratios as well as why it's a simply way to maximize the efficiency of process heating equipment. PROCESS HEATING TIP SHEET #2 Check Burner Air to Fuel Ratios (November 2007) (260.29 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical

  8. Zero-Release Mixed Waste Process Facility Design and Testing

    SciTech Connect (OSTI)

    Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

    2004-02-01

    A zero-release offgas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotarykiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release offgas cleaning system is to recycle the bulk of the offgas stream to the thermal treatment process. A slip stream is taken off the offgas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the offgas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing offgas emissions. Consideration of the proposed closed-system offgas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis.

  9. Laminar mixed convection in a horizontal eccentric annulus

    SciTech Connect (OSTI)

    Choudhury, D. ); Karki, K. )

    1992-01-01

    Laminar fluid flow and heat transfer phenomena in cylindrical annuli are encountered in various applications. The purpose of this paper is to present a numerical study of laminar mixed convection in horizontal eccentric annuli. Axial flow and heat transfer in a horizontal cylindrical annulus can be influenced by eccentricity of the inner cylinder and the presence of buoyancy forces. A numerical study is presented for the combined forced and free convection for the fully developed flow and heat transfer to eccentric annuli of different eccentricities and radius ratios. The flow field is characterized by large cross-stream secondary currents and significant flow distortion. The Nusselt number increases significantly with the Rayleigh number; the corresponding increase in the friction factor is relatively small. The eccentricity introduces additional nonuniformity of the flow and temperature fields.

  10. Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2014-07-28

    Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.

  11. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R; Tenhaeff, Wyatt E; McCamy, James; Harris, Caroline; Narula, Chaitanya Kumar

    2013-01-01

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  12. Low-Frequency Sonic Mixing Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Typical mixing technology uses a drive mechanism—usually an electric, hydraulic, or pneumatic motor—to rotate a shaft with one or more impellers. While many other mixer designs are available,...

  13. Mixing lengths scaling in a gravity flow

    SciTech Connect (OSTI)

    Ecke, Robert E [Los Alamos National Laboratory; Rivera, Micheal [Los Alamos National Laboratory; Chen, Jun [Los Alamos National Laboratory; Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).

  14. Ice in Arctic Mixed-phase Stratocumulus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  15. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY2001 THRU CY2004

    SciTech Connect (OSTI)

    FAUROTE, J.M.

    2004-09-30

    Investigation into the meteorological influences on vapor incidents in the tank farms to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems.

  16. Techniques for Bs Mixing at CDF

    SciTech Connect (OSTI)

    Salamanna, Giuseppe; /Rome U. /INFN, Rome

    2005-12-01

    The techniques used to perform a measurement of the mixing frequency of the B{sub s} meson ({Delta}M{sub s}) with the CDF detector at the TeVatron collider are described. Particular stress is put on CDF techniques for flavor tagging, which is possibly the major issue for mixing measurements at a hadron collider. Also CDF performances on lifetime and final state reconstruction are described. The final result of the amplitude scanning presented at 2005 Winter Conferences is reported.

  17. Mixed oxide nanoparticles and method of making

    DOE Patents [OSTI]

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  18. Neutral B-meson mixing from three-flavor lattice quantum chromodynamics:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of the SU(3)-breaking ratio ξ | Argonne Leadership Computing Facility Neutral B-meson mixing from three-flavor lattice quantum chromodynamics: Determination of the SU(3)-breaking ratio ξ Authors: A. Bazavov, C. Bernard, C. M. Bouchard, C. DeTar, M. Di Pierro, A. X. El-Khadra, R. T. Evans, E. D. Freeland, E. Gámiz, Steven Gottlieb, U. M. Heller, J. E. Hetrick, R. Jain, A. S. Kronfeld, J. Laiho, L. Levkova, P. B. Mackenzie, E. T. Neil, M. B. Oktay, J. N. Simone, R. Sugar, D.

  19. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  20. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  1. Design considerations for the cross jet air mixing in the municipal solid waste incinerators

    SciTech Connect (OSTI)

    Ryu, C.K.; Choi, S.

    1995-12-31

    In the mass-burning municipal solid waste incinerators, overfire air injection plays a key role in the improvement of mixing and reaction between oxygen and incomplete combustion products and/or pollutants. However, design parameters of overfire air nozzles are not well understood and sometimes confusing. In this paper, major design parameters of the cross jet air nozzles are discussed along with flow simulation results for the simplified furnace geometry. The overall performance of the jet air mixing and the effects of design parameters are quantitatively evaluated. The flow simulation results are interpreted in terms of the penetration depth of the jet into the main flow, the size of the recirculation zone and the ratio of the unmixed portion of the gas flow. The momentum flux ratio(J) of the jet to the cross flow strongly affects the penetration depth of the jet and the mixing of two flow streams. As the inter-nozzle distance (S in non-dimensional form) decreases, the penetration depth decreases but the size of recirculation zone increases and the resultant mixing deteriorates. The degree of mixing of the jet with the cross gas stream is evaluated in terms of the mass-averaged probability distribution of the relative concentration. Fresh air disperses more efficiently into the gas stream as J and S increase. The momentum flux ratio and the inter-nozzle distance are considered as important design parameters, and optimum values of these variables can be chosen for the given furnace conditions. This numerical evaluation also provides the basis of the similarity consideration for the cold flow model tests and the validity of the 2-dimensional idealization.

  2. The role of water vapor feedback in unperturbed climate variability and global warming

    SciTech Connect (OSTI)

    Hall, A.; Manabe, Syukuro

    1999-08-01

    To understand the role of water vapor feedback in unperturbed surface temperature variability, a version of the Geophysical Fluid Dynamics Laboratory coupled ocean-atmosphere model is integrated for 1,000 yr in two configurations, one with water vapor feedback and one without. To understand the role of water vapor feedback in global warming, two 500-yr integrations were also performed in which CO{sub 2} was doubled in both model configurations. The final surface global warming in the model with water vapor feedback is 3.38 C, while in the one without it is only 1.05 C. However, the model`s water vapor feedback has a larger impact on surface warming in response to a doubling of CO{sub 2} than it does on internally generated, low-frequency, global-mean surface temperature anomalies. Water vapor feedback`s strength therefore depends on the type of temperature anomaly it affects. Finally, the authors compare the local and global-mean surface temperature time series from both unperturbed variability experiments to the observed record. The experiment without water vapor feedback does not have enough global-scale variability to reproduce the magnitude of the variability in the observed global-mean record, whether or not one removes the warming trend observed over the past century. In contrast, the amount of variability in the experiment with water vapor feedback is comparable to that of the global-mean record, provided the observed warming trend is removed. Thus, the authors are unable to simulate the observed levels of variability without water vapor feedback.

  3. Interactions Between the Daytime Mixed Layer and the Surface: Oklahoma Mesonet and EBBR Heat Fluxes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions Between the Daytime Mixed Layer and the Surface: Oklahoma Mesonet and EBBR Heat Fluxes R. L. Coulter Argonne National Laboratory Argonne, Illinois Introduction Surface layer estimates of surface sensible heat flux have been made at 10 - 14 locations within the Central Facility (CF) of the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) Program site by using energy balance Bowen ratio (EBBR) stations located mostly in uncultivated areas. The advent of the Oklahoma

  4. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

    SciTech Connect (OSTI)

    Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

    2013-02-08

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

  5. Growth of graphene underlayers by chemical vapor deposition

    SciTech Connect (OSTI)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu; Charlie Johnson, A. T.

    2013-11-15

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called inverted wedding cake stacking in multilayer graphene growth.

  6. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    SciTech Connect (OSTI)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  7. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Wirstrm, E. S.; Persson, C. M.; Charnley, S. B.; Cordiner, M. A.; Buckle, J. V.; Takakuwa, S.

    2014-06-20

    After more than 30yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (?10K) water vapor has been detectedL1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at worklikely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  8. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect (OSTI)

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  9. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  10. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect (OSTI)

    Straessle, R.; Ptremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140?C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  11. Brazing of titanium-vapor-coated silicon nitride

    SciTech Connect (OSTI)

    Santella, M.L. )

    1988-09-01

    A technique for brazing Si{sub 3}N{sub 4} with metallic alloys was evaluated. The process involved vapor coating the ceramic with a 1.0-{mu}-thick layer of titanium before the brazing operation. The coating improved wetting of the Si{sub 3}N{sub 4} surfaces to the extent that strong bonding between the solidified braze filler metal and the ceramic occurred. Braze joints of Si{sub 3}N{sub 4} were made with Ag-Cu, Au-Ni, and Au-Ni-Pd alloys at temperatures of 790{degree}, 970{degree}, and 1,130{degree}C. Silicon nitride specimens were also brazed with a Ag-Cu alloy to the molybdenum alloy TZM, titanium, and A286 steel at 790{degree}C. Residual stresses resulting from mismatch of thermal expansion coefficients between the Si{sub 3}N{sub 4} and the metals caused all of the ceramic-to-metal joints to spontaneously crack in the Si{sub 3}N{sub 4} upon cooling from the brazing temperature.

  12. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    SciTech Connect (OSTI)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  13. Latitudinal survey of middle atmospheric water vapor revealed by shipboard microwave spectroscopy. Master's thesis

    SciTech Connect (OSTI)

    Schrader, M.L.

    1994-05-01

    Water vapor is one of the most important greenhouse gases and is an important tracer of atmospheric motions in the middle atmosphere. It also plays an important role in the chemistry of the middle atmosphere and through its photodissociation by solar radiation, it is the major source of hydrogen escaping to space. Ground-based microwave measurements conducted in the 1980s have provided a fair understanding of the seasonal variation of mesospheric water vapor in the northern hemisphere mid-latitudes, but the global distribution of water vapor in the middle atmosphere is only beginning to be revealed by space-based measurements.

  14. Controlled VLS Growth of Indium, Gallium and Tin Oxide Nanowiresvia Chemical Vapor Transport

    SciTech Connect (OSTI)

    Johnson, M.C.; Aloni, S.; McCready, D.E.; Bourret-Courchesne, E.D.

    2006-03-13

    We utilized a vapor-liquid-solid growth technique to synthesize indium oxide, gallium oxide, and tin oxide nanowires using chemical vapor transport with gold nanoparticles as the catalyst. Using identical growth parameters we were able to synthesize single crystal nanowires typically 40-100 nm diameter and more than 10-100 microns long. The products were characterized by means of XRD, SEM and HRTEM. All the wires were grown under the same growth conditions with growth rates inversely proportional to the source metal vapor pressure. Initial experiments show that different transparent oxide nanowires can be grown simultaneously on a single substrate with potential application for multi-component gas sensors.

  15. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    SciTech Connect (OSTI)

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  16. Mix and mingle: Networking for the next nuclear generation |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mix and mingle: Networking ... Mix and mingle: Networking for the next nuclear generation Posted: February 25, 2016 ... for science, technology, engineering and math employees. ...

  17. Order, disorder and mixing: The atomic structure of amorphous...

    Office of Scientific and Technical Information (OSTI)

    Order, disorder and mixing: The atomic structure of amorphous mixtures of titania and tantala Citation Details In-Document Search Title: Order, disorder and mixing: The atomic ...

  18. Fuel Effects on Mixing-Controlled Combustion Strategies for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion ...

  19. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Investor-Owned Utility Municipal Utilities Cooperative Utilities Program Info Sector Name ...

  20. Performance and mix measurements of indirect drive Cu doped Be...

    Office of Scientific and Technical Information (OSTI)

    Performance and mix measurements of indirect drive Cu doped Be implosions Citation Details In-Document Search Title: Performance and mix measurements of indirect drive Cu doped Be ...

  1. Hydrogen production by water dissociation using mixed conducting...

    Office of Scientific and Technical Information (OSTI)

    by water dissociation using mixed conducting dense ceramic membranes. Citation Details In-Document Search Title: Hydrogen production by water dissociation using mixed conducting dense ...

  2. Search for Neutral D Meson Mixing using Semileptonic Decays ...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Search for Neutral D Meson Mixing using Semileptonic Decays Citation Details In-Document Search Title: Search for Neutral D Meson Mixing using Semileptonic Decays...

  3. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference ...

  4. Scale dependence of entrainment-mixing mechanisms in cumulus...

    Office of Scientific and Technical Information (OSTI)

    Scale dependence of entrainment-mixing mechanisms in cumulus clouds Title: Scale dependence of entrainment-mixing mechanisms in cumulus clouds This work empirically examines the ...

  5. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...

  6. Advanced Mixed Waste Treatment Project Achieves Impressive Safety...

    Office of Environmental Management (EM)

    Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June ...

  7. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT Citation Details In-Document Search Title: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE ...

  8. Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and their ... Title: Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and ...

  9. Design Case Summary: Production of Mixed Alcohols from Municipal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via ...

  10. DOE regulatory reform initiative vitrified mixed waste

    SciTech Connect (OSTI)

    Carroll, S.J.; Holtzscheiter, E.W.; Flaherty, J.E.

    1997-12-31

    The US Department of Energy (DOE) is charged with responsibly managing the largest volume of mixed waste in the United States. This responsibility includes managing waste in compliance with all applicable Federal and State laws and regulations, and in a cost-effective, environmentally responsible manner. Managing certain treated mixed wastes in Resource Conservation and Recovery Act (RCRA) permitted storage and disposal units (specifically those mixed wastes that pose low risks from the hazardous component) is unlikely to provide additional protection to human health and the environment beyond that afforded by managing these wastes in storage and disposal units subject to requirements for radiological control. In October, 1995, the DOE submitted a regulatory reform proposal to the Environmental Protection Agency (EPA) relating to vitrified mixed waste forms. The technical proposal supports a regulatory strategy that would allow vitrified mixed waste forms treated through a permit or other environmental compliance mechanism to be granted an exemption from RCRA hazardous waste regulation, after treatment, based upon the inherent destruction and immobilization capabilities of vitrification technology. The vitrified waste form will meet, or exceed the performance criteria of the Environmental Assessment (EA) glass that has been accepted as an international standard for immobilizing radioactive waste components and the LDR treatment standards for inorganics and metals for controlling hazardous constituents. The proposal further provides that vitrified mixed waste would be responsibly managed under the Atomic Energy Act (AEA) while reducing overall costs. Full regulatory authority by the EPA or a State would be maintained until an acceptable vitrified mixed waste form, protective of human health and the environment, is produced.

  11. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    SciTech Connect (OSTI)

    Ni, Yicun; Skinner, J. L.

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  12. Multipartite entangled states in particle mixing

    SciTech Connect (OSTI)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.

    2008-05-01

    In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.

  13. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect (OSTI)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  14. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOE Patents [OSTI]

    Huang, Yu; Ly, Jennifer; Aldajani, Tiem; Baker, Richard W.

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  15. Methods for reducing the loss of metal in a metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Auburn, CA); Alger, Terry W. (Tracy, CA)

    1990-01-01

    Methods are provided for reducing loss of metal from a metal vapor laser by collecting metal present outside the hot zone of the laser and introducing or confining it in the hot zone.

  16. Draft Advice (v2): Vapor Exposure Issues on Worker Health and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over the past 20 years. DOE should use this data as a basis for an appropriately designed epidemiological study of long- term health effects from chemical vapor exposures, as...

  17. Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  18. Analysis of impact melt and vapor production in CTH for planetary applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quintana, S. N.; Crawford, D. A.; Schultz, P. H.

    2015-05-19

    This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less

  19. Energy Savings Potential and RD&D Opportunities for Non-Vapor...

    Broader source: Energy.gov (indexed) [DOE]

    ...www.osti.govhome ii Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies Prepared for: U.S. Department of Energy Office of Energy ...

  20. AlGaAsSb/GaSb Distributed Bragg Reflectors Grown by Organometallic Vapor Phase Epitaxy

    SciTech Connect (OSTI)

    C.A. Wang; C.J. Vineis; D.R. Calawa

    2002-02-13

    The first AlGaAsSb/GaSb quarter-wave distributed Bragg reflectors grown by metallic vapor phase epitaxy are reported. The peak reflectance is 96% for a 10-period structure.