Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

2

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

3

The Atomic Vapor Laser Isotope Separation Program. [Atomic Vapor Laser Isotope Separation (AVLIS) Program  

SciTech Connect

This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

Not Available

1992-11-09T23:59:59.000Z

4

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site  

Science Conference Proceedings (OSTI)

Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

1991-09-01T23:59:59.000Z

5

A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer  

Science Conference Proceedings (OSTI)

A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in ...

Rosario Q. Iannone; Daniele Romanini; Samir Kassi; Harro A. J. Meijer; Erik R. Th Kerstel

2009-07-01T23:59:59.000Z

6

Laser isotope separation  

DOE Patents (OSTI)

A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

1975-11-26T23:59:59.000Z

7

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site  

Science Conference Proceedings (OSTI)

In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

8

Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage  

DOE Patents (OSTI)

An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

Horton, J.A.; Hayden, H.W. Jr.

1995-05-30T23:59:59.000Z

9

Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage  

DOE Patents (OSTI)

An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

1995-01-01T23:59:59.000Z

10

Laser Isotope Separation Employing Condensation Repression  

SciTech Connect

Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

Eerkens, Jeff W.; Miller, William H.

2004-09-15T23:59:59.000Z

11

Coupling apparatus for a metal vapor laser  

DOE Patents (OSTI)

Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

Ball, D.G.; Miller, J.L.

1993-02-23T23:59:59.000Z

12

Copper vapor laser modular packaging assembly  

DOE Patents (OSTI)

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

13

Copper vapor laser modular packaging assembly  

DOE Patents (OSTI)

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

Alger, T.W.; Ault, E.R.; Moses, E.I.

1992-12-01T23:59:59.000Z

14

Intercomparison of Four Commercial Analyzers for Water Vapor Isotope Measurement  

Science Conference Proceedings (OSTI)

The ?18O and ?D of atmospheric water vapor are important tracers in hydrological and ecological studies. Isotope ratio infrared spectroscopy (IRIS) provides an in situ technology for measuring ?18O and ?D in ambient conditions. An intercomparison ...

Xue-Fa Wen; Xuhui Lee; Xiao-Min Sun; Jian-Lin Wang; Ya-Kun Tang; Sheng-Gong Li; Gui-Rui Yu

2012-02-01T23:59:59.000Z

15

Copper vapor laser acoustic thermometry system  

DOE Patents (OSTI)

A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

Galkowski, J.J.

1986-08-27T23:59:59.000Z

16

Carbon Isotope Separation and Molecular Formation in Laser-Induced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry Title Carbon Isotope Separation and Molecular Formation...

17

Probing Hurricanes with Stable Isotopes of Rain and Water Vapor  

Science Conference Proceedings (OSTI)

Rain and water vapor were collected during flights in Hurricanes Olivia (1994), Opal (1995), Marilyn (1995), and Hortense (1995) and analyzed for their stable isotopic concentrations, or ratios, H218O:H2O and HDO:H2O. The spatial patterns and ...

Stanley Gedzelman; James Lawrence; John Gamache; Michael Black; Edward Hindman; Robert Black; Jason Dunion; Hugh Willoughby; Xiaoping Zhang

2003-06-01T23:59:59.000Z

18

Injection locked oscillator system for pulsed metal vapor lasers  

SciTech Connect

An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

1988-01-01T23:59:59.000Z

19

Apparatus for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

20

Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry  

Science Conference Proceedings (OSTI)

The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotope’s nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-µm sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

Anheier, Norman C.; Bushaw, Bruce A.

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

22

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

23

Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere  

Science Conference Proceedings (OSTI)

Measurements of the isotope ratio of water vapor (expressed as the ? value) allow processes that control the humidity in the tropics to be identified. Isotopic information is useful because the change in ? relative to the water vapor mixing ratio (...

David Noone

2012-07-01T23:59:59.000Z

24

Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection  

SciTech Connect

The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-µm diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance signals on a shot-to-shot basis. The media is translated by a micron resolution scanning system, allowing the isotope analysis to cover the entire sample surface. We also report, to the best of our knowledge, the first demonstration of laser-based isotopic measurements on individual micron-sized particles that are minor target components in a much larger heterogeneous mix of ‘background’ particles. This composition is consistent with swipe and environmental aerosol samples typically collected for safeguards ES purposes. Single-shot detection sensitivity approaching the femtogram range and relative isotope abundance uncertainty better than 10% has been demonstrated using gadolinium isotopes as surrogate materials.

Anheier, Norman C.; Bushaw, Bruce A.

2010-01-01T23:59:59.000Z

25

Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated  

Open Energy Info (EERE)

Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated Hydrothermal System At The Geysers, Sonoma County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated Hydrothermal System At The Geysers, Sonoma County, California Details Activities (5) Areas (1) Regions (0) Abstract: The Geysers, a vapor-dominated hydrothermal system, is developed in host rock of the Franciscan Formation, which contains veins of quartz and calcite whose Δ18O values record the temperatures and isotopic compositions of fluids prevailing during at least two different episodes of rock-fluid interaction. The first episode took place at about 200°C, during which marine silica and carbonate apparently interacted with ocean

26

Optically pumped isotopic ammonia laser system  

DOE Patents (OSTI)

An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

Buchwald, Melvin I. (Santa Fe, NM); Jones, Claude R. (Los Alamos, NM); Nelson, Leonard Y. (Seattle, WA)

1982-01-01T23:59:59.000Z

27

Laser-assisted isotope separation of tritium  

DOE Patents (OSTI)

Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

1983-01-01T23:59:59.000Z

28

Laser Isotope Enrichment for Medical and Industrial Applications  

SciTech Connect

Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

Leonard Bond

2006-07-01T23:59:59.000Z

29

High average power magnetic modulator for metal vapor lasers  

DOE Patents (OSTI)

A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

1994-01-01T23:59:59.000Z

30

Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively  

E-Print Network (OSTI)

Articles Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively developed for high-accuracy determinations of mer- cury in bituminous and sub-bituminous coals. A closed- system digestion process employing a Carius tube is used to completely oxidize the coal matrix

31

Laser-induced micron size clustering in thiophenol vapor  

SciTech Connect

Positively charged micron sized clusters are efficiently produced following irradiation of thiophenol vapor at 248 nm by a single KrF laser pulse of 30 ns duration. The production mechanism has been studied by examining the effect of N[sub 2], Ar, and He as diffusion media in mixtures with thiophenol, and by varying the laser pulse energy and excitation wavelength. A qualitative summary of possible mechanisms that may be responsible for the experimental results is presented providing a framework for understanding the observed cluster growth. The measurements indicate an optimum set of parameters for growth of large clusters and also show that the cluster charge can be controlled by selection of the buffer gas mixture.

Zafiropulos, V.; Kollia, Z.; Fotakis, C. (FORTH-Institute for Electronic Structure and Laser, P.O. Box 1527, GR 71110 Heraklion, Crete (Greece)); Stockdale, J.A.D. (L-463, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

1993-03-15T23:59:59.000Z

32

Pulsed CO laser for isotope separation of uranium  

SciTech Connect

This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

2012-07-30T23:59:59.000Z

33

High-Voltage Power Supply System for Laser Isotope Separation  

SciTech Connect

This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

1979-06-26T23:59:59.000Z

34

Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL)  

Science Conference Proceedings (OSTI)

A differential absorption lidar (DIAL) instrument for automated profiling of water vapor in the lower troposphere has been designed, tested, and is in routine operation at Montana State University. The laser transmitter for the DIAL instrument ...

Amin R. Nehrir; Kevin S. Repasky; John L. Carlsten; Michael D. Obland; Joseph A. Shaw

2009-04-01T23:59:59.000Z

35

Metal film deposition by laser breakdown chemical vapor deposition  

Science Conference Proceedings (OSTI)

Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

Jervis, T.R.

1985-01-01T23:59:59.000Z

36

Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry  

DOE Patents (OSTI)

The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

Yeung, E.S.; Chang, Y.C.

1999-06-29T23:59:59.000Z

37

Vaporization behavior of non-stoichiometric refractory carbide materials and direct observations of the vapor phase using laser diagnostics  

DOE Green Energy (OSTI)

Transition metal and actinide carbides, such as ZrC or NbC and UC or ThC, exhibit a wide range of stoichiometry, and therefore vaporize incongruently. At long times, steady state vaporization can be achieved where relative concentrations of atomic species on solid surface equals that in the gas phase. The surface composition under these steady state conditions is termed the congruently vaporizing composition, (CVC). Modeling the vaporization or corrosion behavior of this dynamic process is complex and requires an understanding of how the surface composition changes with time and a knowledge of CVC, which is both temperature and atmosphere dependent. This paper describes vaporization and corrosion behavior of non-stoichiometric refractory carbide materials and, as an example, describes a thermokinetic model that characterizes the vaporization behavior of the complex carbide U{sub x}Zr{sub 1-x}C{sub y} in hydrogen at 2500 to 3200 K. This model demonstrates that steady state corrosion of U{sub x}Zr{sub l-x}C{sub y} is rate limited by gaseous transport of Zr where partial pressure of Zr is determined by CVC. This paper also briefly describes efforts to image and characterize the vapor phase above the surface of ZrC in static and flowing gas environments using planar laser induced fluorescence. We have developed the method for monitoring and controlling the corrosion behavior of nuclear fuels in nuclear thermal rockets. However, the techniques described can be used, to image boundary layers, and could be used verifying corrosion models.

Butt, D.P.; Wantuck, P.J.; Rehse, S.J.; Wallace, T.C. Sr.

1993-09-01T23:59:59.000Z

38

Isotope enrichment by frequency-tripled temperature tuned neodymium laser photolysis of formaldehyde  

DOE Patents (OSTI)

Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation provided by a frequency-tripled, temperature tuned neodymium laser.

Marling, John B. (Livermore, CA)

1977-01-01T23:59:59.000Z

39

Self-tuning method for monitoring the density of a gas vapor component using a tunable laser  

DOE Patents (OSTI)

The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

1996-08-27T23:59:59.000Z

40

A Near-Infrared Diode Laser Spectrometer for the In Situ Measurement of Methane and Water Vapor from Stratospheric Balloons  

Science Conference Proceedings (OSTI)

The Spectromètre à Diodes Laser Accordables (SDLA), a balloonborne near-infrared diode laser spectrometer, was developed to provide simultaneous in situ measurements of methane and water vapor in the troposphere and the lower stratosphere. The ...

Georges Durry; Ivan Pouchet

2001-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Multiphase Reactive Transport modeling of Stable Isotope Fractionation of Infiltrating Unsaturated Zone Pore Water and Vapor Using TOUGHREACT  

Science Conference Proceedings (OSTI)

Numerical simulations of transport and isotope fractionation provide a method to quantitatively interpret vadose zone pore water stable isotope depth profiles based on soil properties, climatic conditions, and infiltration. We incorporate the temperature-dependent equilibration of stable isotopic species between water and water vapor, and their differing diffusive transport properties into the thermodynamic database of the reactive transport code TOUGHREACT. These simulations are used to illustrate the evolution of stable isotope profiles in semiarid regions where recharge during wet seasons disturbs the drying profile traditionally associated with vadose zone pore waters. Alternating wet and dry seasons lead to annual fluctuations in moisture content, capillary pressure, and stable isotope compositions in the vadose zone. Periodic infiltration models capture the effects of seasonal increases in precipitation and predict stable isotope profiles that are distinct from those observed under drying (zero infiltration) conditions. After infiltration, evaporation causes a shift to higher 18O and D values, which are preserved in the deeper pore waters. The magnitude of the isotopic composition shift preserved in deep vadose zone pore waters varies inversely with the rate of infiltration.

Singleton, Michael J.; Sonnenthal, Eric L.; Conrad, Mark E.; DePaolo, Donald J.

2003-08-28T23:59:59.000Z

42

In Situ Measurement of the Water Vapor 18O/16O Isotope Ratio for Atmospheric and Ecological Applications  

Science Conference Proceedings (OSTI)

In this paper a system for in situ measurement of H216O/H218O in air based on tunable diode laser (TDL) absorption spectroscopy is described. Laboratory tests showed that its 60-min precision (one standard deviation) was 0.21‰ at a water vapor ...

Xuhui Lee; Steve Sargent; Ronald Smith; Bert Tanner

2005-05-01T23:59:59.000Z

43

On-Site Calibration for High Precision Measurements of Water Vapor Isotope Ratios Using Off-Axis Cavity-Enhanced Absorption Spectroscopy  

Science Conference Proceedings (OSTI)

Stable isotope ratio measurements of atmospheric water vapor (?18Ov and ?2Hv) are scarce relative to those in precipitation. This limitation is rapidly changing due to advances in absorption spectroscopy technology and the development of ...

Joshua Rambo; Chun-Ta Lai; James Farlin; Matt Schroeder; Ken Bible

2011-11-01T23:59:59.000Z

44

Tunable Diode-Laser Absorption Spectroscopy for Trace-Gas Measurements with High Sensitivity and Low Drift.  

E-Print Network (OSTI)

??This book discusses the mechanical and opto-electronic design of laser spectrometers for measuring two very important atmospheric gases, namely water vapor and its isotopic ratios,… (more)

Dyroff, Christoph

2009-01-01T23:59:59.000Z

45

Vapor-Phase-Deposited Organosilane Coatings as "Hardening" Agents for High-Peak-Power Laser Optics  

Science Conference Proceedings (OSTI)

Multilayer-dielectric (MLD) diffraction gratings are used in high-power laser systems to compress laser-energy pulses. The peak power deliverable on target for these short-pulse petawatt class systems is limited by the laser-damage resistance of the optical components in the system, especially the MLD gratings. Recent experiments in our laboratory have shown that vapor treatment of MLD gratings at room temperature with organosilanes such as hexamethyldisilazane (HMDS) produces an increase in their damage threshold as compared to uncoated MLD grating control samples.

Marshall, K.L.; Culakova, Z.; Ashe, B.; Giacofei, C.; Rigatti, A.L.; Kessler, T.J.; Schmid, A.W.; Oliver, J.B.; Kozlov, A.

2008-01-07T23:59:59.000Z

46

Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser  

SciTech Connect

Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

Early, J; Bibeau, C; Claude, P

2003-09-16T23:59:59.000Z

47

Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry  

Science Conference Proceedings (OSTI)

Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

Tsai, C.

1981-11-01T23:59:59.000Z

48

Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma  

Science Conference Proceedings (OSTI)

During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

Ribic, B.; DebRoy, T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Burgardt, P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2011-04-15T23:59:59.000Z

49

Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere  

Science Conference Proceedings (OSTI)

A second-generation diode-laser-based master oscillator power amplifier (MOPA) configured micropulse differential absorption lidar (DIAL) instrument for profiling of lower-tropospheric water vapor is presented. The DIAL transmitter is based on a ...

Amin R. Nehrir; Kevin S. Repasky; John L. Carlsten

2011-02-01T23:59:59.000Z

50

High-speed Photography of Pyrotechnic Materials and Components with a Coppper Vapor Laser  

SciTech Connect

The evaluation of the properties of energetic materials, such as burn rate and ignition energy, is of primary importance in understanding their reactions and the functioning of devices containing them. One method for recording such information is high-speed photography at rates of up to 20,000 images per second. When a copper vapor lazer is synchronized with the camera, laser-illuminated images can be recorded that detail the performance of a material or component in a manner never before possible. Recent results from high-speed photography of several pyrotechnic materials and devices will be presented. These include a pyrotechnic torch, laser ignition of high explosives, and a functioning igniter. Equilibrium chemical computations have recently been begun on the pyrotechnic torch to obtain flame compositions and temperatures. The results of these calculations, and their explanation of the change in torch function with composition, will be discussed.

Dosser, Larry R.; Reed, John W.; Stark, Margaret A.

1978-10-01T23:59:59.000Z

51

Improved performance of a ballast resistance helical transversely excited CO/sub 2/ laser with water vapor and low ionization potential additives instead of helium  

SciTech Connect

Increased laser energy, peak power, and number of lasing rotational lines are reported in a ballast resistance TE CO/sub 2/ laser, with small amounts of water vapor and low ionization potential additives in place of helium.

Nath, A.K.; Biswas, D.J.

1982-08-01T23:59:59.000Z

52

Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8  

Science Conference Proceedings (OSTI)

In January–February 2003, the 14-channel NASA Ames airborne tracking sun photometer (AATS) and the NASA Langley/Ames diode laser hygrometer (DLH) were flown on the NASA DC-8 aircraft. The AATS measured column water vapor on the aircraft-to-sun ...

J. M. Livingston; B. Schmid; P. B. Russell; J. R. Podolske; J. Redemann; G. S. Diskin

2008-10-01T23:59:59.000Z

53

Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption  

Science Conference Proceedings (OSTI)

Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

Jha, Pankaj K.; Scully, Marlan O. [Texas A and M University, College Station, Texas 77843 (United States); Princeton University, Princeton, New Jersey 08544 (United States); Dorfman, Konstantin E. [Texas A and M University, College Station, Texas 77843 (United States); University of California, Irvine, Irvine, California 92697 (United States); Yi Zhenhuan; Yuan Luqi; Welch, George R. [Texas A and M University, College Station, Texas 77843 (United States); Sautenkov, Vladimir A. [Texas A and M University, College Station, Texas 77843 (United States); Joint Institute of High Temperature, RAS, Moscow 125412 (Russian Federation); Rostovtsev, Yuri V. [University of North Texas, Denton, Texas 76203 (United States); Zheltikov, Aleksei M. [Texas A and M University, College Station, Texas 77843 (United States); M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

2012-08-27T23:59:59.000Z

54

Growth of vertical-cavity surface emitting lasers by metalorganic vapor phase epitaxy  

SciTech Connect

We present growth and characterization of visible and near-infrared vertical-cavity surface emitting lasers (VCSELs) grown by metalorganic vapor phase epitaxy. Discussions on the growth issue of VCSEL materials include growth rate and composition control using an {ital in}{ital situ} normal-incidence reflectometer, comprehensive p- and n-type doping study in AlGaAs by CCl{sub 4} and Si{sub 2}H{sub 6} over the entire composition range, and optimization of ultra-high material uniformity. We also demonstrate our recent achievements of all-AlGaAs VCSELs which include the first room-temperature continuous- wave demonstration of 700-nm red VCSELs and high-efficiency and low- threshold voltage 850-nm VCSELs.

Hou, H.Q.; Hammons, B.E.; Crawford, M.H.; Lear, K.L.; Choquette, K.D.

1996-10-01T23:59:59.000Z

55

ISOTOPES  

E-Print Network (OSTI)

Theory of Isotope Separation as Applied to the Large~scale Production of 235 u National Nuclear Energy

Lederer, C. Michael

2013-01-01T23:59:59.000Z

56

Numerical simulation of transient, incongruent vaporization induced by high power laser  

Science Conference Proceedings (OSTI)

A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.

Tsai, C.H.

1981-01-01T23:59:59.000Z

57

Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability  

Science Conference Proceedings (OSTI)

Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

Isselhardt, B H

2011-09-06T23:59:59.000Z

58

The laser ion source trap for highest isobaric selectivity in online exotic isotope production  

Science Conference Proceedings (OSTI)

The improvement in the performance of a conventional laser ion source in the laser ion source and trap (LIST) project is presented, which envisages installation of a repeller electrode and a linear Paul trap/ion guide structure. This approach promises highest isobaric purity and optimum temporal and spatial control of the radioactive ion beam produced at an online isotope separator facility. The functionality of the LIST was explored at the offline test separators of University of Mainz (UMz) and ISOLDE/CERN, using the UMz solid state laser system. Ionization efficiency and selectivity as well as time structure and transversal emittance of the produced ion beam was determined. Next step after complete characterization is the construction and installation of the radiation-hard final trap structure and its first online application.

Schwellnus, F.; Gottwald, T.; Mattolat, C.; Wendt, K. [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Blaum, K. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Catherall, R.; Crepieux, B.; Fedosseev, V.; Marsh, B.; Rothe, S.; Stora, T. [CERN, CH-1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany)

2010-02-15T23:59:59.000Z

59

ISOTOPES  

E-Print Network (OSTI)

depends on the cost and energy efficiency of the laser.and the low cost and energy efficiency of existing, large-

Lederer, C. Michael

2013-01-01T23:59:59.000Z

60

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

Disclosed are an apparatus and a method for determining concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

62

Isotope effects in the harmonic response from hydrogenlike muonic atoms in strong laser fields  

SciTech Connect

High-order harmonic generation from hydrogenlike muonic atoms exposed to ultraintense high-frequency laser fields is studied. Systems of low nuclear-charge number Z are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes, we demonstrate characteristic signatures of the finite nuclear mass and size in the harmonic spectra. In particular, for Z>1, an effective muon charge appears in the Schroedinger equation for the relative particle motion, which influences the position of the harmonic cutoff. Cutoff energies in the million-electron-volt domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses.

Shahbaz, Atif; Mueller, Carsten [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Buervenich, Thomas J. [Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main (Germany)

2010-07-15T23:59:59.000Z

63

An apparatus for studies of hydrogen isotope exchange over metals using laser-Raman spectroscopy  

DOE Green Energy (OSTI)

An apparatus that uses laser-Raman spectroscopy measures the dynamic gas composition and pressure of mixed hydrogen isotopes as they exchange over hydride-forming metals or alloys. Data for the exchange of protium and deuterium over ZrCo alloy at 260{degree}C indicate that this alloy begins exchanging at temperatures only slightly above room temperature and rapidly and completely exchanges at the higher temperature. The method is suitable for studies of bulk hydrogen/metal interactions. 10 refs., 3 figs.

Carstens, D.H.W.

1990-10-01T23:59:59.000Z

64

Expansion of the laser ablation vapor plume into a background gas: Part A, Analysis  

E-Print Network (OSTI)

x ] = 1 y 2 y 4 dy The thermal energy stored in the vaporet + E ek (subscript t=thermal energy and k=kinetic energy)Also, the kinetic and thermal energies in the vapor plume

Wen, Sy-Bor; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

2006-01-01T23:59:59.000Z

65

Isotope separation of {sup 17}O by photodissociation of ozone with near-infrared laser irradiation  

Science Conference Proceedings (OSTI)

Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of {sup 17}O, however, has been very costly due to the lack of appropriate methods that enable efficient production of {sup 17}O on an industrial level. In this paper, we report the first {sup 17}O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O{sub 3}-90 vol% CF{sub 4} with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of {sup 16}O{sup 16}O{sup 17}O around 1 {mu}m. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an {sup 17}O enrichment factor of 2.2 was attained.

Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro [Tsukuba Laboratories, Taiyo Nippon Sanso Corporation, 10 Okubo Tsukuba-shi, Ibaraki 300-2611 (Japan); Kuze, Hiroaki [Center for Environmental Remote Sensing, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)

2012-04-01T23:59:59.000Z

66

I CALCULATIONS ON ISOTOPE SEPARATION BY LASER INDUCED PHOTODISSOCIATION OF POLYATOMIC MOLECULES  

NLE Websites -- All DOE Office Websites (Extended Search)

; ; . I CALCULATIONS ON ISOTOPE SEPARATION BY LASER INDUCED PHOTODISSOCIATION OF POLYATOMIC MOLECULES F i n a l Report Willis E . Lamb, JY. U n i v e r s i t y of Arizona Tucson, Arizona 85721 NOTICE report was prepared 86 an account of work sponsored by the United Stater Government. Neither the United S t a m nor the United States Department of Encrwi, nor any of their employees, nor any of thelr contractors, Subcontractors, o r their employer, maker any warranty, exprels or Implied. or apumn my k@ liability or responsibility for the aceuraey. eompletencu or uvfulneu of any informtion, apparatus. product Process disclosed. or rtpreYnu that its ur would not infringe privately o m d righu. November 1978 Prepared f o r TIE UNITED STATES DEPARTMENT OF ENERGY Under Contract No. EN-77-S-02--000

67

Sensitive multi-photon nonlinear laser spectroscopic methods for isotope analysis in atmospheric and environmental applications  

E-Print Network (OSTI)

isotopic spectra of atomic chlorine with its two naturallythese applications. Figure 2.4 Chlorine isotope ratios inIsotope Measurements of Atomic Chlorine Using a Low-Pressure

Lyons, Wendy Jean

2009-01-01T23:59:59.000Z

68

Stable isotope studies  

SciTech Connect

The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

Ishida, T.

1992-01-01T23:59:59.000Z

69

Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation  

DOE Patents (OSTI)

The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

Barty, Christopher P. J. (Hayward, CA); Hartemann, Frederic V. (San Ramon, CA); McNabb, Dennis P. (Alameda, CA); Pruet, Jason A. (Brentwood, CA)

2009-07-21T23:59:59.000Z

70

Laser-induced fluorescence measurements and kinetic analysis of Si atom formation in a rotating disk chemical vapor deposition reactor  

SciTech Connect

An extensive set of laser-induced fluorescence (LIF) measurements of Si atoms during the chemical vapor deposition (CVD) of silicon from silane and disilane in a research rotating disk reactor are presented. The experimental results are compared in detail with predictions from a numerical model of CVD from silane and disilane that treats the fluid flow coupled to gas-phase and gas-surface chemistry. The comparisons showed that the unimolecular decomposition of SiH[sub 2] could not account for the observed gas-phase Si atom density profiles. The H[sub 3]SiSiH [leftrightarrow] Si + SiH[sub 4] and H[sub 3]SiSiH + SiH[sub 2] [leftrightarrow] Si + Si[sub 2]H[sub 6] reactions are proposed as the primary Si atom production routes. The model is in good agreement with the measured shapes of the Si atom profiles and the trends in Si atom density with susceptor temperature, pressure, and reactant gas mixture. 33 refs., 12 figs., 3 tabs.

Ho, P.; Coltrin, M.E.; Breiland, W.G. (Sandia National Lab., Albuquerque, NM (United States))

1994-10-06T23:59:59.000Z

71

Laser-induced separation of hydrogen isotopes in the liquid phase  

DOE Patents (OSTI)

Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

Freund, Samuel M. (Los Alamos, NM); Maier, II, William B. (Los Alamos, NM); Beattie, Willard H. (Los Alamos, NM); Holland, Redus F. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

72

Stable Isotopes in Hailstones. Part I: The Isotopic Cloud Model  

Science Conference Proceedings (OSTI)

Equations describing the isotopic balance between five water species (vapor, cloud water, rainwater, cloud ice and graupel)have been incorporated into a one-dimensional steady-state cloud model. The isotope contents of the various water ...

B. Federer; N. Brichet; J. Jouzel

1982-06-01T23:59:59.000Z

73

Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability  

E-Print Network (OSTI)

4.5 Uranium Isotope Ratio Measurements . . . . . .4.32 Uranium sputtered from three U-rich materials of varying uranium isotopic

Isselhardt, Brett Hallen

2011-01-01T23:59:59.000Z

74

Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability  

E-Print Network (OSTI)

a laser system intended to make reproducible measurements ofof uranium measurements. The new laser system should be used

Isselhardt, Brett Hallen

2011-01-01T23:59:59.000Z

75

Vapor Degreasing  

Science Conference Proceedings (OSTI)

Table 6   Applications of vapor degreasing by vapor-spray-vapor systems...hardware Brass 2270 5000 Buffing compound; rouge Lacquer spray Racked work on continuous monorail Acoustic ceiling tile Steel 2720 6000 Light oil (stamping lubricant) Painting Monorail conveyor Gas meters Terneplate 4540 10,000 Light oil Painting Monorail conveyor Continuous strip, 0.25â??4.1 mm...

76

Vapor Characterization  

Science Conference Proceedings (OSTI)

... thermodynamics (that is, vapor liquid equilibrium) as ... of solids and low volatility liquids is extraordinarily ... such situations is the gas saturation method ...

2013-12-10T23:59:59.000Z

77

Optical isotope shift and hyperfine structure measurements in preparation of the ultra-sensitive detection of krypton atoms using stepwise laser excitation and field ionization  

E-Print Network (OSTI)

Within the scope of the ultra sensitive detection project the operation of the collinear fast beam laser spectroscopy apparatus and data acquisition was learned and optimized with respect to the reduction of stray laser light and the charge exchange process. Major contributions to fluctuations and drifts in the measurements have been investigated. The present data is evaluated using only the relativistically correct expressions with Microcal ORIGIN and the IMSL subroutines to perform a least squares fit to the hyperfine structure data when evaluating the hyperfine structure constants A and B. The results are the hyperfinestructure constants and isotope shifts in two transitions from the 5s'[1/2]0' , IS3 , and three transitions from the 5s[3/212' , I S5 , metastable state of krypton. The results of the isotope shift measurements in the 892 nm line of Kr have not been published previously. For the further development of the trace detection of Kr isotopes the work resulted in the construction and installation of the necessary ion-optics and detectors. Changes have been prepared as a result of the ongoing measurements. These are quasicollinear excitation of the Kr beam, avoiding optical pumping and stark shifts, shortening the distance between optical excitation and field ionization and foremost a two order of magnitude improvement of the vacuum conditions in the region the Rydberg atoms traverse by differential pumping. The overall project goal of two step resonant excitation and field ionization seems to be in close reach .

Lassen, Jens

1996-01-01T23:59:59.000Z

78

METHOD AND APPARATUS FOR COLLECTING ISOTOPES  

DOE Patents (OSTI)

A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

Leyshon, W.E.

1957-08-01T23:59:59.000Z

79

Method for separating boron isotopes  

SciTech Connect

A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

Rockwood, Stephen D. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

80

A case of lymphangioma circumscriptum successfully treated with electrodessication following failure of pulsed dye laser  

E-Print Network (OSTI)

review and evaluation of carbon dioxide laser vaporization.cauterization or fraxelated carbon dioxide (CO 2 ) laser wasand argon laser. Carbon dioxide laser ablation (10,600 nm)

Emer, Jason; Gropper, Jaime; Gallitano, Stephanie; Levitt, Jacob

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

1991-01-01T23:59:59.000Z

82

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Santa Fe, NM); Carbone, Robert J. (Los Alamos, NM); Cooper, Ralph S. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

83

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Richardson, TX); Carbone, Robert J. (Johnson City, TN); Cooper, Ralph (Hayward, CA)

1982-01-01T23:59:59.000Z

84

Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury  

E-Print Network (OSTI)

We have performed for the first time direct laser spectroscopy of the 1S0-3P0 optical clock transition at 265.6 nm in fermionic isotopes of neutral mercury laser-cooled in a magneto-optical trap. Spectroscopy is performed by measuring the depletion of the magneto-optical trap induced by the excitation of the long-lived 3P0 state by a probe at 265.6 nm. Measurements resolve the Doppler-free recoil doublet allowing for a determination of the transition frequency to an uncer- tainty well below the Doppler-broadened linewidth. We have performed absolute measurement of the frequency with respect to an ultra-stable reference monitored by LNE-SYRTE fountain pri- mary frequency standards using a femtosecond laser frequency comb. The measured frequency is 1128575290808 +/- 5.6 kHz in 199Hg and 1128569561140 +/- 5.3 kHz in 201Hg, more than 4 orders of magnitude better than previous indirect determinations. Owing to a low sensitivity to blackbody radiation, mercury is a promising candidate for reaching the ultimate performance of optical lattice clocks.

M. Petersen; R. Chicireanu; S. T. Dawkins; D. V. Magalhães; C. Mandache; Y. Lecoq; A. Clairon; S. Bize

2008-07-22T23:59:59.000Z

85

Variable emissivity laser thermal control system  

DOE Patents (OSTI)

A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

Milner, Joseph R. (Livermore, CA)

1994-01-01T23:59:59.000Z

86

Filter for isotopic alteration of mercury vapor  

DOE Green Energy (OSTI)

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

87

Filter for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

88

Method of separating boron isotopes  

SciTech Connect

A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

Jensen, Reed J. (Los Alamos, NM); Thorne, James M. (Provo, UT); Cluff, Coran L. (Provo, UT); Hayes, John K. (Salt Lake City, UT)

1984-01-01T23:59:59.000Z

89

Laser induced chemical reactions  

E-Print Network (OSTI)

of Basic Energy Sciences, Chemical Sciences Division of theINFRARED LASER ENHANCEMENT OF CHEMICAL REACTIONS A. B. C. D.Laser Inhibition of Chemical Reaction Effect of Isotopic

Orel, Ann E.

2010-01-01T23:59:59.000Z

90

Specification of optical components for a high average-power laser environment  

Science Conference Proceedings (OSTI)

Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

1997-06-25T23:59:59.000Z

91

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Feldman, Barry J. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

92

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

93

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

94

Lidar Monitoring of the Water Vapor Cycle in the Troposphere  

Science Conference Proceedings (OSTI)

The water vapor mixing ratio distribution in the lower and middle troposphere has been continuously monitored, using an active lidar system. The methodology of the differential absorption laser method used for these measurements is summarized and ...

C. Cahen; G. Megie; P. Flamant

1982-10-01T23:59:59.000Z

95

Urania vapor composition at very high temperatures  

SciTech Connect

Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

Pflieger, Rachel [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Marcoule Institute for Separation Chemistry (ICSM), UMR 5257, CEA-CNRS-UMII-ENSCM, Bagnols sur Ceze Cedex (France); Colle, Jean-Yves [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Iosilevskiy, Igor [Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, State University, 141700 Moscow (Russian Federation); Extreme Matter Institute (EMMI), 64291 Darmstadt (Germany); Sheindlin, Michael [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation)

2011-02-01T23:59:59.000Z

96

Oxygen Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of...

97

Selective Isotope Determination of Uranium using HR-RIMS  

Science Conference Proceedings (OSTI)

The detection of lowest abundances of the ultra trace isotope {sup 236}U in environmental samples requires an efficient detection method which allows a high elemental and isotopic selectivity to suppress neighbouring isotopes of the same element and other background. High Resolution Laser Resonance Ionization Mass Spectrometry (HR-RIMS) uses the individual electron structure of each isotope to provide an outstanding element and isotope selective ionization.

Raeder, S.; Fies, S.; Wendt, K. D. A. [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz, 55128 Mainz (Germany); Tomita, H. [Nagoya University (Japan)

2009-03-17T23:59:59.000Z

98

Mercury Vapor Pressure Correlation  

Science Conference Proceedings (OSTI)

An apparent difference between the historical mercury vapor concentration equations used by the mercury atmospheric measurement community ...

2012-10-09T23:59:59.000Z

99

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Cotter, Theodore P. (Los Alamos, NM)

1982-12-28T23:59:59.000Z

100

AVLIS enrichment of medical isotopes  

SciTech Connect

Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F. [Lawrence Livermore National Laboratory, CA (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations  

SciTech Connect

Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

Nelson, J. Stuart (Laguna Niguel, CA); Anvari, Bahman (Houston, TX); Tanenbaum, B. Samuel (Irvine, CA); Milner, Thomas E. (Austin, TX)

1999-01-01T23:59:59.000Z

102

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

103

Laser-fusion program. Semiannual report, January--June 1973  

SciTech Connect

Brief discussions are given for each of the following areas of research covered during this report period: solid-state laser program, design analysis, component development, diagnostics, gas lasers, chemical lasers---the iodine laser, basic studies and advanced concepts, laser propagation, laser plasmas, laser fusion, isotope separation, and program resources. (MOW)

Sussman, S.S. (ed.)

1973-08-22T23:59:59.000Z

104

Rare earth gas laser  

DOE Patents (OSTI)

A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

Krupke, W.F.

1975-10-31T23:59:59.000Z

105

Vapor spill monitoring method  

DOE Patents (OSTI)

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

106

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

Grossman, M.W.; Biblarz, O.

1991-10-15T23:59:59.000Z

107

Variable emissivity laser thermal control system  

DOE Patents (OSTI)

A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

Milner, J.R.

1994-10-25T23:59:59.000Z

108

Simple microwave field imaging technique using hot atomic vapor cells  

E-Print Network (OSTI)

We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a CCD camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 {\\mu}m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

Böhi, Pascal

2012-01-01T23:59:59.000Z

109

Simple microwave field imaging technique using hot atomic vapor cells  

E-Print Network (OSTI)

We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 {\\mu}m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

Pascal Böhi; Philipp Treutlein

2012-07-20T23:59:59.000Z

110

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

111

Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond  

Science Conference Proceedings (OSTI)

CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400CH{sub 4} is favored in the more distant regions where T{sub gas}C{sub 2}H{sub 2} conversion, whereas the reverse C{sub 2}H{sub 2}->CH{sub 4} process only requires H atoms to drive the reactions; H atoms are not consumed by the overall conversion.

Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey [Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Mankelevich, Yuri A. [Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

2009-08-01T23:59:59.000Z

112

ISOTOPE SEPARATORS  

DOE Patents (OSTI)

An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

Bacon, C.G.

1958-08-26T23:59:59.000Z

113

NIR-DIODE LASER BASED IN-SITU MEASUREMENT OF ...  

Science Conference Proceedings (OSTI)

... Surveillance of Ignition Processes in Gas-Fired Power-Plants,” Laser Applications ... Vapor and Gas Temperature in a Coal Fired Power-Plant Using ...

2011-11-22T23:59:59.000Z

114

Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay  

Science Conference Proceedings (OSTI)

Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

Anheier, Norman C.; Bushaw, Bruce A.

2010-08-11T23:59:59.000Z

115

Recent Lidar Technology Developments and Their Influence on Measurements of Tropospheric Water Vapor  

Science Conference Proceedings (OSTI)

In this paper the influences of recent technology developments in the areas of lasers, detectors, and optical filters of a differential absorption lidar (DIAL) system on the measurement of tropospheric water vapor (H20) profiles are discussed. ...

Syed Ismail; Edward V. Browell

1994-02-01T23:59:59.000Z

116

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

117

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

118

Vapor concentration monitor  

DOE Patents (OSTI)

An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

Bayly, John G. (Deep River, CA); Booth, Ronald J. (Deep River, CA)

1977-01-01T23:59:59.000Z

119

Laser programs highlights 1993  

SciTech Connect

Over the last two decades, the scope of our laser research has grown immensely. The small, low-power laser systems of our early days have given way to laser systems of record-breaking size and power. Now we are focusing our activities within the target physics and laser science programs to support the ignition and gain goals of the proposed glass-laser National Ignition Facility. In our laser isotope separation work, we completed the most important set of experiments in the history of the AVLIS Program in 1993, which culminated in a spectacularly successful run that met or exceeded all our objectives. We are also developing lasers and laser-related technologies for a variety of energy, commercial, and defense uses. On the horizon are transfers of important technologies for waste treatment, x-ray lithography, communications and security, optical imaging, and remote sensing, among others.

NONE

1995-06-01T23:59:59.000Z

120

Definition: Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Jump to: navigation, search Dictionary.png Mercury Vapor Mercury is discharged as a highly volatile vapor during hydrothermal activity and high concentrations in...

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Los Alamos laser instrument arrives on Red Planet's surface  

NLE Websites -- All DOE Office Websites (Extended Search)

fires its extremely powerful laser pulse, it briefly focuses the energy of a million light bulbs onto an area the size of a pinhead. The laser blast vaporizes part of its...

122

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

123

System and method for high precision isotope ratio destructive analysis  

DOE Patents (OSTI)

A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

2013-07-02T23:59:59.000Z

124

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

125

Stratified vapor generator  

DOE Patents (OSTI)

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

126

Fuel vapor canister  

SciTech Connect

This paper discusses an improved fuel vapor storage canister for use in a vehicle emission system of the type utilizing an enclosure with an interior communicated with a source of fuel vapor. The improved canister comprises: the enclosure having a mixture including particles of activated charcoal and many pieces of foam rubber, the pieces of foam rubber in the mixture being randomly and substantially evenly dispersed whereby substantially all the charcoal particles are spaced relatively closely to at least one foam rubber piece; the mixture being packed into the enclosure under pressure so that the pieces of foam rubber are compressed enough to tightly secure the charcoal particles one against another to prevent a griding action therebetween.

Moskaitis, R.J.; Ciuffetelli, L.A.

1991-03-26T23:59:59.000Z

127

VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS  

DOE Green Energy (OSTI)

This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

Eric M. Suuberg; Vahur Oja

1997-07-01T23:59:59.000Z

128

Glossary Term - Isotope  

NLE Websites -- All DOE Office Websites (Extended Search)

Helios Previous Term (Helios) Glossary Main Index Next Term (Joule) Joule Isotope The Three Isotopes of Hydrogen - Protium, Deuterium and Tritium Atoms that have the same number of...

129

Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination  

E-Print Network (OSTI)

Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope Li-11 at the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Nörtershäuser, W; Ewald, G; Dax, A; Behr, J; Bricault, P; Bushaw, B A; Dilling, J; Dombsky, M; Drake, G W F; Götte, S; Kluge, H -J; Kühl, Th; Lassen, J; Levy, C D P; Pachucki, K; Pearson, M; Puchalski, M; Wojtaszek, A; Yan, Z -C; Zimmermann, C

2010-01-01T23:59:59.000Z

130

Method for separating isotopes  

DOE Patents (OSTI)

Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

Jepson, B.E.

1975-10-21T23:59:59.000Z

131

Vapor spill pipe monitor  

DOE Patents (OSTI)

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

132

Laser removal of sludge from steam generators  

SciTech Connect

A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

Nachbar, Henry D. (Ballston Lake, NY)

1990-01-01T23:59:59.000Z

133

Isotopes: Isotope Production, Medical IsotopesOffice of Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Managers Put a short description of the graphic or its primary message here Isotope Production and Applications The Los Alamos National Laboratory has produced radioactive...

134

Isotope separation by photochromatography  

DOE Patents (OSTI)

An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

Suslick, Kenneth S. (Stanford, CA)

1977-01-01T23:59:59.000Z

135

Salt effects on stable isotope partitioning and their geochemical implications for geothermal brines  

DOE Green Energy (OSTI)

It has long been recognized that dissolved salts in water can change oxygen and hydrogen isotope partitioning between water and other phases (i.e., vapor, minerals) due to the hydration of ions upon the dissolution of salts in water. However, their effects have not been well determined at elevated temperatures. We are currently conducting a series of hydrothermal experiments of the system brine-vapor or minerals to 350{degrees}C, in order to determine precisely the effects of dissolved salts abundant in brines on isotope partitioning at temperatures encountered in geothermal systems. The so-called ``isotope salt effect`` has important implications for the interpretation and modeling of isotopic data of brines and rocks obtained from geothermal fields. We will show how to use our new results of isotopic partitioning to help better evaluate energy resources of many geothermal fields.

Horita, J.; Cole, D.R.; Wesolowski, D.J.

1994-06-01T23:59:59.000Z

136

Liquid-phase compositions from vapor-phase analyses  

SciTech Connect

Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

Davis, W. Jr. (Oak Ridge Gaseous Diffusion Plant, TN (USA)); Cochran, H.D. (Oak Ridge National Lab., TN (USA))

1990-02-01T23:59:59.000Z

137

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

138

Vapor adsorption process  

SciTech Connect

The removal of undesirable acid components from sour natural gas is often accomplished by a vapor adsorption process wherein a bed of solid adsorbent material is contacted with an inlet gas stream so that desired components contained in the gas stream are adsorbed on the bed, then regenerated by contact with a heated regeneration gas stream. Adsorbed components are desorbed from the bed and the bed is cooled preparatory to again being contacted with the inlet gas stream. By this process, the bed is contacted, during the regeneration cycle, with a selected adsorbable material. This material has the property of being displaced from the bed by the desired components and has a heat of desorption equal to or greater than the heat of adsorption of the desired components. When the bed is contacted with the inlet gas stream, the selected adsorbable material is displaced by the desired components resulting in the temperature of the bed remaining relatively constant, thereby allowing the utilization of the maximum bed adsorption capacity. (4 claims)

Snyder, C.F.; Casad, B.M.

1973-04-24T23:59:59.000Z

139

Isotope Enrichment Calculator  

Science Conference Proceedings (OSTI)

... incremental isotopic percentages which are compared with an input experimentally derived profile. The theoretical profile of 15 N percentage which ...

2012-10-09T23:59:59.000Z

140

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the location of the heat source Notes Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-power copper vapour lasers and applications  

Science Conference Proceedings (OSTI)

Expanded applications of copper vapor lasers has prompted increased demand for higher power and better beam quality. This paper reports recent progress in laser power scaling, MOPA operation, beam quality improvement, and applications in precision laser machining. Issues such as gas heating, radial delay, discharge instability, and window heating will also be discussed.

Chang, J.J.; Warner, B.E.; Boley, C.D.; Dragon, E.P.

1995-08-01T23:59:59.000Z

142

Atmospheric Water Vapor over China  

Science Conference Proceedings (OSTI)

Chinese radiosonde data from 1970 to 1990 are relatively homogeneous in time and are used to examine the climatology, trends, and variability of China’s atmospheric water vapor content. The climatological distribution of precipitable water (PW) ...

Panmao Zhai; Robert E. Eskridge

1997-10-01T23:59:59.000Z

143

Vapor deposition of hardened niobium  

DOE Patents (OSTI)

A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

1983-04-19T23:59:59.000Z

144

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

145

Isotopically controlled semiconductors  

SciTech Connect

Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

Haller, Eugene E.

2001-12-21T23:59:59.000Z

146

ISOTOPE CONVERSION DEVICE  

DOE Patents (OSTI)

This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

1957-12-01T23:59:59.000Z

147

ARM - Measurement - Isotope ratio  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsIsotope ratio govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Field Campaign Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Datastreams FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes

148

Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses  

DOE Green Energy (OSTI)

The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

Epstein, S.; Stolper, E.

1992-01-01T23:59:59.000Z

149

Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination  

Science Conference Proceedings (OSTI)

Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Noertershaeuser, W.; Sanchez, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Institut fuer Kernchemie, Universitaet Mainz, D-55099 Mainz (Germany); Ewald, G.; Dax, A.; Goette, S.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (Canada); Bushaw, B. A. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Drake, G. W. F. [Department of Physics, University of Windsor, Windsor, Ontario, N9B 3P4 (Canada); Pachucki, K. [Faculty of Physics, University of Warsaw, PL-00-681 Warsaw (Poland); Puchalski, M. [Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60-780 Poznan (Poland); Yan, Z.-C. [Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada)

2011-01-15T23:59:59.000Z

150

Laser ablation based fuel ignition  

DOE Patents (OSTI)

There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

Early, J.W.; Lester, C.S.

1998-06-23T23:59:59.000Z

151

Brief history of the Los Alamos laser programs  

SciTech Connect

The laser programs at Los Alamos began in 1969 to investigate the feasibility of laser-induced fusion. However, within a year they had been expanded to include a number of other applications including laser isotope separation. These programs now compose a substantial part of the Laboratory's research programs.

Boyer, K.

1983-01-01T23:59:59.000Z

152

Hybrid isotope separation scheme  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

153

HYDROGEN ISOTOPE TARGETS  

DOE Patents (OSTI)

The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

Ashley, R.W.

1958-08-12T23:59:59.000Z

154

Enhanced frequency up-conversion in Rb vapor  

E-Print Network (OSTI)

We demonstrate highly efficient generation of coherent 420 nm light via up-conversion of near-infrared lasers in a hot rubidium vapor cell. By optimizing pump polarizations and frequencies we achieve a single-pass conversion efficiency of 260%/W, significantly higher than in previous experiments. A full 2D exploration of the coherent light generation and fluorescence as a function of the pump frequencies reveals that coherent blue light is generated at 85Rb two-photon resonances, as predicted by theory, but at high vapor pressure it is suppressed in spectral regions that don't support phase matching or exhibit single-photon Kerr refraction. Favorable scaling of our current 1 mW blue beam power with additional pump power is predicted. Infrared pump polarization could be used for future intensity switching experiments.

Vernier, A; Riis, E; Arnold, A S

2009-01-01T23:59:59.000Z

155

1762 OPTICS LETTERS / Vol. 24, No. 23 / December 1, 1999 Methane concentration and isotopic composition  

E-Print Network (OSTI)

and in determining water- vapor levels in natural-gas distribution systems. In these experiments a QC laser designed composition measurements with a mid-infrared quantum-cascade laser A. A. Kosterev, R. F. Curl, and F. K spectroscopy is known to be an effective tool for monitoring atmospheric trace-gas species. The demonstrated

156

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

Zhao, L; Xiao, Y; Yelin, S F

2007-01-01T23:59:59.000Z

157

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

2007-10-22T23:59:59.000Z

158

Unattended Environmental Sampling and Laser-based Enrichment Assay for Detection of Undeclared HEU Production in Enrichment Plants  

Science Conference Proceedings (OSTI)

Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward carbon neutral energy production. Accompanying the growth in nuclear power is the requirement for increased nuclear fuel production, including a significant expansion in uranium enrichment capacity. Essential to the success of the nuclear energy renaissance is the development and implementation of sustainable, proliferation-resistant nuclear power generation. Unauthorized production of highly enriched uranium (HEU) remains the primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs). While to date there has been no indication of declared, safeguarded GCEPs producing HEU, the massive separative work unit (SWU) processing power of modern GCEPs presents a significant latent risk of nuclear breakout and suggests the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely HEU detection within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. We demonstrate enrichment assay, with relative isotope abundance uncertainty <5%, on individual micron-sized particles that are trace components within a mixture ‘background’ particles

Anheier, Norman C.; Bushaw, Bruce A.

2010-04-15T23:59:59.000Z

159

THREE-DIMENSIONAL CONFINEMENT OF VAPOR IN NANOSTRUCTURES FOR SUB-DOPPLER OPTICAL RESOLUTION  

E-Print Network (OSTI)

. The ultimate performances allowed by laser- cooled atoms or ions require huge cooling and trapping volumes for larger pores. Multiple photon scattering increases the effective absorption length, but broad resonances vapors, except with a holey fiber, when using a nonlinear scheme of saturated absorption (SA

160

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Distribution of Tropical Tropospheric Water Vapor  

Science Conference Proceedings (OSTI)

Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence ...

De-Zheng Sun; Richard S. Lindzen

1993-06-01T23:59:59.000Z

162

Atmospheric Water Vapor Characteristics at 70°N  

Science Conference Proceedings (OSTI)

Using an extensive rawinsonde archive, characteristics of Arctic water vapor and its transports at 70°N are examined for the period 1974–1991. Monthly-mean profiles and vertically integrated values of specific humidity and meridional vapor fluxes ...

Mark C. Serreze; Roger G. Barry; John E. Walsh

1995-04-01T23:59:59.000Z

163

Vapor Pressure Measurement of Supercooled Water  

Science Conference Proceedings (OSTI)

A new dewpoint hygrometer was developed for subfreezing temperature application. Vapor pressure of supercooled water was determined by measuring temperatures at the dew-forming surface and the vapor source ice under the flux density balance, and ...

N. Fukuta; C. M. Gramada

2003-08-01T23:59:59.000Z

164

Laser Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel...

165

Fuel Cycle and Isotopes Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Fuel Cycle and Isotopes Division Jeffrey Binder, Division Director Jeffrey Binder, Division Director The Fuel Cycle and Isotopes Division (FCID) of the Nuclear Science...

166

Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Structural: Hydrological: Source of fluids, circulation, andor mixing. Thermal: Heat source and general reservoir temperatures Dictionary.png Isotopic Analysis: Isotopes...

167

Isotope Enrichment | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern electromagnetic isotope separator developed and being scaled-up to replace the Manhattan Project-era Calutrons used for stable isotope enrichment. Since 1945, ORNL has...

168

Recirculating wedges for metal-vapor plasma tubes  

DOE Patents (OSTI)

A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

1994-06-28T23:59:59.000Z

169

Recirculating wedges for metal-vapor plasma tubes  

DOE Patents (OSTI)

A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

Hall, Jerome P. (Livermore, CA); Sawvel, Robert M. (Modesto, CA); Draggoo, Vaughn G. (Livermore, CA)

1994-01-01T23:59:59.000Z

170

Chemical and isotopic characteristics of the coso east flank hydrothermal  

Open Energy Info (EERE)

isotopic characteristics of the coso east flank hydrothermal isotopic characteristics of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical and isotopic characteristics of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source Details Activities (1) Areas (1) Regions (0) Abstract: Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

171

Apparatus and method for monitoring of gas having stable isotopes  

DOE Patents (OSTI)

Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

Clegg, Samuel M; Fessenden-Rahn, Julianna E

2013-03-05T23:59:59.000Z

172

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

173

LOW PRESSURE CHEMICAL VAPOR DEPOSITION OF POLYSILICON  

E-Print Network (OSTI)

THEORY The mass transport processes in low pressure chemical vapor deposition (LPCVD) are similar to those occuring in catalytic reactors

Gieske, R.J.

2011-01-01T23:59:59.000Z

174

Determination of Actinide Isotope Ratios Using Glow Discharge Optogalvanic Spectroscopy  

SciTech Connect

Diode-laser excited optogalvanic spectroscopy (OGS) of a glow discharge has been utilized to measure U-235/U-235 + U-238 isotope ratios. This ``optical mass spectrometric`` measurement has been demonstrated for a number of samples including uranium oxide, fluoride, and metal. Various diode-laser accessible atomic transitions in the 775 to 835 nm region have been evaluated; these transitions were chosen by considering OGS sensitivity and isotope shift. Using the 831.84 nm uranium line, for example, it was possible to measure the U-235/U-235 + U-238 isotope ratio (0.0026) of depleted uranium samples. A prototypical field instrument to make these measurements has been assembled and demonstrated. A U-236 spectral line was identified in a sample of enriched uranium, and an abundance sensitivity was measured.

Young, J.P.; Shaw, R.W.; Barshick, C.M.; Ramsey, J.M.

1997-08-01T23:59:59.000Z

175

Isotope GeochemistryIsotope Geochemistry Isotopes do not fractionate during partial  

E-Print Network (OSTI)

/204Pb, 207Pb/204Pb, due to U and Th decay The isotope geology of PbThe isotope geology of Pb #12;The isotope geology of PbThe isotope geology of Pb µ = 238U/204Pb Primeval lead (Isotope ratios of Pb tT t eea Pb Pb -µ+= 30.90 204 206 == a Pb Pb i 29.100 204 207 == b Pb Pb i #12;The isotope geology

Siebel, Wolfgang

176

Vapor Pressures and Heats of Vaporization of Primary Coal Tars  

Office of Scientific and Technical Information (OSTI)

/ PC92544-18 / PC92544-18 VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS FINAL REPORT Grant Dates: August, 1992 - November, 1996 Principal Authors: Eric M. Suuberg (PI) and Vahur Oja Report Submitted: April, 1997 Revised: July, 1997 Grant Number: DE-FG22-92PC92544 Report Submitted by: ERIC M. SUUBERG DIVISION OF ENGINEERING BROWN UNIVERSITY PROVIDENCE, RI 02912 TEL. (401) 863-1420 Prepared For: U. S. DEPT. OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER P.O. BOX 10940 PITTSBURGH, PA 15236 DR. KAMALENDU DAS, FETC, MORGANTOWN , WV TECHNICAL PROJECT OFFICER "US/DOE Patent Clearance is not required prior to the publication of this document" ii United States Government Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

177

The Megalopolitan Snowstorm of 11–12 February 1983: Isotopic Composition of the Snow  

Science Conference Proceedings (OSTI)

The stable isotopic composition (?D and ?18O) of precipitation and water vapor from the megalopolitan snowstorm of 11–12 February 1983 collected in the New York metropolitan area has been related to both synoptic scale and mesoscale structure of ...

Stanley David Gedzelman; Jeffrey Marc Rosenbaum; James R. Lawrence

1989-06-01T23:59:59.000Z

178

Isotopically controlled semiconductors  

SciTech Connect

The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

Haller, Eugene E.

2006-06-19T23:59:59.000Z

179

Means and method for vapor generation  

DOE Patents (OSTI)

A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

Carlson, Larry W. (Oswego, IL)

1984-01-01T23:59:59.000Z

180

Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane  

Science Conference Proceedings (OSTI)

Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

Jewett, J.R., Fluor Daniel Hanford

1997-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Production SHARE Strategic Isotope Production ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center...

182

Isotopes as Environmental Tracers in Archived Biological ...  

Science Conference Proceedings (OSTI)

... Tissue Archival and Monitoring Program (STAMP ... and isotopes) and carbon/nitrogen (isotopes). The carbon/nitrogen isotope data provide valuable ...

2012-10-02T23:59:59.000Z

183

Vapor phase heat transport systems  

DOE Green Energy (OSTI)

Vapor phase heat-transport systems are being tested in two of the passive test cells at Los Alamos. The systems consist of an active fin-and-tube solar collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by a pump or by a self-pumping scheme. In one of the test cells the liquid was self-pumped to the roof-mounted collector 17 ft above the condenser. A mechanical valve was designed and tested that showed that the system could operate in a completely passive mode. Performance comparisons have been made with a passive water wall test cell.

Hedstrom, J.C.

1984-01-01T23:59:59.000Z

184

Growth of undoped and chromium-doped CdSxSe1-x crystals by the physical vapor transport method  

Science Conference Proceedings (OSTI)

Chromium-doped CdSe is one of the host materials being considered for solid-state tunable mid-infrared (IR) lasers. Alloying CdSe with CdS allows the increase of the thermal conductivity of the crystal (for CdS the thermal conductivity is a factor of ... Keywords: Cr2+:CdSSe, photoluminescence, physical vapor transport, tunable mid-IR solid-state lasers

U. N. Roy; Y. Cui; C. Barnett; K.-T. Chen; A. Burger; Jonathan T. Goldstein

2002-07-01T23:59:59.000Z

185

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

186

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, B.K.

1991-12-17T23:59:59.000Z

187

Thermoplastic Composite with Vapor Grown Carbon Fiber.  

E-Print Network (OSTI)

??Vapor grown carbon fiber (VGCF) is a new class of highly graphitic carbon nanofiber and offers advantages of economy and simpler processing over continuous-fiber composites.… (more)

Lee, Jaewoo

2005-01-01T23:59:59.000Z

188

Moisture Durability of Vapor Permeable Insulating Sheathing ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes, Building Technologies Office (BTO) In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor...

189

Water Vapor Fields Deduced from METEOSAT-1 Water Vapor Channel Data  

Science Conference Proceedings (OSTI)

A quasi-operational process for the determination of water vapor fields from METEPSAT-1 water vapor channel data is described. Each count of the WV picture is replaced by the corresponding mean relative humidity value using both the calibration ...

M. M. Poc; M. Roulleau

1983-09-01T23:59:59.000Z

190

Separation of sulfur isotopes  

DOE Patents (OSTI)

Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

DeWitt, Robert (Centerville, OH); Jepson, Bernhart E. (Dayton, OH); Schwind, Roger A. (Centerville, OH)

1976-06-22T23:59:59.000Z

191

ISOTOPE SEPARATION AND ISOTOPE EXCHANGE. A Bibliography with Abstracts  

SciTech Connect

The unclassified literature covering 2498 reports from 1907 through 1957 has been searched for isotopic exchange and isotepic separation reactions involving U and the lighter elements of the periodic chart through atomic number 30. From 1953 to 1957, all elements were included Numerous references to isotope properties, isotopic ratios, and kinetic isotope effects were included. This is a complete revision of TID-3036 (Revised) issued June 4, 1954. An author index is included. (auth)

Begun, G.M.

1959-10-28T23:59:59.000Z

192

Laser Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Ignition Laser Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In two embodiments the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion

193

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

194

G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product  

SciTech Connect

The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

Koontz, A; Cadeddu, M

2012-12-05T23:59:59.000Z

195

Atom probe microscopy of three-dimensional distribution of silicon isotopes in {sup 28}Si/{sup 30}Si isotope superlattices with sub-nanometer spatial resolution  

Science Conference Proceedings (OSTI)

Laser-assisted atom probe microscopy of 2 nm period {sup 28}Si/{sup 30}Si isotope superlattices (SLs) is reported. Three-dimensional distributions of {sup 28}Si and {sup 30}Si stable isotopes are obtained with sub-nanometer spatial resolution. The depth resolution of the present atom probe analysis is much higher than that of secondary ion mass spectrometry (SIMS) even when SIMS is performed with a great care to reduce the artifact due to atomic mixing. Outlook of Si isotope SLs as ideal depth scales for SIMS and three-dimensional position standards for atom probe microscopy is discussed.

Shimizu, Yasuo; Kawamura, Yoko; Uematsu, Masashi; Itoh, Kohei M. [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Tomita, Mitsuhiro [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Sasaki, Mikio; Uchida, Hiroshi; Takahashi, Mamoru [Toshiba Nanoanalysis Corporation, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8583 (Japan)

2009-10-01T23:59:59.000Z

196

Laser Radiometry  

Science Conference Proceedings (OSTI)

... over a wide range of powers, energies, and wavelengths. ... the SI units for laser power and energy. ... Novel power meter for high-efficiency laser diode ...

2012-04-18T23:59:59.000Z

197

DEEP WATER ISOTOPIC CURRENT ANALYZER  

DOE Patents (OSTI)

A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

Johnston, W.H.

1964-04-21T23:59:59.000Z

198

Quantitative organic vapor-particle sampler  

DOE Patents (OSTI)

A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

1998-01-01T23:59:59.000Z

199

A New Global Water Vapor Dataset  

Science Conference Proceedings (OSTI)

A comprehensive and accurate global water vapor dataset is critical to the adequate understanding of water vapor's role in the earth's climate system. To begin to satisfy this need, the authors have produced a blended dataset made up of global, 5-...

David L. Randel; Thomas J. Greenwald; Thomas H. Vonder Haar; Graeme L. Stephens; Mark A. Ringerud; Cynthia L. Combs

1996-06-01T23:59:59.000Z

200

LNG fire and vapor control system technologies  

SciTech Connect

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Stacked vapor fed amtec modules  

DOE Patents (OSTI)

The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

Sievers, Robert K. (North Huntingdon, PA)

1989-01-01T23:59:59.000Z

202

ARM - Field Campaign - Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWater Vapor IOP govCampaignsWater Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP 2000.09.18 - 2000.10.08 Lead Scientist : Henry Revercomb Data Availability Yes For data sets, see below. Description Scientific hypothesis: 1. Microwave radiometer (MWR) observations of the 22 GHz water vapor line can accurately constrain the total column amount of water vapor (assuming a calibration accuracy of 0.5 degC or better, which translates into 0.35 mm PWV). 2. Continuous profiling by Raman lidar provides a stable reference for handling sampling problems and observes a fixed column directly above the site only requiring a single height- independent calibration factor. 3. Agreement between the salt-bath calibrated in-situ probes, chilled

203

Laser program annual report, 1979  

SciTech Connect

Volume 3 comprises three sections, beginning with Section 7 on advanced quantum electronics. Both theoretical and experimental research and development activities on advanced laser concepts in the quest for high efficiency and high repetition rate are presented. Section 8 contains the results of studies by the Energy and Military Applications group. Section 9 presents results from some of the activities of the advanced isotope separation program. (MOW)

Coleman, L.W.; Strack, J.R. (eds.)

1980-03-01T23:59:59.000Z

204

An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field  

E-Print Network (OSTI)

We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no ...

Sarkisyan, D; Guena, J; Lintz, M; Bouchiat, M A; Sarkisyan, David; Gu\\'{e}na, Jocelyne; Lintz, Michel; Bouchiat, Marie-Anne

2005-01-01T23:59:59.000Z

205

Nuclear charge radii of potassium isotopes beyond N=28  

E-Print Network (OSTI)

We report on the measurement of optical isotope shifts for $^{38,39,42,44,46\\text{-}51}$K relative to $^{47}$K from which changes in the nuclear mean square charge radii across the N=28 shell closure are deduced. The investigation was carried out by bunched-beam collinear laser spectroscopy at the CERN-ISOLDE radioactive ion-beam facility. Mean square charge radii are now known from $^{37}$K to $^{51}$K, covering all $\

Kreim, K; Papuga, J; Blaum, K; De Rydt, M; Ruiz, R F Garcia; Goriely, S; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nörtershäuser, W; Rajabali, M M; Alarcón, R Sánchez; Stroke, H H; Yordanov, D T

2013-01-01T23:59:59.000Z

206

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area...

207

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

208

Abstract: Apparatus for Measuring Vapor-Liquid Equilibrium ...  

Science Conference Proceedings (OSTI)

... Measurements of the vapor pressures and saturated liquid densities of ethanol and the vapor pressure of an ethanol water mixture (ethanol=0.6743 ...

209

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Mercury Vapor Activity Date Usefulness not...

210

Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses. Progress report  

DOE Green Energy (OSTI)

The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

Epstein, S.; Stolper, E.

1992-03-01T23:59:59.000Z

211

Water vapor retrieval over many surface types  

SciTech Connect

In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

Borel, C.C.; Clodius, W.C.; Johnson, J.

1996-04-01T23:59:59.000Z

212

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines.  

E-Print Network (OSTI)

??A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption… (more)

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

213

Analysis of binary vapor turbines  

DOE Green Energy (OSTI)

The effect the binary mixture has on the turbine is examined in terms of design and cost. Several flow theories for turbines and turbine blading are reviewed. The similarity method, which uses dimensionless parameters, is used in determining rotative speeds and diameters for a variety of inlet temperatures and exit pressures. It is shown that the ratio of exit to inlet specific volume for each component in the mixture is the same for each specie. The specific volume ratio constraints are combined with the temperature equalities, the condenser pressure, and the total inlet entropy to form the constraints necessary to determine the exit state uniquely in an isentropic expansion. The non-isentropic exit state is found in a similar manner. The expansion process is examined for several cases and compared with the expansion of a single component vapor. Finally, in order to maintain high efficiency and to meet the criteria which makes the similarity method valid at high inlet temperatures, turbine multistaging is examined and a sample case is given for a two stage turbine.

Bliss, R.W.; Boehm, R.F.; Jacobs, H.R.

1976-12-01T23:59:59.000Z

214

Laser Applications in Metal Surface Hardening  

E-Print Network (OSTI)

The acceptance of C02 lasers in industry to provide surface hardening is an established fact. Applications number in the hundreds in such diverse fields as automotive, office machines, air compressors, jet engines, military, paper converting, personal products, printing, plastics, forestry, mining, drilling, etc. Many specific examples are discussed with emphasis on why lasers were chosen and what significant economies in power consumption were realized. In one well-documented case, power consumption is shown to have dropped to 0.29% of the level for the previously used hardening process. The wear and fatigue characteristics of laser-hardened surfaces are reviewed. Reference is made to the operating principles of medium to high-power carbon-dioxide lasers. Typical examples are given of other laser processes such as welding, cutting, vaporizing, drilling, scribing, machining, etc.

Eckersley, J. S.

1982-01-01T23:59:59.000Z

215

Optical penetration sensor for pulsed laser welding  

SciTech Connect

An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

216

Perfluorocarbon vapor tagging of blasting cap detonators  

DOE Patents (OSTI)

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, Russell N. (Shoreham, NY); Senum, Gunnar I. (Patchogue, NY)

1981-01-01T23:59:59.000Z

217

Perfluorocarbon vapor tagging of blasting cap detonators  

SciTech Connect

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, R.N.; Senum, G.I.

1981-03-17T23:59:59.000Z

218

Aerogel composites using chemical vapor infiltration  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerogel composites using chemical vapor infiltration Aerogel composites using chemical vapor infiltration Title Aerogel composites using chemical vapor infiltration Publication Type Journal Article Year of Publication 1995 Authors Hunt, Arlon J., Michael R. Ayers, and Wanqing Cao Journal Journal of Non-Crystalline Solids Volume 185 Pagination 227-232 Abstract A new method to produce novel composite materials based on the use of aerogels as a starting material is described. Using chemical vapor infiltration, a variety of solid materials were thermally deposited into the open pore structure of aerogel. The resulting materials possess new and unusual properties including photoluminescence, magnetism and altered optical properties. An important characteristic of this preparation process is the very small size of the deposits that gives rise to new behaviors. Silicon deposits exhibit photoluminescence, indicating quantum confinement. Two or more phases may be deposited simultaneously and one or both chemically or thermally reacted to produce new structures.

219

Chemical vapor depositing of metal fluorides  

Science Conference Proceedings (OSTI)

High Purity BeF2 and BeF2–AlF3glasses have been deposited by the chemical vapor deposition technique using beryllium and aluminum 1

A. Sarhangi; J. M. Power

1992-01-01T23:59:59.000Z

220

Chemical vapor deposition of antimicrobial polymer coatings  

E-Print Network (OSTI)

There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

Martin, Tyler Philip, 1977-

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical vapor deposition of functionalized isobenzofuran polymers  

E-Print Network (OSTI)

This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

Olsson, Ylva Kristina

2007-01-01T23:59:59.000Z

222

Tropospheric Water Vapor and Climate Sensitivity  

Science Conference Proceedings (OSTI)

Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO2), using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The ...

Edwin K. Schneider; Ben P. Kirtman; Richard S. Lindzen

1999-06-01T23:59:59.000Z

223

Chemical vapor infiltration using microwave energy  

DOE Patents (OSTI)

This invention is comprised of a method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

Devlin, D.J.; Currier, R.P.; Laia, J.R.; Barbero, R.S.

1992-12-31T23:59:59.000Z

224

Multicomponent fuel vaporization at high pressures.  

DOE Green Energy (OSTI)

We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

Torres, D. J. (David J.); O'Rourke, P. J. (Peter J.)

2002-01-01T23:59:59.000Z

225

A Review of Laser Ablation Propulsion  

SciTech Connect

Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

Phipps, Claude [Photonic Associates, LLC, 200A Ojo de la Vaca Road, Santa Fe NM 87508 (United States); Bohn, Willy [Bohn Laser Consult, Weinberg Weg 43, Stuttgart (Germany); Lippert, Thomas [Paul Scherrer Institut, CH5232 Villigen PSI (Switzerland); Sasoh, Akihiro [Department of Aerospace Engineering, Nagoya University, Chikusa-ku, Nagoya (Japan); Schall, Wolfgang [DLR Institute of Technical Physics, Stuttgart (Germany); Sinko, John [Micro-Nano GCOE, Nagoya University, Furo-cho, Nagoya, Aichi (Japan)

2010-10-08T23:59:59.000Z

226

Apparatus for precision micromachining with lasers  

DOE Patents (OSTI)

A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

Chang, J.J.; Dragon, E.P.; Warner, B.E.

1998-04-28T23:59:59.000Z

227

Apparatus for precision micromachining with lasers  

DOE Patents (OSTI)

A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

Chang, Jim J. (Dublin, CA); Dragon, Ernest P. (Danville, CA); Warner, Bruce E. (Pleasanton, CA)

1998-01-01T23:59:59.000Z

228

Isotopically labeled compositions and method  

DOE Patents (OSTI)

Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

Schmidt, Jurgen G. (Los Alamos, NM); Kimball, David B. (Los Alamos, NM); Alvarez, Marc A. (Santa Fe, NM); Williams, Robert F. (Los Alamos, NM); Martinez, Rudolfo A. (Santa Fe, NM)

2011-07-12T23:59:59.000Z

229

Laser Spectro.  

Science Conference Proceedings (OSTI)

For more information about my work on laser spectroscopy, consult the following papers: Sansonetti, CJ, Gillaspy, JD, and ...

230

STATEMENT OF CONSIDERATIONS CLASS WAIVER OF THE GOVERNMENT'S...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract on the Atomic Vapor Laser Isotope Separation (AVLIS) technology, to be used for uranium enrichment and enrichment of Special Nuclear Materials as that term is defined in...

231

ISOTOPE FRACTIONATION PROCESS  

DOE Patents (OSTI)

A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

Clewett, G.H.; Lee, DeW.A.

1958-05-20T23:59:59.000Z

232

Chromatographic hydrogen isotope separation  

DOE Patents (OSTI)

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

233

The athermal Laser  

E-Print Network (OSTI)

A new laser concept is presented, called the athermal laser, unifying all the hitherto known implementations of radiative laser cooling.

Muys, Peter

2009-01-01T23:59:59.000Z

234

Vapor scavenging by atmospheric aerosol particles  

Science Conference Proceedings (OSTI)

Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

Andrews, E.

1996-05-01T23:59:59.000Z

235

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

236

It's Elemental - Isotopes of the Element Neptunium  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Previous Element (Uranium) The Periodic Table of Elements Next Element (Plutonium) Plutonium Isotopes of the Element Neptunium Click for Main Data Most of the isotope...

237

It's Elemental - Isotopes of the Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine Isotopes of the Element Sulfur Click for Main Data Most of the isotope...

238

It's Elemental - Isotopes of the Element Argon  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine Previous Element (Chlorine) The Periodic Table of Elements Next Element (Potassium) Potassium Isotopes of the Element Argon Click for Main Data Most of the isotope data...

239

The marine biogeochemistry of zinc isotopes  

E-Print Network (OSTI)

Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, ...

John, Seth G

2007-01-01T23:59:59.000Z

240

It's Elemental - Isotopes of the Element Ruthenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Technetium Previous Element (Technetium) The Periodic Table of Elements Next Element (Rhodium) Rhodium Isotopes of the Element Ruthenium Click for Main Data Most of the isotope...

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

It's Elemental - Isotopes of the Element Molybdenum  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium Isotopes of the Element Molybdenum Click for Main Data Most of the isotope...

242

It's Elemental - Isotopes of the Element Thorium  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Elements Next Element (Protactinium) Protactinium Isotopes of the Element Thorium Click for Main Data Most of the isotope data on this site has been obtained from...

243

It's Elemental - Isotopes of the Element Protactinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Thorium Previous Element (Thorium) The Periodic Table of Elements Next Element (Uranium) Uranium Isotopes of the Element Protactinium Click for Main Data Most of the isotope data...

244

High-Precision Isotopic Reference Materials  

Science Conference Proceedings (OSTI)

... sources, is now capable of measuring isotope ratios with ... revolution in the use of isotopes by revealing ... This program will have an impact in several ...

2012-10-22T23:59:59.000Z

245

Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients  

DOE Patents (OSTI)

A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

Yeung, E.S.; Chen, G.

1990-05-01T23:59:59.000Z

246

Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients  

DOE Patents (OSTI)

A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.

Yeung, Edward S. (Ames, IA); Chen, Guoying (Laramie, WY)

1990-05-01T23:59:59.000Z

247

Laser device  

DOE Patents (OSTI)

A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

2007-07-10T23:59:59.000Z

248

Laser-induced implantation of silver particles into poly(vinyl alcohol) films and its application to electronic-circuit fabrication on encapsulated organic electronics  

Science Conference Proceedings (OSTI)

In this study, we propose a new laser-induced implantation based approach for embedding electronic interconnects in this study. Direct implantations of silver particles, vaporized by a pulsed laser from a silver film initially pre-coated on a transparent ... Keywords: Embedded electronic circuits, Encapsulation, Laser-induced implantation, Organic thin-film transistors, Polymeric light-emitting diodes

Kun-Tso Chen; Yu-Hsuan Lin; Jeng-Rong Ho; J.-W. John Cheng; Sung-Ho Liu; Jin-Long Liao; Jing-Yi Yan

2010-04-01T23:59:59.000Z

249

Transverse-type laser assembly using induced electrical discharge excitation and method  

DOE Patents (OSTI)

A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.

Ault, E.R.

1994-04-19T23:59:59.000Z

250

Transverse-type laser assembly using induced electrical discharge excitation and method  

DOE Patents (OSTI)

A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase.

Ault, Earl R. (Livermore, CA)

1994-01-01T23:59:59.000Z

251

atmospheric water vapor | OpenEI  

Open Energy Info (EERE)

atmospheric water vapor atmospheric water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor Carribean Islands Central America DNI GIS Mexico NREL GEF solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 247.8 KiB) text/csv icon Download Data (csv, 370.6 KiB) Quality Metrics Level of Review Some Review

252

ARM - Field Campaign - Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWater Vapor IOP govCampaignsWater Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP 1996.09.10 - 1996.09.30 Lead Scientist : Henry Revercomb For data sets, see below. Summary SCHEDULE This IOP will be conducted from September 10 - 30, 1996 (coincident with the Fall ARM-UAV IOP). Instruments that do not require supervision will be operated continuously during this period. Instruments that do require supervision are presently planned to be operated for 8-hour periods each day. Because it is necessary to cover as broad a range of environmental conditions as possible, the daily 8-hour period will be shifted across the diurnal cycle as deemed appropriate during the IOP (but will be maintained as a contiguous 8-hour block).

253

atmoshperic water vapor | OpenEI  

Open Energy Info (EERE)

atmoshperic water vapor atmoshperic water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for China. Source NREL Date Released April 12th, 2005 (9 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmoshperic water vapor China GEF GIS NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 625.6 KiB) text/csv icon Download Data (csv, 704.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/1985 - 12/31/1991 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

254

Thermal electric vapor trap arrangement and method  

DOE Patents (OSTI)

A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

Alger, Terry (Tracy, CA)

1988-01-01T23:59:59.000Z

255

Adsorption of water vapor on reservoir rocks  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

256

Laser Probing of Neutron-Rich Nuclei in Light Atoms  

E-Print Network (OSTI)

The neutron-rich 6He and 8He isotopes exhibit an exotic nuclear structure that consists of a tightly bound 4He-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms, and have measured the atomic isotope shifts along the 4He-6He-8He chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations, and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.

Z. -T. Lu; P. Mueller; G. W. F. Drake; W. Noertershaeuser; Steven C. Pieper; Z. -C. Yan

2013-07-10T23:59:59.000Z

257

Method and Apparatus for Concentrating Vapors for Analysis  

DOE Patents (OSTI)

An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

2008-10-07T23:59:59.000Z

258

Low Temperature Direct Growth of Graphene Films on Transparent Substrates by Chemical Vapor Deposition  

E-Print Network (OSTI)

and Few- Layer Graphene by Chemical Vapor Deposition",Liu, W. , et al. (2010). "Chemical vapor deposition of large5 1.3.3. Chemical Vapor

Antoine, Geoffrey Sandosh Jeffy

2013-01-01T23:59:59.000Z

259

Compelling Research Opportunities using Isotopes  

SciTech Connect

Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

None

2009-04-23T23:59:59.000Z

260

In situ laser processing in a scanning electron microscope  

Science Conference Proceedings (OSTI)

Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {micro}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

Roberts, Nicholas [University of Tennessee, Knoxville (UTK); Fowlkes, Jason Davidson [ORNL; Rack, Prof. Philip [University of Tennessee, Knoxville (UTK); Moore, Tom [OmniProbe, Inc.; Magel, Greg [OmniProbe, Inc.; Hartfield, Cheryl [OmniProbe, Inc.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

In situ laser processing in a scanning electron microscope  

SciTech Connect

Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-07-15T23:59:59.000Z

262

Profiling Atmospheric Water Vapor by Microwave Radiometry  

Science Conference Proceedings (OSTI)

High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended Kaiman-Bucy filter ...

J. R. Wang; J. L. King; T. T. Wilheit; G. Szejwach; L. H. Gesell; R. A. Nieman; D. S. Niver; B. M. Krupp; J. A. Gagliano

1983-05-01T23:59:59.000Z

263

Polynomial Fits to Saturation Vapor Pressure  

Science Conference Proceedings (OSTI)

The authors describe eighth- and sixth-order polynomial fits to Wexler's and Hyland-Wexler's saturation-vapor-pressure expressions. Fits are provided in both least-squares and relative-error norms. Error analysis is presented. The authors show ...

Piotr J. Flatau; Robert L. Walko; William R. Cotton

1992-12-01T23:59:59.000Z

264

Vaporization of synthetic fuels. Final report. [Thesis  

DOE Green Energy (OSTI)

The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

1983-01-01T23:59:59.000Z

265

Chemical vapor deposition of mullite coatings  

DOE Patents (OSTI)

This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

1998-01-01T23:59:59.000Z

266

A Water Vapor Index from Satellite Measurements  

Science Conference Proceedings (OSTI)

A method for deriving a water vapor index is presented. An important feature of the index is the fact that it does not rely on radiosondes. Thus, it is not influenced by problems associated with radiosondes and the extent to which the horizontal ...

Larry M. McMillin; David S. Crosby; Mitchell D. Goldberg

1995-07-01T23:59:59.000Z

267

Laser Catalyst  

INL’s Laser Catalyst is a method for removing contaminant matter from a porous material. A polymer material is applied to a contaminated surface and ...

268

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

269

Microwave plasma chemical vapor deposition of nano-composite...  

NLE Websites -- All DOE Office Websites (Extended Search)

plasma chemical vapor deposition of nano-composite CPt thin-films Title Microwave plasma chemical vapor deposition of nano-composite CPt thin-films Publication Type Journal...

270

Microwave Plasma Chemical Vapor Depositon of Nano-Structured...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Chemical Vapor Depositon of Nano-Structured SnC Composite Thin-Film anodes for Li-ion Battteries Title Microwave Plasma Chemical Vapor Depositon of Nano-Structured SnC...

271

The Effect of vapor subcooling on film condensation of metals  

E-Print Network (OSTI)

This work presents an analysis of the interfacial "vapor-condensate" temperature distribution, which includes the effect of subcooling (supersaturation) in the vapor. Experimental data from previous investigators for ...

Fedorovich, Eugene D.

1968-01-01T23:59:59.000Z

272

Waste tank headspace gas and vapor characterization reference guide  

SciTech Connect

This document is to serve as a reference guide for gas and vapor sample results presented in tank characterization reports. It describes sampling equipment, devices, and protocols, and sample collection and analysis methods common to all vapor samples.

Huckaby, J.L.

1995-06-01T23:59:59.000Z

273

Atmospheric Solar Heating Rate in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

The total absorption of solar radiation by water vapor in clear atmosphere is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are ...

Ming-Dah Chou

1986-11-01T23:59:59.000Z

274

Estimating the Atmospheric Water Vapor Content from Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

The differential absorption technique for estimating columnar water vapor values from the analysis of sunphotometric measurements with wide- and narrowband interferential filters centered near 0.94 ?m is discussed and adapted. Water vapor line ...

Artemio Plana-Fattori; Michel Legrand; Didier Tanré; Claude Devaux; Anne Vermeulen; Philippe Dubuisson

1998-08-01T23:59:59.000Z

275

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)  

SciTech Connect

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

Not Available

2013-10-01T23:59:59.000Z

276

Improved Retrieval of Integrated Water Vapor from Water Vapor Radiometer Measurements Using Numerical Weather Prediction Models  

Science Conference Proceedings (OSTI)

Water vapor radiometer (WVR) retrieval algorithms require a priori information on atmospheric conditions along the line of sight of the radiometer in order to derive opacities from observed brightness temperatures. This paper's focus is the mean ...

Steven R. Chiswell; Steven Businger; Michael Bevis; Fredrick Solheim; Christian Rocken; Randolph Ware

1994-10-01T23:59:59.000Z

277

Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

Pruess, Karsten; O'Sullivan, Michael

1992-01-01T23:59:59.000Z

278

NIST Laser Applications Group Homepage  

Science Conference Proceedings (OSTI)

Laser Applications Group. Welcome. The Laser Applications Group advances laser technology for applications in optical ...

2012-05-10T23:59:59.000Z

279

Studies in Photosynthesis with Isotopes  

E-Print Network (OSTI)

chlorophyll) SCHEMATIC DIAGRAM OF PHOTOSYNTHESIS Fig, P Fig.2 Time of photosynthesis 60c.f M U 1646 Fig. 5 Fig. 8 Fig. 94705-eng-48 STUDIES IN PHOTOSYNTHESIS WITH ISOTOPES M Calvin

Calvin, M.; Bassham, J.A.

1952-01-01T23:59:59.000Z

280

Novel hybrid isotope separation scheme and apparatus  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines  

E-Print Network (OSTI)

A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

282

Metalworking Lasers  

Science Conference Proceedings (OSTI)

...Several models of metalworking lasers of both domestic and foreign manufacture are commercially available. The majority of these are of either the neodymium yttrium-aluminum garnet (Nd:YAG) solid-state type or the carbon dioxide (CO 2 ) gas type. These lasers may have pulsed or...

283

Laser device  

DOE Patents (OSTI)

A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

2008-08-19T23:59:59.000Z

284

CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS  

DOE Green Energy (OSTI)

Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

Xiao, S.; Heung, L.

2010-10-07T23:59:59.000Z

285

CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS  

SciTech Connect

Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

Xiao, S.; Heung, L.

2010-10-07T23:59:59.000Z

286

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Energy.gov (U.S. Department of Energy (DOE))

Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

287

Isotope production facility produces cancer-fighting actinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

288

Definition: Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Isotopic Analysis- Fluid Jump to: navigation, search Dictionary.png Isotopic Analysis- Fluid Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable. Fluid isotopes are used to characterize a fluids origin, age, and/or interaction with rocks or other fluids based on unique isotopic ratios or concentrations.[1] View on Wikipedia Wikipedia Definition Isotope geochemistry is an aspect of geology based upon study of the relative and absolute concentrations of the elements and their isotopes in

289

Definition: Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Analysis Analysis Jump to: navigation, search Dictionary.png Isotopic Analysis Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition Isotope analysis is the identification of isotopic signature, the distribution of certain stable isotopes and chemical elements within chemical compounds. This can be applied to a food web to make it possible to draw direct inferences regarding diet, trophic level, and subsistence. Isotope ratios are measured using mass spectrometry, which separates the different isotopes of an element on the basis of their mass-to-charge

290

Vapor-pressure lowering in geothermal systems  

SciTech Connect

The water vapor-pressure lowering phenomenon in porous media was investigated for a range of temperatures by measuring vapor pressure vs. mass of water adsorbed in consolidated sandstone cores and unconsolidated silica sands. Experimental results showed that the mass of water adsorbed on the rock surface is much more than the amount of pore steam. Results also revealed that the water adsorption is caused mainly by micropores in the porous medium. Measurement of the mass of methane and ethane adsorbed on dry rocks showed that the amount of adsorption is not great in comparison with the pore gas. It was found that adsorption data for water/sandstone core studies could be normalized with respect to temperature. Although this appears not to have been reported previously, it does agree in principle with findings for solid powders with micropores. Another interesting result was that reanalysis of previous studies of capillarity in sandstones indicates that experimental data probably were influenced mostly by adsorption.

Hsieh, C.H.; Ramey, H.J. Jr.

1983-02-01T23:59:59.000Z

291

Hydrocarbon pool and vapor fire data analysis  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

292

DuPont Chemical Vapor Technical Report  

Science Conference Proceedings (OSTI)

DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

MOORE, T.L.

2003-10-03T23:59:59.000Z

293

OPERATIONAL TESTS OF EBWR VAPOR RECOVERY SYSTEM  

SciTech Connect

A description of the Experimental Boiling Water Reactor vapor-recovery system is given. The seal air operating pressures, temperatures, and moisture content were measured. Air flow through the seals was measured and seal wear was assessed. Assuming direct-cycle D/sub 2/ operation, the seals were evaluated relative to the amount of D/sub 2/ leakage that would be controlled (C.J.G.)

Gariboldi, R.J.; Jacobson, D.R.

1960-08-01T23:59:59.000Z

294

Transport properties of fission product vapors  

DOE Green Energy (OSTI)

Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

Im, K.H.; Ahluwalia, R.K.

1983-07-01T23:59:59.000Z

295

Apparatus and method for photochemical vapor deposition  

DOE Patents (OSTI)

A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

1987-03-31T23:59:59.000Z

296

Passive vapor transport solar heating systems  

DOE Green Energy (OSTI)

In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.

Hedstrom, J.C.; Neeper, D.A.

1985-01-01T23:59:59.000Z

297

A molecular view of vapor deposited glasses  

SciTech Connect

Recently, novel organic glassy materials that exhibit remarkable stability have been prepared by vapor deposition. The thermophysical properties of these new ''stable'' glasses are equivalent to those that common glasses would exhibit after aging over periods lasting thousands of years. The origin of such enhanced stability has been elusive; in the absence of detailed models, past studies have discussed the formation of new polyamorphs or that of nanocrystals to explain the observed behavior. In this work, an atomistic molecular model of trehalose, a disaccharide of glucose, is used to examine the properties of vapor-deposited stable glasses. Consistent with experiment, the model predicts the formation of stable glasses having a higher density, a lower enthalpy, and higher onset temperatures than those of the corresponding ''ordinary'' glass formed by quenching the bulk liquid. Simulations reveal that newly formed layers of the growing vapor-deposited film exhibit greater mobility than the remainder of the material, thereby enabling a reorganization of the film as it is grown. They also reveal that ''stable'' glasses exhibit a distinct layered structure in the direction normal to the substrate that is responsible for their unusual properties.

Singh, Sadanand; Pablo, Juan J. de [Department of Chemical and Biological Engineering, University of Wisconsin, Madison Wisconsin 53706 (United States)

2011-05-21T23:59:59.000Z

298

L.C.C. laser isotope separation project progress report  

SciTech Connect

Progress is described in the following areas: matrix isolation of uranium hexafluoride in carbon monoxide host and obtainment of stable narrow bands in the 623cm{sup -1} region of uranium hexafluoride; and reactions of nitrogen oxide with uranium hexafluoride.

Catalano, E.

1974-12-02T23:59:59.000Z

299

Laser Beams  

E-Print Network (OSTI)

• Community needs to work together to provide the technical case for funding an IFE program. • IFE program should nurture competition, with judgments made on the basis of technical progress and the potential of the various approaches to IFE. • Direct-drive with lasers looks very attractive for IFE, the physics and needed technologies are mature and advancing. • KrF provides physics advantages for direct drive. • KrF’s demonstrated performance is competitive with solid state lasers as a high-rep-rate durable, efficient IFE driver. (on several important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy

Steve Obenschain

2010-01-01T23:59:59.000Z

300

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wavelength controlled InAs/InP quantum dots for telecom laser applications  

Science Conference Proceedings (OSTI)

This article reviews the recent progress in the growth and device applications of InAs/InP quantum dots (QDs) for telecom applications. Wavelength tuning of the metalorganic vapor-phase epitaxy grown single layer and stacked InAs QDs embedded in InGaAsP/InP ... Keywords: InAs, InGaAsP, InP (100), Laser, Metalorganic vapor-phase epitaxy, Quantum dot

S. Anantathanasarn; R. Nötzel; P. J. van Veldhoven; F. W. M. van Otten; Y. Barbarin; G. Servanton; T. de Vries; E. Smalbrugge; E. J. Geluk; T. J. Eijkemans; E. A. J. M. Bente; Y. S. Oei; M. K. Smit; J. H. Wolter

2006-12-01T23:59:59.000Z

302

Collimated Blue and Infrared Beams Generated by Two-Photon Excitation in Rb Vapor  

E-Print Network (OSTI)

Utilizing two-photon excitation in hot Rb vapor we demonstrate the generation of collimated optical fields at 420 nm and 1324 nm. Input laser beams at 780 nm and 776 nm enter a heated Rb vapor cell collinear and circularly polarized, driving Rb atoms to the $5D_{5/2}$ state. Under phase-matching conditions coherence among the $5S_{1/2}\\rightarrow 5P_{3/2}\\rightarrow 5D_{5/2} \\rightarrow 6P_{3/2}$ transitions produces a blue (420 nm) beam by four-wave mixing. We also observe a forward and backward propagating IR (1324 nm) beam, due to cascading decays through the $6S_{1/2}\\rightarrow 5P_{1/2}$ states. Power saturation of the generated beams is investigated by scaling the input powers to greater than 200 mW, resulting in a coherent blue beam of 9.1 mW power, almost an order of magnitude larger than previously achieved. We measure the dependences of both beams in relation to the Rb density, the frequency detuning between Rb ground state hyperfine levels, and the input laser intensities.

Sell, J F; DePaola, B D; Knize, R J

2013-01-01T23:59:59.000Z

303

Laser barometer  

DOE Patents (OSTI)

This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

Abercrombie, K.R.; Shiels, D.; Rash, T.

1998-04-01T23:59:59.000Z

304

Grid orientation effects in the simulation of cold water injection into depleted vapor zones  

DOE Green Energy (OSTI)

A considerable body of field experience with injection has been accumulated at Larderello, Italy and The Geysers, California; the results have been mixed. There are well documented cases where injection has increased flow rates of nearby wells. Return of injected fluid as steam from production wells has been observed directly through chemical and isotopic changes of produced fluids (Giovannoni et al., 1981; Nuti et al., 1981). In other cases injection has caused thermal interference and has degraded the temperature and pressure of production wells. Water injection into depleted vapor zones gives rise to complex two-phase fluid flow and heat transfer processes with phase change. These are further complicated by the fractured-porous nature of the reservoir rocks. An optimization of injection design and operating practice is desirable; this requires realistic and robust mathematical modeling capabilities.

Pruess, K.

1991-01-01T23:59:59.000Z

305

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Richard Parker,. Parker Geoscience Consulting, LLC, Arvada, Colorado, USA; Zhiyue Xu and Claude Reed, Argonne National Laboratory, Argonne, Illinois, USA; Ramona Graves, Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado, USA; Brian Gahan and Samih Batarseh, Gas Technology Institute, Des Plaines, Illinois, USA ABSTRACT Studies on drilling petroleum reservoir rocks with lasers show that modern infrared lasers have the capability to spall (thermally fragment), melt and vaporize natural earth materials with the thermal spallation being the most efficient rock removal mechanism. Although laser irradiance as low as 1000 W/cm 2 is sufficient to spall rock, firing the

306

TWO-DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS  

NLE Websites -- All DOE Office Websites (Extended Search)

DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS P532 Zhiyue Xu, Yuichiro Yamashita 1 , and Claude B. Reed Argonne National Laboratory, Argonne, IL 60439, USA 1 Now with Kyushu University, Japan Abstract High power lasers can weaken, spall, melt and vaporize natural earth materials with thermal spallation being the most energy efficient rock removal mechanism. Laser rock spallation is a very complex phenomenon that depends on many factors. Computer numerical modeling would provides great tool to understand the fundamental of this complex phenomenon, which is crucial to the success of its applications. Complexity of modeling laser rock spallation is due to: 1) rock is a porous media, to which traditional theories of heat transfer and rock mechanics can not be directly

307

Laser Processing of Metals and Polymers  

SciTech Connect

A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.

Senthilraja Singaravelu

2012-05-31T23:59:59.000Z

308

It's Elemental - Isotopes of the Element Mendelevium  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Nobelium) Nobelium Isotopes of the Element Mendelevium Click for Main Data Most of the isotope data on this site has been obtained...

309

It's Elemental - Isotopes of the Element Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Neptunium) Neptunium Isotopes of the Element Uranium Click for Main Data Most of the isotope data on this site has been obtained from...

310

It's Elemental - Isotopes of the Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Beryllium) Beryllium Isotopes of the Element Lithium Click for Main Data Most of the isotope data on this site has been obtained from...

311

It's Elemental - Isotopes of the Element Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Helium) Helium Isotopes of the Element Hydrogen Click for Main Data Most of the isotope data on this site has been obtained from...

312

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope  

E-Print Network (OSTI)

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope geochemistry is difficult because. Writing an effective book on geochemistry is thus even more difficult. Claude Allègre's Isotope Geology geochemistry book, given how effective the texts by Faure and Dickin are. However, Allègre's Isotope Geology

Lee, Cin-Ty Aeolus

313

ISOTOPE FRACTIONATION Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The  

E-Print Network (OSTI)

for the utilization of stable isotopes in geology, geochemistry, biogeochemistry, paleoceanography and elsewhere____________________________ ISOTOPE FRACTIONATION ____________________________ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The term `isotope

Zeebe, Richard E.

314

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

315

Isotopic Abundance in Atom Trap Trace Analysis  

isotopes for climate change and nuclear proliferation interests. The Invention Argonne scientists have created a novel method and system for

316

"Environmental Isotope Geochemistry": Past, Present Mark Baskaran  

E-Print Network (OSTI)

Chapter 1 "Environmental Isotope Geochemistry": Past, Present and Future Mark Baskaran 1.1 Introduction and Early History A large number of radioactive and stable isotopes of the first 95 elements unraveling many secrets of our Earth and its environmental health. These isotopes, because of their suitable

Baskaran, Mark

317

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

Hubbell, J.M.; Wylie, A.H.

1996-01-09T23:59:59.000Z

318

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

319

Photochemical studies of alkali halide vapors  

SciTech Connect

Thesis. An apparatus has been constructed for studying the photodissociation of alkali halides to produce excited alkali metal atoms. The key component is a low pressure H/sub 2/ arc continuum uv source. Radiation from this source, modulated by a chopping wheel and analyzed by a monochromator, enters a cell containing the alkali halide vapor. In the appropriate wavelength range, photodissociation occurs to produce the alkali atom in an excited /sup 2/p state, the flourescence from which is detected by a photomultiplier-lock-in amplifier combination. (auth)

Earl, B.L.

1973-08-01T23:59:59.000Z

320

laser_measurements  

Science Conference Proceedings (OSTI)

Dimensional Measurements. Laser Measurements. Rate our Services. Technical ... Laser Frequency/Wavelength (14510S-14511S). The ...

2013-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Field Campaign - Fall 1997 Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor IOP Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Water Vapor IOP 1997.09.15 - 1997.10.05 Lead Scientist : Henry Revercomb For data sets, see below. Summary The Water Vapor IOP was conducted as a follow-up to a predecessor IOP on water vapor held in September 1996. This IOP relied heavily on both ground-based guest and CART instrumentation and in-situ aircraft and tethered sonde/kite measurements. Primary operational hours were from 6 p.m. Central until at least midnight, with aircraft support normally from about 9 p.m. until midnight when available. However, many daytime measurements were made to support this IOP. The first Water Vapor IOP primarily concentrated on the atmosphere's lowest

322

Analysis of the transient compressible vapor flow in heat pipe  

SciTech Connect

The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

Jang, J.H.; Faghri, A. [Wright State Univ., Dayton, OH (United States); Chang, W.S. [Wright Research and Development Center, Wright-Patterson, OH (United States)

1989-07-01T23:59:59.000Z

323

Method and apparatus for concentrating vapors for analysis  

DOE Patents (OSTI)

A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

2012-06-05T23:59:59.000Z

324

Isotopic Analysis At Geysers Area (Kennedy & Truesdell, 1996) | Open Energy  

Open Energy Info (EERE)

Geysers Area (Kennedy & Truesdell, 1996) Geysers Area (Kennedy & Truesdell, 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Geysers Area (Kennedy & Truesdell, 1996) Exploration Activity Details Location Geysers Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The evidence provided by the noble gases for a magmatic gas component in the Northwest Geysers adds new constraints to genetic models of the system and its evolution. The high proportion of magmatic gas and high total NCG in HTR steam are inconsistent with an origin of the vapor-dominated Northwest Geysers reservoir from deep boiling of a connate or metamorphic water. Instead, the strong magmatic component suggests that the HTR and the

325

Radioactive isotopes on the Moon  

SciTech Connect

A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed. (GHT)

Davis, R. Jr.

1975-01-01T23:59:59.000Z

326

Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers  

E-Print Network (OSTI)

We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at the hotter portion of the interface and condensation at the colder one. The high vapor pressure drives the liquid away and the low one pulls it up. A set of equations describing the temporal evolution of the interface of the liquid-vapor layers is derived. This model neglects the effect of mass loss or gain at the interface and guarantees the mass conservation of the liquid layer. The result of linear stability analysis of the model shows that the presence of the pressure dependence of the local saturation temperature suppresses the growth of long-wave disturbances. We find the stability criterion, which suggests that only slight temperature gradients are sufficient to overcome the stabilizing gravitational effect for a water an...

Kanatani, Kentaro

2008-01-01T23:59:59.000Z

327

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents (OSTI)

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

328

Lasers and Optoelectronic Components Used with Lasers  

Science Conference Proceedings (OSTI)

... example, beam profile and relative intensity noise ... for the laser wavelengths and energies for which ... The laser power and energy measurements are ...

2013-06-28T23:59:59.000Z

329

Laser Beam Delivery [Laser Applications Laboratory] - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities...

330

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Jump to:...

331

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

332

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

333

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

334

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

335

Measurements of Vapor Pressures and PVT Properties for n ...  

Science Conference Proceedings (OSTI)

Page 1. Measurements of Vapor Pressures and PVT Properties for n-Butane from 280 to 440 K at Pressures to 200 MPa ...

2006-07-20T23:59:59.000Z

336

Interaction of sodium vapor and graphite studied by ...  

Science Conference Proceedings (OSTI)

The kinetics of the reaction between graphite and sodium vapor is analyzed with support ... High temperature compression test to determine the anode paste ...

337

Optimal Control of Vapor Extraction of Heavy Oil.  

E-Print Network (OSTI)

??Vapor extraction (Vapex) process is an emerging technology for viscous oil recovery that has gained much attention in the oil industry. However, the oil production… (more)

Muhamad, Hameed

2012-01-01T23:59:59.000Z

338

ARM - Field Campaign - ARM-FIRE Water Vapor Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Order Data Browell, Edward LASE Order Data Gutman, Seth GPS Order Data Richardson, Scott Chilled Mirror Order Data Sachse, G. Water Vapor Order Data Schmidlin, Francis CM Sondes...

339

Molecular restrictions for human eye irritation by chemical vapors  

E-Print Network (OSTI)

and reactive airborne chemicals. Pharmacol. Toxicol. 1998;WL. Chemesthesis: The Common Chemical Sense. In: Finger TE,MH. Quantification of chemical vapors in chemosensory

Cometto-Muniz, J. Enrique; Cain, William S.; Abraham, Michael H.

2005-01-01T23:59:59.000Z

340

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton,...

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Optimisation of a multistage pulsed dye laser system  

SciTech Connect

A multistage narrow-band dye laser amplifying system with an output power of up to several kilowatts is considered as a whole. Such systems became necessary due to the development of the method of laser isotope separation (the AVLIS method). The use of the simplified model of an amplifying cell allowed us to solve analytically the equations describing the laser system and to determine optimal parameters of each stage. The dye laser system with an output power of 1 kW is optimised based on the model proposed. The accuracy of the obtained estimates was verified by a direct numerical simulation of the system based on a rigorous solution of the equations describing the interaction of radiation with the dye solution. (lasers, active media)

Vasil'ev, S V; Kuz'mina, M A; Mishin, V A [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2001-06-30T23:59:59.000Z

342

New Combined Laser Ablation Platform Determines Cell Wall Chemistry (Fact Sheet)  

DOE Green Energy (OSTI)

NREL has designed and developed a combined laser ablation/pulsed sample introduction/mass spectrometry platform that integrates pyrolysis and/or laser ablation with resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Using this apparatus, we can measure the cell wall chemical composition of untreated biomass materials. Understanding the chemical composition of untreated biomass is key to both the biochemical and thermochemical conversion of lignocellulosic biomass to biofuels. In the biochemical conversion process, the new technique provides a better understanding of the chemistry of lignin and will improve accessibility to plant sugars. In thermochemical conversion, the information provided by the new technique may help to reduce the formation of unwanted byproducts during gasification. NREL validated the ability of the system to detect pyrolysis products from plant materials using poplar, a potentially high-impact bioenergy feedstock. In the technique, biomass vapors are produced by laser ablation using the 3rd harmonic of an Nd:YAG laser (355 nm). The resulting vapors are entrained in a free jet expansion of helium, then skimmed and introduced into an ionization region. REMPI is used to ionize the vapors because it is highly sensitive for detecting lignin and aromatic metabolites. The laser ablation method was used to selectively volatilize specific plant tissues and detect lignin-based products from the vapors with enhanced sensitivity. This will allow the determination of lignin distribution in future biomass studies.

Not Available

2011-09-01T23:59:59.000Z

343

Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas  

SciTech Connect

Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China)

2012-03-01T23:59:59.000Z

344

Cesium vapor cycle for an advanced LMFBR  

SciTech Connect

A review indicates that a cesium vapor topping cycle appears attractive for use in the intermediate fluid circuit of an advanced LMFBR designed for a reactor outlet temperature of 1250$sup 0$F or more and would have the following advantages: (1) it would increase the thermal efficiency by about 5 to 10 points (from approximately 40 percent to approximately 45 to 50 percent) thus reducing the amount of waste heat rejected to the environment by 15 to 30 percent. (2) the higher thermal efficiency should reduce the overall capital cost of the reactor plant in dollars per kilowatt. (3) the cesium can be distilled out of the intermediate fluid circuit to leave it bone-dry, thus greatly reducing the time and cost of maintenance work (particularly for the steam generator). (4) the large volume and low pressure of the cesium vapor region in the cesium condenser-steam generator greatly reduces the magnitude of pressure fluctuations that might occur in the event of a leak in a steam generator tube, and the characteristics inherent in a condenser make it easy to design for rapid concentration of any noncondensibles that may form as a consequence of a steam leak into the cesium region so that a steam leak can be detected easily in the very early stages of its development. (auth)

Fraas, A.P.

1975-01-01T23:59:59.000Z

345

Reactions of atmospheric vapors with lunar soil  

SciTech Connect

Detailed experimental data have been acquired for the hydration of the surfaces of lunar fines. Inert vapor adsorption has been employed to measure the surface properties (surface energy, surface area, porosity, etc.) and changes wrought in the hydration-dehydration processes. Plausible mechanisms have been considered and the predominant process involves hydration of the metamict metallosilicate surfaces to form a hydrated laminar structure akin to terrestrial clays. Additional credence for this interpretation is obtained by comparison to existing geochemical literature concerning terrestrial weathering of primary metallosilicates. The surface properties of the hydrated lunar fines are compared favorably to those of terrestrial clay minerals. In addition, experimental results are given to show that fresh disordered surfaces of volcanic sand react with water vapor in a manner virtually identical to the majority of the lunar fines. The results show that ion track etching and/or grain boundary attack are minor contributions in the weathering of lunar fines in the realm of our microgravimetric experimental conditions. 14 references. (auth)

Fuller, E.L. Jr.; Agron, P.A.

1976-03-01T23:59:59.000Z

346

Ethanol production by vapor compression distillation  

DOE Green Energy (OSTI)

The goal of this project is to develop and demonstrate a one gallon per hour vapor compression distillation unit for fuel ethanol production that can be profitably manufactured and economically operated by individual family units. Vapor compression distillation is already an industrially accepted process and this project's goal is to demonstrate that it can be done economically on a small scale. Theoretically, the process is independent of absolute pressure. It is only necessary that the condenser be at higher pressure than the evaporator. By reducing the entire process to a pressure of approximately 0.1 atmosphere, the evaporation and condensation can occur at near ambient temperature. Even though this approach requires a vacuum pump, and thus will not represent the final cost effective design, it does not require preheaters, high temperature materials, or as much insulation as if it were to operate a near ambient pressure. Therefore, the operation of the ambient temperature unit constitutes the first phase of this project. Presently, the ambient temperature unit is fully assembled and has begun testing. So far it has successfully separated ethanol from a nine to one diluted input solution. However the production rate has been very low.

Ellis, G.S.

1981-01-01T23:59:59.000Z

347

Ultrasensitive detection of radioactive cesium isotopes using a magneto-optical trap.  

SciTech Connect

We report the first magneto-optical trapping of mdioactive {sup 135}Cs and {sup 137}Cs and a promising means for detecting these isotopes to ullrasensilive lcvels by a system coupling the magneto-optical trap (MOT) to a mass separator. The mass separator efficiently delivers a 20 kV ion beam of either isotope into a quartzcube MOT cell having in one corner a small-diameter Zr foil, on which the ion beam is focused and into which the ions are implantetl. Inductive heating of thc foil releases {approx}45% of the implanted atoms into a MOT that uses large diameter beams and a dry-film coating to capture 3% of the released vapor. MOT fluorescence signals were found to increasc linearly with the number of foil-implanted atoms over a range of 10{sup 4} to 10{sup 7} in trapped-atom number. The measured slope of MOT signal versus number implanted was equal in the case each isotope to within 4%, signifying our ability to measure {sup 137}Cs/{sup 135}Cs ratios to within 4%. The isotopic selectivities of the mass separator and MOT combine to suppress interfering signal from {sup 133}Cs by a factor of greater than 5 x 10{sup 12} in the case of detecting {sup 135}Cs or {sup 137}Cs. Our present sample detection sensitivity is one million atoms.

Di Rosa, M. D. (Michael D.); Crane, S. G. (Scott G.); Kitten, J. J. (Jason J.); Taylor, W. A. (Wayne A.); Vieira, D. J. (David J.); Zhao, X. (Xinxin)

2002-01-01T23:59:59.000Z

348

Laser barometer  

DOE Patents (OSTI)

A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

Abercrombie, Kevin R. (Westminster, CO); Shiels, David (Thornton, CO); Rash, Tim (Aurora, CO)

2001-02-06T23:59:59.000Z

349

Hydrogen isotope separation from water  

DOE Patents (OSTI)

A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

Jensen, R.J.

1975-09-01T23:59:59.000Z

350

Definition: Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search Dictionary.png Isotopic Analysis- Rock Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition References ↑ http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Isotopic_Analysis-_Rock&oldid=687702" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

351

Laser wavelength effects in ultrafast near-field laser nanostructuring...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser wavelength effects in ultrafast near-field laser nanostructuring of Si Title Laser wavelength effects in ultrafast near-field laser nanostructuring of Si Publication Type...

352

EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition,...

353

Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Global Positioning System and Scanning Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates V. Mattioli and P. Basili Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction In recent years the Global Positioning System (GPS) has proved to be a reliable instrument for measuring precipitable water vapor (PWV) (Bevis et al. 1992), offering an independent source of information on water vapor when compared with microwave radiometers (MWRs), and/or radiosonde

354

Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System  

Science Conference Proceedings (OSTI)

This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

Caprio, G.S.

1995-11-01T23:59:59.000Z

355

Vapor and gas sampling of single-shell tank 241-SX-106 using the vapor sampling system  

SciTech Connect

This document presents sampling data resulting from the March 24, 1995, sampling of SST 241-SX-106 using the vapor sampling system.

Caprio, G.S.

1995-09-20T23:59:59.000Z

356

Measurement of Trace Uranium Isotopes  

Science Conference Proceedings (OSTI)

The extent to which thermal ionization mass spectrometry (TIMS) can measure trace quantities of 233U and 236U in the presence of a huge excess of natural uranium is evaluated. This is an important nuclear non-proliferation measurement. Four ion production methods were evaluated with three mass spectrometer combinations. The most favorable combinations are not limited by abundance sensitivity; rather, the limitations are the ability to generate a uranium ion beam of sufficient intensity to obtain the required number of counts on the minor isotopes in relationship to detector background. The most favorable situations can measure isotope ratios in the range of E10 if sufficient sample intensity is available. These are the triple sector mass spectrometer with porous ion emitters (PIE) and the single sector mass spectrometer with energy filtering.

Matthew G. Watrous; James E. Delmore

2011-05-01T23:59:59.000Z

357

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network (OSTI)

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

358

New Regenerative Cycle for Vapor Compression Refrigeration  

Office of Scientific and Technical Information (OSTI)

SCIENTIFIC REPORT SCIENTIFIC REPORT Title Page Project Title: New Regenerative Cycle for Vapor Compression Refrigeration DOE Award Number: DE-FG36-04GO14327 Document Title: Final Scientific Report Period Covered by Report: September 30, 2004 to September 30, 2005 Name and Address of Recipient Organization: Magnetic Development, Inc., 68 Winterhill Road, Madison, CT 06443, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Contact Information: Mark J. Bergander, Ph.D., P.E., Principal Investigator, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Project Objective (as stated in the proposal): The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient

359

FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS  

Office of Scientific and Technical Information (OSTI)

Bulletin 627 Bulletin 627 BUREAU o b MINES FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS By Michael G. Zabetakis DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

360

Gas transport model for chemical vapor infiltration  

Science Conference Proceedings (OSTI)

A node-bond percolation model is presented for the gas permeability and pore surface area of the coarse porosity in woven fiber structures during densification by chemical vapor infiltration (CVI). Model parameters include the number of nodes per unit volume and their spatial distribution, and the node and bond radii and their variability. These parameters relate directly to structural features of the weave. Some uncertainty exists in the proper partition of the porosity between ``node`` and ``bond`` and between intra-tow and inter-tow, although the total is constrained by the known fiber loading in the structure. Applied to cloth layup preforms the model gives good agreement with the limited number of available measurements.

Starr, T.L. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

How solvent vapors can improve steam floods  

Science Conference Proceedings (OSTI)

Thermal recovery methods depend for their success on the viscosity reduction of heavy crude oils at high temperatures. The viscosity of a heavy oil can also be reduced if it is diluted with a low-viscosity solvent, such as one of the lighter hydrocarbons. It is not surprising that there has been considerable interest in combining the two methods. The process of injecting vaporized solvent with the steam for a gravity drainage type recovery is described here along with a description of the particular phase behavior of steam/solvent mixtures which is beneficial to the process. And computer simulations which compare steam-only and steam/solvent floods under Athabasca-type conditions are overviewed.

Vogel, J. [Vogel, (Jack), Seabrook, TX (United States)

1996-11-01T23:59:59.000Z

362

Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System  

SciTech Connect

HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

None

2012-01-04T23:59:59.000Z

363

Ultrafast laser based coherent control methods for explosives detection  

SciTech Connect

The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity to explosives signatures while dramatically improving specificity, particularly against matrix materials and background interferences. These goals are being addressed by operating in an optimal non-linear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe subpulses. Recent results will be presented.

Moore, David Steven [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

364

Worker Protection from Chemical Vapors: Hanford Tank Farms  

Science Conference Proceedings (OSTI)

Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank head-spaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns, risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits (OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors. (authors)

Anderson, T.J. [CH2M HILL Hanford Group, Inc. / Environmental Health, Richland, WA (United States)

2007-07-01T23:59:59.000Z

365

The Effects of Water Vapor on the Oxidation of Nickel-Base ...  

Science Conference Proceedings (OSTI)

water vapor are compared at temperatures from 700°C to 1100°C. It is shown that water vapor affects the oxidation of such alloys in different ways. Water vapor ...

366

Control of physical properties on solid surface via laser processing  

Science Conference Proceedings (OSTI)

In a safety operation of a nuclear power plant, vapor conditions such as a droplet or liquid membrane toward a solid surface of a heat exchanger and reactor vessel is important. In the present study, focusing on the droplet, the wettability on solid surface and surface free energy of solid are evaluated. In addition, wettability on a metal plate fabricated by laser processing is also considered for the nuclear engineering application.

Yonemoto, Yukihiro; Nishimura, Akihiko [Applied Laser Technology Institute, Japan Atomic Energy Agency, 65-20 Kizaki, Tsuruga, Fukui (Japan)

2012-07-11T23:59:59.000Z

367

Water Vapor Flux Measurements from Ground-Based Vertically Pointed Water Vapor Differential Absorption and Doppler Lidars  

Science Conference Proceedings (OSTI)

For the first time, two lidar systems were used to measure the vertical water vapor flux in a convective boundary layer by means of eddy correlation. This was achieved by combining a water vapor differential absorption lidar and a heterodyne wind ...

Andreas Giez; Gerhard Ehret; Ronald L. Schwiesow; Kenneth J. Davis; Donald H. Lenschow

1999-02-01T23:59:59.000Z

368

Nuclear Energy Protocol for Research Isotopes Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protocol for Protocol for Research Isotopes Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology April 16, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/April16_02 NEPRI to NERAC.ppt (2) Nuclear Energy Protocol For Research Isotopes Nuclear Energy Protocol For Research Isotopes Why NEPRI? 6 NEPRI implements DOE funding priorities for fiscal year 2003 6 NEPRI will * Bring order to DOE's responses to requests for research isotopes * Introduce a high-quality peer review to the selection of research isotopes * Enable DOE to concentrate on operating its unique isotope production facilities Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology

369

Heterodyne laser diagnostic system  

DOE Patents (OSTI)

The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

Globig, Michael A. (Antioch, CA); Johnson, Michael A. (Pleasanton, CA); Wyeth, Richard W. (Livermore, CA)

1990-01-01T23:59:59.000Z

370

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma  

E-Print Network (OSTI)

The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

C. Labaune; C. Baccou; S. Depierreux; C. Goyon; G. Loisel; V. Yahia; J. Rafelski

2013-10-08T23:59:59.000Z

371

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Strategic Isotope Production SHARE Strategic Isotope Production Typical capsules used in the transport of 252Cf source material inside heavily shielded shipping casks. ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center (REDC), Irradiated Fuels Examination Laboratory (IFEL), and Irradiated Materials Examination Testing facility (IMET) are routinely used in the production, purification, packaging, and shipping of a number of isotopes of national importance, including: 75Se, 63Ni, 238Pu, 252Cf, and others. The intense neutron flux of the HFIR (2.0 x 1015 neutrons/cm²·s) permits the rapid formation of such isotopes. These highly irradiated materials are then processed and packaged for shipping using the facilities at the REDC, IFEL, and IMET.

372

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

373

Stable Isotope Enrichment Capabilities at ORNL  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

Egle, Brian [ORNL; Aaron, W Scott [ORNL; Hart, Kevin J [ORNL

2013-01-01T23:59:59.000Z

374

Environment/Health/Safety (EHS): Laser Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Safety Home Whom to Call Analysis of Laser Safety Occurrences: 2005-2011 Laser Bio-effects Laser Classification Laser Disposal Guide Laser Forms Laser Newsletter Laser Lab...

375

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Mercury Vapor Activity Date Usefulness useful...

376

EA-0881: Tank 241-c-103 Organic Vapor and Liquid Characterization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

881: Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington EA-0881: Tank 241-c-103 Organic Vapor and Liquid...

377

Does EIA report water vapor emissions data? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Does EIA report water vapor emissions data? No. Water vapor is the most abundant greenhouse gas, but most scientists believe that human activity has a very small ...

378

Intracavity Sensing via Compliance Voltage in an External Cavity Quantum Cascade Laser  

SciTech Connect

We demonstrate a technique for gas phase spectroscopy and sensing by detecting changes in compliance voltage of an external cavity quantum cascade laser due to intracavity absorption. The technique is characterized and used to measure the absorption spectrum of water vapor and Freon-134a.

Phillips, Mark C.; Taubman, Matthew S.

2012-07-01T23:59:59.000Z

379

Isotopic Analysis (Not Available) | Open Energy Information  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown Notes Meeting proceedings - large list of papers and presentations dealing mostly with various isotopic analyses and their applications...

380

It's Elemental - Isotopes of the Element Nobelium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mendelevium Previous Element (Mendelevium) The Periodic Table of Elements Next Element (Lawrencium) Lawrencium Isotopes of the Element Nobelium Click for Main Data Most of the...

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

It's Elemental - Isotopes of the Element Fermium  

NLE Websites -- All DOE Office Websites (Extended Search)

Einsteinium Previous Element (Einsteinium) The Periodic Table of Elements Next Element (Mendelevium) Mendelevium Isotopes of the Element Fermium Click for Main Data Most of the...

382

WEB RESOURCE: Exploring the Table of Isotopes  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This page offers an interactive table of isotopes, an animated glossary of nuclear terms and relevant support documents created by the ...

383

Available Technologies: Real Time High Throughput Isotopic ...  

Space exploration; Any scientific research involving the tracking of isotopic labels, as in: Solar power; Scintillators (deuterated, 10 B, 6 Li, 3 He) Batteries (doping)

384

Zeolite Cryopumps for Hydrogen Isotopes Transportation  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

Ivan A. Alekseev; Sergey P. Karpov; Veniamin D. Trenin

385

It's Elemental - Isotopes of the Element Rhodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 89 1.5 microseconds Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

386

It's Elemental - Isotopes of the Element Promethium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 126 No Data Available Electron Capture (suspected) No Data Available 127 No Data Available Proton Emission...

387

It's Elemental - Isotopes of the Element Niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 81 < 200 nanoseconds Electron Capture No Data Available 82 50 milliseconds Electron Capture 100.00% Electron...

388

It's Elemental - Isotopes of the Element Indium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 97 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

389

It's Elemental - Isotopes of the Element Cerium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 119 No Data Available Electron Capture (suspected) No Data Available 120 No Data Available Electron Capture...

390

NIDC: Online Catalog of Isotope Products Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalog of Isotope Products Please select an option below. PRODUCTS VIEWING Select using PERIODIC TABLE or NUCLIDE CHART or LIST SEARCHING SEARCH for a Product REQUESTING REQUEST a...

391

HFIR | High Flux Isotope Reactor | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Working with HFIR Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities | HFIR HFIR | High Flux Isotope Reactor SHARE The High...

392

Isotopic Exchange in Air Detritiation Dryers  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

A.E. Everatt; A.H. Dombra; R.E. Johnson

393

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER  

E-Print Network (OSTI)

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER HAGIT P. AFFEK Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, Connecticut, 06511, USA the exchange of oxygen isotopes with water. The use of 18 O as an environmental indicator typically assumes

394

New Regenerative Cycle for Vapor Compression Refrigeration  

SciTech Connect

The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

Mark J. Bergander

2005-08-29T23:59:59.000Z

395

Enhanced Attenuation Technologies: Passive Soil Vapor Extraction  

SciTech Connect

Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

2010-03-15T23:59:59.000Z

396

Desalination Using Vapor-Compression Distillation  

E-Print Network (OSTI)

The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO) and multi-stage flash (MSF) cost more than potable water produced from fresh water resources. As an alternative to RO and MSF, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas the outgoing salt concentration was 1.5% and 7%, respectively. Distillation was performed at 439 K (331oF) and 722 kPa (105 psia) for both brackish water feed and seawater feed. Water costs of the various conditions were calculated for brackish water and seawater feeds using optimum conditions considered as 25 and 20 stages, respectively. For brackish water at a temperature difference of 0.96 K (1.73oF), the energy requirement is 2.0 kWh/m3 (7.53 kWh/kgal). At this condition, the estimated water cost is $0.39/m3 ($1.48/kgal) achieved with 10,000,000 gal/day distillate, 30-year bond, 5% interest rate, and $0.05/kWh electricity. For seawater at a temperature difference of 0.44 K (0.80oF), the energy requirement is 3.97 kWh/m3 (15.0 kWh/kgal) and the estimated water cost is $0.61/m3 ($2.31/kgal). Greater efficiency of the vapor compression system is achieved by connecting multiple evaporators in series, rather than the traditional parallel arrangement. The efficiency results from the gradual increase of salinity in each stage of the series arrangement in comparison to parallel. Calculations using various temperature differences between boiling brine and condensing steam show the series arrangement has the greatest improvement at lower temperature differences. The following table shows the improvement of a series flow arrangement compared to parallel: ?T (K) Improvement (%)*1.111 2.222 3.333 15.21 10.80 8.37 * Incoming salt concentration: 3.5% Outgoing salt concentration: 7% Temperature: 450 K (350oF) Pressure: 928 kPa (120 psig) Stages: 4

Lubis, Mirna R.

2009-05-01T23:59:59.000Z

397

How do lasers work?  

NLE Websites -- All DOE Office Websites (Extended Search)

all the way through college physics. Let me try anyway, but first let's define what a laser and laser light are. Laser is an acronym for Light Amplification by Stimulated...

398

Numerical simulation of water injection into vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

Pruess, K.

1995-01-01T23:59:59.000Z

399

Controlling the vapor pressure of a mercury lamp  

DOE Patents (OSTI)

The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

400

Controlling the vapor pressure of a mercury lamp  

DOE Patents (OSTI)

The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

Grossman, M.W.; George, W.A.

1988-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Preliminary assessment of halogenated alkanes as vapor-phase tracers  

DOE Green Energy (OSTI)

New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

1991-01-01T23:59:59.000Z

402

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

403

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

isotope fractionation in fossil hydrothermal systems. Geology,isotopes: Evaporation, chemical diffusion and Soret diffusion. Chemical Geology,isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chemical Geology,

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

404

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents (OSTI)

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

405

Dynamics of nucleation in chemical vapor deposition  

Science Conference Proceedings (OSTI)

We study the evolution of layer morphology during the early stages of metal chemical vapor deposition (CVD) onto Si(100) via pyrolysis of Fe(CO){sub 5} below 250{degrees}C. Scanning tunneling microscopy (STM) shows that nuclei formation is limited by precursor dissociation which occurs on terraces, not at step sites. Also, the average size of clusters formed during CVD is larger than for Fe growth by evaporation (a random deposition process). Based on STM data and Monte Carlo simulations, we conclude that the CVD-growth morphology is affected by preferential dissociation of Fe(CO){sub 5} molecules at existing Fe clusters -- an autocatalytic effect. We demonstrate that nucleation kinetics can be used to control formation of metal nanostructures on chemically tailored surfaces. Reactive sites on Si (001) are first passivated by hydrogen. H atoms are locally removed by electron stimulated desorption using electrons emitted from the STM tip. Subsequent pyrolysis of Fe(CO){sub 5} leads to selective nucleation and growth of Fe films in the areas where H has been removed.

Mayer, T.M.; Adams, D.P.; Swartzentruber, B.S.; Chason, E.

1995-11-01T23:59:59.000Z

406

Modeling of LNG Pool Spreading and Vaporization  

E-Print Network (OSTI)

In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due to preferential boiling within the mixture and the effect of boiling on conductive heat transfer. The heat, mass and momentum balance equations are derived for continuous and instantaneous spills and mixture thermodynamic effects are incorporated. A parameter sensitivity analysis was conducted to determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. The aim was to provide a better understanding of these governing phenomena and their relative importance throughout the pool lifetime. The spread model was validated against available experimental data for pool spreading on concrete and sea. The model is solved using Matlab for two continuous and instantaneous spill scenarios and is validated against experimental data on cryogenic pool spreading found in literature.

Basha, Omar 1988-

2012-12-01T23:59:59.000Z

407

Femtosecond Laser Frequency Combs  

Science Conference Proceedings (OSTI)

... to all of these is the continued development of the lasers themselves. We are exploring and comparing different types of fs-laser comb technology ...

408

Physics Out Loud - Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Previous Video (Hybrid Meson) Physics Out Loud Main Index Next Video (Matter) Matter Laser Learn all about different types of lasers with Jefferson Lab's Michelle Shinn, a...

409

Laser Music System.  

E-Print Network (OSTI)

?? A Laser Music System has been created, that combines a laser and light sensor system with an infrared distance sensing system that detects the… (more)

Woodruff, Astra

2012-01-01T23:59:59.000Z

410

Free Electron Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Free Electron Laser Building Exterior Top Floor Control Room RF Gallery User Lab Beam Enclosure Injector Linear Accelerator Wiggler Magnet Return Line Free Electron Laser Most...

411

Free electron lasers  

SciTech Connect

A review of experimental and theoretical concepts of a free electron laser is given. The possibilities of scaling these lasers to high powers are discussed. (MOW)

Brau, C.A.

1980-01-01T23:59:59.000Z

412

Occupational Exposure Evaluation of Complex Vapor Mixtures at the Hanford Nuclear Waste Site, Washington Work-site Vapor Characterization  

SciTech Connect

Extensive sampling and analysis has been done over the years to characterize the radioactive and chemical properties of hazardous waste stored in 177 underground tanks at the Hanford site in eastern Washington State. The purpose of these analyses was to evaluate safety and environmental concerns related to tank stability. More recently, characterization studies have broadened to evaluate potential health hazards of chemical vapors at the ground surface, where workers perform maintenance and waste transfer activities. Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. The extensive sampling done during this campaign evaluated vapor concentrations of more than 100 different chemical at 70 sites in and around one section of the tank farms. Sampling identified only four vapors (ammonia, nitrous oxide, nitrosodimethylamine, and nitrosomethylethylamine) that were present above occupational exposure limits. These elevated concentrations were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors were measured above 10% of their OELs more than five feet from the source. This suggests that vapor controls can be focused on limited hazard zones around sources. (authors)

Anderson, T. J. [CH2M HILL Hanford Group, Inc. / Environmental Health, P.O. Box 1000, S7-70, Richland, WA 99352 (United States)

2006-07-01T23:59:59.000Z

413

ISOTOPES  

E-Print Network (OSTI)

U.S. Department of Energy: Uranium Enrichment (1978). UnitedRaux and W.L. Grant, uranium Enrichment in South Africa,for heavy~water and uranium enrichment is more severe. In

Lederer, C. Michael

2013-01-01T23:59:59.000Z

414

ISOTOPES  

E-Print Network (OSTI)

uranium, heavy-water-moderated CANDU reactor, as contrastedis important, and in the CANDU power reactor, which uses

Lederer, C. Michael

2013-01-01T23:59:59.000Z

415

ISOTOPES  

E-Print Network (OSTI)

A Guidebook to Nuclear Reactors, University of Californiaa thermal position of a nuclear reactor followed by analysisproduced by six large nuclear reactors. The power usage per

Lederer, C. Michael

2013-01-01T23:59:59.000Z

416

ISOTOPES  

E-Print Network (OSTI)

is somewhat uncertain~ and projections have been reducedFigure 15 shows the recent CONAES projections for the U.S. (72,90), along with earlier projections for the U.S. and the

Lederer, C. Michael

2013-01-01T23:59:59.000Z

417

ISOTOPES  

E-Print Network (OSTI)

Klein and S.V. Peterson, May 9-ll, 1973, Argonne NationalLaboratory, Argonne, Illinois (1973). 97. R.A. Muller,S.V. Peterson, May 9-11, 1973, Argonne National Laboratory,

Lederer, C. Michael

2013-01-01T23:59:59.000Z

418

ISOTOPES  

E-Print Network (OSTI)

as occurs in batch distillation. The urgency of developingor one plate of a distillation column, for example. Anas in the case of a distillation column, for which any other

Lederer, C. Michael

2013-01-01T23:59:59.000Z

419

Laser Enrichment LLC Early Submittal of an Environmental Report,"  

E-Print Network (OSTI)

70.21, GE-Hitachi Global Laser Enrichment LLC (GLE) is submitting an application for the construction and operation of the GLE Commercial Facility in accordance with the requirements of 10 CFR Parts 30, 40, and 70. This proposed uranium enrichment facility will utilize a laser-based isotope separation technology to enrich uranium hexafluoride up to 8%, will have a nominal capacity of up to six million separative work units, and will be located in New Hanover County, North Carolina. On January 30, 2009, the GLE Commercial Facility Environmental Report was submitted

Tammy G. Orr; Michael F. Weber

2009-01-01T23:59:59.000Z

420

Dynamical aspects of isotopic scaling  

E-Print Network (OSTI)

Investigation of the effect of the dynamical stage of heavy-ion collisions indicates that the increasing width of the initial isospin distributions is reflected by a significant modification of the isoscaling slope for the final isotopic distributions after de-excitation. For narrow initial distributions, the isoscaling slope assumes the limiting value of the two individual initial nuclei while for wide initial isotopic distributions the slope for hot fragments approaches the initial value. The isoscaling slopes for final cold fragments increase due to secondary emissions. The experimentally observed evolution of the isoscaling parameter in multifragmentation of hot quasiprojectiles at E$_{inc}$=50 AMeV, fragmentation of $^{86}$Kr projectiles at E$_{inc}$=25 AMeV and multifragmentation of target spectators at relativistic energies was reproduced by a simulation with the dynamical stage described using the appropriate model (deep inelastic transfer and incomplete fusion at the Fermi energy domain and spectator-participant model at relativistic energies) and the de-excitation stage described with the statistical multifragmentation model. In all cases the isoscaling behavior was reproduced by a proper description of the dynamical stage and no unambiguous signals of the decrease of the symmetry energy coefficient were observed.

M. Veselsky

2006-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

Science Conference Proceedings (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

422

Advanced Mass Spectrometers for Hydrogen Isotope Analyses  

DOE Green Energy (OSTI)

This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

Chastagner, P.

2001-08-01T23:59:59.000Z

423

The Quest for the Heaviest Uranium Isotope  

E-Print Network (OSTI)

We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

2011-07-06T23:59:59.000Z

424

5, 547577, 2008 Isotope hydrology of  

E-Print Network (OSTI)

HESSD 5, 547­577, 2008 Isotope hydrology of cave dripwaters L. Fuller et al. Title Page Abstract are under open-access review for the journal Hydrology and Earth System Sciences Isotope hydrology of Geology and Palaeontology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria 3 School

Paris-Sud XI, Université de

425

Positive and inverse isotope effect on superconductivity  

E-Print Network (OSTI)

This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

Tian De Cao

2009-09-04T23:59:59.000Z

426

Laser Propulsion - Quo Vadis  

SciTech Connect

First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

Bohn, Willy L. [Institute of Technical Physics, German Aerospace Center (DLR) D-70569 Pfaffenwaldring 38-40, Stuttgart (Germany)

2008-04-28T23:59:59.000Z

427

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

428

EIS-0249: Medical Isotopes Production Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Medical Isotopes Production Project EIS-0249: Medical Isotopes Production Project Summary This EIS evaluates the potential environmental impacts of a proposal to establish a...

429

Isotopic Analysis At Newberry Caldera Area (Carothers, Et Al...  

Open Energy Info (EERE)

H. Mariner, Terry E. C. Keith (1987) Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Retrieved from "http:en.openei.orgwindex.php?titleIsotopicA...

430

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Retrieved from "http:en.openei.orgwindex.php?titleIsotopicAnalysis-Flu...

431

CALIFORNIUM ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS  

E-Print Network (OSTI)

Isotopes from Bombardment of Uranium with Carbon Ions A.ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS A.the irradiations, the uranium was dissolved in dilute

Ghiorso, A.; Thompson, S.G.; Street, K. Jr.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

432

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

433

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

434

Industrial Heat Pumps Using Solid/Vapor Working Fluids  

E-Print Network (OSTI)

Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes in the chemical, petroleum, paper, dairy, and many other industries. The cost development of fossil fuel and other prime energy require excellent efficiency/cost ratios and hardware designs adaptable to specific process needs, in order to compete with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to more cost effective heat recovery, which is due to simple hardware with no moving parts, extraordinary low maintenance effort, excellent temperature lifts avoiding the need of two-stage systems, and low first cost. This paper describes the advantages and disadvantages of solid/vapor working media.

Rockenfeller, U.

1986-06-01T23:59:59.000Z

435

Broadband Water Vapor Transmission Functions for Atmospheric IR Flux Computations  

Science Conference Proceedings (OSTI)

Transmission functions associated with water vapor molecular line and e-type absorption in the IR spectral regions are presented in the form of simple analytical functions and small tables, from which atmospheric IR fluxes and cooling rates can ...

Ming-Dah Chou

1984-05-01T23:59:59.000Z

436

Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers  

Science Conference Proceedings (OSTI)

Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range ...

Refaat Tamer F.; Halama Gary E.; DeYoung Russell J.

2000-07-01T23:59:59.000Z

437

ARM - Field Campaign - Arctic Winter Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsArctic Winter Water Vapor IOP govCampaignsArctic Winter Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Winter Water Vapor IOP 2004.03.09 - 2004.04.09 Lead Scientist : Ed Westwater Data Availability http://www.etl.noaa.gov/programs/2004/wviop/data will contain quicklooks of all of the data. For data sets, see below. Summary During the IOP, the Ground-based Scanning Radiometer of NOAA/ETL, and the ARM MicroWave Radiometer and Microwave Profiler, yielded excellent data over a range of conditions. In all, angular-scanned and calibrated radiometric data from 22.345 to 380 GHz were taken. The Precipitable Water Vapor varied about an order of magnitude from 1 to 10 mm, and surface temperatures varied from about -10 to -40 deg. Celcius. Vaisala RS90

438

Overview of the ARM/FIRE Water Vapor Experiment (AFWEX)  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the ARM/FIRE Water Vapor Overview of the ARM/FIRE Water Vapor Experiment (AFWEX) D. C. Tobin, H. E. Revercomb, and D. D. Turner University of Wisconsin-Madison Madison, Wisconsin Introduction An overview of the ARM/FIRE Water Vapor Experiment (AFWEX) is given. This field experiment was conducted during November-December 2000 near the central ground-based Atmospheric Radiation Measurement (ARM) site in north central Oklahoma, and was sponsored jointly by the ARM, the National Aeronautics and Space Administration (NASA) First ISCCP Regional Experiment (FIRE), and the National Polar-orbiting Operational Environmental Satellite System (NPOESS) programs. Its primary goal was to collect accurate measurements of upper-level (~8 to 12 km) water vapor near the ground-based ARM site. These data are being used to determine the accuracy of measurements that are

439

Numerical analysis of vapor flow in a micro heat pipe  

E-Print Network (OSTI)

The vapor flow in a flat plate micro heat pipe with both uniform and linear heat flux boundary conditions has been numerically analyzed. For both types of boundary conditions, the Navier-Stokes equations with steady incompressible two-dimensional flow were solved using the SIMPLE method. The results indicate that the pressure, shear stress, and friction factor under linear heat flux boundary conditions are considerably smoother, and hence, more closely approximate the real situation. As the heat flux increases, the pressure drop increases, but the friction factor demonstrates only a slight change for different heat flux conditions. The size and shape of the micro heat pipe vapor space was shown to have a significant influence on the vapor flow behavior for micro heat pipes. When the vapor space area decreases, the pressure drop, shear stress, and friction factor all significantly increase.

Liu, Xiaoqin

1996-01-01T23:59:59.000Z

440

Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection  

Science Conference Proceedings (OSTI)

The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of ...

Christopher E. Holloway; J. David Neelin

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Improved Magnus Form Approximation of Saturation Vapor Pressure  

Science Conference Proceedings (OSTI)

Algorithms, based on Magnus's form equations, are described that minimize the difference between several relationships between temperature and water vapor pressure at saturation that are commonly used in archiving data. The work was initiated in ...

Oleg A. Alduchov; Robert E. Eskridge

1996-04-01T23:59:59.000Z

442

Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions  

E-Print Network (OSTI)

Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynamically feasible systems have significant potential advantage over conventional technology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating characteristics. A waste heat driven heat pump (temperature amplifier) using liquid-vapor chemical reactions- can operate with higher coefficient of performance and smaller heat exchangers than an absorption temperature amplifying heat pump. Higher temperatures and larger temperature lifts should also be possible.

Kirol, L.

1987-09-01T23:59:59.000Z

443

Upper-Tropospheric Water Vapor from UARS MLS  

Science Conference Proceedings (OSTI)

Initial results of upper-tropospheric water vapor obtained from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) are presented. MLS is less affected by clouds than infrared or visible techniques, and the UARS ...

W. G. Read; J. W. Waters; D. A. Flower; L. Froidevaux; R. F. Jarnot; D. L. Hartmann; R. S. Harwood; R. B. Rood

1995-12-01T23:59:59.000Z

444

Ice Growth from the Vapor at ?5°C  

Science Conference Proceedings (OSTI)

Results are summarized and illustrated from a long series of experiments on ice growth from the vapor, nearly all in a very small range of conditions: ?5°C, slightly below liquid water saturation, with minimal environmental gradients and no ...

Charles A. Knight

2012-06-01T23:59:59.000Z

445

New Equations for Computing Vapor Pressure and Enhancement Factor  

Science Conference Proceedings (OSTI)

Equations are presented which relate saturation vapor pressure to temperature for moist air. The equations are designed to be easily implemented on a calculator or computer and can be used to convert in either direction. They are more accurate ...

Arden L. Buck

1981-12-01T23:59:59.000Z

446

Solar Radiation Absorption due to Water Vapor: Advanced Broadband Parameterizations  

Science Conference Proceedings (OSTI)

Accurate parameterizations for calculating solar radiation absorption in the atmospheric column due to water vapor lines and continuum are proposed for use in broadband shortwave radiative transfer codes. The error in the absorption values is ...

Tatiana A. Tarasova; Boris A. Fomin

2000-11-01T23:59:59.000Z

447

Water vapor and the dynamics of climate changes  

E-Print Network (OSTI)

Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus ...

Schneider, Tapio

448

Heat transfer during film condensation of a liquid metal vapor  

E-Print Network (OSTI)

The object of this investigation is to resolve the discrepancy between theory and experiment for the case of heat transfer durirnfilm condensation of liquid metal vapors. Experiments by previous investigators have yielded ...

Sukhatme, S. P.

1964-01-01T23:59:59.000Z

449

Heat transfer during film condensation of potassium vapor  

E-Print Network (OSTI)

The object of this work is to investigate theoretically and experimentally the following two phases of heat transfer during condensation of potassium vapore, a. Heat transfer during film condensation of pure saturated ...

Kroger, Detlev Gustav

1966-01-01T23:59:59.000Z

450

Photoinitiated chemical vapor depostion [sic] : mechanism and applications  

E-Print Network (OSTI)

Photoinitiated chemical vapor deposition (piCVD) is developed as a simple, solventless, and rapid method for the deposition of swellable hydrogels and functional hydrogel copolymers. Mechanistic experiments show that piCVD ...

Baxamusa, Salmaan Husain

2009-01-01T23:59:59.000Z

451

Chemical vapor deposition of organosilicon and sacrificial polymer thin films  

E-Print Network (OSTI)

Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

Casserly, Thomas Bryan

2005-01-01T23:59:59.000Z

452

The Arm Program's Water Vapor Intensive Observation Periods  

Science Conference Proceedings (OSTI)

A series of water vapor intensive observation periods (WVIOPs) were conducted at the Atmospheric Radiation Measurement (ARM) site in Oklahoma between 1996 and 2000. The goals of these WVIOPs are to characterize the accuracy of the operational ...

H. E. Revercomb; D. D. Turner; D. C. Tobin; R. O. Knuteson; W. F. Feltz; J. Barnard; J. Bösenberg; S. Clough; D. Cook; R. Ferrare; J. Goldsmith; S. Gutman; R. Halthore; B. Lesht; J. Liljegren; H. Linné; J. Michalsky; V. Morris; W. Porch; S. Richardson; B. Schmid; M. Splitt; T. Van Hove; E. Westwater; D. Whiteman

2003-02-01T23:59:59.000Z

453

Column Water Vapor Content in Clear and Cloudy Skies  

Science Conference Proceedings (OSTI)

With radiosonde data from 15 Northern Hemisphere stations, surface-to-400-mb column water vapor is computed from daytime soundings for 1988–1990. On the basis of simultaneous surface visual cloud observations, the data are categorized according ...

Dian J. Gaffen; William P. Elliott

1993-12-01T23:59:59.000Z

454

Initiated chemical vapor deposition of functional polyacrylic thin films  

E-Print Network (OSTI)

Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

Mao, Yu, 1975-

2005-01-01T23:59:59.000Z

455

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

456

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

457

Raman Lidar Profiling of Tropospheric Water Vapor over Kangerlussuaq, Greenland  

Science Conference Proceedings (OSTI)

A new measurement capability has been implemented in the Arctic Lidar Technology (ARCLITE) system at the Sondrestrom upper-atmosphere research facility near Kangerlussuaq, Greenland (67.0°N, 50.9°W), enabling estimates of atmospheric water vapor ...

Ryan Reynolds Neely III; Jeffrey P. Thayer

2011-09-01T23:59:59.000Z

458

It's Elemental - Isotopes of the Element Radon  

NLE Websites -- All DOE Office Websites (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

459

It's Elemental - Isotopes of the Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

460

Selected Isotopes for Optimized Fuel Assembly Tags  

SciTech Connect

In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Determination of the Vapor Pressure of Lanthanum Fluoride  

SciTech Connect

Preliminary experiments have been made to determine the vapor pressure of lanthanum fluoride between 0.001 and 0.1 millimeter of mercury by means of the Knudsen effusion method. A tantalum cell for this purpose is described. Only preliminary results were obtained and they were all in a relatively high pressure region. However, a plot of the vapor pressure against the reciprocal of absolute temperature approximates a straight line such as would be predicted from theoretical considerations.

Stone, B. D.

1954-04-07T23:59:59.000Z

462

Heat Recovery in Distillation by Mechanical Vapor Recompression  

E-Print Network (OSTI)

A significant reduction in distillation tower energy requirements can be achieved by mechanical vapor recompression. Three design approaches for heating a distillation tower reboiler by mechanical vapor recompression are presented. The advantages of using a screw compressor are discussed in detail. An example of a xylene extraction tower is sited, illustrating the economic attractiveness in which a simple payback period of less than two years is achievable.

Becker, F. E.; Zakak, A. I.

1986-06-01T23:59:59.000Z

463

Low-energy Coulomb excitation of neutron-rich zinc isotopes  

E-Print Network (OSTI)

At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

2009-01-01T23:59:59.000Z

464

Polarization-rotation resonances with subnatural widths using a control laser  

E-Print Network (OSTI)

We demonstrate extremely narrow resonances for polarization rotation in an atomic vapor. The resonances are created using a strong control laser on the same transition, which polarizes the atoms due to optical pumping among the magnetic sublevels. As the power in the control laser is increased, successively higher-order nested polarization rotation resonances are created, with progressively narrower linewidths. We study these resonances in the $D_2$ line of Rb in a room-temperature vapor cell, and demonstrate a width of $0.14 \\, \\Gamma$ for the third-order rotation. The explanation based on a simplified $\\Lambda$V-type level structure is borne out by a density-matrix analysis of the system. The dispersive lineshape and subnatural width of the resonance lends itself naturally to applications such as laser locking to atomic transitions and precision measurements.

Chanu, Sapam Ranjita; Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

2013-01-01T23:59:59.000Z

465

ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals  

DOE Data Explorer (OSTI)

Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

Maria Cadeddu

466

Low temperature plasma enhanced chemical vapor deposition of silicon oxide films using disilane and nitrous oxide  

Science Conference Proceedings (OSTI)

Keywords: disilane, low temperature, nitrous oxide, plasma enhanced chemical vapor deposition, silicon oxide

Juho Song; G. S. Lee; P. K. Ajmera

1995-10-01T23:59:59.000Z

467

Short wavelength laser  

DOE Patents (OSTI)

A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

Hagelstein, P.L.

1984-06-25T23:59:59.000Z

468

Narrow gap laser welding  

SciTech Connect

A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

Milewski, John O. (Santa Fe, NM); Sklar, Edward (Santa Fe, NM)

1998-01-01T23:59:59.000Z

469

Narrow gap laser welding  

DOE Patents (OSTI)

A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

Milewski, J.O.; Sklar, E.

1998-06-02T23:59:59.000Z

470

Longitudinal discharge laser baffles  

DOE Patents (OSTI)

The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

1994-01-01T23:59:59.000Z

471

Longitudinal discharge laser baffles  

DOE Patents (OSTI)

The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

Warner, B.E.; Ault, E.R.

1994-06-07T23:59:59.000Z

472

Laser Glazing of Railroad Rails [Laser Applications Laboratory] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Glazing of Railroad Laser Glazing of Railroad Rails Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Glazing of Railroad Rails Project description: Laser glazing of rails. Category: Project with industrial partner (American Association of Railroads) Bookmark and Share

473

Laser Welding of Metals [Laser Applications Laboratory] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Welding of Metals Laser Welding of Metals Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Project description: High-speed laser welding of metals. Category: Project with industrial partner (Delphi Energy and Engine Management Systems) Bookmark and Share

474

Laser Guiding for GeV Laser-Plasma Accelerators  

E-Print Network (OSTI)

Light pipe for high intensity laser pulses. Phys. Rev. Lett.and relativistically strong laser pulses in an underdensefrom Thomson scat- tering using laser wake?eld accelerators.

Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

2005-01-01T23:59:59.000Z

475

Nonlinear laser energy depletion in laser-plasma accelerators  

E-Print Network (OSTI)

Nonlinear laser energydepletion in laser-plasma accelerators ? B. A. Shadwick,of intense, short-pulse lasers via excitation of plasma

Shadwick, B.A.

2009-01-01T23:59:59.000Z

476

Apparatus for storing hydrogen isotopes  

DOE Green Energy (OSTI)

An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

McMullen, John W. (Los Alamos, NM); Wheeler, Michael G. (Los Alamos, NM); Cullingford, Hatice S. (Houston, TX); Sherman, Robert H. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

477

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

478

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

479

Vibrational, rotational, and isotopic dependence of CaBr X/sup 2/. sigma. spin-rotational and HFS parameters  

Science Conference Proceedings (OSTI)

The previously published molecular-beam, laser-rf, double-resonance study of the rotational and isotopic dependences of the spin-rotational and hyperfine interactions in the v'' = 0, X/sup 2/..sigma.. state of CaBr is supplemented here with data for v''=1. The vibrational dependence of the parameters is now obtained. The results for CaBr are displayed along with analogous, previously published results for CaF and CaCl.

Childs, W.J.; Cok, D.R.; Goodman, L.S.

1982-01-01T23:59:59.000Z

480

LANL | Physics | Trident Laser Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

science at Trident Laser Facility Several important discoveries and first observations have been made at the Trident Laser Facility, a unique three-beam neodymium-glass laser...

Note: This page contains sample records for the topic "vapor laser isotope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Computational study of nanosecond pulsed laser ablation and the application to momentum coupling  

Science Conference Proceedings (OSTI)

During the evaporation and ablation of a matter induced by intensive laser radiation, the vapor plasma is ejected from the surface of the target which induces the recoil pressure and impulse in the target. Impulse coupling of laser beams with matter has been extensively studied as the basis of laser propulsion and laser clearing space debris. A one-dimensional (1D) bulk absorption model to simulate the solid target ablated directly by the laser beam is presented; numerical calculation of impulse acting on the target in vacuum with different laser parameters is performed with fluid dynamics theory and 1D Lagrange difference scheme. The calculated results of the impulse coupling coefficients are in good agreement with the experimental results and Phipps' empirical value. The simulated results show that the mechanical coupling coefficients decrease with the increment of laser intensity when the laser pulses generate plasma. The present model can be applied when the laser intensity is 10{sup 8} - 10{sup 10} W/cm{sup 2}, which will provide a guide to the study of momentum coupling of laser beams with matter.

Yuan Hong; Tong Huifeng; Li Mu; Sun Chengwei [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-113, Mianyang, Sichuan 621900 (China)

2012-07-15T23:59:59.000Z

482

Orographic Precipitation and Water Vapor Fractionation over the Southern Andes  

Science Conference Proceedings (OSTI)

The climatological nature of orographic precipitation in the southern Andes between 40° and 48°S is investigated primarily using stable isotope data from streamwater. In addition, four precipitation events are examined using balloon soundings and ...

Ronald B. Smith; Jason P. Evans

2007-02-01T23:59:59.000Z

483

Tritium Isotope Separation Using Adsorption-Distillation Column  

Science Conference Proceedings (OSTI)

Technical Paper / Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation

Satoshi Fukada

484

Feasibility Study on Laser Microwelding and Laser Shock Peening using Femtosecond Laser Pulses.  

E-Print Network (OSTI)

??Ultrafast lasers of sub-picosecond pulse duration have thus far been investigated for ablation, drilling and cutting processes. Ultrafast lasers also have the potential for laser… (more)

Lee, Dongkyun

2008-01-01T23:59:59.000Z

485

Dynamic modeling of plasma-vapor interactions during plasma disruptions  

SciTech Connect

Intense deposition of energy in short times on fusion reactor components during a plasma disruption may cause severe surface erosion due to ablation of these components. The exact amount of the eroded material is very important to the reactor design and its lifetime. During the plasma deposition, the vaporized wall material will interact with the incoming plasma particles and may shield the rest of the wall from damage. The vapor shielding may then prolong the lifetime of these components and increase the reactor duty cycle. To correctly evaluate the impact of vapor shielding effect a comprehensive model is developed. In this model the dynamic slowing down of the plasma particles, both ions and electrons, with the eroded wall material is established. Different interaction processes between the plasma particles and the ablated material is included. The generated photons radiation source and the transport of this radiation through the vapor to the wall is modeled. Recent experimental data on disruptions is analyzed and compared with model predictions. Vapor shielding may be effective in reducing the overall erosion rate for certain plasma disruption parameters and conditions.

Hassanein, A.; Ehst, D.A.

1992-05-01T23:59:59.000Z

486

Vapor etching of nuclear tracks in dielectric materials  

DOE Patents (OSTI)

A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

Musket, Ronald G. (Danville, CA); Porter, John D. (Berkeley, CA); Yoshiyama, James M. (Fremont, CA); Contolini, Robert J. (Lake Oswego, OR)

2000-01-01T23:59:59.000Z

487

Drying of pulverized material with heated condensible vapor  

DOE Patents (OSTI)

Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

Carlson, L.W.

1984-08-16T23:59:59.000Z

488

BNL | CO2 Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Laser CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on fast optical switching from the output of a conventional CO2 laser oscillator, and a chain of high-pressure laser amplifiers. It starts with a wavelength converter wherein a near-IR picosecond solid-state laser with l»1 μm produces a mid-IR 10-μm pulse. This process employs two methods; semiconductor optical switching, and the Kerr effect. First, we combine the outputs from a multi-nanosecond CO2 laser oscillator with a picosecond Nd:YAG laser on a germanium Brewster-plate to produce an ~200 ps, 10μm pulse by semiconductor optical switching. Co-propagating this pulse with a Nd:YAG's 2nd harmonic in a

489

Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate Earth  

E-Print Network (OSTI)

Li reflect heavier isotopic ratios. Chemical Geology 212 (2004) 1­4 wwwPreface Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate isotope geochemistry. Taylor and Urey (1938) used ion exchange chromatography to sepa- rate 6 Li from 7 Li

Rudnick, Roberta L.

490

It's Elemental - Isotopes of the Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255×10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439×10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

491

It's Elemental - Isotopes of the Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6×10+17 years 182 26.50% STABLE 183 14.31% > 1.3×10+19 years 184 30.64% STABLE 186 28.43% > 2.3×10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

492

It's Elemental - Isotopes of the Element Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981×10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

493

It's Elemental - Isotopes of the Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33×10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

494

Isotopically engineered semiconductors: from the bulk tonanostructures  

SciTech Connect

Research performed with semiconductors with controlled isotopic composition is evolving from the measurement of fundamental properties in the bulk to those measured in superlattices and nanostructures. This is driven in part by interests associated with the fields of 'spintronics' and quantum computing. In this topical review, which is dedicated to Prof. Abstreiter, we introduce the subject by reviewing classic and recent measurements of phonon frequencies, thermal conductivity, bandgap renormalizations, and spin coherence lifetimes in isotopically controlled bulk group IV semiconductors. Next, we review phonon properties measured in isotope heterostructures, including pioneering work made possible by superlattices grown by the group of Prof. Abstreiter. We close the review with an outlook on the exciting future possibilities offered through isotope control in 1, 2, and 3 dimensions that will be possible due to advances in nanoscience.

Ager III, Joel W.; Haller, Eugene E.

2006-04-07T23:59:59.000Z

495

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

496

It's Elemental - Isotopes of the Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

497

It's Elemental - Isotopes of the Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248×10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

498

It's Elemental - Isotopes of the Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

499

It's Elemental - Isotopes of the Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139×10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

500

It's Elemental - Isotopes of the Element Gallium  

NLE Websites -- All DOE Office Websites (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%